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1. INTRODUCTION
Twitter is an online microblogging platform which allows

its users to post messages of length up to 140 characters.
Users share their opinions, and promote and discuss current
events. An event in the Twittersphere happens when many
users tweet about a subject (possibly, a real-world event) at
a particular time. Table 1 shows some sample events and
their attributes.

An emerging event is an event such that the number of
Twitter users tweeting about it rises to a significant number,
over a certain period of time. That is, an event is an emerg-
ing one at a particular time if (1) a considerable number of
people are discussing it (it is hot) and (2) there are consid-
erably more people talking about the event than before (it
is emerging).

With the increasing popularity of the Twitter, extract-
ing these events has become appealing for a wide range
of applications. These applications include marketing and
customer modeling, social studies, political campaigning,
among many others. Thus, we are interested in extracting
emerging events on the Twittersphere.

A generic event extraction system receives a real-time
stream of tweets as input, and generates a stream of event
representations which are discussed about on Twitter; we re-
fer to the this mode of operation as online processing. In the
online processing mode, the system should deal with various
stream processing issues, like buffering and archiving the re-
ceived messages, failure recovery and backup management.

Alternatively, we could think of an offline processing mode
in which the input is a sequence of timestamped files, each
containing the tweets posted during a specific time interval.
For example, we might store an hour or a day of tweets
in each file. The event extraction system reads each file
from the disk, extracts the events discussed in it and returns
the corresponding event representations to the end user. In
this work, we consider the offline processing mode for the
following reasons:

1. There are many different applications working on the

Twitter data in a collection of social media analy-
sis systems, one of which is the event extraction sys-
tem. Other applications include event monitoring, sen-
timent analysis, etc.

Hence, there usually exists a gateway module which
reads the tweets from the live firehose and stores them
in timestamped files in a general record format to be
used by other systems. This gateway would also deal
with the online processing issues mentioned above, ab-
stracting those measures from all other systems.

2. There is a huge volume of legacy Twitter data which
needs to be processed for various applications. This
data is already stored on disk as a sequence of times-
tamped files.

Thus, we define the problem of event extraction in the
Twittersphere as follows: given a sequence of timestamped
tweet files, we want to extract emerging events, with high
accuracy and low latency.

Challenges and Solution Ideas There are two major
challenges in solving the event extraction problem:

• It is hard to accurately extract events, since a lot of
tweets are about trivia or non-events (e.g. horoscope).

• It is hard to develop a scalable event extraction system,
as a result of large volume and rate of incoming tweets.

To address the first challenge, our main idea is that when
an emerging event happens in the Twittersphere, some phrases
suddenly become hot. Not only these phrases become hot,
but also phrases related to the same emerging event start
co-occurring together significantly more frequently.

Hence, we find these hot phrases and co-occurring phrase
pairs using a set of rules which could be tuned by the user.
This is implicit crowdsourcing, since we are using the crowd
messages to extract events.

Next, we use machine learning (in particular, clustering)
to find the set of phrases related to the same emerging event.
Then, we use editorial rules and machine learning (here,
decision tree classifier) to filter out non-interesting events.
This way, we are using rules, machine learning and (implicit)
crowdsourcing to solve the event extraction problem.

To address the second challenge, our main idea is to lever-
age the fact that some of the tasks involved in the event
extraction process could be executed in parallel. For exam-
ple, counting the number of phrases in the tweets posted in
different time intervals could be executed simultaneously.
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Figure 1: Architecture of Our Event Detection Sys-
tem

Hence, we break the process of extracting emerging events
into a pipeline of smaller tasks (like counting phrases). Then,
we model the dependency of various tasks in the pipeline.
Using this dependency model, we run as many of these tasks
as possible in parallel, using a multi-threaded setting.

Our Contributions Our main contributions could be sum-
marized as follows:

• We design and implement a system to solve the event
extraction problem, using rules, machine learning and
(implicit) crowdsourcing.

• Our implementation is tested against real-world data
and shown to be accurate and scalable.

We propose a pipeline of processing modules to detect
emerging events, as outlined in Figure 1. From the input
tweet file sequence, we first load and preprocess a chunk
of English tweets. Each chunk contains a fixed number of
English tweets. Preprocessing involves parsing the tweets,
performing preliminary filtering and stopword removal, and
discarding non-English tweets.

Then, we identify hot and emerging unigram and bigram
phrases – called hot phrases for brevity (see Definition 3.1).
We count the number of occurrences and the number of
users posting each unigram and bigram appearing in the
current chunk’s tweets, and retain those which satisfy hot
and emerging conditions.

Next, using the detected hot phrases in the previous stage,
we extract hot and emerging phrase/co-phrase pairs (see
Definitions 3.2 and 3.3). We count the number of co-occurrences
and number of users posting each pair of phrases in the cur-
rent chunk’s tweets, where the pair contains at least one
hot phrase. Then, we only keep the pairs which satisfy the
conditions of hot and emerging phrase/co-phrase pairs.

In the next stage, we cluster these pairs based on common
phrases, to form event candidates. We then extract a variety
of features for each candidate. Next, using these features,
we determine whether each candidate represents an inter-
esting event or not, leveraging a set of user-specified rules
and a pre-trained decision tree. Finally, the extracted inter-
esting events are presented to the user along with additional
information, like metadata and sample tweets.

To achieve scalability, we define the following task types:

1. Chunk Loading (CL)

2. Phrase Counting (PC)

3. Hot Phrase Detection (HP)

4. Co-phrase Counting (CC)

5. Hot Phrase/Co-phrase Pair Detection (HC)

6. Clustering, Metadata Extraction and Filtering (CF)

A task, then, is to run a particular kind of task on a partic-
ular chunk, e.g. detecting hot phrases appearing in the 5th
chunk.

We then define an order among tasks, based on their data
dependency and the chronological order of the chunks they
operate on. Next, we use a greedy, dynamic scheduling al-
gorithm to run as many tasks as we can, in parallel. This
multi-threaded implementation would achieve a significant
speed-up compared to the single-thread implementation.

Our results shows high accuracy (precision of 0.94 and
recall of 1.) and low latency (we are able to process an
hour worth of tweets in about 1.5 minutes). Many works
have considered solving event extraction problem. Examples
include [20, 9, 1, 5]. However, to the best of our knowledge,
no current piece of work handles the two aforementioned
challenges simultaneously.

2. PROBLEM DEFINITION
We start this section by defining how we represent a tweet

and an event in our system. Next, we define what an emerg-
ing event is. We then proceed to discuss online versus offline
event extraction modes. Finally, we define the event extrac-
tion problem (in the offline mode).

Definition 2.1 (Tweet Representation). A tweet is a
message posted by a Twitter user, represented by a record
of key-value pairs [k1 : v1, . . . , kn : vn]. Each key is a string
(ki ∈ str) and each value can be either a (1) string (vi ∈
str), (2) number (vi ∈ num), (3) list of values (vi ∈ (r)) or
(4) record of key-value pairs (vi ∈ [k′ : v′]). Here, str is the
set of all strings, num is the set of all numbers, (r) is the set
of all lists with elements of type r, and [k′ : v′] is the set of
all records of key-value pairs.

Table 2 shows the important fields (keys) of a tweet, their
data type and a brief description of what they contain. Most
notable among them is the one corresponding to the key
TweetText. This value is the textual message of the tweet.

Definition 2.2 (Event Representation). We represent
an event by a tuple 〈S, t,D〉, where:

• S ⊂ str, referred to as event signature, is a set of
strings related to various aspects of the event (like ac-
tions, entities, places and time),

• t ∈ num is the the time this event is extracted at, and

• D ⊂ [k : v] is a set of tweets about the event.

In this study, we want to extract emerging, dynamic events
(denoted as emerging event for brevity). Intuitively, an
event is an emerging one at a particular time if:

1. a considerable number of people are discussing it (it is
hot) and
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Event Description Time Place
Top boss of a Mexican drug cartel October 09, 2012 Progreso, Mexico
was killed in a shootout.
Earthquake happened in Japan. 2:46PM Japan’s

3/11/2011 northeastern coast

Table 1: Sample Events

Tweet Field Name Field Type Description
TweetText String Set to the original tweet text if this is a retweet.
UserID Integer ID of the user who has posted this tweet.
Timestamp Integer Time when the tweet has been posted

(as the number of milliseconds since January 1, 1970, 00:00:00 GMT).
IsReply? Boolean Whether this is a tweet in reply to another tweet.

Determined by checking whether the first character of
the tweet text is “@”

URL String The final URL, if any, in the tweet text (translated from
the shortened URL, like t.co/abcd).

IsRetweet? Boolean Whether this is a retweet of another tweet.
Determined by checking whether the field corresponding to
the retweet text is filled or not.

Table 2: Extracted Fields from Each Tweet

2. there are considerably more people talking about the
event than before (it is emerging).

Formalizing the above two conditions, we define an emerging
event as follows.

Definition 2.3 (Emerging Event). Let e = 〈S, t,D〉 be
an event discussed on the Twitter, f(e, t1, t2) be a function
which returns the number of tweets in which e has been dis-
cussed during the time interval [t1, t2] and u(e, t1, t2) be a
function which returns the number of users who have dis-
cussed e in the interval [t1, t2]. Then, e is an emerging event
if:

f(e, th, t) ≥ µf
f(e, th, t)

1
h

h∑
i=1

f(e, ti−1, ti)

≥ λf

u(e, th, t) ≥ µu
u(e, th, t)

1
h

h∑
i=1

u(e, ti−1, ti)

≥ λu

for

t0 < t1 < · · · < th < t.

where

• µf is the minimum number of tweets discussing a hot
event,

• λf is the minimum jump in the number of tweets dis-
cussing an emerging event, compared to the average
number of tweets posted about that event over some
h > 0 previous epochs,

• µu is the minimum number of people discussing a hot
event, and

• λ is the minimum jump in the number of users dis-
cussing an emerging event, compared to the average

number of people talking about it over h previous
epochs.

We want to extract such emerging events from a collection
of tweets. We might access these tweets through real-time
stream or a collection of files containing archives of tweets
posted during certain times periods. Next, we review these
two access modes and our choice of which access method to
consider.

Online and Offline Event Extraction: A generic event
extraction system receives a real-time stream of tweets as in-
put, and generates a stream of event representations which
are discussed about on Twitter; we refer the this mode of op-
eration as online processing. In the online processing mode,
the system should deal with various online processing issues,
like buffering and archiving the received messages, failure re-
covery and backup management.

Alternatively, we could think of an offline processing mode
in which the input is a sequence of timestamped files, each
containing the tweets posted during a specific time interval.
For example, we might store an hour or a day of tweets in
each file. The event extraction system reads each file from
the disk, extracts the events discussed in it and returns the
corresponding event representations to the end user.

In this work, we consider the offline processing mode for
the following reasons:

1. There are many different applications working on the
Twitter data in a collection of social media analy-
sis systems, one of which is the event extraction sys-
tem. Other applications include event monitoring, sen-
timent analysis, etc.

Hence, there usually exists a gateway module which
reads the tweets from the live firehose and stores them
in timestamped files in a general record format to be
used by other systems. This gateway would also deal
with the online processing issues mentioned above, ab-
stracting those measures from all other systems.
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2. There is a huge volume of legacy Twitter data which
needs to be processed for various applications. This
data is already stored on disk as a sequence of times-
tamped files.

Given the above definitions and discussion, we define the
event extraction problem as follows.

Definition 2.4 (Twitter Event Extraction Problem).
Given:

• a finite sequence of input tweet files F = (〈fi, τi〉)i∈In
where each fi contains the tweets posted during the
time interval [τi−1, τi] and In = {1, · · · , n},

• the starting time of the first file τ0, and

• a set of user-provided parameters Θ,

extract the set E = {e1, · · · , ep} where each ej = 〈Sj , tj , Dj〉, j ∈
Ip is the representation of an emerging event extracted from
the tweets posted during [τ0, τn], to:

• maximize accuracy of the extracted events,

• minimize latency of returning the results to the end
user, and

• minimize the total processing time.

The measure of accuracy we use here is the F1 score, the
harmonic mean of precision and recall. We define the preci-
sion to be the ratio of extracted events which represent an
emerging event happening on the Twitter during the tar-
get time period. We define the recall to be the ratio of the
emerging events happening during the target time period
which we have been able to extract a representation for.

We define the latency as the average difference between
the time of submission of a new chunk to be processed and
the time when the system returns the results for that chunk
to the user. Finally, we define the total processing time
to be the total time spent processing F . We will discuss
the measures we wish to optimize and how we approach
the optimization problem in more detail in the following
sections.

One of the major issues we address in this work is scal-
ability. In the online mode of processing, the scalability is
defined as follows: if the rate of input data and amount
of available computing resources (memory and processing
units) would increase linearly, then the latency and the total
processing time of the system would increase with a linear
rate as well. This is particularly important observing the
increasing trend of Twitter data volume over the past few
years. For the offline mode, the scalability could be restated
as processing the data and extracting the events as fast as
possible.

Now, we describe our proposed solution to solve the Twit-
ter event detection problem, to achieve high accuracy and
scalability.

3. OUR SOLUTION
One of the main idea behind our solution is to use Twitter

as an implicit crowdsourcing medium, to extract emerging
events. We observe that when an emerging event happens
in the Twittersphere, some phrases suddenly become hot.
Not only these phrases become hot, but also phrases related

to the same emerging event start co-occurring together sig-
nificantly more frequently.

So, we find these hot phrases and co-occurring phrase
pairs, using a set of rules which could be tuned by the user.
Next, we use machine learning (in particular, clustering) to
find the set of phrases related to the same emerging event.
Then, we use editorial rules and machine learning (here,
decision tree classifier) to filter out events that are not in-
teresting for the user.

To implement the above idea in a scalable way, we lever-
age the fact that some of the tasks involved in the event
extraction process could be executed in parallel. For exam-
ple, counting the number of phrases in the tweets posted in
different time intervals could be executed simultaneously.

Hence, we break the process of extracting emerging events
into a pipeline of smaller tasks (like counting phrases). Then,
we model the dependency of various tasks in the pipeline and
run as many of these tasks as possible in parallel, using a
multi-threaded setup.

3.1 Overview
We propose a pipeline of processing modules to detect

emerging events, as outlined in Figure 1. From the input
tweet file sequence, we first load and preprocess a chunk
of English tweets. Each chunk contains a fixed number of
English tweets. Preprocessing involves parsing the tweets,
performing preliminary filtering and stopword removal, and
discarding non-English tweets.

Then, we identify hot and emerging unigram and bigram
phrases – called hot phrases for brevity (see Definition 3.1).
We count the number of occurrences and the number of
users posting each unigram and bigram appearing in the
current chunk’s tweets, and retain those which satisfy hot
and emerging conditions.

Next, using the detected hot phrases in the previous stage,
we extract hot and emerging phrase/co-phrase pairs (see
Definitions 3.2 and 3.3). We count the number of co-occurrences
and number of users posting each pair of phrases in the cur-
rent chunk’s tweets, where the pair contains at least one
hot phrase. Then, we only keep the pairs which satisfy the
conditions of hot and emerging phrase/co-phrase pairs.

In the next stage, we cluster these pairs based on com-
mon phrases, to form event candidates. We then extract
a variety of features for each candidate. Next, using these
features, we determine whether each candidate represents
an interesting event or not, leveraging a set of user-specified
rules and a pre-trained decision tree. Finally, the extracted
interesting events are presented to the user along with addi-
tional information, like metadata and sample tweets. In the
following subsections, we discuss each step in more detail.

3.2 Preprocessing
The main purpose of this stage is to chop the stream (here,

the sequence of files) into blocks of clean English tweets,
called chunks. Each chunk contains the same fixed number
of English tweets. Fixed-size chunks would make the per-
formance of the system more predictable, since the rate of
incoming tweet stream is not constant. This way, we could
assume the processing time of all the chunks are roughly the
same. It also makes configuring the system easier.

We load the next chunk of English tweets from the current
input tweet file on disk by first reading the next file block
to a memory buffer. Then we parse and clean each tweet
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in the buffer and tokenize the tweet text. We then discard
non-English tweets and create an in-memory collection of
English tweet records to be used in the following steps. Next,
we describe these steps, discuss the data elements of a tweet
record, why we need any of these fields and how we fill in
these values using a tweet.

The input to the preprocessing phase consists of:

• the path to the input tweet files on disk,

• the size of a chunk w (in English tweet records),

• a list of English words (we use the the dict file shipped
with standard Linux distributions),

• an English language classification threshold,

• the collection of blacklisted phrases, and

• the collection of news agency names/keywords.

The output of this stage is the in-memory collection of the
current chunk’s tweet records Ck, and a timestamp τ̂k of the
last tweet posted in the current chunk. Ck is an associative
array (map) of key-value pairs (y : v) with y ∈ num and v
being a tweet record . For each tweet record, we apply a
hash function1 ~ to the value of “TweetText” field (see Def-
inition ??) and the resulting number will be used as the key
to refer to the tweet record in Ck.

Loading and Parsing Tweets: First, we initialize Ck to
an empty map, and τ̂k to 0. Then, starting from the first
block of the first tweet file, we load the next block of tweets
into a memory buffer. Each line in the input tweet file cor-
responds to one tweet. We parse the tweet (from JSON or
tab-separated format) and extract the required fields which
are described in Table 2.

Discarding Tweets with Blacklisted Phrases: Next,
if any substring of the TweetText is in the collection
of blacklisted phrases, we discard the tweet and read the
next one. Using this feature, the user could indicate the
phrases and tweets containing those phrases which she be-
lieves would not correspond to any interesting events. For
example, we consider any of the zodiac sign names, like
“capricorn”, as a blacklisted phrase.

Detecting Retweets and Updating Retweeting Users:
Twitter users use retweeting – reposting a tweet to one’s fol-
lowers – to share interesting messages. Tracking the users
retweeting a particular tweet could give us useful informa-
tion about events. For example, lots of retweets of a few
tweets about an event would indicate that it is not very
controversial; almost everyone would just pass the messages
around without commenting. On the other hand, a very
few number of retweets related to an event might indicate
that users potentially have many different ideas and opinions
about the event.

We check whether the current tweet is a retweet and whether
the original tweet has been added to Ck already: we apply
~ to the TweetText and look it up in Ck. If Ck contains

1Here, we use the hash function ~(s) =
∑ς−1
i=0 s[i].31ς−1−i

where s[i] denotes the ith character of the string, ς is the
length of s, and terms are summed using 32-bit integer ad-
dition.

the hash value, then we retrieve the original tweet record
from Ck and add the UserID to the set corresponding to
the “UserIDs” key - the collection of users retweeting the
original tweet. We then read the next tweet from the buffer.

On the other hand, if the current tweet is not a retweet,
or if it is a retweet but Ck does not contain the original
tweet (that is , the original tweet or any retweets of it has
not been posted in the current chunk up to this point), we
then add a new tweet record to Ck as follows. We first clean
the TweetText by removing symbols, punctuation marks,
letter repetitions and URLs from it. Then, we tokenize the
cleaned TweetText with white space delimiter.

Language Classification: Next, we use a dictionary-based
English language classifier to determine whether the tweet
is in English or not. The classifier counts the number of
TweetText tokens contained in the English dictionary and
computes the ratio of this number to the total number of
tokens. It classifies the tweet as English if this ratio is larger
than a particular threshold (0.8 in our experiments).

If the tweet is classified as English, then we instantiate a
new tweet record using the fields extracted before and add
it to Ck, with the key being the result of applying ~ to the
TweetText field. Also, if the value of Timestamp field of
the current tweet is greater than τ̂k, then we set τ̂k to the
the value of Timestamp field of the current tweet.

Forming A Chunk: We continue reading input tweets un-
til the current chunk is complete, i.e. either we have added
w English tweet records to Ck or we have reached the end
of the last tweet file. Finally, we return the current chunk’s
in-memory collection of tweet records Ck and the timestamp
τ̂k. Figure 2 shows a sample tweet, the extracted fields and
the corresponding tweet record after being preprocessed.

Tweet Record and Extracted Fields: We now discuss
the information we keep from each English tweet in a tweet
record as we form the chunks.
Tweet Record Type: The tweet record type is defined as
follows:

[

“TweetText” : str,

“Tokens” : (str),

“UserIDs” : {num},
“IsReply” : boolean,

“ContainsNewsKW” : boolean,

“URL” : str

]

A tweet record is an instance of the tweet record type, rep-
resenting a (re)tweet in the current chunk, as an in-memory
associative array (map). Table 3 shows how we fill in a new
tweet record’s fields using the corresponding tweet (Table
2).

As we mentioned earlier, when we encounter a retweet
(decided using the IsRetweet? field) the original tweet
record of which we have added to Ck before, we retrieve the
original tweet record from Ck and add the UserID to the set
corresponding to the “UserIDs” key; the rest of the mapping
described above has been established for the original tweet
and we may save repeating the processing effort.
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Figure 2: Preprocessing Example

Tweet Record Key Associated Value Mapping to Tweet Fields When First Instantiated
“TweetText” Text of the original tweet (whenever a tweet or its retweet Value of TweetText after removing any URLs

appears in a chunk for the first time, we create a tweet record
for the original tweet and for each retweet, add the ID of the user
posting the retweet to the set of the users (re)posting the tweet)

“Tokens” The list of tokens of original tweet’s cleaned text the tokens extracted from the cleaned TweetText
“UserIDs” The set of user IDs (re)posting this tweet in the current chunk a set containing the ID of the user posting the tweet (UserID)
“IsReply” A boolean field indicating whether this tweet is in reply to another tweet Tthe corresponding value extracted from the tweet (IsReply?)
“ContainsNewsKW” A boolean field which indicates whether any news agency names/keywords Determined by searching the TweetText for any substring

are mentioned in the tweet text which is contained in the list of news agency keywords/names
“URL” The final URL (translated from the shortened URLs like t.co/abcd) the URL extracted from the tweet (URL)

mentioned in the tweet text (if any)

Table 3: Tweet Record Fields

The “TweetText” field is used to refer to the tweet record
and to extract “Tokens” after cleaning. The value of “Tokens”
is in turn used to generate unigrams and bigrams. We store
the tokens since cleaning and tokenization are expensive op-
erations and we want to avoid repeating them as much as
possible.

The “UserIDs” field tracks the users who have (re)tweeted
the message. It is used later to figure out how much discus-
sion users have about a candidate event; the more the num-
ber of retweets, the less the controversy about the event.
The value of the “IsReply” field is another indicator of the
variety of ideas about an event. People use replies to post
reflections about each others’ opinions and the more replies
posted about an event, the event evokes more discussion.

We extract “ContainsNewsKW” to see whether people have
potentially referred to an actual news article in their tweet.
Since news articles are a more curated and sanity-checked
form of information about events, existence of a news arti-
cle about an event is an indicator of its potential interesting-
ness. The “URL” field also is an indicator of outside reference
which shows that additional material exists about the event.

Discussion: The output of this step is an associative map
Ck consisting of the tweet records extracted from the lat-
est chunk of tweets read from the input stream (here, the
currently open tweet file). This map is retained in memory
for the lifetime of this chunk. Also, processing later chunks
depends on the availability of Ck; particularly, the next h
chunks Ck+1, . . . , Ck+h need the tweet records in Ck for hot
co-phrase detection, as we will discuss later.

Thus, efficient access methods and storage mechanisms
are utilized to minimize the overhead of lookups and re-
trievals, and to reduce the memory needed to store it. These
strategies consist of using appropriate associative map im-
plementation to improve the access time, use more primitive
types (like long integers for user IDs) whenever possible and
having one copy of each string literal.

In the course of developing our system, we have decided
to go over the input tweet files F once, divide them into a se-
quence of preprocessed chunks (Ci)

m
i=1 and store the tweets

back on disk. This is also a one-time task which could be
done when the tweets are read from the stream. Next, we
detect the hot phrases appearing in the current chunk.

3.3 Hot Phrase Detection
The main purpose of this step is to find phrases in the

current chunk which are hot (have appeared in a lot of
tweets and mentioned by many users) and emerging (their
appearance has increased considerably, compared to previ-
ous chunks, both in number of appearances and number of
users mentioning them). We call such a phrase a hot phrase
and define it as follows.

Definition 3.1 (Hot Phrase). Let f(w, k) : str× Z 7→ Z
be a function that returns the total number of appearances
of phrase w in tweet records of Ck, and u(w, k) : str×Z 7→ Z
be a function that returns the total number of users men-
tioning phrase w in their tweets in Ck. Given the parameters
h, µf , λf , µu and λu, w is a hot phrase in Ck if:

1. f(w, k) ≥ µf
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2. f(w,k)
1
h

∑h
i=1 f(w,k−i)

≥ λf

3. u(w, k) ≥ µu

4. u(w,k)
1
h

∑h
i=1 u(w,k−i)

≥ λu

In the hot phrase detection phase, we first generate tweet
record phrases (unigrams and bigrams) from the “Tokens”
field value of the tweet records in Ck. Then for each phrase
of Ck tweet records, we count the number of its appearances,
store the user IDs of the users posting it, store the Ck tweet
records containing it, and determine whether it is hot in Ck
based on the criteria described in Definition 3.1.

The inputs to this phase are the map Ck, the list of stop-
words and the parameters h, µf , λf , µu and λu. The output
of this phase consists of the following:

• An associative map PQk of key-value pairs (y : v) with
y ∈ str and v ∈ num. We apply ~ to each phrase and
use it as the key to refer to the phrase’s number of
appearances in Ck tweet records.

• An associative map PUk of key-value pairs (y : v) with
y ∈ str and v ⊂ num. We apply ~ to each phrase and
use it as the key to refer to the set of user IDs posting
the phrase in Ck tweet records.

• An associative map PWk of key-value pairs (y : v)
with y ∈ str and v ⊂ num. We apply ~ to each phrase
and use it as the key to refer to the set of Ck tweet
records in which the phrase has appeared. Each num-
ber in this set is the result of applying ~ to a tweet’s
string and the corresponding tweet record could be re-
trieved by querying Ck with this number.

• A set Hk ⊂ str of hot phrases in Ck’s tweet record
phrases.

Phrase Generation: First, we initialize PUk, PQk and
PWk to empty maps and Hk to an empty set. Then, for
each tweet record in Ck, we generate unigrams and bigrams
using the value of the “Tokens” field. We go over the el-
ements of the “Tokens” field array and return each token
(unigram) as well as the concatenation of every two consec-
utive tokens (bigram).

Removing the Stopwords and Updating the Maps:
For each phrase in the current tweet record’s unigrams and
bigrams, if the phrase is a stopword or contains a stopword
token, then we ignore it and proceed to the next phrase.
Some examples of stopwords are “I ”, “the”, “LOL” and
“Good morning”. Considering both unigrams and bigrams
as phrases gives us the opportunity to discard bigram stop-
words as well.

If the phrase is not a stopword and does not contain a
stopword token, then we check whether PQk (as well as PUk
and PWk) contains the key corresponding to the current
phrase. If not, we add it to PQk, PUk and PWk with the
corresponding values 0, ∅ and ∅ respectively.

Next, we retrieve the set of user IDs (re)tweeting the cur-
rent tweet record, stored in the “UserIDs” field value. Each
user with her ID in this set has posted or reposted a tweet
containing the current phrase, so we increment the number
of appearances of the phrase in PQk by the size of this set

(number of users mentioning the phrase in a tweet), add the
user IDs in this set to the corresponding set in PUk and add
the tweet hash value to the corresponding set in PWk.

We observe that since each user might post more than one
tweet in a chunk and a tweet record might have a phrase w
appeared in it more than once, the values of PQk(w) and
‖PUk(w)‖ are different in general. As an example, suppose
there are only two tweets “a b a” and “b a c” in the cur-
rent chunk, posted by the same user. Then, PQk(“a”) = 3
whereas ‖PUk(“a”)‖ = 1.

Detecting Hot Phrases: For the chunks where there is
not enough history (i.e. k ≤ h), we simply ignore the rest
of the pipeline in order for the results to be consistent with
our definitions.

So next, if k > h, then for each phrase in PQk’s key set,
we need the corresponding values in PQk−is and PUk−is
for i = 1, . . . , h. If the pipeline is executed sequentially on
the sequence of chunks one after another, all of these maps
are already filled at this point, since we have completed pro-
cessing the previous chunks before. Hence, we need to keep
maps for the previous h chunks in memory so we prevent
repeating the counting procedure.

Now, using Definition 3.1, for each phrase w in PQk’s key
set, we retrieve the values f(w, k − i) and u(w, k − i) for
i = 0, 1, . . . , h with:

f(w, k − i) = PQk−i (w)

u(w, k − i) = ‖PUk−i (w) ‖

Then, we apply Definition 3.1 to check whether w is a hot
phrase; if so, then we add it to the set of hot phrases Hk.

Finally, we return the current chunk’s maps PQk, PUk
and PWk, and the set of hot phrases in the current chunk
Hk to be used in the subsequent steps. Figure 3 illustrates
an example of the hot phrase detection process, illustrated
using PQs only.

3.4 Hot Co-phrase Detection
The signature of an event is a collection of terms and

phrases related to that event which describe various aspects
of it. Not only these phrases would appear more frequently
and be posted by more users as an event happens, but the
phrases related to a single event tend to co-occur in individ-
ual tweets more frequently as well. This is due to the fact
that users usually mention multiple aspects of an event in
their tweets, like who does what and where.

In this step, we detect hot and emerging co-occurrence
of hot phrases (detected in the previous step) with other
phrases in tweets by scanning the tweet records again and
tracing statistics of phrase pairs which have a hot phrase
leg. We then pick the ones that show significant appearance
and emergence as hot phrase/co-phrase pairs which are used
later to form candidate events.

Let’s define the notion of a co-phrase.

Definition 3.2 (Co-Phrase). Given a string W ∈ str and
the set BW of W ’s phrases, the co-phrase relation is defined
as BW ×BW , which is an equivalence relation. Particularly,
for each pair of phrases (w1, w2) ∈ BW × BW , we say that
w2 is a co-phrase of w1.

We define the notion of hot co-phrase as follows.

Definition 3.3 (Hot Co-Phrase). Let cof(w1, w2, k) :
str × str × Z 7→ Z be a function that returns the number
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Figure 3: Hot Phrase Detection Example (µf = 20, λf = 5 and h = 3)

Figure 4: Hot Co-phrase Detection Example

of appearences of phrases w1 and w2 together in one of the
tweet records in Ck and cou(w1, w2, k) : str×str×Z 7→ Z be
a function that returns the total number of users mentioning
phrases w1 and w2 together in one of the tweet records in
Ck. Given the parameters h, µ′f , λ

′
f , µ
′
u and λ′u, (w1, w2) is

a hot phrase/co-phrase pair in Ck if:

1. cof(w1, w2, k) ≥ µ′f

2. cof(w1,w2,k)
1
h

∑h
i=1 cof(w1,w2,k−i)

≥ λ′f

3. cou(w1, w2, k) ≥ µ′u

4. cou(w1,w2,k)
1
h

∑h
i=1 cou(w1,w2,k−i)

≥ λ′u

The goal of this step is to separately count the number
of appearances of each phrase/co-phrase pair in the current
chunk tweet records Ck and history chunks tweet records
Ck−h, . . . , Ck−1’s phrase/co-phrase pairs, store the user IDs
of the users posting each phrase/co-phrase pair in the cur-
rent chunk and history chunks tweet record phrase/co-phrase
pairs, and determine the hot phrase/co-phrase pairs in Ck.
The inputs to this step are Ck−h, . . . , Ck−1, Ck, the set of
hot phrases in the current chunk Hk, the list of stopwords

and the parameters h, µ′f , λ
′
f , µ
′
u and λ′u. It returns the set

of hot phrase/co-phrase pairs in the current chunk, Ok.
Similar to the hot phrase detection step, we keep track

of the Ck’s tweet record phrase/co-phrase pairs statistics by
instantiating and filling the following data structure:

• the two-dimensional associative map CQk of key-value
pairs ((y1, y2) : v) with y1, y2 ∈ str and v ∈ num - we
apply ~ to each hot phrase y1, to the string of y2 – a
co-phrase of y1 – and use the results to refer to the
phrase/co-phrase pair’s number of appearances in Ck
tweet record phrase/co-phrase pairs,

• the two-dimensional associative map CUk of key-value
pairs ((k1, k2) : v) with k1, k2 ∈ str and v ⊂ num - we
apply ~ to each hot phrase string y1, to the string of
y2 – a co-phrase of y1 – and use the resulting pair of
numbers to refer to the phrase/co-phrase pair’s set of
user IDs posting them in Ck tweet record phrase/co-
phrase pairs, and

• the set Ok ⊂ str× str of hot phrase/co-phrase pairs
in Ck’s tweet record phrase/co-phrase pairs.

Initialization: First, we initialize CQk, CQk−1, . . . , CQk−h
and CUk, CUk−1, . . . , CUk−h to empty maps, and the set
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Ok to an empty set. We shall emphasize that for each
tweet record chunk Ck, we recalculate CQk−1, . . . , CQk−h
and CUk−1, . . . ,
CUk−h for the following reasons:

1. The space required to store the statistics for every pair
of phrases is quadratic in the number of Ck phrases,
which is not manageable in terms of memory space.

2. Keeping CQi and CU i in memory will not be neces-
sarily helpful for detecting hot phrase/co-phrase pairs
of subsequent chunks as the set of hot phrases are dif-
ferent for various chunks. Thus, for any hot phrase
w ∈ Hi+j , j ∈ {1, . . . , h} which w /∈ Hi, we still need
to retraverse the whole Ci to fill in the entries corre-
sponding to the key (w, .) in CQi and CU i, needed for
computing Oi+j .

Phrase/Co-Phrase Pair Generation and Map Up-
dating: Next, we fill in CQk−i and CUk−i maps for all
i = 0, 1, . . . , h. For each i ∈ {0, 1, . . . , h}, we go over all the
tweet records in Ck−i and generate unigrams and bigrams
using the value of the “Tokens” field. Now, for each hot
phrase w1 ∈ Hk, if the generated set of phrases of the cur-
rent tweet record contains w1, then we iterate w2 over these
phrases in an inner loop. For each phrase w2 in the current
tweet record phrases, if CQk−i and CUk−i do not contain
(w1, w2), we add the key (w1, w2) to CQk−i and CUk−i, ini-
tializing the corresponding values to 0 and ∅ respectively.

Next, we retrieve the set of user IDs (re)tweeting the
current tweet record which corresponds to the value of the
“UserIDs” field. Each user with her ID in this set has posted
or reposted a tweet corresponding to a tweet record in Ck−i
containing w1 and w2 simultaneously, so we increment the
number of appearances of the phrase/co-phrase pair (w1, w2)
in CQk−i by the size of this set (number of users mentioning
the phrase/co-phrase pair in a tweet) and add the user IDs
in this set to the corresponding set in CUk−i.

Hot Phrase/Co-Phrase Pair Detection: Next, to dis-
tinguish the hot phrase/co-phrase pairs based on Defini-
tion 3.3, we iterate over the phrase/co-phrase pairs in CQk
key set and for each phrase/co-phrase pair (w1, w2), re-
trieve the values cof(w1, w2, k − i) and cou(w1, w2, k − i)
for i = 0, 1, . . . , h where:

cof(w1, w2, k − i) = CQk−i (w1, w2)

cou(w1, w2, k − i) = ‖CUk−i (w1, w2) ‖

If CQk−i or CUk−i do not contain the key (w1, w2), we con-
sider the default of 0.

Then, we apply Definition 3.3 to check whether the phrase/co-
phrase pair (w1, w2) is hot; if it is, we add it to the set of
hot phrase/co-phrase pairs Ok. Finally, we return Ok as the
result of this phase. Figure 4 shows an example of the hot
co-phrase detection process illustrated using CQks only.

3.5 Clustering
The goal of the clustering phase is to create a set of event

candidates from the set of hot phrases in the current chunk,
Hk and the set of hot phrase/co-phrase pairs, Ok. Its input
consists of Hk, Ok, the tweet records Ck and the timestamp
τ̂k. It returns the set of event candidates in the current
chunk Ek.

Essentially, we group phrases related to an event based
on their co-occurrence. Specifically, we assert that every
hot phrase has a corresponding event candidate:

w ∈ Hk ⇒ ∃!e ∈ Ek;w ∈ Se (1)

and the two phrases of a hot phrase/co-phrase pair are re-
lated to the same event candidate:

e ∈ Ek, w1 ∈ Se, (w1, w2) ∈ Ok ⇒ w2 ∈ Se (2)

Initialization: First, we initialize the set of event candi-
dates in the current chunk Ek to an empty set, create an as-
sociative array (map) L of key-value pairs (y, v) with y ∈ str

and v ∈ num which maps each phrase to a numerical cluster
label – using the hash function ~ – and initialize it to an
empty map. We also initialize a cluster label counter i to
0. Then, for each hot phrase w in Hk, we add to L the key
w with value i and increment i, thus associating each hot
phrase to a distinct cluster (Equation 1).

Agglomerative Clustering: Next, we perform agglomer-
ative clustering: for every pair of hot phrases w1, w2 ∈ Hk,
if there exist hot phrase/co-phrase pairs (w1, w

′) ∈ Ok and
(w2, w

′) ∈ Ok, then we merge the clusters associated with
w1 and w2 by setting the cluster labels of both hot phrases in
L to the same value (Equation 2). Particularly, if L(w2) >
L(w1), then we assign L(w2)← L(w1), and vice versa. This
prevents oscillation of cluster labels back and forth and en-
sures termination of the clustering process.

Forming Event Candidates: Next, to form the event
candidates, for each cluster label j in L’s set of values, we
create a new event representation ej = 〈Sj , tj , Dj〉. Then
for all w which L maps to j, we add w to Sj and for all
(w,w′) ∈ Ok, add w′ to Sj as well. Thus, the signature of
ej would consist of all the hot phrases labeled as being in
cluster j and their hot co-phrases. We set tj = τ̂k, and for
each tweet record in Ck, if its text (value of the “TweetText”
field) contains 3 or more phrases of ej ’s signature, then we
add it to Dj . The choice of value 3 is an empirical heuristic,
based on the investigating the data.

We then add ej to the set of event candidates Ek and
finally return Ek as the result of this step. Figure 5 shows
an example of the clustering process.

3.6 Metadata Extraction and Filtering
In this phase, we extract metadata for event candidates in
Ek and pick interesting events based on the extracted meta-
data and user-provided editorial rules. The input to this
step consists of the set of event candidates for the current
chunk Ek, the current chunk’s tweet records Ck and the set
of user-provided editorial rules. It returns the set of inter-
esting events in the current chunk Êk.

Initialization and Metadata Extraction: First, we ini-
tialize Êk to an empty set. Then, we go over the tweet
records in Ck and for each event candidate e in Ek, we ex-
tract the metadata shown in Table 4, which capture various
aspects of the candidate event.

For example, to extract twt3(e) and twu3(e), we initialize
twt3(e) = 0, twu3(e) = 0 and TWU3(e) = which is the set of
users posting at least one tweet record in Ck containing 3 or

9



Figure 5: Clustering Example

more unigrams of Se. Next, for each tweet record tw in Ck,
if the tw’s “Tokens” field contains at least 3 unigrams in Se,
then we increment twt3(e) value and add the tw’s “UserID”
field to TWU3(e). After going over all tweet records in Ck,
twu3(e) = ‖TWU3(e)‖.

Application of Editorial Rules: We then apply the edi-
torial rules to to each event candidate’s metadata. The ed-
itorial rules serve as the means to reflect user’s idea about
what is interesting and what is not, directly into the results,
based on a variety of metadata extracted for each event can-
didate. Table 5 illustrates the set of editorial rules we use
in the current implementation of the system. If an event
candidate e passes all the editorial rules, then we pass it to
the decision tree classifier.

Classification: The decision tree is trained based on a set
of manually-labeled event candidates using the C4.5 algo-
rithm. The training phase starts with drawing a sample of
candidate events from a result set of our system. Each sam-
ple corresponds to an event candidate and consists of the
metadata extracted from the event candidate, along with
the threshold µu. We then go through the samples one-
by-one and check whether it corresponds to a potentially
interesting event or not, and labeling it accordingly.

Next, we leverage these samples to train a decision tree,
using the C4.5 algorithm implemented in the Weka toolkit2.
The Weka toolkit outputs source code which we plug into our
system programatically and this module could be replaced,
for example, in case we want to change the classifier’s oper-
ation point on the P/R curve.

Using the decision tree, we try to discard systematic noise
from the result. Example of the systematic noise in our
case includes event candidates which are formed from auto-
matically generated tweets about earning money by filling
surveys. If e is classified by the decision tree as being inter-
esting (+), then we add it to Êk; otherwise (−) we discard
e.

Finally, we return the set of interesting events in the cur-
rent chunk Êk to the end user. For each event ê ∈ Êk, we
show the following items to the end user:

• Se as a list of key phrases expressing the event

• te as the time when the event has emerged

• a subset of De to show the provenance for the event

Figure 6 shows a sample event our system has extracted.

3.7 Remarks

Editorial Rule
‖Se‖ ≥ 2
‖Se‖ <= 300000
twt3 ≥ 0 or twtall ≥ 0

Table 5: Editorial Rules Used in The Current Sys-
tem

Algorithm 1 Twitter Event Detection

Input: C – input tweet chunks, Θ – user-provided parameters

Output: Ê – extracted events

1: Ê ← ∅
2: for k ← h + 1, · · · ,m
3: Tk ← Preprocess and extract uni/bigrams from Tk
4: Hk ← Extract hot phrases in Tk
5: Ok ← Extract hot phrase/co-phrase pairs in Tk
6: Ek ← Cluster Ok and form event candidates
7: for each e ∈ Ek
8: Extract metadata for e
9: if e passes all editorial rules

10: if ek,l is interesting (decided by decision tree)

11: Êk ← Êk ∪ e
12: Ê ← Ê ∪ Êk
13: return Ê

Algorithm 1 summarizes our approach to detect emerging
events in Twitter. The set of parameters Θ provided by the
user are:

• Input tweet files paths

• Stopword list

• Blacklisted phrases

• History length h (in chunks)

• Hot phrase and co-phrase thresholds

µf , µu, λf , λu,

µ′f , µ
′
u, λ
′
f , λ
′
u

• Editorial rules

Using these knobs, a user controls which events are emerg-
ing, dynamic and interesting. Thus, our system provides a
configurable framework to solve the event detection problem
in the Twittersphere.

2http://www.cs.waikato.ac.nz/ml/weka/
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Figure 6: Sample Extracted Event

Metadata Description
1gr Number of unigrams in e’s signature
twtp, p = 3, 4, 5 Number of tweets in Ck containing p or more unigrams of e’s signature
twtall Number of tweets in Ck containing all the unigrams of e’s signature
twu3 Number of users posting tweets in Ck containing 3 or more unigrams of e’s signature
twuall Number of users posting tweets in Ck containing all the unigrams of e’s signature
retsum, retmax, retmin Sum/Max/min of retweets of tweets in Ck containing 3 or more unigrams of e’s signature
rep3, reu3 Number of replies and replying users for tweets in Ck containing 3 or more unigrams

of e’s signature
nws3 Number of news agencies mentioned in one of the tweets in Ck containing 3 or more unigrams

of e’s signature
url3, uru3 Number of URLs and number of users posting them in the Ck tweets containing 3 or more

unigrams of e’s signature

Table 4: Metadata Extracted for Each Event Candidate

4. SCALABILITY
The procedure described in Algorithm 1 could be viewed

as a serial implementation of our event detection solution:
the chunks are processed one after another, by a single
thread of execution. As we discussed in the previous sec-
tion, there are various issues regarding time and memory
space usage to be addressed in order to make the system
usable for real-volume data:

• Efficient storage of strings - We only store a hash value
of (tweet) strings whenever we don’t need the actual
string. We also retain a single copy of each tweet string
and use efficient reference mechanisms to retrieve it
whenever needed (through Ck).

• Efficient access paths - Using associative arrays, we
try to minimize the delay in accessing various pieces
of information. Hashing is our main reference strategy.

• Avoiding quadratic storage costs - As we discussed
in Section 3.4, we use the hot phrases to recalculate
the phrase/co-phrase pairs’ statistics, instead of cal-
culating all phrase/co-phrase pairs’ statistics in each
chunk, to avoid quadratic blow-up of memory usage.
Of course, we pay the price of retraversing the tweet
records in a chunk multiple times and potentially re-
calculating some statistics repeatedly.

On the other hand, since one of our primary objectives is
to be able to scale up with the input data rate (in the offline
mode, to process the data as fast as possible), we want to

investigate other implementation strategies to boost the re-
sponse and processing time. We observe that various parts
of Algorithm 1 might be executed in parallel for different
chunks since not all of these steps need the results of exe-
cuting the previous stages of the pipeline on the current or
preceding chunks. Next, we express the dependencies among
these parts explicitly to leverage parallel execution, followed
by the definition of the scheduling problem we aim to solve,
to run as many pipeline stages as possible, in parallel.

4.1 Tasks and Dependencies
Let’s formalize the interdependencies of different stages

of the algorithm by introducing a set of task types T =
{CL,PC,HP,CC,HC,CF} which are functions correspond-
ing to the various pipeline operations, as follows:

• Chunk Loading (CL(Θ) = Ck) is the task of loading
and preprocessing tweets from the disk and returning
the next chunk of English tweet records Ck.

• Phrase Counting (PC(Ck) = 〈PQk,PUk〉) is the
task of generating phrases of the tweet records in Ck
and counting the number of appearences of and the
number of users posting each phrase, the result of
which is Ck’s phrase and user counts PQk and PUk.

• Hot Phrase Detection (HP((〈PQi,PU i〉)ki=k−h ; Θ)
= Hk) is the task of determining the hot phrases in Ck
based on the statistics of this chunk as well as those
of history chunks, calculated in the previous step. It
returns a set of hot phrases of Ck, Hk.
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• Co-phrase Counting (CC(Hk, (Ci)
k
i=k−h ; Θ) =

(〈CQj , CUj〉)kj=k−h) is the task of re-traversing the tweet
records in the current chunk and the history chunks
to extract the phrase/co-phrase pairs containing a hot
phrase in Hk and recording the number of appearences
of and the number of users mentioning each pair, CQjs
and CUjs for j = k − h, . . . , k.

• Hot Phrase/Co-phrase Pair Detection (

HC((〈CQj , CUj〉)kj=k−h ; Θ) = Ok) is the task of deter-

mining the hot phrase/co-phrase pairs in Ck, returned
as a set Ok.

• Clustering, Metadata Extraction and Filtering
(CF(Ok, Ck; Θ) = Êk) is the task of clustering hot
phrase/co-phrase pairs based on common phrases to
form candidate events, extracting metadata for each
candidate event and filtering the candidate events to
obtain the interesting events in Ck, Êk.

A task is defined by a tuple (η, k) where η ∈ T and k ∈ N,
to denote running operation η on the chunk Ck. From the
definition of tasks, a natural order could be deduced between
them which reflects the dependencies of the tasks to each
others results. We formalize this intuition as follows.

Definition 4.1 (Task Partial Order). For the history
length h ∈ N, we define a partial order among tasks ≤h as
follows:

(η, k) ≤h (η′, k)⇐⇒ η ≤ η′

(HP, k) ≤h (PC, k − i), i = 1, . . . , h

(CC, k) ≤h (CL, k − i), i = 1, . . . , h

for η, η′ ∈ T , k ∈ N where:

CL ≤ PC ≤ HP ≤ CC ≤ HC ≤ CF.

The order defined above is partial since some pairs of
tasks (η, i) and (η′, j) are not comparable, e.g. (CC, 4) and
(HP, 5). We will see how this definition is useful when defin-
ing a schedule in Section 4.2.

Figure 7 shows a snapshot of the dependencies among
tasks for the first five chunks. Each rectangle is one of the
functions which is applied to a particular chunk and an ar-
row from one rectangle to another indicates that executing
the latter depends on the result of the former to be available.

Considering the above task dependencies, there are two
main strategies to run this algorithm in a parallel fashion:

1. In a single-machine solution, we use a multicore ma-
chine to run a multi-threaded implementation of the
pipeline. We instantiate threads according to an exe-
cution plan (or schedule) to make sure that the depen-
dencies are satisfied before running each task and that
the waiting time for each task is minimized. This plan
should satisfy a set of resource constraints (total avail-
able memory and maximum number of concurrently
running threads).

2. In a distributed solution, multiple machines are used
to form a cluster of processing nodes, on which exe-
cution agents receive instructions and data from other
nodes, run the tasks and distribute the results to peers
who need them. The execution plan should consider
communication costs as well as data dependencies and
waiting time to maximize the speed-up gain.

Figure 7: A Snapshot of Dependencies among Tasks.
Dependencies for chunk C5 appear as thicker lines.

In this work, we choose the single-machine approach, mainly
because it could serve as a fundamental solution whether we
want to use a stand-alone machine or utilize it as a building
block (node) in case of a distributed solution.

Our main scalability goals for this single-machine, multi-
threaded solution are to run as many tasks in parallel as pos-
sible (maximize CPU utility) and optimize the main memory
usage to avoid accessing disk as much as possible (maximize
memory usage utility). Given the limited resources on a
standalone machine, we need to schedule the tasks corre-
sponding to the input of the system.

4.2 Scheduling Problem
We define the function time(η, k) : T ×N 7→ N as being the

duration of time elapsed running task (η, k). This duration
is assumed to correspond to the optimal implementation (in
terms of speed and memory usage) of the task (η, k) using
a single thread of execution. Now, we define what we mean
by a schedule.

Definition 4.2 (Schedule). Given a set of input tweet files
F , the thread pool of size b indexed by Ib, the definition of
tasks and their partial order (see Section 4.1), a schedule is
defined as a tuple of functions (ρ1, ρ2) where:

ρ1 : T × N 7→ N,
ρ2 : T × N 7→ Ib.

For each task (η, k) where Ck is extracted from F ,

(ρ1 (η, k) , ρ2 (η, k)) = (α, β)

indicates running task (η, k) starting at time α ∈ N using
the thread instance β ∈ Ib such that for any pair of distinct
tasks (η, k) 6= (η′, k′) with (ρ1(η, k), ρ2(η, k)) = (α, β) and
(ρ1(η′, k′), ρ2(η′, k′)) = (α′, β′):

(η, k) ≤h (η′, k′)⇒ α+ time(η, k) ≤ α′

and

β = β′ ⇒
{
α+ time(η, k) ≤ α′ if α ≤ α′
α′ + time(η′, k′) ≤ α otherwise.

So, a schedule determines which task should be run when
(ρ1) and using which thread from the thread pool (ρ2) .The
first constraint ensures that a task is submitted to be run
only when all it’s dependencies are satisfied and the data it
needs to run is ready. The second constraint states that for
any pair of distinct tasks which run using the same thread,
their run span could not overlap.
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The scheduling problem for the single-machine approach
could be formalized as follows.

Definition 4.3 (Single-Machine Scheduling Problem).
Given a set of input tweet files F , the thread pool of size b
indexed by Ib, available main memory volume M, the defi-
nition of tasks and their partial order (see Section 4.1), find
a schedule (ρ1, ρ2) to solve the following optimization prob-
lem:

minimize
(ρ1,ρ2)

m∑
j=1

(ρ1(CF, j)− ρ1(CL, j)) + max
η∈T ,i∈Im

ρ1(η, i)

such that total amount of memory used at each instant dur-
ing the execution of the tasks according to the schedule is
not larger thanM. Here, m is the number of English tweet
chunks extracted from F .

A solution to the above problem ensures minimal latency
via the first term (summation) and minimal total processing
time via the second term of the objective. It is straightfor-
ward to verify that in general, a trivial schedule would not
solve the above problem.

We have two main choices to solve the above scheduling
problem. Static scheduling uses mathematical programming
techniques (like integer programming methods) to find the
best schedule according to the objective and constraints.
There are two main issues considering our scheduling prob-
lem which makes static scheduling hard to apply:

1. The value of time(η, k) function could not be calcu-
lated before actually running η on Ck.

2. We wish to be able to port the system along with
the scheduling algorithm to online operation mode. In
that case as new chunks arrive on-the-fly, we need to
re-solve the scheduling problem repeatedly and solving
the optimization problem above would be tedious.

Thus, we use a dynamic scheduling algorithm, which essen-
tially employs a greedy heuristic to create a schedule on
the fly, as new tasks arrive. Next, we describe the dynamic
scheduling in more detail.

4.3 Dynamic Scheduling
The goal of the dynamic scheduling is to solve the single-

machine scheduling problem (see Definition 4.3) by keeping
a priority queue of tasks (see Definition 4.4 below), running
the task at the head of this queue whenever the input ar-
guments are ready, chaining the tasks to be executed on
each chunk to complete the pipeline, and cleaning up the
memory acquired by tasks as soon as possible (i.e. no other
tasks need the results afterwards). The input of the dy-
namic scheduling module consists of the paths to the input
tweet files, the set of user-provided parameters Θ and the
size of the thread pool b (the maximum number of concur-
rent threads of execution).

In order to be able to order all the tasks to be executed
upon F , we need a total order using which we are able to
compare every pair of tasks. Hence, we define another order
among tasks as follows.

Definition 4.4 (Task Total Order). We define a total
order among tasks ≤ as follows:

(η, i) ≤ (η′, j) ⇐⇒ i < j ∨ ((i = j) ∧ (η ≤ η′))

for η, η′ ∈ T , i, j ∈ N where:

CL ≤ PC ≤ HP ≤ CC ≤ HC ≤ CF.

Initialization: First, we instantiate the following queues
and sets:

• A priority queue WQ which contains the tasks waiting
to be run. This is the main queue from which the
scheduler picks the next task to run. It is initialized
to an empty queue.

• A set RS containing the tasks the execution of which
is in progress. This set is used to check whether the
preconditions of the next task to run are satisfied; i.e.
the inputs to the next task are ready. It is initialized
to an empty set.

• A set HS which contains the tasks that have high pri-
ority, but their input arguments are not computed yet.
The contents of this set would be enqueued to WQ af-
ter the next task to run is picked. It is initialized to
an empty set.

Also, we create a thread pool of size b to run the tasks.

Running The Tasks: Next, we insert the chunk loading
task (CL, 1) into WQ, to load the first chunk C1 into mem-
ory. Then, while there is a task to be run, the following
two steps are executed in a busy loop. During step 1, while
‖WQ‖ > 0 and ‖RS‖ < b , we dequeue the head of WQ
and check whether its preconditions are satisfied (i.e. its
arguments are already calculated). If the inputs are ready,
then we submit the task to the thread pool to be executed,
add it to RS, move all elements of HS back to WQ and
move to step 2. On the other hand, if the inputs are not
ready, then the task is added to HS and the next task is
polled from WQ, repeating step 1.

Chaining and Cleaning Up: In step 2, we go over the
running tasks in RS and check whether any of them is al-
ready finished. If there is such a task (η, i), then we remove
it from HS, clean the memory space occupied by this task’s
data items which is no longer needed (no currently-running
or future tasks depend on them), and insert the next task in
the pipeline, to be applied to chunk Ci, into WQ (chaining).
The only exception is for tasks (CL, i) upon completion of
which we insert two new tasks into WQ, namely (CL, i+ 1)
to load the next chunk and (PC, i) to continue executing the
pipeline on the current chunk.

5. EMPIRICAL EVALUATION
We now present the experimental results obtained by run-

ning the system upon real-volume Twitter data, in order to
evaluate event detection accuracy and timing, the contri-
bution of each major component of the system and analyze
the sensitivity of the system to changes in parameter values.

Dataset: We have obtained two datasets of all tweets posted
during a particular period of time and received from the
Twitter firehose. The first dataset consists of all the tweets
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posted during July 31, 2011 in form of 24 zip files (cor-
responding to the the 24 hours of the day) with the total
volume of about 66 GB, obtained from Kosmix (which was
later acquired by WalmartR©3). Each line of these files (after
unzipping) corresponds to a tweet and is string representa-
tion of a JSON object. It consists of various fields obtained
from the Twitter firehose as well as extra fields added by
the Kosmix softwares.

The second dataset consists of all tweets posted during
the period between Aug 1, 2012 and Aug 14, 2012 inclusive.
Each day worth of tweet is stored in a zip file, account-
ing for the total of 14 zip files of the total volume around
344 GB, obtained from the @WalmartLabsR©4. Each line of
these files (after unzipping) corresponds to a tweet and is a
tab-separated string of various data fields representing tweet
information. It consists of various fields obtained from the
Twitter firehose as well as extra fields added by the @Wal-
martLabs softwares.

Golden Data: For our experiments, we have sampled four
2-hour long periods worth of tweet as follows:

• July 31, 2011 from 16-18PM

• August 3, 2012 from 16-18PM

• August 6, 2012 from 16-18PM

• August 8, 2012 from 16-18PM

For each of these periods, we extract all the tweets from
the corresponding zip files and parse each tweet using cus-
tomized parsers (see Section 5.2). Then, we use the times-
tamp of the tweet (which shows the time it has been posted)
to decide whether it should be included in the sample or not.
The tweets in each of these periods are then classified using
the English langage classifier (described in Section 3.2) and
every consecutive sequence of 300K English tweets is writ-
ten to a zip file on disk as a chunk. Table 6 shows various
metrics of each periods chunks.

To measure the accuracy of the system, we need to come
up with the set of interesting events that have been men-
tioned on the Twitter during the periods of interest (called
golden events hereafter). To do this, we have run our system
with various parameter sets, using a minimal editorial rule
set (Table 5) and no decision tree classification. We then go
through these results manually and investigate each for be-
ing an interesting event or not, by looking up news articles,
reading the corresponding tweets, etc. The use of minimal
editorial rule set prevents the result set from getting too
large and hard to investigate manually.

Table 8 summarizes the statistics of this step for various
parameter sets shown in Table 7. We emphasize that the
golden event set (extracted interesting events) does not in-
clude any redundancies: if a particular interesting event is
detected in more than one chunk, we only add the first one
to the golden event set.

Training the Decision Tree: In order to prepare the
training data for the decision tree, we first sample 10 dif-
ferent values for µf = µu uniformly in the [50, 700]. Then,
we multiply each value by 0.65 and take the ceiling of the

3http://www.walmart.com/
4http://www.walmartlabs.com/

multiplication results to compute µ′f = µ′u values. The val-
ues of λf , λu, λ′f and λ′u are set to the same values as shown
in Table 7.

Next, we run the system on the sampled data. using these
thresholds and the editorial rules illustrated in Table 5, and
sample 50 candidate events from the output of each run
along with the metadata extracted from the corresponding
chunks. For each sample, we use the metadata as well as
the value of µf = µu as the features corresponding to the
sample and add them all to the training set, which in turn
contains 500 training samples. We then manually label these
samples, which yields in 261 samples being interesting (+)
and 239 samples not being interesting (−).

We then train a decision tree on these samples using the
C4.5 algorithm (implemented in the Weka toolkit) by 10-
fold cross-validation. The precision of the trained decision
tree is 0.85(209/244), the recall is 0.80(209/261) and the F1-
score is 0.82. This decision tree is then incorporated into the
pipeline to finish the end-to-end system.

Methodology: We feed the whole labeled (sampled) dataset
into the end-to-end pipeline using the parameter sets of Ta-
ble 7 and collect the results. The results are then investi-
gated manually to measure the precision and recall of the
system. As mentioned before, in this study we have stored
the chunks separately on disk, so the timing results do not
include the language classification time. Since we write the
actual tweets to the chunk files, we still need to parse the
tweets to feed them to the pipeline, so the parsing time is
included.

To measure the response time of the system, we repeat
the above process 10 times on the sampled dataset for each
parameter set. This also helps us assess the sensitivity of
the system to variations in the parameters. In this study,
we have manually set the thread pool size b for each param-
eter set as the maximum number of threads that could be
run without triggering the use of virtual memory. We see
an automated way of adjusting b to the available memory,
number of CPU cores and current status of the system, as
an interesting study for future work.

5.1 Performance Measures
Accuracy: We summarize the accuracy measures of the
system for various parameter sets in Table 9. To calculate
precision, we have divided the number of candidate events
which refer to a golden event in the correct chunk, by the
total number of candidate events produced by the complete
pipeline. This means that if a golden event is extracted from
the chunk Ck for the first time, but the first time an output
candidate event referring to it is detected in a chunk Ck+i
and i > 0, then the output candidate event is counted as a
false positive.

Calculating recall, we have divided the the number of
golden events corresponding to which a candidate event is
detected in the correct chunk, by the total number of golden
events. Again, this means that if the first candidate event
referring to a particular golden event is detected in a later
chunk than that of the golden event, we mark the golden
event as undetected (false negative).

Total Processing Time: We report total processing time
of the whole pipeline on a commodity machine (see Section
5.2 for the actual configurations) in Figure 8.

14



Time Period Number of Chunks Total Data Volume
(ea. 300K tweets) on Disk (GB)

July 31, 2011, 16-18PM 23 2.3
August 3, 2012, 16-18PM 31 1.4
August 6, 2012, 16-18PM 30 1.3
August 8, 2012, 16-18PM 31 1.4

Table 6: Chunks Properties

µf µu λf λu µ′f µ′u λ′f λ′u
Parameter Set 1 300 300 1.3 1.3 250 250 1.1 1.1
Parameter Set 2 500 500 1.3 1.3 300 300 1.1 1.1

Table 7: Parameter Sets (Hot Phrase and Hot Co-Phrase Threshold Values)

Latency:

5.2 Technical Details
Parsers: For the first dataset, we observe that using a
general-purpose JSON parser has a considerable overhead,
since it reconstructs the whole JSON object. Thus, we have
written a fairly simple special-purpose JSON parser which
only extracts the fields we need for our analysis (see Section
3.2 and Table 2). Using this parser, we have reduced the
parsing time considerably comparing to the general-purpose
JSON parsers.

Parsing the second dataset is semantically straightforward,
but the main problem with the tweets in these files is that
a lot of tweets contain values which include one or more tab
characters (the delimiter). This makes it nontrivial for the
parser to extract the correct values of the fields since, unlike
the JSON format, the boundaries of the fields are no longer
distinguishable. We have leveraged information about par-
ticular fields (value type and format) in our tab-separated
parser to reestablish the field boundaries when possible and
detect the cases where the discrepancy is too much that we
need to drop the tweet altogether.

Hardware Specification: The program is run on a ma-
chine with 24GB of RAM, equipped with a 12-core, dual
socket processor. We use a fixed thread pool to execute
tasks to reuse the thread instances and avoid the thread
creation overhead.

6. RELATED WORK
Research work about event detection in Twitter might

fall into two broad categories of detecting general and class-
specific events. General event detection looks for any con-
versation which satisfies particular event properties, e.g. bursty
or hot, whereas class-specific frameworks only consider par-
ticular categories of events, like social events, controversial
events and disasters.

Class-specific event detection systems aim to address spe-
cific problems like creating calendars, effectively managing
disasters and predicting or reacting to social and political
controversies. Some of these approaches look for events in
individual tweets. Sakaki et al. [17] aim to detect whether
an earthquake is happening in real-time. To do so, they
periodically query Twitter with a set of prespecified key-
words (using the search API) to obtain tweets potentially

related to earthquake updates. From each tweet, they ex-
tract various statistical, textual and contextual features and
use those features to classify the tweet using a support vec-
tor machine for being related to an ongoing earthquake or
not. For earthquake-related tweets, they try to estimate
the location of the earthquake by applying particle filters
to GPS information accompanying the tweets or the regis-
tered locations of tweeting users. The result would be earth-
quake alerts which are sent out to registered users. Rit-
ter et al. [16] try to extract structured representations of
events which are highly correlated with a particular date.
They POS-tag each tweet and then try to extract triplets
of the form 〈named entity , event phrase, date〉 from it. The
extracted triplets are considered as event candidates and a
variant of latent Dirichlet allocation (LinkLDA) topic model
is used to determine the event type. They also rank event
candidates according to a measure of significance and the
top-rank, typed events are presented to the end user in a
calendar format. Other similar approaches include [4, 10,
19]

Another group of class-specific approaches work with col-
lections of tweets (tweet clusters.) Petrovic et al. [13] try
to detect new stories discussed in a stream of messages in
a real-time fashion. For any incoming tweet, they use a
space/time-bound version of locality sensitive hashing to
find the closest tweet seen so far (in a bounded period of
time). If the closest tweets is farther than a particular
threshold, then the new tweet is detected as a first story
tweet which initiates a new thread of discussion. The user
gets notified about first stories as they are detected. Popescu
et al. [15] tackle the problem of identifying controversial
events, which are defined as the events provoking opposing
public discussions. They start with a set of entities (for ex-
ample, celebrities) and collect the tweets referring to any of
them from the Twitter firehose, for a particular time period
(day). For each entity, they form a snapshot, which is a
triplet of form 〈entity , day , set of tweets〉. They then use a
gradient-boosted decision tree, trained on a wide range of
linguistic, structural and social features of the snapshots,
to assign a controversy score to each snapshot. The top-
ranked snapshots are presented to the end user as controver-
sial events. Phuvipadawat et al. [14] aim to identify break-
ing news from the Twitter messages. They query the Twit-
ter API with a predefined set of keywords (like “#break-
ingnews”and “breaking news”) and build a content-based
index on the obtained tweets. Messages with similar content
(based on TF-IDF representation) are grouped as breaking
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Total Number Total Number
of Extracted of Extracted

Candidate Events Interesting Events
Parameter Set 1 145 51
Parameter Set 2 99 36

Table 8: Golden Data Statistics

Figure 8: Timing Results

stories and the groups are score with respect to number of
retweets and number of users posting about the story. The
stories are then enriched by external sources for news URLs
and media items and the top-rank stories are returned to
the user. Other examples of this type of systems include
[18, 6].

General event detection systems use a wide range of ideas
and algorithms to extract hot emerging events from the
Twitter stream. Most of these approaches rely on the no-
tion of burstiness. Systems like [20, 9, 1, 5] follow a graph-
theoretic approach to detect events. Weng et al. [20] try
to detect events by tracking and grouping bursty keywords
in the Twitter stream. They generate a burst signal for
each unigram appearing in a chunk of tweets and discard
the ones with almost flat signals (low entropy.) The sig-
nals are then used to create a modularity matrix based on
cross-correlation similarity measure. The graph, represented
by the modularity matrix, is subsequently partitioned us-
ing spectral clustering into subgraphs which are in the form
of keyword sets (event candidates.) These candidates are
scored and ranked to be returned to the user. Li et al.
[9] try to overcome the limitations of [20] using simpler,
less computation-intensive algorithms (no wavelet analysis)
and more thorough content analysis (processing segments
instead of unigrams), to improve scalability and detection
accuracy. They extract, from each window of the Twitter
stream, the bursty segments (of tweets) along with a bursty

probability (a measure of how bursty the segment is) and the
number of users who have mentioned the segment in their
tweets. They form a segment similarity matrix by calcu-
lating the pairwise similarities among the tweets containing
these segments and apply graph clustering to this similarity
matrix to generate segment clusters as candidate events. A
last filtering stage retains significantly important event can-
didates with respect to a newsworthiness measure, which
are returned to the user.

Agarwal et al. [1] address the problem of real-time emerg-
ing event detection leveraging a relaxed version of graph
clustering on correlated keyword graph. They build a node-
weighted, edge-weighted active keyword graph from the set
of bursty keywords in the current window, each node of
which represents a bursty keyword weighted by the num-
ber of users posting about it and each edge of which is
weighted based on the Jaccard distance between the set of
users tweeting about the keywords. This graph is in turn
partitioned into dense clusters to form keyword groups as
events, which are ranked accordingly and reported to the
end user. Cataldi et al. [5] tackle the problem of emerging
topic detection in real-time. They propose an aging theory-
based approach to monitor keywords over consecutive time
intervals and identify emerging keywords according to their
frequency and authority of the users posting about them.
Leveraging the co-occurrence of the keywords in tweets, they
build a keyword-based topic graph, the strongly connected
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Precision Recall F1 Score Number of Candidate Events
Discarded by The Decision Tree

Parameter Set 1 0.94 1 0.97 21
Parameter Set 2 0.98 1 0.99 15

Table 9: Accuracy Results

components of which comprise emerging topics during each
particular period. The emerging topics are ranked and re-
turned to the user as keyword sets.

Besides the graph-theoretic approaches, other techniques
are utilized for general event detection in Twitter as well.
Becker et al. [3] address the problem of online identifica-
tion of real-world events and the associated content posted
on Twitter. They process, on an hourly basis, the incom-
ing tweet feed by using an incremental clustering algorithm
to create message clusters as event candidates. They then
extract various features of different categories (temporal, so-
cial, topical and Twitter-centric) from each cluster which are
used to classify the event candidates as events or non-events
accordingly. Select top events are displayed to the end user
along with snippets of the associated tweets. Mathioudakis
et al. [12] try to detect emerging topics from the Twitter
stream along with meaningful descriptions for each topic.
They use queuing theory to find bursty keywords which are
then greedily clustered, based on co-occurrence in the recent
tweets, to form trends. These trends are enriched with de-
scriptions (using PCA or SVD), news source citations and
geographical origins of tweets to be shown to the end user.
Alvanaki et al. [2] tackle the problem of emergent event de-
tection by identifying shifts in the correlation between tags.
They use popular tags and named entities (extracted from
the tweets) to generate tag pairs (containing at least one
popular tag) or hot-tag/entity pairs as candidate topics and
then track the correlation of each tag pair over time to de-
tect significant increase in their co-appearance. The hot tag
pairs/tag-entity pairs are scored based on the shift strength
and the top-k pairs are presented to the user as emergent
topics. Other general event detection systems include [7, 11,
8].

As could be observed from the above discussion, one of
the popular architectures to detect events is based on a two-
phase strategy as follows. In the first phase, a set of emerg-
ing topics/contexts is built, usually by clustering tweets or
segments/terms (called in [20] document-pivot and feature-
pivot approaches respectively.) These topics are naturally
accompanied by a provenance of tweets which might be or-
ganized in various ways. The purpose of the second phase
is to distinguish between topics that correspond to particu-
lar events from those that are non-event-related discussions.
A common approach would be to extract various features
from clusters and their provenance and use a classification
technique to label the topics as event-related and non-event-
related.
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