CS368 Lecture 4
Wednesday 24 September 2014

Reminders:
* P1 due 11 PM Friday
 HW1 assigned
* Readings
Last class:
* Vectors
» Pointers and Reference Variables

« Parameter Passing

Today:
* Pointers (cont'd)
» Practice
* Passing Pointers as Arguments
* Dynamic Allocation
» Pointers and Arrays

* Pointer caveats

Practice with Pointers and References

int x = 9;
int* ptrToX = &x;
int& refToX

Il
X

int a = 15;
int *p = &a;

What do we see if we print out

[] *p
¢ &a

* P

int b = 17;
p = &b;
*p = 20;

What do we see if we print out

* b
[] *p
* &b

* P

Passing Pointers as Arguments

void foo (int* px) {
*px = *px + 1;
print (“px”, px);

In main() :
int a = 5;
foo (&a) ;
print (Ya”, a);

The Stack and the Heap

Dynamic Memory Allocation

new:

Make room on the heap.

int* p = new int;
int* g = new int(); // parentheses optional
int* r = new int (37);

Rook* bl = new Book;

delete:
Free (dynamically allocated) memory space after use.

delete p;
cout << p << %, W™ <K *p << endly;

Pointing to NULL
Why set things to NULL? Disallowing future access.

p = NULL;
cout << p << %, ™ <K *p << endl;

Practice with Pointers (2): Structs

struct Patron {
string name;
int libraryID;
1

struct Book {
int bookID;
int numCheckouts;
Patron borrower;

}

int main() {
Book bl = {234, 12, {“Tim”, 10}};
Book* p2 = new Book;
p2->bookID = 392;
p2->numCheckouts = 0;
p2->borrower.name = “Kate”;

p2->borrower.libraryID = 12;

Book b3 = *p2; // What gets copied here?
b3.bookID = 300;

Book* p4d = &bl;

Book* pb

p2;

cout << pZ2->borrower.name << endl;

cout << (*p2) .borrower.name << endl; // Identical
cout << b3.bookID << endl; // NOT same as p2->bookID!
cout << p4->bookID << endl; // SAME as bl.bookID

cout << pb5->borrower.name << endl; // SAME as p2->...

delete p2; // delete only the one created using new
p2 = NULL; // reset the pointer to prevent misuse

return 0;

Arrays are Pointers

int arr([4] = {2, 4, 6, 8};
int* p = new int[5];

for (int 1i=0; i<5; i++)

pli]l] = 2 * arr[i]; // treat p like an array
int* g = arr; // g points to the same array now
*q = 12; // another way of accessing arr[0]
* (g+l) = *(p+2); // setting arr[l] equal to p[2] (= 12)

// another way of traversing the array
Note: Pointer increment is based on the size of the type pointed to:
cout << g << %, W <K< gtl <V, " K gt2 << endl;
Verify by printing:

cout << g[0] << %, ™ << *arr << endl;
cout << arr[l] << %, ™ << pl[2] << endl;

Pointer Caveats

Checking for equality:
int* p = new int (5);
int* g = new int (14);
*p = *p + 9;
cout << p == g << endl;
cout << *p == *q << endl;

Dereferencing NULL, uninitialized, deleted pointers:

int* ptr; // Uninitialized
*ptr = 10;

int* ptr = &x;
ptr = NULL
*ptr = 10;

delete ptr;
*ptr = 15;

Memory leaks:

int* p = new int (30);
p = NULL;

p = new int (40);

Delete is only for dynamically allocated memory:

int x = 20;
int* p = &x;
delete p;

Delete a block of memory only once:

int* p = new int (20);
int* g = p;
delete p;

delete g; // will crash!

On Your Own
» Work through pointerBasics.cpp, work out the output and verify
* Modify, compile, and run the array sample code above

* Run and check pointer caveats on your own

