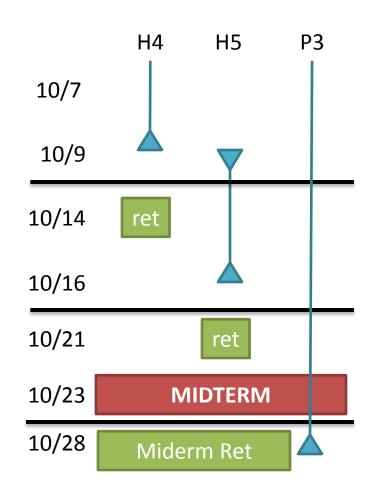
CS536

Intro to Parsing

Announcements: Grades

- Things are graded
 - Project 1 is on Learn@UW
 - Homework 3 is available at end of class

Announcements: Materials


- Screencasts live
 - Java CUP
 - Using Windows
- Upcoming
 - Linux Tips n' Tricks
- Still up for suggestions

Announcements

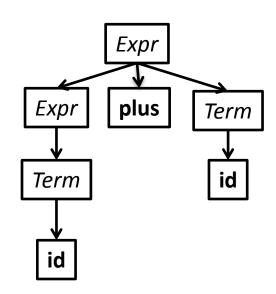
- Midterm 1 approaches
 - 2 weeks from Thursday
 - Last assignment before the midterm assigned
 Thursday
 - We'll have at least 1 review session before test

Last Time

- Showed how to blindly use CUP for getting ASTs
- But we never saw HOW the parser works

This Time

- Dip our toe into parsing
 - Approaches to Parsing
 - CFG Transformations
 - Useless Nonterminals
 - CNF: A form of grammar that's easier to deal with


- CYK:

 powerful, heavyweight approach to parsing

Approaches to Parsing

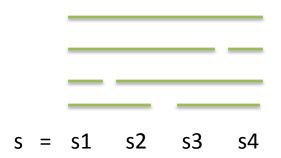
- Top Down / "Goal driven"
 - Start at root of parse tree,
 grow downward to match the
 string
- Bottom Up / "Data Driven"
 - Start at terminal, generate subtrees until you get to the start

CYK: A general approach to Parsing

- Operates in O(n³)
- Works Bottom-Up
- Only takes a grammar in CNF
 - This will not turn out to be a limitation

Chomsky Normal Form

 All rules must be one of two forms:

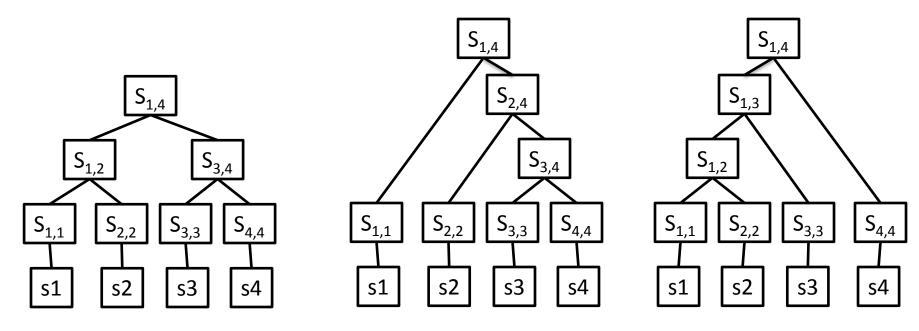

$$X \longrightarrow \mathbf{t}$$

 $X \longrightarrow A B$

 The only rule allowed to derive epsilon is the start S, in which case it's forbidden on the RHS of any rule

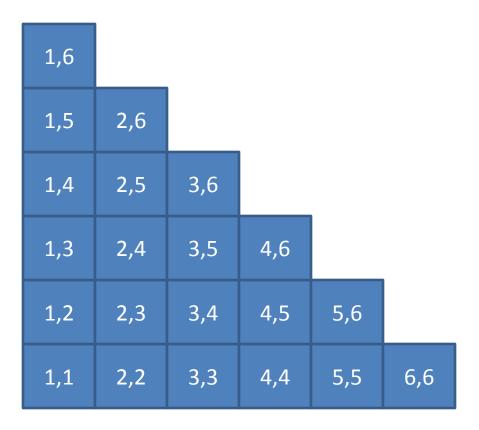
What CNF buys CYK

Fact that nonterminals come in pairs allows you to think of subtree as a subspan of the input


CYK: Dynamic Programming

$$X \longrightarrow \mathbf{t}$$

Prods. form the leaves of the parse tree


$$X \rightarrow AB$$

Form binary nodes

Running CYK...

 Track every viable subtree from leaf to root. Here are all the subspans for a string of 6 terminals

CYK Example

```
F
1,6
        W
                                                      F
                                                                    IW
 1,5
       2,6
                                                      F
                                                                    ΙΥ
                X
                                                     W
                                                                    LX
1,4
      2,5
              3,6
                                                      X
                                                                    NR
                                                                    LR
                                                      Υ
               N
                                                      Ν
                                                                    id
1,3
      2,4
             3,5
                     4,6
                                                      Ν
                                                                    ΙZ
                                                      Ζ
                                                                    C N
                       Z
                                                                    id
1,2
       2,3
                             5,6
              3,4
                     4,5
                                                      R
                                                      C
                             I,N
I,N
               I,N
                                      R
 id
               id
                              id
```

CYK Example N 3,5 4,5 I,N Ν R id id id

```
IW
F
F
            ΙΥ
W
            LX
X
            NR
            LR
Υ
            id
Ν
Ν
            ΙZ
            CN
            id
R
C
```

Cleaning up our grammars

- We want to avoid unnecessary work
 - Remove useless rules

Eliminating Useless Nonterminals

- 1. If a nonterminal cannot derive a terminal symbol then it is useless
- 2. If a nonterminal cannot be derived from the start symbol, then it is useless

Eliminate Useless Nonterms

 If a nonterminal cannot derived a terminal symbol, then it is useless Mark all terminal symbols Repeat

If all symbols on the righthand side of a production are marked mark the lefthand side
Until no more non-terminals can be marked

Example:

 $\begin{array}{cccc} S & \longrightarrow & & X \mid Y \\ X & \longrightarrow & & () \\ Y & \longrightarrow & & (YY) \end{array}$

Eliminate Useless Nonterms

 If a nonterminal cannot be derived from the start symbol, then it is useless

```
Mark the start symbol
Repeat

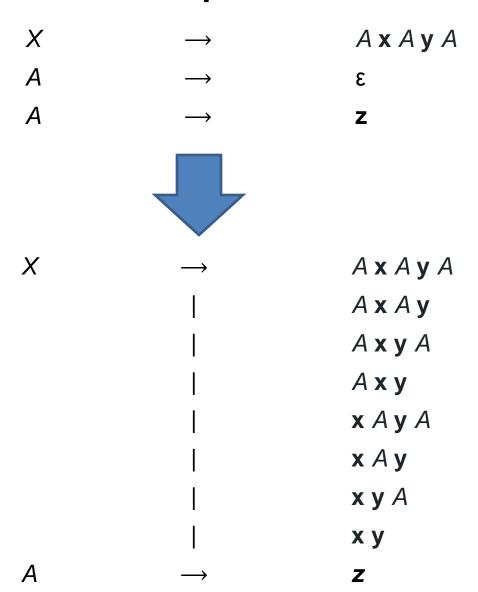
If the kefthand side of a production is marked

mark all righthand non-terminal
Until no more non-terminals can be marked
```

Example:

Chomsky Normal Form

- 4 Steps
 - Eliminate epsilon rules
 - Eliminate unit rules
 - Fix productions with terminals on RHS
 - Fix productions with > 2 nonterminals on RHS


Eliminate (Most) Epsilon Productions

- If a nonterminal A immediately derives epsilon
 - Make copies of all rules with A on the RHS and delete all combinations of A in those copies

Example 1

F	\longrightarrow	id (A)
Α	\rightarrow	3
Α	\longrightarrow	N
N	\longrightarrow	id
N	\rightarrow	id , N
F	\longrightarrow	id (A)
F	\longrightarrow	id ()
Α	\longrightarrow	N
N	\longrightarrow	id
N	\longrightarrow	id , N

Example 2

Eliminate Unit Productions

- Productions of the form A → B are called unit productions
- Place B anywhere A could have appeared and remove the unit production

Example 1

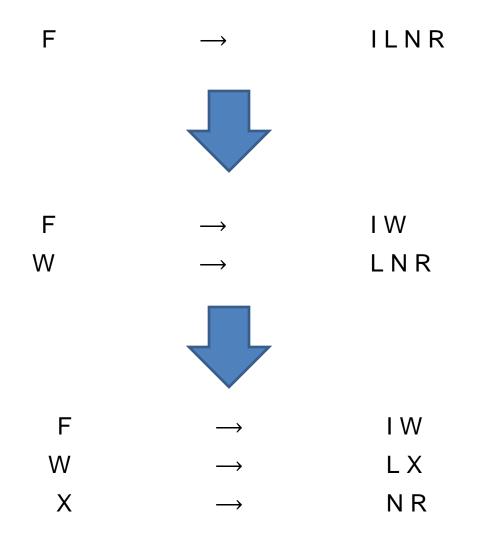
F	\rightarrow	id (A)
F	\longrightarrow	id ()
Α	\rightarrow	N
N	\rightarrow	id
N	\rightarrow	id , N
F	\longrightarrow	id (N)
F	\longrightarrow	id ()
N	\longrightarrow	id
Ν	\longrightarrow	id , N

Fix RHS Terminals

- For productions with Terminals and something else on the RHS
 - For each terminal t add the rule

$$X \longrightarrow \mathbf{t}$$

Replace t with X in the in the original rules


Example

```
F
                                                               ILNR
                                             F
                                                               ILR
          id (N)
                                             Ν
                                                               id
F
          id ()
                                                               ICN
                                             Ν
Ν
          id
Ν
          id, N
                                                               id
                                             R
                                             C
```

Fix RHS Nonterminals

- For productions with > 2 Nonterminals on the RHS
 - Replace all but the *first* nonterminal with a new nonterminal
 - Add a rule from the new nonterminal to the replaced nonterminal sequence
 - Repeat

Example

Parsing is Tough

- CYK parses an arbitrary CFG, but
 - $O(n^3)$
 - Too slow!
- For special class of grammars
 - -O(n)
 - Includes LL(1) and LALR(1)

Classes of Grammars

- LL(1)
 - Scans input from Left-to-right (first L)
 - Builds a Leftmost Derivation (second L)
 - Can peek (1) token ahead of the token being parsed
 - Top-down "predictive parsers"
- LALR(1)
 - Uses special lookahead procedure (LA)
 - Scans input from Left-to-right (second L)
 - Rightmost derivation (R)
 - Can also peek (1) token ahead
- LALR(1) strictly more powerful, much harder to understand