CS 536 Review

Important information for the midterm

- The exam will begin at 9:30 Sharp, please plan to be here at least 15 min early.
- The exam will finish at 10:45 Sharp as Prof Gleicher is in the room by 10:50
- One 8.5×11 inch page of handwritten notes is allowed. Apart from this, no books, sheets, electronic devices, or help from neighbors allowed during the exams.
- You MUST bring your student ID to identify yourself.
- PROJECT 3: There is an updated deadline for P3 if you need it, so you aren't forced between completing p3 or studying. Check the website for info

Finite State Automata

- A DFA can be defined by a quintuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{s}, \mathrm{F}$) where
- Q is a finite, non empty set of states.
- Σ is the input alphabet.
- δ is the transition function $\delta: Q \times \Sigma->Q$
- $a \in Q$ is the initial state.
- F c Q is a set of accepting states. Note this need not be non-empty!
- δ need can be a partial function, but δ as a total function is required for some algorithms in their default form. (See Project 2)

Finite State Automata Continued

- NFAs are similar to DFAs in that they are a quintuple ($Q, \Sigma, \delta, a, F)$ except δ : $\mathrm{Q} \times(\Sigma \mathrm{U}\{\varepsilon\})$-> $\mathrm{P}(\mathrm{Q})$ where $\mathrm{P}(\mathrm{Q})$ is the power set of Q
- Despite the added flexibility of epsilon transitions and nondeterminism, they are no more powerful than DFAs!
- This symmetry is broken when moving to more expressive languages and complex automata
- Is the language $\left\{(a b)^{n} \mid n \geq 1\right\}$ a regular language?

Yes it is!

Another Example

- Is the language $\left\{a^{n} b^{n} \mid n \geq 1\right\}$ a regular language?
- It is not! DFAs have no way to "store" information such as the number of a's written.
- If you don't believe me, I challenge you to come up with a DFA that does accept the above language.
- This language is context free however.

Context Free Grammars

- CFGs are defined to be 4 tuple $G=(V, \Sigma, R, S)$ where:
- V is a finite set where each $\mathrm{v} \in \mathrm{V}$ is a Variable. Variables are non terminal characters than define a sublanguage of G.
- Σ is the set of Terminal Characters of G , which are disjoint from V . This is the actual content of the grammar.
- R is a relation ($\mathrm{V},(\mathrm{V} \cup \Sigma)^{*}$) known as the Production Rules of G
- S is the start variable. Is analogous to S in DFA's
- CFGs are more sophisticated than Regular Languages as
- Tokens become grammatical phrases
- Structure in the program can be accounted for

Grammar for $\left\{a^{n} b^{n} \mid n \geq 1\right\}$

- $G=(V, \Sigma, R, S)$ where:
- $V=\{T\}$
- $\Sigma=\left\{{ }^{\prime} \mathrm{a}^{\prime \prime},{ }^{\prime} \mathrm{b}\right.$ " $\}$
- $\mathrm{R}=(\mathrm{T}, \mathrm{aTb} \mid \mathrm{ab})$. When written as a production rule: T -> $\mathrm{aTb} \mid a b$
- $S=T$

Parse Trees and Derivations

- Derivation: Starting with a beginning Nonterminal, expand out until there are no Nonterminals remaining.
- Examples:
- T-> ab : T derives ab in one step
- T -> aTb -> aabb : T derives aabb in two steps.
- A Parse Tree is graphical representation of the derivation.
- Example for the two strings

Useful and Useless Non Terminals

- A useless non terminal is one that can't be used in any derivations of the grammar.
- We can find out how to eliminate these useless variables
- Generating: A nonterminal can derive a string
- X is generating iff X -> w where w is all terminals or contains variables previously marked generating
- Reachable: The start symbol can derive a string that contains this nonterminal
- Z is reachable from Y iff Y is reachable from X.
- We find the non generating nonterminals first and eliminate them, and then find non reachable nonterminals and eliminate them.

Example

- T -> aTb | ab \| S
-S -> E|"eps"
- E-> aE
-D -> c
- Generating: $\mathrm{E}, \mathrm{T}, \mathrm{S}$ so eliminate $\mathrm{E}, \mathrm{E}->\mathrm{a} \mathrm{E}$
- Reachable: T so eliminate D

Syntax directed translation

- Consider the following grammar (non terminals upper case)
- S -> L dot R|L
- L->B|LB
-R->B|BR
- $\mathrm{B} \rightarrow \mathrm{O} \mid 1$
-What is an example string in this grammar?
- 101.101
- So this is the grammar for binary decimal strings.
- Lets try develop a set of translations that will give us the value in binary.

Syntax Directed Translation

- Our basic scheme will be to start at the root, build down to leaves, and then compute the decimal value in reverse.
- $S->L \operatorname{dot} R$
: L.pos = R.pos = -1; S.trans = L.trans + R.trans
- $S->L$
: L.pos = 0; S.trans = L.trans
- L -> B
: B.pos = L.pos ; L.trans = B.trans
- $L->L B$
: L1.pos = L.pos +1; B.pos = L.pos; L.trans = L1.trans+B.trans
- $R->B$
: B.pos = R.pos; R.trans = B.trans
- R -> B R : R1.pos = R.pos-1; B.pos = R.pos; R.trans = R1.trans+B.trans
- $B->0$
: B.trans = 0;
- $B->1$
: B.trans = 1*2^(B.pos);
- Lets do out the string 101.101 on the board.

Lets discuss in more detail how a computer parses a CFG.

- You can always use the CYK Algorithm. It is a bottom up parser with an acceptable runtime O($\mathrm{n}^{\wedge} 3$) and will work for any CFG in Chomsky Normal Form (CNF).
- To do this, you need to do three things:
- Eliminate eps rules
- Eliminate Unit rules
- Fix Remaining Rules so that all rules have either a single terminal or exactly two nonterminals on the right.
- After this conversion, the algorithm works by considering every possible subsequence of increasing length to see if is a valid production.

Parsing Continued

- We can do better if our grammar is $\mathrm{LL}(1)$.
- LL(1) grammars are top down parsers than only require one symbol look ahead.
- Thus at every step, we need to have a definite way to get from one state to the next.
- The main Idea
- Keep track of : the scanned tokens, the stack contents, and the leaves of the current parse tree.
- We need to use a parse or selector table to do this.
- Push EOF, Push start symbol, Expand via Selector Table and Scan when appropriate.
- Expansion is guaranteed to be unique so there is no ambiguity.

LL(1) Grammars

- How do we know if we have a LL(1) grammar?
- We need to actually try to build the selector table.
- If the selector table only allows one production per (symbol, state) pair then we have it!
- Unfortunately, this will always fail unless we make sure our grammar doesn't have any left recursion or isn't left factorable.

Remove Left Recursion

- Left Recursion: A +-> A string
- After a sequence of derivations you end up with A going to A and then another string.
- Immediate left recursion is a problem!
- You don't know if you should choose the first production or the second production without looking ahead.
- If A-> A | b then change to
- $A \rightarrow b A^{\prime}$
- $A^{\prime}->a A^{\prime} \mid e p s$

Example

- Consider our previous example of binary decimal strings.
- We had the production: L->B|LB
- This is immediately left recursive!
- Lets go ahead and change this.
- L -> B L'
- L' -> B L' | eps
- Does the syntax directed translation still work?
- L ->B L'
: B.pos = L'.pos +1 ; L.trans $=$ B.trans + L'.trans
- $L^{\prime}->B L^{\prime}$
: L'.pos = B.pos = L1'. pos +1 ; L'.trans $=$ B.trans+L'.trans
- L' -> eps
: L'. pos = 0; L'.trans = 0

Left Factoring

- You need to left factor if any production you write leads to a common prefix.
- Say A -> string string1 \| string string2
- This is not left factored because of the common prefix
- You don't know which production to choose based of the current symbol you see without looking ahead.
- We change this to
- A -> string A^{\prime}
- A^{\prime}-> string1 | string2

Example

- Lets looks at our previous example again.
- We have a production: R -> B | B R
- This is not left factored
- So We'll insert another non terminal to fix this problem
- R ->B R'
- $R^{\prime}->R \mid e p s$
- We'll have to change around the translations again
- R->B R'
: R'.pos = R.pos -1; B.pos = R.pos; R.trans = B.trans + R.trans
- $R^{\prime}->R$
: R.pos = R'.pos; R'.trans = R.trans
- R^{\prime}-> eps
: R.trans = 0;

Left Recursive and Left Factoring

- The situation is a little more complicated if you have a more than two productions with a common prefix or more than two cases of immediate left factoring.
- The type of process you follow is exactly the same however.

First and Follow Sets

- In order to truly decide if a grammar is $\operatorname{LL}(1)$ we actually have to build a selector table for it.
- The previous slides talked about sufficient conditions for a grammar to not be $\mathrm{LL}(1)$, they were not necessary conditions.
- Lets try to compute the first and follow set for our example of binary decimal strings.

Updated Grammar and First Set

- $S->L \operatorname{dot} R$.
- L -> B L'
- L' -> B L'
- L' -> eps
- R -> B^{\prime}
- R^{\prime}-> R
- R^{\prime}-> eps
- $B->0$
- $B->1$
- So to construct the FIRST set, lets consider what terminal could appear first for each nonterminal
- S.First $=$ L.First $=$ B.First $=\{0,1\}$
- L'.First $=$ B.First $=\{0,1\} U$ \{eps $\}$
- R.First $=$ B.First $=\{0,1\}$
- R'. First $=$ R.First $=\{0,1\} \cup\{$ eps $\}$
- Nothing too surprising here.

Updated Grammar and Follow Set

- S -> L dot R . - For the Follow Sets
- L -> B L'
- L' -> B L'
- L' -> eps
- R -> B R'
- R^{\prime}-> R
- R' -> eps
- B -> 0
- $B->1$
- S.follow = \{ \$ $\}$ as S doesn't appear in the RHS of any production
- L.follow = \{dot $\}$ as L only appears on the LHS of the first production and it isn't the last symbol in the production.
- L'follow $=\{\operatorname{dot}\}$ as we add L.follow to L'.follow
- R.follow = \{\$\} as we add S.follow to R.follow
- R.follow $=\{\$\}$ as we add R.follow to R'.follow
- B.follow $=\{0,1, \$$,dot $\}$ as we add L'.follow to B.follow, R'.follow to B.follow. Finally add L'.First to B.follow as L' -> eps

Selector Table

	dot	0	1	
S		$S \rightarrow L$ dot R	$S \rightarrow L$ dot R	
L		$L \rightarrow B L^{\prime}$	$L \rightarrow B L^{\prime}$	
L^{\prime}	$L^{\prime} \rightarrow \varepsilon$	$L^{\prime} \rightarrow B L^{\prime}$	$L^{\prime} \rightarrow B L^{\prime}$	
R		$R \rightarrow B R^{\prime}$	$R \rightarrow B R^{\prime}$	
R^{\prime}		$R^{\prime} \rightarrow R$	$R^{\prime} \rightarrow R$	$R^{\prime} \rightarrow \varepsilon$
B		$B \rightarrow 0$	$B \rightarrow 1$	

Updated Grammar and Action Numbers

- S-> L dot R
(1): S.trans = L.trans + R.trans, R.pos $=-1$
- L -> B L'
(2): L.trans = B.trans + L'.trans, B.pos = L'.pos+1
- L' -> B L'
(3): L'.trans = B.trans + L'.trans, B.pos = L'. pos = L1'. pos +1
- L' -> eps
(4): L'.trans = 0
- R -> B R'
(5): R.trans = B.trans + L'.trans, R'. pos $=$ B. pos $=$ R.pos -1
- R^{\prime}-> R
(6): R'.trans $=$ R.trans, R.pos $=$ R'. pos
- R^{\prime}-> eps
(7): R.trans $=0$
- B $->0$
(8): B.trans $=0$
- B -> 1
(9): B.trans $=2^{\wedge}($ B.pos $)$

Example: Derive 10.0

Input seen so Far	Stack	Action
eps	L dot R EOF	Pop, push B L'
Eps	B L' dot R EOF	Pop, push 1
Eps	$1 L^{\prime}$ dot R EOF	Pop, scan
1	L' dot R EOF	Pop, push B L'
1	B L' Dot R EOF	Pop, push 0
1	OL' Dot R EOF	Pop, scan
10	L' Dot R EOF	Pop, scan
10.	R EOF	Pop, push B R
10.	B R ${ }^{\prime}$ EOF	Pop, push 0
10.	$0 \mathrm{R}^{\prime}$ EOF	Pop, scan
10.0	R' EOF	Pop, scan

Cites

- SDT Example: http://www.isi.edu/~pedro/Teaching/CSCI565-Spring15/Practice/SDT-Sample.pdf

