
CS 536 Review



Important information for the midterm

• The exam will begin at 9:30 Sharp, please plan to be here at least 15 min 
early. 

• The exam will finish at 10:45 Sharp as Prof Gleicher is in the room by 10:50

• One 8.5 x 11 inch page of handwritten notes is allowed. Apart from this, no 
books, sheets, electronic devices, or help from neighbors allowed during 
the exams.

• You MUST bring your student ID to identify yourself.

• PROJECT 3: There is an updated deadline for P3 if you need it, so you aren’t 
forced between completing p3 or studying. Check the website for info



Finite State Automata

• A DFA can be defined by a quintuple (Q, Σ, δ, s, F) where
• Q is a finite, non empty set of states.

• Σ is the input alphabet.

• δ is the transition function δ: Q x Σ -> Q

• a ϵ Q is the initial state.

• F c Q is a set of accepting states. Note this need not be non-empty!

• δ need can be a partial function, but δ as a total function is required 
for some algorithms in their default form. (See Project 2)



Finite State Automata Continued

• NFAs are similar to DFAs in that they are a quintuple (Q, Σ, δ, a, F)  
except δ: Q x (Σ U {ε}) -> P(Q) where P(Q) is the power set of Q

• Despite the added flexibility of epsilon transitions and non-
determinism, they are no more powerful than DFAs!

• This symmetry is broken when moving to more expressive languages 
and complex automata

• Is the language { (𝑎𝑏)𝑛 | 𝑛 ≥ 1} a regular language?



Yes it is!

a

a

b



Another Example

• Is the language { 𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1} a regular language?

• It is not! DFAs have no way to “store” information such as the number 
of a’s written.

• If you don’t believe me, I challenge you to come up with a DFA that 
does accept the above language. 

• This language is context free however.



Context Free Grammars

• CFGs are defined to be 4 tuple G=(V, Σ, R,S) where:
• V is a finite set where each v ϵ V is a Variable. Variables are non terminal 

characters than define a sublanguage of G.

• Σ is the set of Terminal Characters of G, which are disjoint from V. This is the 
actual content of the grammar.

• R is a relation (V, (V U Σ)*) known as the Production Rules of G

• S is the start variable. Is analogous to S in DFA’s

• CFGs are more sophisticated than Regular Languages as
• Tokens become grammatical phrases

• Structure in the program can be accounted for



Grammar for { 𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1}

• G = (V, Σ, R, S) where:
• V = {T}

• Σ = {“a”, “b”}

• R = (T, aTb | ab). When written as a production rule: T -> aTb | ab

• S = T



Parse Trees and Derivations

• Derivation: Starting with a beginning Nonterminal, expand out until 
there are no Nonterminals remaining.

• Examples:
• T -> ab : T derives ab in one step

• T -> aTb -> aabb : T derives aabb in two steps.

• A Parse Tree is graphical representation of the derivation.

• Example for the two strings



Useful and Useless Non Terminals

• A useless non terminal is one that can’t be used in any derivations of 
the grammar.
• We can find out how to eliminate these useless variables

• Generating: A nonterminal can derive a string
• X is generating iff X -> w where w is all terminals or contains variables 

previously marked generating

• Reachable: The start symbol can derive a string that contains this 
nonterminal
• Z is reachable from Y iff Y is reachable from X.

• We find the non generating nonterminals first and eliminate them, 
and then find non reachable nonterminals and eliminate them.



Example

• T -> aTb | ab | S

• S -> E | “eps”

• E-> aE

• D -> c

• Generating: E, T, S so eliminate E, E->aE

• Reachable: T so eliminate D



Syntax directed translation

• Consider the following grammar (non terminals upper case)
• S -> L dot R | L
• L -> B | L B
• R -> B | B R
• B -> 0 | 1

• What is an example string in this grammar? 
• 101.101

• So this is the grammar for binary decimal strings.

• Lets try develop a set of translations that will give us the value in 
binary.



Syntax Directed Translation

• Our basic scheme will be to start at the root, build down to leaves, 
and then compute the decimal value in reverse.
• S -> L dot R : L.pos = R.pos = -1; S.trans = L.trans + R.trans
• S -> L : L.pos = 0; S.trans = L.trans
• L -> B : B.pos = L.pos ; L.trans = B.trans
• L -> L B : L1.pos = L.pos +1; B.pos = L.pos; L.trans = L1.trans+B.trans
• R -> B : B.pos = R.pos; R.trans = B.trans
• R -> B R : R1.pos = R.pos-1; B.pos = R.pos; R.trans = R1.trans+B.trans
• B -> 0 : B.trans = 0;
• B -> 1 : B.trans = 1*2^(B.pos);

• Lets do out the string 101.101 on the board.



Lets discuss in more detail how a computer 
parses a CFG. 
• You can always use the CYK Algorithm. It is a bottom up parser with 

an acceptable runtime O(n^3) and will work for any CFG in Chomsky 
Normal Form (CNF). 

• To do this, you need to do three things:
• Eliminate eps rules 
• Eliminate Unit rules
• Fix Remaining Rules so that all rules have either a single terminal or exactly 

two nonterminals on the right.

• After this conversion, the algorithm works by considering every 
possible subsequence of increasing length to see if is a valid 
production.



Parsing Continued

• We can do better if our grammar is LL(1).

• LL(1) grammars are top down parsers than only require one symbol look 
ahead.
• Thus at every step, we need to have a definite way to get from one state to the next.

• The main Idea
• Keep track of : the scanned tokens, the stack contents, and the leaves of the current 

parse tree.
• We need to use a parse or selector table to do this.

• Push EOF, Push start symbol, Expand via Selector Table and Scan when 
appropriate. 
• Expansion is guaranteed to be unique so there is no ambiguity.



LL(1) Grammars

• How do we know if we have a LL(1) grammar?

• We need to actually try to build the selector table. 
• If the selector table only allows one production per (symbol, state) pair then 

we have it!

• Unfortunately, this will always fail unless we make sure our grammar 
doesn’t have any left recursion or isn’t left factorable.



Remove Left Recursion

• Left Recursion: A +-> A string 
• After a sequence of derivations you end up with A going to A and then 

another string.

• Immediate left recursion is a problem!

• You don’t know if you should choose the first production or the second 
production without looking ahead.

• If A -> A a | b then change to
• A -> b A’

• A’-> a A’ | eps



Example

• Consider our previous example of binary decimal strings. 

• We had the production: L -> B | L B

• This is immediately left recursive!

• Lets go ahead and change this.

• L -> B L’

• L’ -> B L’ | eps

• Does the syntax directed translation still work?

• L -> B L’ : B.pos = L’.pos +1; L.trans = B.trans + L’.trans

• L’ -> B L’ : L’.pos = B.pos = L1’.pos+1 ; L’.trans = B.trans+L’.trans

• L’ -> eps : L’.pos = 0; L’.trans = 0



Left Factoring

• You need to left factor if any production you write leads to a common 
prefix.
• Say A -> string string1 | string string2

• This is not left factored because of the common prefix 

• You don’t know which production to choose based of the current symbol you 
see without looking ahead.

• We change this to
• A -> string A’

• A’ -> string1 | string2



Example

• Lets looks at our previous example again.

• We have a production: R -> B | B R

• This is not left factored 

• So We’ll insert another non terminal to fix this problem

• R -> B R’

• R’ -> R | eps

• We’ll have to change around the translations again

• R -> B R’ : R’.pos = R.pos -1; B.pos = R.pos; R.trans = B.trans + R.trans

• R’ -> R : R.pos = R’.pos; R’.trans = R.trans

• R’ -> eps : R.trans = 0;



Left Recursive and Left Factoring

• The situation is a little more complicated if you have a more than two 
productions with a common prefix or more than two cases of 
immediate left factoring.

• The type of process you follow is exactly the same however.



First and Follow Sets

• In order to truly decide if a grammar is LL(1) we actually have to build 
a selector table for it.

• The previous slides talked about sufficient conditions for a grammar 
to not be LL(1), they were not necessary conditions.

• Lets try to compute the first and follow set for our example of binary 
decimal strings.



Updated Grammar and First Set

• S -> L dot R .

• L -> B L' 

• L' -> B L' 

• L' -> eps

• R -> B R' 

• R' -> R 

• R' -> eps

• B -> 0 

• B -> 1 

• So to construct the FIRST set, lets consider what 
terminal could appear first for each nonterminal

• S.First = L.First = B.First = {0,1}

• L’.First = B.First = {0,1} U {eps}

• R.First = B.First = {0,1}

• R’.First = R.First = {0,1} U {eps}

• Nothing too surprising here.



Updated Grammar and Follow Set

• S -> L dot R .

• L -> B L' 

• L' -> B L' 

• L' -> eps

• R -> B R' 

• R' -> R 

• R' -> eps

• B -> 0 

• B -> 1 

• For the Follow Sets

• S.follow = { $} as S doesn’t appear in the RHS of any
production

• L.follow = {dot} as L only appears on the LHS of the first 
production and it isn’t the last symbol in the production.

• L’.follow = {dot} as we add L.follow to L’.follow

• R.follow = {$} as we add S.follow to R.follow

• R.follow = {$} as we add R.follow to R’.follow

• B.follow = {0,1,$,dot} as we add L’.follow to B.follow, 
R’.follow to B.follow. Finally add L’.First to B.follow as L’ -> 
eps



Selector Table

dot 0 1 $

S S → L dot R S → L dot R

L L → B L′ L → B L′

L′ L′ → ε L′ → B L′ L′ → B L′

R R → B R′ R → B R′

R′ R′ → R R′ → R R′ → ε

B B → 0 B → 1



Updated Grammar and Action Numbers

• S -> L dot R (1): S.trans = L.trans + R.trans, R.pos = -1 

• L -> B L' (2): L.trans = B.trans + L’.trans, B.pos = L’.pos+1

• L' -> B L' (3): L’.trans = B.trans + L’.trans, B.pos = L’.pos = L1’.pos +1

• L' -> eps (4): L’.trans = 0

• R -> B R' (5): R.trans = B.trans + L’.trans, R’.pos = B.pos = R.pos-1

• R' -> R (6): R’.trans = R.trans, R.pos = R’.pos

• R' -> eps (7): R.trans = 0

• B -> 0 (8): B.trans = 0

• B -> 1 (9): B.trans = 2^(B.pos)



Example: Derive 10.0
Input seen so Far Stack Action

eps L dot R  EOF Pop, push B L’

Eps B L’ dot R EOF Pop, push 1

Eps 1 L’ dot R EOF Pop, scan

1 L’ dot R EOF Pop, push B L’

1 B L’ Dot R EOF Pop, push 0

1 0 L’ Dot R EOF Pop, scan

10 L’ Dot R EOF Pop, scan

10. R EOF Pop, push B R’

10. B R’ EOF Pop, push 0

10. 0 R’ EOF Pop, scan

10.0 R’ EOF Pop, scan



Cites

• SDT Example: http://www.isi.edu/~pedro/Teaching/CSCI565-
Spring15/Practice/SDT-Sample.pdf


