CS536 Lecture 3

Tuesday 27 January 2015

Reminders:

- P1 Part 1 due tomorrow night (no late submissions), Part 2 due Feb 2.
- HW1 assigned, due next Tuesday.

Last class:

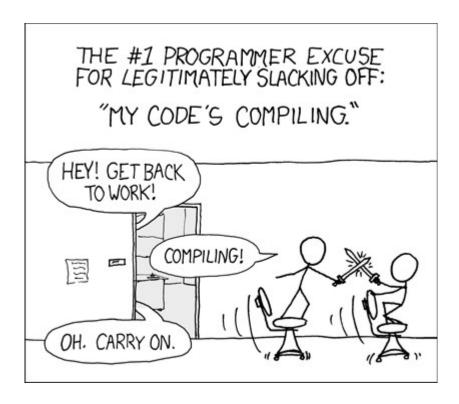
- Phases of a Compiler (synthesis)
- Finite State Machines

Today:

- Finite State Machines
 - Formal definition
 - Deterministic FSMs and non-deterministic FSMs
- Regular Expressions

Last Time

(Synthesis) Phases of a Compiler



Finite State Machines

Formal Definition

An FSM is a 5-tuple (S, Σ , δ , s ₀ , F) where
S:
Σ:
δ:
$s_0 \in S$:
$F \subseteq S$:
An FSM is defined to accept a string iff
Error situations:

Example: Hex Literals (cont'd)

Red	call	our	FSI	л.
1100		Out	1.11	/ I .

Formal definition:

S:

Σ:

S₀:

F:

 δ : state transition table

	0	1-9	a-f	A-F	Х	X	1	L
s_0								
s_1								
S_2								
s_3								
S 4								
S _e								

Coding a more generalized FSM

Using a state transition table:
This works provided the FSM is <u>deterministic</u> .

Deterministic and non-deterministic FSMs

Deterministic: No state has more than one outgoing edge with the <u>same label</u>.

Non-deterministic:

- States can have <u>more than one</u> edge with the same label.
- Edges may be labelled with the empty string ε .
- If a string yields <u>any</u> path through the machine to a final state, accept.

Example: An FSM that recognizes keywords for, if, and int

Example: Hex literals in Java

Why NFAs?

Compactness:

•	NFA that accepts strings ending in 101:
•	NFA accepting strings composed of 0s and 1s where the fifth last digit is 1.
•	NFA accepting all strings over {a, b, c} that are missing at least one letter.
•	NFA that accepts strings where the length is divisible by 2 or 3

Using an NFA

At each step, keep track of <u>set</u> of possible states, and the <u>set</u> of states the machine
might transition to.
Example:

(Surprising?) Claim: DFAs are just as powerful as NFAs

In other words, the collection of languages DFAs can accept is the same as the one NFAs can accept.

Intuition of proof:

- Show that every NFA can be modelled by a DFA (every DFA is already an NFA).
- Do this by building a DFA that tracks the set of states the NFA could be in.
- Add an edge from a state α (α is some set of states of the original NFA) on character c to state β if β represents the union of states that all states in α could possible transition to on character c.
- Cardinality of DFA: at most $2^{|S|}$, therefore still finite. Why $2^{|S|}$?

Example: An FSM that accepts strings composed of 0s and 1s, and where the third last character is 0.

DFAs are equal i	n power to	o NFAs:	Dealing	with	ε -transitions
------------------	------------	---------	---------	------	-----------------------

ε-closures: