CS536 SPRING 2011 FINAL EXAM

1D #:

Write all your answers on the exam itself; use the blue books only for scratch work. If
you separate the pages, write your 1D number (not your name!) on every page.
Good luck!

Question 1

Question 2

Question 3

Question 4

Question 5

TOTAL

CS536 Spring 2011 FIML ID: Page 1 of 11

Question 1. (10 POINTS)
We dudied three parsing techniques:

The CYK Algorithm

SLR(1) Parsing

Predictve Pasing

Below are 6 facts about parsingYour job is to write eachaict's nrumber next to each of
the parsing techniques (al@ to which it applies. A fact may apply to zero or more of
the techniques.

1. Thisis a bottom-up parsing technique (i.e., it builds the parse tree bottom-up).
Thisis a top-down-up parsing technique (i.e., it builds the parse tree top-down).

3. Thistechnique cannot be used with a CFG that includes the followiagulgs
(without transforming the CFG first):

S (S)
S-()
4. Ewry CFG can be transformed so that this parsing technique can be used to parse it.

5. For this technique, the worst-case time to parse an input of lengttbéites than
O(N).

6. For this technique, the worst-case time to parse an input of length N is O(N).

7. For this technique, the avst-case time to parse an input of length Masse than
O(N).

CS536 Spring 2011 FIML ID: Page 2 of 11

Question 2. (30 POINTYS)

Consider addindorward function declarations to the Little languageA forward func-

tion declaration is a function header (including its return type and formal parameters)
without a body The normal declaration (including the body) comes later in the code.
For example:

int f (int x, double y); [l forward declaration of f

int f (int x, doubley) { } // normal declaration of f

The reason for adding forward function declarations is tavattmtually recursre func-

tions. For example, the code ab® would include a (normal) declaration of a functign
between the tev declarations of , and the body ofy could include a call td (since the
symbol table would hee an entry forf).

The following table lists the errors that name analysis must detect faarfibamd normal
function declarations, and the corresponding error message numbers.

ERROR MESSASE NUMBER

function declaration (forward or normal) with the same namg as 1
a previously declared global variable

forward function declaration with the same name as @qus 2
forward or normal function declaration

normal function declaration with the same name as aque 3
normal function declaration

forward declaration witlmo normal declaration later in the code 4

(631

normal declaratios’ return type and/or parameter list don
match those of previous forward declaration

Think about ha to change Little name analysis to handle forward function declarations.
Assume the following:

* You can create different kinds of symbol-table entries (Sym objectsiaf@bles
and for functions, and gen a S/m object, you can tell whether it is for anable or
for a function.

 For a forward or normal function declaration, you can create a Sym object that
includes the return type and a list of the parameter types.

* For a forward or normal function declaration, you can compare the declasation’
return type and list of parameters with the return type and parameter listxis&n e
ing Sym object that includes those values.

CS536 Spring 2011 FIML ID: Page 3 of 11

On the rest of this page and on the next 3 pages, describe each of the following:

(&) Whatchanges (if any) would you mako he over-all approach to name analysis?

(b) Whatare the steps that would be done by the name-analysis method foraadforw
function declarationBe sure to say which of the error messages listed in the table
on the previous page might beven.

(c) Whatare the steps that would be done by the name-analysis method for a normal
function declaration.Be sure to say which of the error messages listed in the table
on the previous page might bevgn.

(d) If one or more of the error messages listed in the table on the previous gade w
not be gven by the name-analysis methods for fama or for normal function dec-
larations, when and owould those error messages beegi

(a) What changes (if any) would you maé to the over-all approach to name analy-
Sis?

CS536 Spring 2011 FIML ID: Page 4 of 11

(b) Steps for name analysis for a forward function declaration (include error msg
numbers)

CS536 Spring 2011 FIML ID: Page 5 of 11

(c) Steps for name analysis for a normal function declaration (include error msg
numbers)

CS536 Spring 2011 FIML ID: Page 6 of 11

(d) When and hav any “missing” error messages would be gen

CS536 Spring 2011 FIML ID: Page 7 of 11

Question 3. (20 POINTYS)

When a function is called, the following tasks may be done to set up the called fenction’
Activation Record:

Task 1. set the value of the access link field (if access links are being used to access
non-local variables)

Task 2. push the values of the actual parameters

Task 3. set the wlue of the sa&-display field, and set the appropriate element of the
display to point to the nme Activation Record (if a display is being used to
access non-local variables)

Task 4. set the value of the return-address field (to the address of the instruction that
follows thejal instruction in the calling function)

Task 5. set the value of the control-link field (to a gopf the \alue in the Frame

Pointer)
Task 6. set the Frame Pointer to point to the bottom of theAt
Task 7. le@e pace in the ne AR for local variables (by subtracting the appropriate

number from the Stack Pointer).

Part (a): In class (and in the on-line notes) we said that tasks 1 and 2 are done by the
calling function (as part of the code generated for a function call), and tasks &e

done by thecalled function (as part of the code generated for the “function prefix”).
However, this is not necessarily the only option.

For each of the seen tasks, circle the correct answer belto say whether it could be

done the other ay around. Assume that the symbol-table entry for a function 1D

includes its nesting &, a list of the types of its formal parameters, and the total number
of bytes needed for its local variables.

Task 1 could be done by tlalled function: YES NO
Task 2 could be done by tlalled function: YES NO
Task 3 could be done by tlwalling function: YES NO
Task 4 could be done by tlwalling function: YES NO
Task 5 could be done by tlwalling function: YES NO
Task 6 could be done by tlwalling function: YES NO

Task 7 could be done by tlwalling function: YES NO

CS536 Spring 2011 FIML ID: Page 8 of 11

Part (b): Some of the 7 tasks can be performed by either the calling function or the
called function.Is there a reason for assigning those tasks to one or the dioeistder
both execution time and the size of the generated code.

CS536 Spring 2011 FIML ID: Page 9 of 11

Question 4. (15 POINTS)
Assume that we Iva exended the Little language by addiogpak statements:
* A breakis valid only inside a while loop.

* When &ecuted, abreak causes a jump to the code that fatothe loop (i.e., to the
place that is jumped to when the lo®pdndition is false).

Assume that the type chemkhas verified that all break statements are inside while loops.
Consider the changes that would need to be made to the code-generation phase of the
compiler Below is the codeGen method for while loops for the original Little lan-
guage, and an empty method for break statemeftis.are to male any changes neces-

sary to the first method in order to handle break statements, and you are to complete the
second methodYou may change the method headelisyou want to add ne fields to

the ASTnode class, declare them be&lpbefore the start of the firstodeGen method.

Don't forget that loops can be nested!

/'l codeCGen for Wil eStnm Node
public void codeGen() {

String | oopLabel = Codegen. next Label ();

String fal seLabel = Codegen. next Label ();

Codegen. genLabel (| oopLabel) ;

myExp. codeGen();

Codegen. genPop(Codegen. TO, 4);

Codegen. gener at e("beq", Codegen. TO, Codegen. FALSE, f al seLabel);
mySt mt Li st. codeGen();

Codegen. generate("b", | oopLabel);

Codegen. genLabel (f al seLabel);

CS536 Spring 2011 FIML ID: Page 10 of 11

[/ codeGen for BreakStnt Node
public void codeGen() {

CS536 Spring 2011 FIML ID: Page 11 of 11

Question 5. (25 POINTYS)
Consider the following Little program:
int Kk;

int h(int b) {

k++;
return b;
}
void g(int a) {
k = a;
printf("%l", a);
printf("%", k);
}
void f(int x) {
X =X = 3;
g(h(k));
k = k - 4;
printf("%", x);
printf("%", k);
}
void main() {
k = 10;
f(k);
printf("%", k);
}

Part (a)

This program may produce tbfent output depending on which paramgiassing
modes are used fdrs parameterx, g’ s parametem, and h's parameteb. Fill in the
table belav, providing the output that corresponds to the specified modes.

X a b output
value value \alue a k: X: k: k:
reference glue reference a: k: X: K: k:
value-result alue \alue a k: X: k: k:
value name value a k: X: K: k:

