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Abstract. This paper is realised within the scope of the seminar ” Inte-
ger programming and combinatorial optimization”. The matching theory
is one of the classical and most important topics in combinatorial the-
ory and optimization [1]. We will discuss in this paper the matching
problem in general graphs and we will focus on the Edmonds’ mazimum
cardinality matching algorithm. We will handle the problem that the odd
cycles, socalled blossoms, cause in general graphs by trying to find an
augmenting path. An idea to shrink the blossoms will be shown, which
was presented by Edmonds (1965) and ensures that an augmenting path
can still be found if there is one.

1 Introduction

Comparing to the bipartite graphs finding an augmenting path is even more
difficult for general graphs. Until 1965, where Edmonds in his pioneering work
[9] solved the problem of the odd cycles, the socalled blossoms, by shrinking them,
there were known only exponential algorithms for finding a maximum cardinality
matching in general graphs. Even though since Berge’s theorem (1957) it has
been well known that for constructing a maximum matching, it suffices to search
for augmenting paths. The reason was that one did not know how to treat the
odd cycles in alternating paths. [2]

We will deal in this paper with the matching problem in general graphs, i.e. the
bipartite-case will not be discussed. First, we will introduce some basic definitions
and the Berge’s theorem and then we will proceed with the Edmonds’ algorithm.

2 Basic definitions

2.1 Matching

A matching of a graph G = (V, E) is a subset of the edges M C E such that
no two edges in M touch a common vertex, i.e. eN f = () for all e, f € M
where e # f. We say a node v is covered by M, if there is an edge e € M
that contains v. A perfect matching is a matching such that every node of
the graph is covered, i.e. |[M| = |—‘2/‘ [3] In figure 1. we can see an illustration
of a matching and a perfect matching, respectively. The dashed lines denote the
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Fig. 1. Matching (a) and perfect matching (b)

matched edges.

A matching M is mazimal if there exists no e € E\M such that M U {e} is a
matching. A matching M is mazimum if there exists no matching M’ C E of
larger size. Maximum cardinality matching contains the maximum number
of edges of a graph that form a matching. Mazxzimum weighted matching is
the maximal sum of the weights of the edges forming the matching.

2.2 Alternating and augmenting paths

Let G = (V, E) be a graph (bipartite or not), and let M be some matching in
G. We say that a path P is an M-alternating path if E(P)\M is a match-
ing. An M-alternating path is M-augmenting if its endpoints are not covered
by M, ie. |[E(P)\M| > |E(P)n M]|. [1] If P is an M-augmenting path then
[E(P)\M] = [M]+1.

We can see that the nodes 1 and 6 in the graph in figure 2. are free, i.e. not
covered by M, where M = (2,3), (4,5). So, the path P =1,2,3,4,5,6 not only
that it is M-alternating, but it is also M-augmenting.

It is easy to see that if we match the unmached edges and unmatch the matched

Fig. 2. An M-alternating path as well as M-augmenting

ones, we will get a new matching M’ = {(1,2),(3,4),(5,6)}, where |M'| =
|M| + 1. This leads to the following:



Matching in general graphs 3

Lemma 1: Let M be a matching and P an M -augmenting path. Then M & E(P)
Lis also a matching and |M @ E(P)| = |M|+ 1 holds. [4]

Proof. From the definition of the symmetric difference we get:

M @ E(P)| = |(M U E(P))\(M N E(P))

Considering M = M, U M,,, where M, C E(P) and M, N E(P) = 0, we get the
following:

|M @ E(P)| = (IMUE(P)\(| (Mp U M,) NE(P)])

M
= ([M U EP))\([(Mp N E(P)) U (M, NE(P))|)
M, 0

= ([M U E(P))\|M,|
= (| M\M,[) U (| E(P)\M, )
~—— N——
M, [M,|+1
=|M|+1.
We know from the definition of the alternating path that E(P)\M, is a matching

and since P is an Mp-augmenting path then |E(P)\M,| = |M,| + 1. So, we can
conclude that |M @ E(P)| > |M| and M’ is a matching with |M'| = |[M|+1. O
————

M’

2.3 Berge’s theorem

In 1957 Berge introduced one of the important theorem in order to find a maxi-
mum matching. He claimed that if a maximum matching has been reached then
there is no augmenting path to find.

Theorem 1.: Let G be a graph (bipartite or not) with some matching M. Then
M is maximum if and only if there is no M -augmentig path. [1]

Proof. Suppose there exists an M-augmenting path. From Lemma 1. we know
that the symmetric difference M & E(P) is also a matching and has greater cardi-
nality than M, so |M @ E(P)|>|M]|, thus M is extendable = M is not maximum.

Suppose conversely that M is not maximum. Let M’ be a matching with |M’|>|M|.
The symmetric difference M’ & M yields a new graph where its connected com-
ponents have the following attributes:

— deg(v) <2,YveVin (VM & M)
— circles of even length
— paths (even and/or odd length)

! @ denotes the symmetric difference, i.e. a © b= (a Ub)\(aNb)
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Let’s say C1,Cs, ..., C, are these connected components in (V, M’ @& M) as men-
tioned above, then we have M & C; & Co @ -+ ® C,, = M.
M'&M

The C;’s containing (M-alternating) circles and paths with an even length are
not of interest, because the number of edges which belong to M and M’ is equal.
We focus on the rest of the connected components containing odd paths. Only
k-Cy’s, 1 < k < n, containing (M-augmenting) paths where the first and the last
node are covered by M’ make the cardinality of M greater, and that only for 1
each.

So, we can say that there exist |[M’| — |M| (node-disjoint) C;’s that are M-
augmenting paths. O

2.4 Edmonds’ shrinking idea

After Berge’s theorem it took some time to find a way of treating the odd cycles
in general graph, while trying to find an augmenting path. In 1965 Edmonds
came up with an idea of shrinking these odd cycles, socalled blossoms. What is
ment by shrinking is illustrated in the figure 3.

Definition 1.: Let G be a graph and M a matching in G. A blossom, sub-
graph C, in G is an M -alternating path that forms a cycle of odd length with
[MNEC)|= % A node in C which is incident to two unmatched edges,
i.e. not covered by M N E(C), is called the base of blossom C'. [1]

The next Lemma is the base of Edmonds’ cardinality matching algorithm, where
he claims that, if there is no augmenting path to find after shrinking, then there
is no augmenting path in the original graph either.

Lemma 2.: Let G be a graph, M a matching in G, C a blossom in G (with
respect to M ). Suppose there is an M -augmenting v-r-path Q of even length
from a node v not covered by M to the base r of C, where E(Q) N E(C) = 0.
Let G' and M’ result from G and M by shrinking (V(C) to a single node. Then
M is a maximum matching in G if and only if M’ is a maximum in G'.

Proof: Suppose M is not a maximum matching in G. Let N := M & @ be

blossom C

shrinking o—@----- ‘ C
—

Fig. 3. Shrinking a blossom
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a matching not covering the base r of the blossom C, r ¢ V(N), and |N|=|M].
Using Berge’s theorem we know that there exists an N-augmenting path P in
G. Let Py, Py, ..., P, denote the nodes in P, where |P| =n. We call Py,..., P,
C-free if they do not touch the blossom C. P has the following attributes:

— either, both endpoints P; and P, are C-free, i.e. PNV(C) = 0,
— or, only one of the endpoints P; is C-free, i.e. P, € V(C),1 <i < n.

Let M', N' and P’ result after shrinking C' in G to the single node Cj in G’.
We get |[N’| = |M'| and P’ = P{,...,P,. Depending on which of the above
mentioned attributes P has, we say: if P, is C-free then P = P, (k = n),
otherwise P; = P; where P; is the first node belonging to C, so P] = Cj. If
the first case occures then we can easily say that P’ is an N’-augmenting path.
Does the second case occure then we have to show that P{,..., P, is an N'-
augmenting path. We know that N doesn’t cover the base of C, so N’ doesn’t
cover Cj, either and because of P = C; follows that both endpoints of P’ are
not covered by N’. Thus, P’ is an N’-augmenting path what means that N’ is
not a maximum matching in G’. Because of |[N'| = |M’| follows that M’ is not
a maximum matching in G’ either.

Suppose conversely M’ is not a maximum matching in G’. Let N’ be a matching
with greater cardinality than M’, |N’|>|M’|, where |N’|=|No| and Ny is the
correspondent matching in G covering at most one node of C'. From the definition

of the blossom we say that Ny can be extended by k = % edges, so we
get:

IN| = |No|+k=|N'|+k>|M|+k=|M|

It is easy to see from the equation above that there exists a matching N in G
which is greater than M, |N| > |M]|, so M is not a maximum matching in G
either. O

One may ask why it is important to have an alternating path of even length
from a node not covered by the matching to the base of the blossom (see Lemma
2.). The answer is that we might destroy the only existing augmenting path while
shrinking. Such a situation is illustrated in the figure bellow.

shrinking ._‘./.
= .

e
.
°

Fig. 4. Destroying the only existing augmenting path
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3 Edmonds’ cardinality matching algorithm

The idea of shrinking the found blossom(s), finding an augmenting path if there
is one and then expand the shrunken blossom(s) is the gist of the Edmonds’
matching algorithm (Lemma 2.). While trying to find an augmenting path an
alternating forest will be built up. We define in the following the alternating
forest:

Definition 2.: Given a graph G and a matching M in G. An alternating
forest with respect to M in G is a forest F' in G with the following properties:

i) V(F) contains all the nodes not covered by M,
ii) each connected component of F' contains exactly one node not covered by M,
its root,
i) all inner* nodes have degree 2 in F and
i) for any v € V(F), the unique path P(v) from v to the root of the connected
component containing v is M-alternating. [1] and [5]

e
e

e

Fig. 5. An alternating forest

How an alternating forest looks like is illustrated in figure 5. The black filled
nodes are inner, the unfilled (white) nodes are outer and, as we know, the dashed
edges belong to the matching.

Now we can make the last step and introduce Edmonds’ algorithm. However,
since there are a lot of improvements of this algorithm we present here a de-
scription of it, i.e. the core. Although this algorithm has been implemented in
various ways, e.g. the chosen data structure, the core remains the same.

The algorithm starts with an empty matching M and with the set of nodes not
covered by M. It builds a forest when constructing a matching. At any stage of
the algorithm we consider a neighbour y of an outer node x.

% we call a node v € V(F) with an even resp. odd distance to the root of the connected

component containing v, an outer resp. inner node. Roots are outer nodes.
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In the following we show the three important and interesting cases, corresponding
bR

to three operations (”grow”, ”augment” and ”shrink”), on which the algorithm
is based:

1. y ¢ V(F). Then the forest will grow when we add {z,y} and the matching
edge covering y.

2. y is an outer node in a different connected component of F. Then we aug-
ment M along P(x) U {x,y} U P(y).

3. y is an outer node in the same connected component of F' (with root ¢). Let
r be the first node of P(z) (starting at z) also belonging to P(y). (r can be
one of z, y.) If r is not a root, it must have degree at least 3. So r is an outer
node. Therefore C':= P(z)(, ., U{z,y} U P(y), ,, is a blossom with at least

three nodes. We shrink C. [1]

If none of the cases applies, all the neighbours of outer nodes are inner. We claim
that M is maximum.

Since the algorithm is based on the already proved theorems and lemmas we will
not prove the algorithm explicitly.

y,7]

4 Conclusion

We have presented in this paper the main idea of the Edmonds’ cardinality
matching algorithm. Even though we did not present an implementation of the
algorithm, we did show the three important operations, namely, grow, augment
and shrink. We also discussed Berge’s theorem and Edmonds’ shrinking lemma,
on which the algorithm is based.

The first polynomial running time of the algorithm was O(n*), where n is the
number of nodes in a given graph. An O(n?)-implementation of the algorithm has
been presented by Gabow, Lovsz and Plummer etc. The currently best known
algorithm for the cardinality matching problem has running time of O(y/nm),
presented by Micali and Vazirani in 1980.

The matching algorithm can be extended to the weighted case, which appears to
be one of the ”"hardest” combinatorial optimization problems that can be solved
in polynomial time. The first O(n?)-implementation of Edmonds’ algorithm for
the minimum weight perfect matching problem and the theoretically best run-
ning time O(mn + n%logn) has been obtained by Gabow in 1973 resp. 1999. [1]
The general literature for this paper was [1], but it is also strongely related to
2)-[9].

In the following we will show some chosen text from the Jack Edmonds’ original
paper [9] about the matching algorithm.

4.1 Jack Edmonds’ paths, trees and flowers

First, what I present is a conseptual description of an algorithm and not
a particular Zformalized algorithm or "code”.

For practical purposes computational details are vital. However, my pur-
pose is only to show as attractively as I can that there is an efficient
algorithm. Jack Edmonds
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A matching in G is a subset of its edges such that no two meet the same vertex.
We describe an efficient algorithm for finding in a given graph a matching of
maximum cardinality. This problem was posed and partly solved by C.Berge.
Maximum matching is an aspect of a topic, treated in books on graph theory,
which has developed during the last 75 years through the work of about a dozen
authors. In particular, W.T.Tutte (1947) characterized graphs which do not con-
tain a perfect matching, or I-factor as he calls it - that is a set of edges with
exactly one member meeting each vertex. His theorem prompted attempts at
finding an efficient construction for perfect matching.

Berge proposed searching for augmenting paths as an algorithm for maximum
matching. In fact, he proposed to trace out an alternating path from an exposed
vertex until it must stop and, then, if it is not augmenting, to back up a little
and try again, thereby exhausting possibilities.

The algorithm which is being constructed is efficient because it does not require
tracing many various combinations of the same edge in order to find an aug-
menting path or to determine that there are none.

When flowers arise we ”shrink” the blossoms, and so if an augmenting path
arises later, it will be in a "reduced” graph.

An upper bound on the order of difficulty of the matching algorithm in n*, where
n is the number of vertices in the graph. The algorithm consists of ”growing” a
number of trees in the graph - at most n - until they augment or become Hun-
garian®. A tree is growing by branching from a vertex in a tree to an edge-vertex
pair not yet in the tree - at most n times. Such a branching may give rise to a
back-tracing through at most n edge-vertex pairs in the tree in order to relabel
some of them as forming a blossom or an augmenting path.

A possible alternative to actually shrinking is some method for tracing through
the internal structure of a pseudovertex. Witzgall and Zahn (1965) have de-
signed a variation of the algorithm which does that. Their result is attractive
and deceptively non-trivial.
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3 A Hungarian tree H in a graph G is an alternating tree whose outer vertices are
joined by edges of GG only to its inner vertices



