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Abstract

The immense growth in the volume of research literature and experimental data in the field of molecular biology calls for efficient

automatic methods to capture and store information. In recent years, several groups have worked on specific problems in this area,

such as automated selection of articles pertinent to molecular biology, or automated extraction of information using natural-lan-

guage processing, information visualization, and generation of specialized knowledge bases for molecular biology. GeneWays is an

integrated system that combines several such subtasks. It analyzes interactions between molecular substances, drawing on multiple

sources of information to infer a consensus view of molecular networks. GeneWays is designed as an open platform, allowing

researchers to query, review, and critique stored information.

� 2003 Elsevier Inc. All rights reserved.

Keywords: Text mining; Bioinformatics; Information extraction; Molecular networks; Molecular interactions; Database; Artificial intelligence;

Knowledge engineering; Machine learning
1. Introduction

Imagine a tribe of bright, but ignorant, cavepeople

trying to understand the operation of a modern car by

analyzing a collection of damaged cars produced by

various makers. After many hours of hard manual la-

bor, the cavepeople disassemble the cars into myriad

small parts. Some are damaged, whereas some are in-

tact. Some pairs of pieces interact with each other,

whereas others do not interact. Some pieces are different
in different cars, yet apparently have the same function.

The leap to understanding the whole from knowing the

parts requires reduction of redundant or conflicting

pieces of information to a consistent consensus model
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that can be used for dynamics analysis. Researchers in

the field of molecular biology of the post-genome era are
in a situation similar to that of the junkyard cavepeople,

save that they are contemplating a collection of diverse

pieces of cellular machinery. Complicating the re-

searchers� horizon, the identical piece of cellular ma-

chinery may play different roles in different cells of the

same organism, or even within the same cell but under

different environmental conditions, just as a Swiss Army

knife in the car glove compartment can be used for
cutting wood, sewing fabric, or removing a cork from a

bottle under appropriate circumstances. The number of

nodes in human molecular networks is measured in

hundreds of thousands when all substances (genes,

RNAs, proteins, and other molecules) are considered

together. These numerous substances can be in

turn present or absent in dozens of cell types in
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humans—clearly, the complexity is too great to yield to
manual analysis. Thus, with the hope of relieving the

information overload currently assaulting scientists, we

are developing GeneWays, a computer system that in-

tegrates a battery of tools for automatic gathering and

processing of knowledge on molecular pathways.

Various components of the GeneWays system were

described in the earlier publications; the present paper

provides a synthesis and overview of the project as a
whole, indicating interactions between system modules

and directions of the planned future development of the

system.
2. Background

It would be impossible to give a complete review of
the vast area spanning text analysis and molecular in-

teractions databases, even were we to allow this review

to consume the page limit of this article. Nevertheless, it

is important to give at least a cursory overview of recent

accomplishments and key research areas related to the

work described in the current paper. These key research

topics correspond to the major computational problems

encountered by a researcher on her long and winding
road from a collection of plain-English texts to a useful

database of molecular interactions.

2.1. Document sorting

First, given a large database of abstracts of journal

articles, such as PubMed (http://www3.ncbi.nlm.nih.-

gov/Entrez/index.html), the researcher needs to distin-
guish papers relevant to her interests from millions of

non-relevant ones. For example, she might be interested

in articles having ‘‘cell cycle’’ in the title or abstract and

less interested in articles talking about supercolliders or

fur export. This task is document sorting; it can be

viewed as a classical task of machine learning, the

problem of how to do automated classification of ob-

jects into two or more classes—‘‘relevant’’ and ‘‘non-
relevant,’’ in this case. Such classification can start with

a set of examples provided with known class assignment

(supervised machine-learning methods) or without such

a training dataset (unsupervised learning) [1–3]. The

implemented unsupervised approaches to document

sorting include clustering of article abstracts [4], as-

suming that relevant and non-relevant clusters are likely

to form separate groups. Supervised methods applied to
this problem include na€ıve Bayes classifier [5,6], and

support-vector machines [7,8].

2.2. Term identification

Second, given a set of documents that she believes is

relevant to her interests, the researcher needs to identify
terms [9], such as names of genes, proteins, diseases, and
tissues. Term identification is a critical text preprocess-

ing stage required by many natural-language processing

engines, including GENIES [10]. Researchers attempted

to attack this problem by inferring morphological rules

that guide generation of a term [11,12], by using parts-

of-speech tagging engines that can help the downstream

applications to identify multiword noun phrases [11,13],

grammar rules [14], combinations of rule-based and
dictionary-based methods [15], support-vector machines

[16], hidden Markov models [17], and na€ıve Bayes and

decision-trees classifiers [18]. It appears that the problem

of tagging biological terms is a difficult one, and that we

may achieve better results by combining several of these

approaches. Early approaches [11,13] were tested on

small test sets and reported excellent reports where the

precision and recall were over 90%. However more re-
cent results reported for larger test sets achieved results

that ranged in the mid 70s and 80s [14,19,20] for preci-

sion and recall.

2.3. Term meaning disambiguation

Third, having identified terms, our researcher realizes

that the problem of term identification is confounded
when a term has multiple meanings (term ambiguity),

and when multiple terms correspond to the same con-

cept (term synonymy). For example, the name p21 can

refer to a gene, a protein, or a messenger RNA, de-

pending on the sentence context. Deducing the right

meaning is known as sense disambiguation, a problem

that can be tackled with machine-learning approaches,

such as those using na€ıve Bayes, decision trees, or in-
ductive-learning classifiers [21]. The most common ex-

amples of the synonymous names are pairs of

abbreviated and complete protein names (e.g., il2 stands

for interleukin-2; both terms often occur in biological

texts). The problem of synonyms can be alleviated with

automatically generated dictionaries [22–24]. See Liu

2002 [24] for an overview of word sense disambiguation

applied to the biomedical domain.

2.4. Information extraction

Fourth, once she has identified and disambiguated

such terms, our researcher wants to do information

extraction (remember that our researcher wants to ex-

tract information about molecular interactions). She has

her choice of methods that vary in complexity and
success. The first group of approaches are ‘‘correlation

methods’’ that exploit information about co-occurrence

of terms in articles or abstracts [1,25–27]. In a more

sophisticated form, such methods are based on a hidden

Markov model [28] that requires no dictionary of terms.

Methods of the second group target information ex-

traction via template matching: they identify regular

http://www3.ncbi.nlm.nih.gov/Entrez/index.html
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expressions in the text using a term dictionary and a
collection of hand-crafted patterns [29–32]. Methods of

the third group explicitly use formal grammars that can

identify nested structures in a sentence. In a nutshell, a

grammar is a set of allowed symbols (usually divided

into terminal words that we observe in a sentence and

non-terminal, invisible symbols that serve as interme-

diates in the imaginary process of generating a sen-

tence), and a set of production rules that have the
capability of expressing not only regular expressions but

also nested structures. Production rules are used to

generate a sentence by stepwise substitution, starting

with a single top-level non-terminal symbol, and ending

with a sentence that contains only terminal words. Gi-

ven a grammar and a valid sentence, we can reconstruct

the sequence of substitution events (usually expressed as

a parse tree) leading to generation of the sentence by the
grammar; this process is called parsing. The GeneWays

project as well two other molecular-biology-related lin-

guistic projects [10,33,34] use grammar-based parsers.

Since different projects have different foci and are typi-

cally tested on small datasets, it is currently impossible

to tell with confidence what is the relative performance

of these methods, although we expect that grammar-

based methods have a higher precision. A grammar-
based method, however, requires access to a dictionary

listing properties of the words it recognizes (the lexicon)

and information about allowable combinations or pat-

terns of words that are encoded in its rules. Such in-

formation is currently supplied by manual analysis of

sample texts in consultation with domain experts.

2.5. Ontology

Fifth, imagine that our researcher has struggled

through a multiplicity of research articles and has

managed to extract a large number of statements; she

now needs to store this information in a database.

Therefore, she requires a knowledge model on which to

build a database schema. Various knowledge models for

molecular-biology data have been suggested over the
past few years, and many of them have been imple-

mented in databases; all these databases (except the

GeneWays database) were created manually (see [35] for

a review). The most famous projects of this type include

the EcoCyc/MetaCyc knowledge base and ontology, the

primary emphasis of which is bacterial pathways [36,37],

the Gene Ontology of sequence/structure conservation

across eukaryotes [38], the Tambis Ontology [39], the
Ontology of Molecular Biology [40], the ontology for

conceptual modeling of biological information [41], and

RiboWeb: the ontology/database of structural models of

the ribosome [42]. There are also various databases of

molecular interactions that have an implicit ontology:

KEGG, LIGAND [43,44] (databases of diverse

molecular interactions and protein–ligand interactions,
respectively); BIND [45], DIP [46], and MINT [47]
(three databases of protein–protein interactions); Bind-

ingDB [48] (a knowledge base of diverse molecular in-

teractions and associated affinity information), and

COMPEL [49] (a compendium of protein–DNA inter-

actions). The GeneWays project is also provided with a

knowledge model [50] that is fine-tuned for analysis of

signal-transduction pathways in eukaryotes, but can be

used for representing bacterial data as well.

2.6. Visualization

Sixth, thinking of summary of molecular interactions

as a blueprint of a computer chip (a real computer chip is

usually less complex than a living cell), our researcher

certainly needs to visualize fragments of the map to get

insights into mechanisms of the ‘‘chip�s’’ work; graph
drawing is a large field in its own right.An excellent review

of available methods related to molecular biology is

provided by [51]; a general treatment of graph drawing

problems can be found in book by Di Battista et al. [52].

2.7. Integrated system

Seventh, rather than straggling with individual tools
every time she needs to process a new batch of a few

thousand articles, the researcher may decide to integrate

the previous six computational steps in a single system.

The GeneWays system described in this proposal is just

such an integrated system. Similar systems include the

PIES system in Singapore, developed for analysis of

protein–protein interactions described in journal ab-

stracts [31,53–55], the GENIA system in Japan [56] that
uses knowledge extraction from both article abstracts

and full articles to cross-index those articles with In-

ternet-based databases, and the United States—devel-

oped MEDSTRACT system [32,57] that extracts

relationships of the form ‘‘A inhibits B’’ from journal-

article abstracts.

We have set the context for our own project, Gene-

Ways, by covering briefly thework that other groups have
done on molecular pathways and on automated analysis

of research articles. We have been developing the Gene-

Ways system for 5 years at Columbia University; we re-

cently used it for analysis of nearly 150,000 full-text

articles, and as a result were able to populate a prototype

database with nearly 1.5 million unique statements. We

believe that GeneWays is a state-of-art system that can be

considerably extended and enhanced, and that can be
used as a tool for exciting research projects.
3. GeneWays: motivation and anatomy

The word ‘‘GeneWays’’ probably emerged from an

aberrant fusion of words ‘‘genes’’ and ‘‘pathways.’’ The
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system was designed with the ambitious goal of auto-
mating extraction of information on molecular interac-

tions locked in the text of journal articles.

Since the potential scope of the term ‘‘information on

molecular interactions’’ is immense, at the first phase of

the system development, we decided to focus on mo-

lecular interactions pertinent to signal-transduction

pathways. Although the division of molecular pathways

into ‘‘metabolic’’ and ‘‘signal transduction’’ is probably
just a convenient way of looking at the elements of an

interconnected unified system, there are distinct differ-

ences between these two types of pathways. Metabolic

pathways mostly deal with tremendously diverse chem-

ical alterations of relatively small molecules, whereas

signal-transduction pathways are relatively poor in

chemical mechanisms and predominantly involve

‘‘switch-on’’ and ‘‘switch-off’’ interactions among large
molecules, such as genes and proteins. In an article de-

scribing a signal-transduction pathway statements that

‘‘protein A binds protein B,’’ ‘‘protein C phosphorylates

protein D,’’ and ‘‘protein E activates gene F’’ are seen

frequently, although gene and protein names (A–F in

the current example) can be drawn from a sizable list of

nearly a hundred thousand names. Signal-transduction

pathways, therefore, seem to be an easier target for in-
formation extraction from free text, although soon after

starting the project we realized that even this ‘‘easier’’

task is extremely difficult to perform correctly.

GeneWays is designed to extract relations (or actions

as we call them in our ontology; see [50]) between sub-

stances or processes. If we think about pathways as
Fig. 1. A simplified view o
oriented graphs, we can divide relations into two
groups: direct and indirect. Direct relations, which

usually are physical interactions between substances,

correspond to a single edge in the graph; indirect rela-

tions link two nodes (substances or processes) with a

series of two or more edges. Direct relations in the

current version of GeneWays include N-acylate, N-gly-

cosylate, O-glycosylate, acetylate, attach (¼ bind), cre-

atebond, degrade, demethylate, dephosphorylate,
breakbond, methylate, overexpress, phosphorylate, ex-

press, contain, transcribe, release, interact, and substitute.

Indirect relations (which occasionally can also corre-

spond to direct relations) include activate, actupon,

cause, generate, inactivate, limit, promote, and signal.

The GeneWays database currently maintains the

following concept types: complex, disease, domain,

gene, geneoprotein, process, protein, species, and
smallmolecule.

Only a subset of these concepts (gene, geneoprotein,

process, protein, and smallmolecule) can serve as verti-

ces of a pathway graph; GeneWays uses the remainder

to capture additional information about defined vertices

and edges of the oriented graph. (We are currently im-

plementing the additional concepts described in [50].)

Here, we describe two views of GeneWays: from the
perspectives of a system developer and of a user.

From the point of view of a developer, GeneWays

looks as in Fig. 1 (stars identify modules of the system

that are developed but not yet integrated). We can think

of a system as an engine that processes raw data to

create a structured product. The ‘‘raw data’’ that come
f GeneWays system.
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into the system are represented by electronic copies of
research articles coming from the World Wide Web,

such as from the web sites of scientific journals for which

developers have a legitimate subscription. The task of

collection and local accommodation of numerous re-

search articles (we have approximately 150,000 full-text

articles in the current system) is done by a GeneWays

module called the ‘‘Download Agent,’’ which saves re-

trieved text into a local database, as shown in Fig. 1.
The heart of the system comprises the modules shown

inside the big arrow in Fig. 1. First, the Term Identifier

module [19] identifies biologically important concepts in

the text, such as names of genes, proteins, processes,

small molecules, and diseases. Many such terms have

synonyms and homonyms, so the Synonym/Homonym

Resolver module clarifies the meaning by assigning a

‘‘canonical’’ name to each concept multiple aliases.
Furthermore, there are other kinds of ambiguity asso-

ciated with terms. For example, term ‘‘interleukin-2’’

can identify the corresponding gene, a messenger RNA,

or the protein, depending on context. The Term Clas-

sifier module ([21]) resolves sense ambiguity of this type.

GENIES is a natural-language processing parser [10]

that takes as input plain text with identified and tagged

concepts (for example term ‘‘interleukin-2’’ can be tag-
ged as ‘‘<substance¼ �p�>interleukin-2< nsubstance>,’’

where �p� stands for ‘‘protein’’). The output of GENIES

is represented with semantic trees that are not intended

to be directly comprehended by humans, because they

represent complex nested relationships captured from

text in a machine-readable form.

An example of a GENIES parsing is shown in Fig. 2.

The Simplifier module takes these complex output
trees and unwinds them into simple binary statements

(an example of a simple binary statement is ‘‘interleukin-

2 binds interleukin-2 receptor’’—the statement links two

substances, interleukin-2 and interleukin-2 receptor,

with action ‘‘bind’’). The resulting simplified statements

are saved into the Interaction Knowledge Base, which is

the main resource associated with the GeneWays sys-

tem. The Interaction Knowledge Base is implemented
on the basis of a commercial relational database (Oracle

9i), and is built on GeneWays ontology [50].

Note that the automatically generated knowledge

base is of necessity noisy: the GeneWays system extracts

some percentage of statements incorrectly, and, even
Fig. 2. The GENIES parsing of the sentence. Recent studies have re-

ported that mdm2 promotes the rapid degradation of p53 through the

ubiquitin proteolytic pathway.
among correctly extracted statements, we should expect
redundancy and contradictions. Therefore, the database

requires curation, a process in which the original state-

ments are annotated with statements regarding confi-

dence in the corresponding information. The traditional

way to perform such curation is through manual labor

of human experts—a monumental task even for the da-

tabase at its current size of roughly 3 million redundant

statements extracted from 150,000 articles. To reduce
the manual work, we are implementing a Curator

module that would allow GeneWays to compute the

estimates of reliability automatically. We recently

suggested a plausible approach to the curation and

annotation problem, and we are in the process of

implementing it [58].

The two remaining modules are the CUtenet and

Relationship Learner. We describe the first, CUtenet,
later when explaining the user�s perspective. The Rela-

tionship Learner module has a unique role within

GeneWays because its relationships with other modules

(shown by dashed lines in Fig. 1) is different from the

other relationships in the system. Most of the relation-

ships in the figure (shown by solid arrows) depict flow of

information during the data processing that leads to

populating the Knowledge Base. The Relation Learner
module works with the output of Term Identification/

Disambiguation module to identify new semantic pat-

terns that developers can use later to improve GENIES;

therefore, the arrows connecting the Relationship

Learner module with the rest of the system depict in-

formation flow during system-improvement cycles, ra-

ther than during data-processing cycles.

From the point of view of a user, the system is rep-
resented by its portal, CUtenet (pronounced ‘‘See-u-

tenet,’’ which stands for ‘‘Columbia University tenet,’’

or ‘‘cute net,’’ whichever you prefer; see [59], a stand-

alone program that accesses both the Knowledge Base

and the GeneWays pipeline, as directed by a user. The

primary function of CUtenet is visualization of user-

defined pathways. Recently we augmented the program

to access the GeneWays Interactions Knowledge Base,
to retrieve various interactions defined by a query for-

mulated by a user, and to visualize these interactions on

the monitor. Moreover, the user can request informa-

tion about the sentences corresponding to individual

interactions and even can see the full articles from which

the sentences were extracted. (Each interaction in the

database is linked to a full-text article stored in the

publisher�s web site. The users of GeneWays system
would be able to see the full-text article only if they have

a legitimate subscription to the corresponding journal.)

As an illustration of how the system works, let us con-

sider the following example. Imagine that you are in-

terested in a substance, the protein called collagen. You

are formulating a query equivalent to a question ‘‘Show

me all interactions for collagen.’’ The total number of
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interactions for a single substance stored in the
Knowledge Base can be overwhelming (for collagen it is

more than a thousand) and you need some mechanisms

for reducing complexity of the output. Since each rela-

tion is frequently captured by GeneWays more than

once from different sentences in the same as well as in

distinct articles, the simplest filter for reducing the

complexity of CUtenet figures is the number of times

that each relation is entered into the Knowledge Base
from independent sentences. In the case of collagen, the

requirement that the interaction with collagen occur in

the database at least 15 times retrieves collection of only

12 interactions (Fig. 3A). Reduction of threshold to 10,

5, and 0 repetitions brings about 25, 74, and 1335 in-

teractions, respectively (see Figs. 3B–D, respectively).
Fig. 3. Examples of output of queries of Interaction K
Clearly, it is not very useful to show all 1335 interactions
available for collagen at once. We certainly realize that

this simple filter is imperfect because the statements re-

peated more frequently are not necessarily more im-

portant or more reliable than those repeated less

frequently, nevertheless this simple filter is better than

no filter at all. We are developing a set of sophisticated

filters that will allow users to select intuitive concepts for

choosing among statements, such as the probability of a
statement being true (see [58]). In the current version of

GeneWays a user can ‘‘walk’’ through the database by

requesting that she visualize interactions for substances

that are already shown on the screen (Fig. 3E).

Furthermore, by clicking on a graph edge in CUtenet

window the user can retrieve original sentences
nowledge Base visualized with CUtenet module.
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corresponding to the interaction and full articles con-
taining these sentences (see Fig. 4).

An alternative way to access GeneWays system

throughCUtenet is shown in Fig. 1; here, the user submits

a request for processing of her favorite journal article

through the GeneWays pipeline; such processing is cul-

minated with a visualization of the extracted relation-

ships. For example, by processing a plain-text version of a

Cell article [60], GeneWays produced Fig. 5 which shows
46 interactions. This is a relatively high number: the av-

erage number of interactions extracted by GeneWays

pipeline from an average Cell article is half this number.

To obtain a more objective view of the number of inter-

actions per article, we computed distributions of the

number of statements per article extracted by GeneWays

from three journals, Cell, Journal of Molecular Biology,

andScience, from collection of articles spanning the past 5
years (Fig. 6). The average number of statements ex-

tracted from a single article in these three journals was

18.06, 20.72, and 4.33, respectively. These numbers may

appear at first to be somewhat low especially for Science

magazine; recall, however, that we analyzed all articles

from each journal, and that Science publishes articles in

all fields of science, rather than in only biology. It is nat-

ural, therefore, that an article on theoretical physics typ-
ically contains little information about interactions

between genes and proteins.
4. Evaluation of extraction precision

One of important properties of a system is precision,

defined as the ratio of the statements extracted correctly
to the total number of extracted statements.
Fig. 4. A simplified view of information regarding interaction ‘‘collagen acti

action visualized by CUtenet a user can obtain a list of sentences containing

these sentences.
To evaluate the precision of GeneWays, we selected
2500 of the most frequent unique statements (out of

several hundred thousand unique statements that are

currently stored in GeneWays Knowledge Base). We

then had an expert in molecular biology go through the

2500 list, checking correctness of extraction—the en-

deavor took a few weeks. According to this expert

evaluation, 125 statements of the 2500 were either ex-

tracted with errors or corresponded to ‘‘phantom
statements’’ generated by the GeneWays system. We

then traced all stages of processing for each of these 125

statements, and found out that 100 of them were in-

correct due to errors in term identification, 12 due to

GENIES errors, and 5 due to Simplifier errors; 8 were

actually correct (expert�s error, as judged by the devel-

opers� team). Therefore, according to this evaluation,

GeneWays� precision was 95%; GENIES recall was
previously evaluated to be about 65% [10].
5. Current status of the system

The GeneWays system is far from being completely

developed. For example, all modules marked with red

asterisks in Fig. 1 are implemented in their prototype
version, but have yet to be integrated with the Gene-

Ways pipeline. It appears that the current precision

bottleneck is associated with the term-identification

module, which attempts to solve a formidable problem

of recognizing biologically important terms in scientific

publications; the problem appears to be harder when the

terms are from biology rather than from medicine,

business, or general English language [20]. We expect
that our work on automated curation will give us
vates c-src’’ provided by GeneWays Knowledge Base. For each inter-

corresponding piece of information and complete articles containing



Fig. 5. Results of GeneWays analysis of a single Cell article. In this representation all binary relationships between molecules or processes are shown

as oriented edges that end with either arrows, for ‘‘activate’’ relationships, or a ball, for all other relationships.

Fig. 6. Distribution of the number of statements extracted by Gene-

Ways from a single journal article for six journals: Science (SCIENCE

in the figure), Cell (CELL), Journal of Biological Chemistry (JBIOL-

CHEM), Journal of European Molecular Biology Organization

(EMBO), Proceedings of the National Academy of Sciences USA

(PNAS), and Nature (NATURE).
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insights into the knowledge-generation work of scientific

community at large, and also will point to ways we can

improve our system. This work is likely to increase the

value of the resulting database.
6. Discussion

6.1. Hand-made databases and automatically produced

databases

There are a few popular molecular interaction data-
bases, such as EcoCyc [61] and KEGG [44], that are

populated by groups of careful experts. Such ‘‘manual’’

databases are designed to provide a consensus view of

the evolving field of molecular biology (devoid of re-

dundancy and inconsistencies), usually have a low error

rate, and can express extremely complex statements

about the underlying biological systems. In contrast, the

GeneWays Knowledge Base is designed to capture a
‘‘stochastic’’ view of the field, where statements tend to

repeat and conflict, and where each statement is asso-

ciated with a publication time point. The GeneWays

Knowledge Base is likely to include a larger number of

errors than do the manual databases (note that, in

general, rigorous evaluations of the precision of the

manual databases are not undertaken), and the number

of types of relationships extracted automatically is
smaller than can be extracted by a human expert.

However, automatic systems can populate quickly an

extremely large database (much larger than our current

database of 1.5 million unique statements), and repeti-

tive conflicting statements extracted automatically can

be treated essentially as experimental data (see [58]).

Since the volume of text data currently available is tre-

mendous, statistical approaches to analysis of state-
ments extracted from the literature appear both

promising and requisite.
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6.2. Binary versus N-ary relationships

There is a contradiction between representation of

pathways information optimized for convenience of

computation and representation that captures text-en-

coded statement for optimized precision. Computation

on a large pathway database is the easiest when all re-

lationships are converted to a binary form, such as

‘‘protein A binds protein B.’’ The text-encoded infor-
mation often corresponds to not only binary, but also

tertiary, quaternary, and higher-order relationships. For

example, statement ‘‘proteins A and B synergistically

activate gene C’’ represents a tertiary relationship that

can be captured by GENIES (see [62] for detailed dis-

cussion of biomedical sublanguages). That relationship

is simplified (broken down), for convenience of com-

putation, into three binary statements: ‘‘protein A binds
protein B,’’ ‘‘protein A activates gene C,’’ and ‘‘protein

B activates gene C.’’ Although computation is more

efficient when statements are binary, the combined bi-

nary statements are not equivalent to the original ter-

tiary relationship. The compromise that we have chosen

is to keep in the knowledge base both representations,

the binary and N-ary.

6.3. Nobody (and no system) is perfect

GeneWays in its current form has limitations. As

follows from our evaluation of system precision, the

noisiest part of the system is associated with term

tagging (see [20] for a detailed discussion of this

problem). In general, it is difficult to identify a name of

substance or a process in a text: our favorite examples
of difficult gene names include ‘‘forever young’’ (in

plant Arabidopsis thaliana) and ‘‘mothers against

decapentaplegic’’ (in fly Drosophila melanogaster). Im-

proved term tagging is therefore likely to lead to a

significant reduction in the error rate. Another plague

crippling the system is associated with term synonymy.

Although we compiled a database of gene/protein

name synonyms, the dictionary approach alone ap-
pears to be insufficient. For example, ‘‘p53’’ and ‘‘p53

tumor suppressor’’ are currently stored in the Gene-

Ways knowledge base as separate substances; these

expressions have the same meaning but are difficult to

recognize automatically as synonyms.

A totally different difficulty is associated with

‘‘translations’’ between sublanguages in scientific com-

munity. The same chemical event may be expressed in
several strikingly different ways (different sublanguages)

in different subdisciplines� research literature. For ex-

ample, in the language of molecular biology, the state-

ment ‘‘protein kinase A phosphorylates protein B’’

means the same thing as the expression

BþATP¢
A
B � PþADP
in the language of biochemistry (where ATP and ADP
stand for adenosine triphosphate and adenosine diphos-

phate, respectively, and *P denotes a phosphate residue).

Note that, in the biochemical description, kinase A is not

part of the equation, but rather is merely a catalyst facil-

itating the reaction. A hard-core biochemist may argue

that what molecular biologists say is incorrect; however,

since both communities are able to understand their own

statements correctly, we are dealing with two sublan-
guages requiring translation from one to another. If the

articles analyzed by GeneWays are written in the lan-

guage of molecular biology, but potential users of the

resulting database speak in biochemical sublanguage

(which is probably more precise), then automated

‘‘translation’’ of statements may become necessary.

6.4. Werewolves of biological terminology

There is a difficulty of recognizing terms ‘‘p53’’ and

‘‘p53 tumor suppressor’’ as synonyms—here the major

problem is in deciding where protein name ends and a

description of its function starts.

There are more extreme cases when a single term can

be correctly interpreted in multiple ways. Our favorite

example is protein name ‘‘MAPKKK,’’ which stands for
‘‘mitogen-activated protein kinase kinase kinase.’’

Consider a hypothetical sentence ‘‘Mitogen-activated

protein kinase kinase kinase phosphorylates protein Y.’’

Term recognition here is a real problem because ‘‘mito-

gen,’’ ‘‘mitogen-activated protein kinase,’’ and ‘‘mitogen-

activated protein kinase kinase’’ are valid substance

names which are important for capturing pathway in-

formation contained in the sentence—sentence contains
four interactions, namely ‘‘mitogen activates mitogen-

activated protein kinase kinase kinase,’’ ‘‘mitogen-acti-

vated protein kinase kinase kinase activates and

phosphorylates mitogen-activated protein kinase ki-

nase,’’ ‘‘mitogen-activated protein kinase kinase activates

and phosphorylates mitogen-activated protein kinase,’’

and ‘‘mitogen-activated protein kinase kinase kinase

phosphorylates protein Y.’’

6.5. Two types of redundancy in the database

The automatically generated GeneWays database has

at least two sources of redundancy. One source is asso-

ciated with redundancy of research literature: every

statement viewed as important by a scientific community

is repeated multiple times in various publications. By
nature an image of the published information, the

GeneWays knowledge base contains multiple instances

of a large portion of the interactions represented in its

database.

The second source of redundancy is less direct; it is

associated with reasoning that can be done on the basis

of a set of known molecular interactions. We mentioned
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that all molecular interactions can be divided into two
groups: ‘‘direct’’ and ‘‘indirect.’’ For example, if protein

A activates protein B by phosphorylation, and protein B

activates gene C by binding to the promoter of gene C,

interactions between A and B, and between B and C, are

direct, whereas the interaction between A and C can be

computed from direct interactions and is indirect. Since

all indirect interactions can be deduced from direct ones

given that the set of direct interaction is complete, we can
conceive, and work to create a completely non-redun-

dant database that contains only unique direct interac-

tions. As our research field develops, certain direct

interactions may become indirect, as the intermediate

steps are discovered.

We conclude this paper by expressing what is perhaps

the most powerful of the lessons that our work on

GeneWays has taught us: that the field of analysis of
biological and medical texts is replete with exciting un-

solved problems, problems more than sufficient to en-

tertain myriad of researchers for many decades.
Acknowledgments

The authors are grateful to Ms. Lyn Dupr�e and to

two anonymous reviewers for valuable comments on the

earlier version of this paper. This work was supported

by Grants EIA-0121687, DE-FG02-01ER25500, and

GM61372 from the National Science Foundation, De-

partment of Energy, and National Institutes of Health,

respectively.
References

[1] Shatkay H, Edwards S, Wilbur WJ, Boguski M. Genes, themes

and microarrays: using information retrieval for large-scale gene

analysis. Proc Int Conf Intell Syst Mol Biol 2000;8:317–28.

[2] Shatkay H, Wilbur J. Finding themes in Medline documents:

probabilistic similarity search. Ismb 2000.

[3] Shatkay H, Wilbur WJ. Finding themes in medline abstracts. In:

IEEE Advances in Digital Libraries; 2000; 2000.

[4] Iliopoulos I, Enright AJ, Ouzounis CA. Textquest: document

clustering of Medline abstracts for concept discovery in molecular

biology. Pac Symp Biocomput 2001:384–95.

[5] Craven M, Kumlien J. Constructing biological knowledge bases

by extracting information from text sources. Proc Int Conf Intell

Syst Mol Biol 1999:77–86.

[6] Marcotte EM, Xenarios I, Eisenberg D. Mining literature for

protein–protein interactions. Bioinformatics 2001;17(4):359–63.

[7] Joachims T. A statistical learning model of text classification with

support vector machines. In: Croft WB, Harper DJ, Kraft DH,

Zobel J, editors. SIGIR-01, 24th ACM International Conference

on Research and Development in Information Retrieval. New

York: ACM Press; 2001. p. 128–36.

[8] Joachims T. Transductive inference for text classifcation using

support vector machines. In: International Conference on

Machine Learning (ICML); 1999; 1999.

[9] Jacquemin C. Spotting and discovering terms through natural

language processing. Cambridge, MA: MIT Press; 2001.
[10] Friedman C, Kra P, Yu H, Krauthammer M, Rzhetsky A.

GENIES: a natural-language processing system for the extraction

of molecular pathways from journal articles. Bioinformatics

2001;17(Suppl 1):S74–82.

[11] Fukuda K, Tamura A, Tsunoda T, Takagi T. Toward informa-

tion extraction: identifying protein names from biological papers.

Pac Symp Biocomput 1998:707–18.

[12] Tanabe L, Wilbur WJ. Tagging gene and protein names in

biomedical text. Bioinformatics 2002;18(8):1124–32.

[13] Proux D, Rechenmann F, Julliard L, Pillet VV, Jacq B. Detecting

gene symbols and names in biological texts: a first step toward

pertinent information extraction. Genome Inform Ser Workshop

Genome Inform 1998;9:72–80.

[14] Gaizauskas R, Demetriou G, Humphreys K. Term recognition

and classification in biological science journal articles. In: 2nd

International Conference on Natural Language Processing (NLP-

2000); 2000 June 4; Patras, Greece; 2000. p. 37–44.

[15] Rindflesch TC, Hunter L, Aronson AR. Mining molecular

binding terminology from biomedical text. Proc AMIA Symp

1999;1:127–31.

[16] Kazama J, Makino T, Ohta Y, Tsujii J. Tuning support vector

machines for biomedical named entity recognition. In: ACL-02.

Philadelphia; 2002.

[17] Collier N, Nobata C, Tsujii J. Extracting the names of genes and

gene products with a Hidden Markov model. In: Coling 2000.

Germany: Saarbruken; 2000. p. 201–7.

[18] Nobota C, Collier N, Tsujii J. Automatic term identification and

classification in biological texts. Proc Nat Lang Pac Rim Symp

1999;1999:369–74.

[19] Krauthammer M, Rzhetsky A, Morozov P, Friedman C. Using

BLAST for identifying gene and protein names in journal articles.

Gene 2000;259:245–52.

[20] Hirschman L, Morgan AA, Yeh AS. Rutabaga by any other

name: extracting biological names. J Biomed Inform

2002;35(4):247–59.

[21] Hatzivassiloglou V, Duboue PA, Rzhetsky A. Disambiguating

proteins, genes, and RNA in text: a machine learning approach.

Bioinformatics 2001;17(Suppl 1):S97–106.

[22] Pustejovsky J, Castano J, Cochran B, Kotecki M, Morrell M.

Automatic extraction of acronym-meaning pairs fromMEDLINE

databases. Medinfo 2001;10(Pt):371–5.

[23] Yu H, Hripcsak G, Friedman C. Mapping abbreviations to full

forms in biomedical articles. J Am Med Inform Assoc

2002;9(3):262–72.

[24] Liu H, Lussier YA, Friedman C. Disambiguating ambiguous

biomedical terms in biomedical narrative text: an unsupervised

method. J Biomed Inform 2001;34(4):249–61.

[25] Stapley BJ, Benoit G. Biobibliometrics: information retrieval and

visualization from co- occurrences of gene names in Medline

abstracts. Pac Symp Biocomput 2000:529–40.

[26] Stephens M, Palakal M, Mukhopadhyay S, Raje R, Mostafa J.

Detecting gene relations from Medline abstracts. Pac Symp

Biocomput 2001:483–95.

[27] Jenssen TK, Laegreid A, Komorowski J, Hovig E. A literature

network of human genes for high-throughput analysis of gene

expression. Nat Genet 2001;28(1):21–8.

[28] Leek RL. Information extraction using hidden markov models

[Masters Thesis]. San Diego: University of California; 1997.

[29] Blaschke C, Andrade MA, Ouzounis C, Valencia A. Automatic

extraction of biological information from scientific text: protein–

protein interactions. Ismb 1999;1:60–7.

[30] Ono T, Hishigaki H, Tanigami A, Takagi T. Automated extrac-

tion of information on protein-protein interactions from the

biological literature. Bioinformatics 2001;17(2):155–61.

[31] Ng SK, Wong M. Toward routine automatic pathway discovery

from on-line scientific text abstracts. Genome Inform 1999:

104–12.



A. Rzhetsky et al. / Journal of Biomedical Informatics 37 (2004) 43–53 53
[32] Pustejovsky J, Castano J, Zhang J, Kotecki M, Cochran B.

Robust relational parsing over biomedical literature: extracting

inhibit relations. Pac Symp Biocomput 2002:362–73.

[33] Park JC, Kim HS, Kim JJ. Bidirectional incremental parsing for

automatic pathway identification with combinatory categorial

grammar. Pac Symp Biocomput 2001:396–407.

[34] Yakushiji A, Tateisi Y, Miyao Y, Tsujii J. Event extraction from

biomedical papers using a full parser. Pac Symp Biocomput

2001;1:408–19.

[35] Stevens R, Goble CA, Bechofer S. Ontology-based knowledge

representation for bioinformatics. Brief Bioinform 2000;1(4):

398–414 (9).

[36] Karp PD, Riley M, Saier M, et al. The EcoCyc Database. Nucleic

Acids Res 2002;30(1):56–8.

[37] Karp PD, Riley M, Paley SM, Pellegrini-Toole A. The MetaCyc

Database. Nucleic Acids Res 2002;30(1):59–61.

[38] Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for

the unification of biology. The gene ontology consortium. Nat

Genet 2000;25(1):25–9.

[39] Baker PG, Brass A, Bechhofer S, Goble C, Paton N, Stevens R.

TAMBIS—transparent access to multiple bioinformatics informa-

tion sources. Ismb 1998;6:25–34.

[40] Schulze-Kremer S. Ontologies for molecular biology. Pac Symp

Biocomput 1998:695–706.

[41] Paton NW, Khan SA, Hayes A, et al. Conceptual modelling of

genomic information. Bioinformatics 2000;16(6):548–57.

[42] Altman RB, Bada M, Chai XJ, Whirl Carillo M, Chen RO,

Abernethy NF. RiboWeb: an ontology-based systems for

collaborative molecular biology. IEEE Intell Syst 1999;14(5):

68–76.

[43] Goto S, Nishioka T, Kanehisa M. LIGAND: chemical

database of enzyme reactions. Nucleic Acids Res 2000;28(1):

380–2.

[44] Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and

genomes. Nucleic Acids Res 2000;28(1):27–30.

[45] Salama JJ, Donaldson I, Hogue CW. Automatic annotation of

BIND molecular interactions from three-dimensional structures.

Biopolymers 2001;61(2):111–20.

[46] Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg

D. DIP, the database of interacting proteins: a research tool for

studying cellular networks of protein interactions. Nucleic Acids

Res 2002;30(1):303–5.

[47] Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G,

Helmer-Citterich M, Cesareni G. MINT: a Molecular INTerac-

tion database. FEBS Lett 2002;513(1):135–40.
[48] Chen X, Liu M, Gilson MK. BindingDB: a web-accessible

molecular recognition database. Comb Chem High Throughput

Screen 2001;4(8):719–25.

[49] Kel-Margoulis OV, Romashchenko AG, Kolchanov NA, Win-

gender E, Kel AE. COMPEL: a database on composite regulatory

elements providing combinatorial transcriptional regulation. Nu-

cleic Acids Res 2000;28(1):311–5.

[50] Rzhetsky A, Koike T, Kalachikov S, et al. A knowledge model for

analysis and simulation of regulatory networks. Bioinformatics

2000;16:1120–8.

[51] Uetz P, Ideker T, Schwikowski B. Visualization and integration of

protein-protein interactions. In: Golemis E, editor. Protein–

protein interactions—a molecular cloning manual. Cold Spring:

Cold Spring Harbor Laboratory Press; 2002. p. 623–46.

[52] Di Battista G, Eades P, Tamassia R, Tollis IG. Graph drawing.

Algorithms for the visualization of graphs. Upper Saddle River,

NJ: Prentice Hall; 1999.

[53] Wong L. PIES, a protein interaction extraction system. Pac Symp

Biocomput 2001;1:520–31.

[54] Wong L. Kleisli, a functional query system. J Funct Programming

2000;10(1):19–56.

[55] Wong L. Bioinformatics integration simplified: the Kleisli way. In:

Lai PS, Yap E, editors. Frontiers in human genetics: diseases and

technologies. Singapore: World Scientific; 2001. p. 79–90.

[56] Collier N, Park HS, Ogata N, et al. The GENIA project: corpus-

based knowledge acquisition and information extraction from

genome research papers. EACL�99 1999;1:271–271.

[57] Pustejovsky J, Castano J, Sauri R, Rumshisky A, Zhang J, Luo

W. Medstract: Creating Large-scale Information Servers for

biomedical libraries. In: ACL-02; 2002; Philadelphia; 2002.

[58] Krauthammer M, Kra P, Iossifov I, et al. Of truth and pathways:

chasing bits of information through myriads of articles. Bioinfor-

matics 2002;18(Suppl 1):S249–57.

[59] Koike T, Rzhetsky A. A graphic editor for analyzing signal-

transduction pathways. Gene 2000;259:235–44.

[60] YaoL,ArolfoMP,DohrmanDP, et al. betagamma dimersmediate

synergy of dopamine D2 and adenosine A2 receptor-stimulated

PKAsignaling and regulate ethanol consumption. Cell 2002;109(6):

733–43.

[61] Karp PD, Riley M, Saier M, Paulsen IT, Paley SM, Pellegrini-

Toole A. The EcoCyc and MetaCyc databases. Nucleic Acids Res

2000;28(1):56–9.

[62] Friedman C, Kra P, Rzhetsky A. Two biomedical sublanguages: a

description based on the theories of Zellig Harris. J Biomed

Inform 2002;35(4):222–35.


	GeneWays: a system for extracting, analyzing, visualizing, and integrating molecular pathway data
	Introduction
	Background
	Document sorting
	Term identification
	Term meaning disambiguation
	Information extraction
	Ontology
	Visualization
	Integrated system

	GeneWays: motivation and anatomy
	Evaluation of extraction precision
	Current status of the system
	Discussion
	Hand-made databases and automatically produced databases
	Binary versus N-ary relationships
	Nobody (and no system) is perfect
	Werewolves of biological terminology
	Two types of redundancy in the database

	Acknowledgements
	References


