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ABSTRACT
Motivation: High-throughput molecular genetics methods allow the
collection of data about the expression of genes at different time
points and under different conditions. The challenge is to infer gene
regulatory interactions from these data and to get an insight into the
mechanisms of genetic regulation.
Results: We propose a model for genetic regulatory interactions,
which has a biologically motivated Boolean logic semantics, but is
of a probabilistic nature, and is hence able to confront noisy bio-
logical processes and data. We propose a method for learning the
model from data based on the Bayesian approach and utilizing Gibbs
sampling. We tested our method with previously published data of
the Saccharomyces cerevisiae cell cycle and found relations between
genes consistent with biological knowledge.
Availability: The code for the software BUGS is available upon
request.
Contact: s.bulashevska@dkfz.de
Supplementary information: http://oslo.inet.dkfz-heidelberg.de/
ibios_old/people/bulashev/Supplement/

INTRODUCTION
One of the goals of functional genomics is to understand the mech-
anisms of genetic regulation. The advent of microarray technology
facilitated the large-scale monitoring of gene expression. Typically,
the expression data are processed with clustering algorithms for the
identification of groups of co-expressed genes. Then, the regulatory
regions of the co-expressed genes are analyzed to detect common
overrepresented motifs, based on the assumption that co-expressed
genes might be co-regulated by a common regulator. However, the
expression level of a gene can depend on multiple transcription
factors, and, therefore, on multiple genes. The regulatory control is
provided by the cooperative binding of transcription factors to the
binding sites of genes (cis-regulatory elements). Genes assigned to
one cluster by clustering analysis might belong to different regulat-
ory or signalling pathways. We propose a method for the analysis of
gene expression data which is based on the explicit modelling and
inference of gene regulatory interactions.

The working principles of the cis-regulatory elements can be
described by means of logic (Kauffman, 1996). Some genes can be
activated by one of a few different possible transcription factors
(‘OR’ logic). Other genes require that two or more transcrip-
tion factors must all be bound for activation (‘AND’ logic). The
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Fig. 1. Examples of regulatory functions presented as logic gates.

transcriptional activation of some genes may be inhibited by one of
a few possible repressor proteins (‘NOT OR’ logic; in our notation,
‘NOR’). In case of ‘OR–NOR’ logic, a gene is regulated by a set of
possible activators and a set of possible inhibitors. The gene is tran-
scribed if and only if one of its possible activators is active and it is
not repressed by one of its possible repressors. The gene’s regulatory
interactions can be presented as logic gates (Fig. 1).

A pioneering attempt to model genetic regulation was based on the
Boolean network model (Kauffman, 1996; Somogyi and Sniegosky,
1996; Liang et al., 1998). In the Boolean network the expression state
of each gene is functionally related to the expression states of some
other genes using logical rules. The major limitation of the Boolean
network model is its inherent determinism, in contradiction with the
stochastic nature of the underlying process of gene transcription and
with the noisy character of the experimental measurements of mes-
senger RNA (mRNA). Friedman et al. (2000) proposed to employ the
Bayesian network for modelling the genetic regulatory network. The
Bayesian network (Pearl, 1998; Jensen, 1996; Heckerman, 1998) is
a probabilistic model; i.e. it uses probability as a means to express
uncertainty about modelling variables and their dependencies. The
Bayesian network is a directed acyclic graph (DAG) G, whose ver-
tices correspond to the random variables X1, . . . , Xn. The graph G

encodes conditional independencies between the variables: given
the value of its parents in G, the variable is conditionally independ-
ent of other variables in the network except its descendants. Due
to the notion of conditional independence, probabilistic dependen-
cies among the variables in the network can be represented only by
the specification of conditional probability distributions (CPD). The
CPD for a variable defines its conditional probability given every
possible combination of the values of its parents. Hence, the global
relations of genes in the genetic network can be described as being
composed of local interactions between each gene and its regulatory
genes.

The Bayesian network formalism allows modelling arbitrary inter-
actions between parents X1, . . . , Xn of a variable Y . The complete
CPD for a binary variable with n parents requires the specification
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of 2n − 1 independent parameters (one parameter for each parent’s
state configuration). This combinatorial semantics of the parents’
interaction in the Bayesian network makes it difficult to interpret
the results of Bayesian network learning and to uncover the ‘true’
cis-regulatory logical relationships covered in this presentation. The
exponential explosion of the parameter space makes model learning
computationally expensive. Besides the computational complica-
tions, in small datasets, there might be not sufficient cases available
for learning conditional probabilities. Learning distributions with
fewer parameters is more reliable. We propose a model for genetic
regulatory interactions that combines the simple and biologically
motivated Boolean logic semantics of Boolean networks and the
possibility of dealing with uncertainty offered by Bayesian networks.
In contrast to Bayesian networks, the parents’ interactions of vari-
ables in our model are defined with logical functions. We present a
general framework that allows for a particular gene to find a set of
its regulators (activators and inhibitors), given a particular Boolean
logic function governing this regulation.

In the following we first introduce our model of gene regulation
which originates from the field of probabilistic graphical models.
Then we present our approach for learning the structure and para-
meters of the model from gene expression data, which is based on
the Bayesian methodology. Since there is no closed form solution
for the problem of Bayesian model selection, we applied the Markov
Chain Monte Carlo (MCMC) simulation technique, namely Gibbs
sampling. We introduced an additional parameter into the model
so that the problem of model selection transformed into a variable
selection task. We tested our approach on the gene expression dataset
of the Saccharomyces cerevisiae cell cycle.

SYSTEMS AND METHODS

The model of gene regulatory interactions
The Bayesian network formalism exploits independencies among variables
in the network and achieves more compact representations of the joint
probability distribution of the variables by expressing them with conditional
probability distributions. One can further exploit the independencies between
parents of a variable in a Bayesian network to get more compact representa-
tions of CPDs. In the past, several models were proposed with special types
of causal interaction (Heckerman and Breese, 1994; Meek and Heckerman,
1997; Srinivas, 1993). One type of such models is the causal independence
model which uses the notion of independence of parents of each variable in
the model. The variables X1, . . . , Xn, which are parents of the variable Y , can
affect Y through independent ‘mechanisms’. The results of these effects are
combined by a rule represented with a Boolean-logic function. Such models
were introduced by Pearl (1998) and were called ‘noisy OR-Gate’ and ‘noisy
AND-Gate’.

We employ these kinds of models for modelling the genetic regulatory
interactions. We assume that the variable Xi (regulator) can execute its
influence on the variable Y (regulatee) independently of other possible regu-
lators X1, . . . , Xn of Y . The biological mechanism underlying this modelling
assumption is the binding of protein transcribed by the regulator to the DNA
of the regulatee. This process is not deterministic; rather each gene Xi can
regulate the gene Y with probability θi and can fail to do this with probability
1−θi . The general structure of the gene interaction in our models is represen-
ted by a directed graph (Fig. 2). In this graphical representation, intermediate
variables I1, . . . , In are introduced, through which the variables X1, . . . , Xn

execute their influence on a given common effect variable Y .
Each intermediate variable Ii has only one parent, the variable Xi . Its prob-

ability distribution is defined as follows: given that Xi = 1, Ii takes the value
1 with probability θi and the value 0 with probability 1 − θi , respectively.
Given that Xi = 0, Ii takes the value 0 with probability 1. The combined
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Fig. 2. Model of gene regulatory interactions; F—Boolean function (‘AND’,
‘OR’).

X1

I1 I2 In I1 I2 In

X1X2 X2Xn Xn

OR

AND

Y

Iact Iinh

NOR

Fig. 3. Complex model of gene regulatory interactions with activators and
inhibitors (‘OR–NOR’ regulation).

regulatory influence on the variable Y is calculated as the Boolean function F

on the input variables I1, . . . , In. If X1, . . . , Xn are activators, then the state
of the variable Y is F(I1, . . . , In); if X1, . . . , Xn are inhibitors, the state of Y

is 1 − F(I1, . . . , In). The Boolean ‘interaction function’ F defines in which
way the intermediate affects Ii , and indirectly, in which way the variables Xi

interact. We consider two interaction functions: AND and OR. The semantics
of the OR-function implies that the variables Xi are each assumed to be suf-
ficient to influence Y . In the case of AND-function, all variables Xi need to
execute their own influence on the variable Y so that Y will be active.

Introduction of the hidden state variables Ii allows the insertion of ‘noise’
into the Boolean-logic based models. It allows modelling such that the
biological mechanism of the regulation of one gene by another could be
inhibited for unknown reasons. Thus, the input variables can be considered
as observables from which we make our noisy measurements, while the
hidden variables have the ‘true’ latent biological values.

In the present work we consider simple models with activatory regula-
tion (‘OR’, ‘AND’) and inhibitory regulation (‘NOR’, ‘NAND’), as well
as complex models: ‘AND–NAND’, ‘AND–NOR’, ‘OR–NAND’ and ‘OR–
NOR’. In the complex models the regulatory influences of multiple activators
and multiple inhibitors are combined with AND-function as exemplified in
Figure 3.

The conditional probability distribution for the regulatee Y that can be
activated by two possible activators (‘OR’-activation) is presented in Table 1.
Note that the model with the Boolean logic-based interaction of parent vari-
ables allows the specification of the entire conditional probability distribution
for a variable with only n parameters θ1, . . . , θn; i.e. polynomial on number
of parents.

Bayesian model selection
We employ the Bayesian methodology for learning the structure and para-
meters of the model from data. The Bayesian approach addresses the problem
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Table 1. Conditional probability table of regulatee Y that is regulated by two
possible activators X1 and X2 (‘OR’-activation)

Y

X1 X2 0 1

0 0 1 0
1 0 1 − θ1 θ1

0 1 1 − θ2 θ2

1 1 (1 − θ1)(1 − θ2) 1 − (1 − θ1)(1 − θ2)

as calculating the posterior probability of a model given data for a collection
of candidate models and selecting the most probable model. Suppose that
the data D has been generated by a model m, one of a set M of candidate
models, m ∈ M . If p(m) is the prior probability of model m, then the posterior
model probability by Bayes rule is p(m|D) ∝ p(D|m)p(m). The marginal
likelihood p(D|m) is calculated as p(D|m) = ∫

p(D|m, θm)p(θm|m)dθm,
where p(θm|m) is the prior distribution of model parameters θm for model
m. The calculation of the marginal likelihood is the general computational
bottleneck of the Bayesian methodology, since the integral is analytically
tractable only in certain restricted examples, when a prior distribution for the
parameters of the model exists, so that the integral will have a closed form
solution (conjugate prior).

Consider the model with ‘OR’-activation. Assume the variable Y is com-
monly influenced by the variables X1, . . . , Xn. The probability distribution
of Y given the values of its parents can be written as:

P(Y = 0|θ) =
n∏

i=1

(1 − θi )
Xi

and

P(Y = 1|θ) = 1 −
n∏

i=1

(1 − θi )
Xi ,

where θ = (θ1, . . . , θn) is the vector of parameters. Assume we have a sample
of N cases corresponding to the states of the variables X1, . . . , Xn and the
variable Y . Denote by Yj the state of the variable Y in case j , and by Xij the
state of the variable Xi in case j . The likelihood function is then

L(θ) =
N∏

j=1

(
n∏

i=1

(1 − θij)
Xij

)1−Yj
(

1 −
n∏

i=1

(1 − θij)
Xij

)Yj

If we substitute ψij by − log(1 − θij), the likelihood function transforms into

L(ψ) =
N∏

j=1

(e−ηj )1−Yj (1 − e−ηj )Yj ,

where ηj = ∑n
i=1 ψijXij is a linear predictor. This is the generalized lin-

ear model (McCullagh and Nelder, 1983). There is no conjugate prior for
the model, since it cannot be expressed in the form of the general exponen-
tial family parametric models. (For introduction to conjugate analysis, see
Bernardo and Smith, 1994.) The ‘AND’ model is intractable analogously.

The ‘OR’ model can be written as:

Y ∼ Bernoulli

(
1 −

n∏
i=1

(1 − θi )
Xi

)

(The operator ∼ stands for ‘is distributed as’.) Now consider the complex
model ‘OR–NOR’. Assume the variable Y is influenced by a set of activators
Xact

1 , . . . , Xact
n and a set of inhibitors Xinh

1 , . . . , Xinh
k . The variable Y takes the

value 1, if the activators executed their influence and the inhibitors failed,
otherwise Y is 0. The ‘OR–NOR’ model then can be defined as:

Y ∼ Bernoulli

((
1 −

n∏
i=1

(1 − θ act
ij )

Xact
ij

)
k∏

i=1

(1 − θ inh
ij )

Xinh
ij

)

This model is also intractable.

Jaakkola and Jordan (1996) apply variational methods and propose the
lower and upper bound approximations of the posterior distributions of the
‘OR’ and ‘AND’ models. However, approximation techniques require a high
number of training data that are usually not available within gene expression
studies.

In recent years, the development of MCMC techniques facilitated the
estimation of posterior probabilities involved in the Bayesian learning (Gilks,
1993). The MCMC technique is a stochastic simulation technique, which gen-
erates samples from the joint posterior distribution of the unknown quantities
in a model allowing to make estimates on them. Sampling from the joint
posterior distribution p(m, θm|D) allows one to estimate the posterior model
probability p(m|D) and the posterior parameter probability p(θm|D).

One of the MCMC approaches is Gibbs sampling (Geman and Geman,
1984). Gibbs sampling reduces the problem of dealing simultaneously with
a large number of unknown parameters in a joint distribution into a much
simpler problem of dealing with one variable at a time, iteratively sampling
each from its full conditional distribution given the current values of all other
variables in the model. As stated by Pearl (1987), performing Gibbs sampling
is particularly appropriate for a graphical model. Due to the factorization of
the joint probability distribution, the full conditional for a given node in the
DAG involves only a subset of nodes participating in its Markov blanket (i.e.
the set of parents, children and parents of the children for a node).

Gibbs variable selection
Our problem of model selection is formulated as follows: given the data on
the gene Y and its potential regulators X1, . . . , Xp , for a given Boolean logic
function F , identify the subset X1, . . . , Xn of actual regulators of Y . Standard
MCMC techniques such as Gibbs sampler cannot be directly applied for the
model selection because of the variable size of the problem space (candidate
models have different number of parameters). Gibbs sampling approaches
applicable for model selection problems were developed by George and
McCulloch (1996), Kuo and Mallick (1998) and by Dellaportas et al. (2000,
2002). It was proposed to substitute the model indicator m ∈ M with the
variable indicator γ = (γ1, . . . , γp), a binary vector, representing which
of the Xj , j = 1, . . . , p, should be included in the desirable ‘true’ model.
This allows the consideration of one joint space of the model parameters and
the variable indicator, keeping the dimensionality constant across all pos-
sible models. By introducing the variable indicator the ‘OR’ model may be
written as

Y ∼ Bernoulli

(
1 −

n∏
i=1

(1 − θi )
γiXi

)

The model selection problem is then referred to as the variable selection
problem.

The Bayesian approach requires setting up a joint probability distribu-
tion over all parameters, in our case p(θ , γ ). Let D denote the observed
data for the variables Xj , j = 1, . . . , p and Y . The joint posterior distribu-
tion given the observed data is p(θ , γ |D). The Gibbs sampling procedure
samples successively from univariate conditional distributions, simulating
a Markov chain

θ(0), γ (0), θ(1), γ (1), . . . , θ(t), γ (t), . . .

which converges in distribution to p(θ , γ |D). The subsequence

γ (0), γ (1), . . . , γ (t), . . .

converges to p(γ |D). This sequence can be used to identify the high prob-
ability values of γj . These are the values that appear most frequently in the
sequence.

Consider a partition of θ into (θγ , θ−γ ) corresponding to those components
of θ which are included and not included, respectively, in the model. Then
the posterior distribution of the parameters p(θ |γ , D) may be partitioned into
p(θγ |θ−γ , γ , D) and p(θ−γ |θγ , γ , D). From the model definition it is obvious
that the components of the vector θ−γ do not affect the model likelihood.
The full conditional posterior distributions required for the Gibbs sampling
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procedure are given by:

p(θγ |θ−γ , γ , D) ∝ p(D|θ , γ )p(θγ |γ )p(θ−γ |θγ , γ ),

p(θ−γ |θγ , γ , D) ∝ p(θ−γ |θγ , γ ),

where p(D|θ , γ ) is the model likelihood, p(θγ |γ ) is the model prior and
p(θ−γ |θγ , γ ) is the pseudoprior.

In our model the terms γj of the variable indicator γ are independent. Each
γj can be sampled from a Bernoulli distribution with success probability
Oj/(1 + Oj ), where

Oj = p(γj = 1|γ−j , θ , D)

p(γj = 0|γ−j , θ , D)

= p(D|θ , γj = 1, γ−j )

p(D|θ , γj = 0, γ−j )

p(θ |γj = 1, γ−j )

p(θ |γj = 0, γ−j )

p(γj = 1, γ−j )

p(γj = 0, γ−j )

The methods for Gibbs variable selection differ in their approaches on spe-
cifying prior distributions for the model parameters. The most simple is the
‘unconditional prior’ approach of Kuo and Mallick where the prior distribu-
tion of model parameters θ is defined independent of variable indicator γ .
In the Stochastic Search Variable Selection (SSVS) method of George and
McCulloch, the priors for θj depend on γj and are defined as mixtures of
two Normal distributions for γj = 0 and γj = 1. If γj = 0, the parameters
(pseudopriors) are kept close to 0 by defining the mean of the normal distri-
bution equal to 0. The method of Dellaportas et al. (2000, 2002) differs from
SSVS in that the pseudopriors may not be distributed around 0; rather they
may be chosen in a way to help increase the efficiency of the sampling pro-
cedure. Efficient performance can be achieved when the moves of the MCMC
chain between different models γ could be ‘local’. In variable selection prob-
lems, where the new sampled value of γ differs from the current value in a
single component, it is reasonable to retain the parameter values for those
terms γj which are present in both the current and new models. Dellaportas
et al. use proposal densities for the pseudopriors. These proposal densities
can be estimated using a pilot run of the MCMC for the saturated model; i.e.
the model where all terms γj = 1 for all j . In the present work we adopt the
method of Dellaportas et al. (2000, 2002).

Bayesian modelling allows for the hierarchical formulation of the model:
the distributions for the parameters can be formulated, in turn, with the help
of hyperparameters. We defined the parameter priors with a Beta distribution
with hyperparameters aj and bj :

θj ∼ Beta(aj , bj )

Beta distribution constrains the parameters to the [0, 1]-interval. The hyper-
parameters aj and bj were defined equal to 1, if γj = 1, therefore making
the prior non-informative (Beta(1, 1)). If γj = 0, we calculated the pro-
posal distributions for the pseudopriors, following Dellaportas et al.. That
is, we calculated the hyperparameters aj and bj by the formulas (method of
moments):

aj + bj = meanj (1 − meanj )

varj

− 1,

aj = (aj + bj )meanj ,

bj = (aj + bj )(1 − meanj ),

where meanj and varj , the mean and the variance of the parameters θj , were
estimated from the pilot run of the saturated model.

Next, one must define the prior distribution for the variable indicator γ .
Since the terms γj are independent, the prior can be decomposed into inde-
pendent Bernoulli distributions for each term: γj ∼ Bernoulli(πj ), where πj

is the prior probability to include term j into the model. A simple and popu-
lar choice in variable selection problems is the uniform prior on γ , assuming
that models are a priori equally probable, i.e. πj = π = 0.5. This prior is
noninformative in the sense of favoring all models equally, but is not non-
informative with respect to the model size. If p is the number of potential
regulators, and n is the number of actual regulators, then E(n) = 0.5p and

var(n) = 0.25p. For example, if p = 19 (as in our test study described
below), then n lies in the range 5–14 with prior probability close to 1, and
thus it is possible that the sampling procedure will not sample models with
<5 regulators. This may be crucial for ‘AND’ models, since there might be a
sparse number of regulators of a gene combined with AND-function. To favor
more parsimonious models, one can set the probability π so as to restrict n a
priori to lie in a short range by setting E(n) and var(n) to the desired values,
and using

E(n) = π ∗ p, var(n) = π(1 − π)p

A more flexible approach is to place a hyperprior on π ,

π ∼ Beta(α, β)

then the prior for the number of actual regulators n is Beta-binomial:

n ∼ Betabin(p, α, β)

The values for α and β can be chosen by setting E(n) and var(n) to the
desired values and solving the following equations (Kohn et al., 2001):

p
α

α + β
= E(n)

α + 1

α + β + 1
= var(n) − E(n)(1 − E(n))

(p − 1)E(n)

While performing Gibbs variable selection with the complex models like
‘OR–NOR’, we considered the same set of variables (genes) as potential
activators and inhibitors. We used two variable indicators, γ act and γ inh,
representing that a particular variable is included in the model as activator or
inhibitor, respectively. To ensure that terms γ act

j and γ inh
j cannot be 1 at the

same time, we specified γ inh
j as:

γ inh
j ∼ Bernoulli((1 − γ act

j )π inh
j )

where π inh
j is the prior probability to include the term j into the set of ‘true’

inhibitors.
We have implemented Gibbs variable selection by utilizing BUGS

(Bayesian updating with Gibbs sampling), the general purpose software for
Gibbs sampling on graphical (DAG) models (Spiegelhalter et al., 1996; Gilks,
1993; Ntzoufras, 1999 http://www.ba.aegean.gr/ntzoufras/tr.htm). BUGS
provides a declarative language for specifying a graphical model. The BUGS
code for our models is available upon request. The runs of the MCMC can
be monitored using the package CODA implemented in R-language (http://
cran.r-project.org).

The output of Markov chain simulation can be used to summarize the pos-
terior distribution of the variables of interest. After the burn-in time of 2000
iterations, we used 10 000 Markov chain simulations to count the number
of times γj had the value 1 in the chain. If the frequency of 1s in the chain
exceeded 0.7, we assumed that γj = 1 and the respective regulator should be
included in the ‘true’ model. Otherwise, the regulator j should be excluded.
For the complex models, like ‘OR–NOR’, we used 5000 iterations for the
burn-in, and 10 000 iterations for the frequency estimations. The examples
of the traces of MCMC simulations for parameters γj and θj are available in
the supplementary material.

The Markov chain must be monitored for diagnosing slow convergence or
lack of convergence. As proposed by Gelman and Rubin (1992), a number of
parallel runs of Markov chains should be carried out from different starting
points. Convergence is diagnosed when the output from different Markov
chains is indistinguishable. For parallel runs of Markov chains we used dif-
ferent initial values of the parameter indicator γ (when γj = 0 for all j and
when γj = 1 for all j ). Procedures for monitoring convergence of MCMC
are available in the package CODA.

Model checking
After the execution of the Gibbs variable selection and the estimation of
the variable indicator γ , the check of goodness-of-fit of the model to
data is required, to check whether the model assumptions were appropriate.
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Bayesian model checking uses the posterior predictive distributions (Gelman
et al., 2000). The goal is to perform posterior predictions under the model and
to assess the discrepancy between predicted and observed data. If the model is
reasonably accurate, the predicted data should be similar to the observed data.

Here we wish to check the ability of the inferred regulatory model to
predict the state of the gene Y from the states of its regulators. Let y be
the observed data on Y and θ be the vector of parameters. Denote yrep the
replicated data generated under the model with parameters θ . The posterior
predictive distribution is

p(yrep|y) =
∫

p(yrep|θ)p(θ |y)dθ

The posterior predictive distribution can be computed by simulation: simu-
late parameters θ from their posterior distribution, and simulate yrep from the
sampling distribution p(yrep|θ) conditioning on values of the simulated para-
meters. An advantage of using BUGS is that the generation of the replicate
data can be easily incorporated into the model inference procedure. Based
on the current simulated values of the parameters θ obtained at each itera-
tion of the MCMC, we generate replicate dataset {yrep} from the sampling
distribution of Y .

Our model-checking strategy is based on the examination of individual
observations of Y , yi , i = 1, . . . , N (N is the number of data samples) and
the comparison of them to the posterior predictive distributions. For the com-
parison we use the residual function ri = yi − E(yi), where the expectation
E(yi) is estimated based on the replicate dataset. Observations for which the
residual is not close to 0 indicate some lack-of-fit of the model and should be
regarded as outliers. We regarded the residual as not close to 0 if its absolute
value exceeded one estimated standard deviation. We calculate the model
prediction accuracy as the percentage of non-outliers.

RESULTS
To test our approach for inferring genetic regulatory interactions, we
used the microarray data from Spellman et al. (1998) [including the
data from Cho et al. (1998)] obtained for S.cerevisiae cell cultures
that were synchronized by three different methods. Accordingly, the
study contains three different datasets: the cdc15, cdc28 and alpha-
factor datasets. We used the cdc15 experiment (arrest of cdcd15
temperature-sensitive mutant) containing the largest number of data
samples (25) as the training dataset. The remaining experimental
datasets, cdc28 (18 samples) and alpha-factor (19 samples), were
used as test sets.

For the discretization of the continuous gene expression values
into two states (0—not expressed; 1—expressed), we used a vector
quantization technique, namely the clustering algorithm k-means
(Gersho and Gray, 1992). For each gene we clustered its expression
values into two groups by the k-means algorithm with two initial
values: 0 and the maximum expression value of the gene.

Since our data are a time-series data, two different regulatory situ-
ations can be considered. First, the state of the gene i in the sample
j depends on the states of its regulators in the same sample. Second,
the state of the gene i in the sample j depends on the states of its
regulators in the previous sample j − 1. We refer to the first type of
regulation as ‘simultaneous’, and to the second type of regulation as
‘time delay’.

The gene transcription in the mitotic division of the yeast is
coordinated in a periodic manner according to the consecutive
phases of the cell cycle G1, S, G2, M and M/G1 (for a review,
see Mendenhall and Hodge, 1998). Events such as DNA replica-
tion and chromosome segregation are promoted with the actions of
specific cyclin-dependent kinases (CDKs), which are dependent on
the activity of cyclins. The cycle periodicity requires also degradat-
ive, proteolytic processes that eliminate cyclically acting proteins at

stages when they are no longer required. Some cell cycle transitions
are negatively regulated by specific inhibitors that must be eliminated
in a timely fashion to initiate cell cycle transition.

In our pilot study we considered the group of 20 genes known to
be involved in cell-cycle regulation of S.cerevisiae. The same set of
genes was used by Chen et al. (2000), who presented a mathematical
model of the cell-cycle events. We applied our approach for learning
the models ‘AND’, ‘OR’, ‘NOR’, ‘NAND’, ‘AND–NAND’, ‘AND–
NOR’, ‘OR–NAND’ and ‘OR–NOR’ from the data, for each gene
in the dataset, considering all other genes in the dataset as candid-
ate regulators. We considered both ‘simultaneous’ and ‘time delay’
problems. After the vector of variable indicators was obtained by
Gibbs variable selection procedure, we performed model checking.
The results are displayed in Supplementary Tables 1–5.

We have experimented with different settings of the prior for
the variable indicator γ . We tried the Bernoulli distribution with
parameters π = 0.5 and π = 0.1, and also the setting with
the Beta distribution described previously. We tried Beta(16, 133)

that keeps expectation and variance of the number of actual reg-
ulators E(n) = 2, var(n) = 2, and also Beta(0.8, 14.4) with
E(n) = 1, var(n) = 2. The results of the ‘OR’ and ‘OR–NOR’
models with these different prior settings appeared to be the same,
but for the ‘AND’ model, which is apparently more restrictive, we
found few regulatory relations for some genes with Bernoulli(0.1)

and Beta distribution settings (Supplementary Tables 3–5).
For some genes the ‘NOR’-model suggested more inhibitors than

the ‘OR–NOR’-model (Supplementary Tables). Obviously, the two
models have different semantics. Learning the ‘NOR’-model iden-
tifies only the inhibitors of a gene; i.e. the model ‘explains’ the
non-activity of the gene with the activity of its inhibitors. By the
‘OR–NOR’-model, the non-activity of the regulatee can also be
‘explained’ with the failure of its activators. Finally, we checked
the ‘OR–NOR’-model with the activators and inhibitors suggested
by learning all possible models, and selected the results giving the
highest accuracy. The results for the case of ‘simultaneous’ regu-
lation are summarized in Table 2, and for the case of ‘time delay’
regulation are presented in Table 3.

We validated the regulatory interactions learned from the cdc15
dataset on the alpha-factor and cdc28 datasets. The results of the
model checking for these datasets are presented in the last two
columns of Table 2. Highly accurate regulatory interactions were
found for the genes CLN1, CLN2, CLB1, CLB2, CLB5, SWI5 and
SWI4. Some of the regulatory models induced from the cdc15 data-
set had poor confirmation in the alpha-factor and cdc28 datasets. The
reason for this might be that some genes have much stronger signals
during the cdc15 experiment than during the other two.

The inferred genetic interactions for the ‘simultaneous’ regu-
lation are presented graphically in Figure 4; the relationship
between genes regulating one common gene is described by ‘OR’-
function. (The graph was generated with the program GraphViz,
www.graphviz.org.) Our results are consistent with previous bio-
logical knowledge: the interrelationships between the genes reflect
the coincidence with different phases of the cell cycle. The genes
CLN1 and CLN2 transcribing the G1 cyclins and the genes CLB5
and CLB6 transcribing the B-cyclins Clb5 and Clb6 are expressed
in the G1-phase. Note the activatory connections amongst the
genes CLN1, CLN2, CLB5 and CLB6. The ‘time delay’ learning
revealed the activatory influences CLN1→CLN2, CLB6→CLB5,
CLN1→CLB6 and CLN3→CLB6 (CLN3 is also the G1-specific
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Table 2. ‘OR–NOR’ regulators of the genes inferred from the cdc15 dataseta

Genes Activators Inhibitors Accuracy (%)
cdc15 α cdc28

CLN1 CLB6 CLB2 84 63 78
CDC28 CLB2 80 63 67

CLN2 CLB5 CDC20 80 74 94
CLN3 No CLB4, MCM1 88 — 61
CLB1 CLB2, SWI5 CLB6, SIC1, SWI4 92 79 83
CLB2 CLB1, SWI5 CLB6, SIC1, SWI4 96 84 67
CLB4 CDC34 CLN3, CLB6 80 — —

CDC34 CLN3 88 — —
CLB5 CLN2 CDC20 80 — 72

CLN2 No 88 73 89
CLB6 CLN1, CLN2 CLB2 84 68 77
MCM1 CLN2 CDC20 72 — 61
SIC1 SWI4 No 76 — 72
SWI6 CLB5 CDC20 72 — 61
CDC28 No No No No No
CDC53 No No No No No
MBP1 CLN3, SWI5, HCT1 CDC34 92 74 61
CDC34 CLB2, CLB4, SIC1 MBP1 92 58 61
SWI5 CLB1, CLB2 SWI4 92 79 72
SKP1 MBP1 CLB6, CDC34 68 63 —
SWI4 SWI6 CLB2 88 68 78
CDC20 SIC1, CDC34 CLN2 80 63 67
HCT1 No No No No No

a‘Simultaneous’ gene activities considered. The last two columns present the accuracy
of models as validated on the alpha-factor and cdc28 datasets.

Table 3. ‘OR–NOR’ regulators of the genes inferred from the cdc15 dataset
(‘time delay’ gene activities considered)

Genes Activators Inhibitors Accuracy (%)

CLN1 No No No
CLN2 CLN1 CLB2 92
CLN3 CDC20 MCM1, SWI6 63
CLB1 No CLN3, CLB6, SIC1 63
CLB2 CLB1 CLN3, CLB6, SIC1 92
CLB4 SKP1 CDC20 67
CLB5 CLB6 CLB1, CLB2 63
CLB6 CLN1, CLN3 No 84
MCM1 SWI4 MBP1 75
SIC1 CLN3 SWI5 71
SWI6 No No No
CDC28 No No No
CDC53 No CLN2 71
MBP1 No No No
CDC34 SKP1 No 88
SWI5 CLB1 CLN3, SIC1 83
SKP1 CDC53 MCM1 63
SWI4 SKP1 SWI5 88
CDC20 No No No
HCT1 SWI5 CLN1, SKP1 63

cyclin). The genes CLB1 and CLB2 are G2-specific cyclins, the
gene SWI5 is the transcription factor also known to be expressed
in G2-phase. Note the activatory connections between the genes
CLB1, CLB2 and SWI5. The ‘time delay’ problem inferred the

CLB2

CLN1

SIC1

CLB6

CLB1

SWI4

CDC34

SWI5

CDC20

CLN2

MCM1CLB5

SWI6

CLB4

CLN3

MBP1

SKP1

CDC28

HCT1

Fig. 4. Regulatory interactions of 20 genes of S.cerevisiae. The full arcs rep-
resent activatory regulation, the dashed arcs represent inhibitory regulation.
The relationship between genes regulating one common gene is described by
‘OR’-function.

activatory regulation CLB1→SWI5 and CLB1→CLB2 (the ‘time
delay’ ‘AND’ model suggested SWI5→CLB1, SWI5→CLB2). The
inhibitory influences were inferred between the G1- and G2-specific
genes confirming that the expression of these genes is separated in
phases. The ‘time delay’ learning also revealed the inhibitory connec-
tions: CLB1, CLB2� CLB5, CLB2� CLN2, CLB6� CLB1, CLB6�
CLB2, CLN3� SWI5, CLN3� CLB1 and CLN3� CLB2. The gene
regulatory interactions described above find support in the literat-
ure (Althoefer et al., 1995; Loy et al., 1999; Hwang et al., 1998;
Schneider et al., 1998; Toyn et al., 1997).

SWI6 encodes Swi6, the regulatory component of SBF and MBF
transcription factor complexes controlling the expression of genes in
G1-phase and important for start-specific gene expression. Protein
Swi4 is a component of the SBF complex and forms a complex with
Swi6. The ‘simultaneous’ learning found the activatory connection
from SWI6 to SWI4 and negative connections from SWI4 to the
genes expressed in G2-phase. Both ‘simultaneous’ and ‘time delay’
learning revealed that when SWI5 is active, SWI4 is inactive.

SIC1 is known to be an inhibitor of the Clb complexes and is active
in the G1-phase maintaining CLB1 and CLB2 in an inactive state.
Note the inhibitory connections of SIC1 to the G2 cyclins CLB1
and CLB2 in Figure 4. The ‘time delay’ learning also inferred the
inhibitory influence of SIC1 on the genes CLB1, CLB2 and SWI5
(Toyn et al., 1997).
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The ‘simultaneous’ learning found a positive association between
SIC1 and CDC20, CDC34. It can be explained with this that the CDK
complexes CDC20 and CDC34 are needed for proteolytic degrad-
ation of Sic1 at the G1–S boundary to trigger the initiation of the
DNA synthesis.

The gene CDC20 is required for proteolytic degradation of G1 reg-
ulators. This explains the negative connections of CDC20 to SWI6
and to MCM1, both of them encoding transcription factors. CDC20
is transcribed in the late S/G2 phase, whereas CLN2 and CLB5 are
expressed in G1, explaining the negative connection between CDC20
and these genes. The gene CDC34 encodes Cdc34 which is the E2
ubiquitin-conjugating enzyme required for proteolytic degradation.
In the results for ‘simultaneous’ regulation, the genes CDC34 and
MBP1 negatively influence each other, likely because the activity of
CDC34 and the activity of MBP1, as part of the MBF transcription
factor complex, are completely separated in time (Goebl et al., 1994).
In Figure 4 there is a negative connection from the gene CDC34 to
the gene SKP1, whereas Skp1 is the E3 ubiquitin ligase which is
needed for Cdc34 essential function. However, the ‘time delay’ learn-
ing revealed the positive influence of SKP1 on CDC34. Apparently,
a time interval is needed between the transcription of these genes to
achieve their function (Willems et al., 1999). CDC34 is required for
the proteolysis of Clb proteins Clb2 and Clb4 at the border of G2–M
(positive connections from CLB2 and CLB4 to CDC34 in Fig. 4).

Both ‘simultaneous’ and ‘time delay’ results display the negative
connection from MCM1 to CLN3, which is explained by time separ-
ation in the activities of these genes. The gene CLN3 is expressed at
the M/G1 border. The MCM1 gene encodes the transcription factor
and is active during the G2/M transition.

The graph displayed in Figure 4 is not a directed acyclic graph;
rather it contains cycles. For some genes (for instance, CLB1 and
CLB2) the symmetric interactions were found. Note that we learned
local models; i.e. for each gene we considered all other genes as
possible regulators, without testing any global criteria for gene inter-
actions. The symmetric activatory and inhibitory relations between
pairs of genes could be potentially found by clustering. However,
we have found many more relations representing complex regulatory
dependencies between multiple genes which would not be unravelled
by clustering.

Obviously, most of the regulatory interactions coordinating the cell
division cycle of the yeast occur at the protein level (phosphorylation,
proteolytic degradation, etc.). At the present moment we do not have
measurements about concentrations of proteins during the yeast cell
cycle. The interactions reconstructed from the gene expression data
can give only hypotheses on the true biological relationships.

DISCUSSION
In this paper we proposed a model for the genetic regulatory
interactions and presented a method for learning the structure and
parameters of the model from gene expression data. Our model
represents the Boolean logic semantics of cis-regulatory logic. In
contrast to the standard Boolean networks applied earlier for mod-
elling gene interactions, our model has a probabilistic nature, more
suitable for dealing with the stochastic biological process of genetic
regulation and noisy experimental data. The model is a prob-
abilistic graphical model explicitly representing the dependencies
between a gene and its regulators. It can be seen as an intermediate
model between the models of local interactions defined in Boolean

networks and Bayesian networks. The model is not fully observable;
it rather contains hidden variables representing factors that could
not be measured. Due to the statistical context of the model, unlike
Boolean networks, we could employ the methodology of Bayesian
statistics for learning the model from data.

The Bayesian modelling allows for flexibility in defining complex
models with many parameters. By inserting into the model a new
parameter, namely the variables indicator, it was possible to convert
the model selection problem into the variable selection task. The
learning of the resulting model was facilitated with Gibbs sampling.
In contrast to the classical model estimation methods such as max-
imum likelihood, the Bayesian learning is free from assumptions of
asymptotic normality, and therefore is more appropriate for learning
from sparse datasets.

Previously, models of genetic regulation were suggested with
the same idea of extending Boolean networks to make them robust
against noise. In the noisy Boolean networks of Akutsu et al. (2000),
the authors defined a probability with which a certain number of
input/output patterns of gene expression will not be discarded by an
inference algorithm, even if a certain Boolean function is not satis-
fied. In contrast, our approach inserts ‘noise’ directly into the model
as model parameters enabling the application of statistical learning
for model inference. Shmulevich et al. (2002) presented probabilistic
Boolean networks. They inserted ‘noise’ into the model by accomod-
ating more than one possible Boolean functions for each node in the
network. They introduced a probability with which a certain Boolean
function is selected from the set of possible functions for calculating
the output of the target gene. We see the source of uncertainty in
genetic regulation not in the realizations of different Boolean func-
tions, but rather in the fact that independent basic elements of the
genetic regulatory mechanism could fail to execute their regulatory
influence.

Another class of regulation functions, called chain functions,
was suggested by Gat-Viks et al. (2003). The authors study the
computational problem of reconstructing the chain functions using
a minimum number of perturbation experiments. They also con-
sider combinations of several chains with a Boolean function. Unlike
our approach, the chain function model assumes that the functional
relations are deterministic.

Segal et al. (2003) also employ probabilistic modelling to infer
classes of genes (possibly ‘molecular pathways’) which exhibit sim-
ilar expression profiles. The genes are likely to fall into the same class
if their protein products interact. Pe’er et al. (2002) infer small sets
of active regulators and their regulatees by using a scoring function
based on mutual information.

We developed a general computational framework enabling us to
define a model of gene interactions with a particular regulatory func-
tion and to perform learning of this model from data. Given expres-
sion data on a gene and its potential regulators, our methodology is
able to detect the most likely regulators of the gene. The main advant-
age of our approach is that the relationships found with our method
do not require laborious manual analysis for their interpretation, as
the arbitrary combinatorial interactions are learned with standard
Bayesian networks algorithms. Rather, the results of model inference
can be directly utilized in an automatic system for analyzing tran-
scription factor binding sites in the regulatory regions of the genes.

Our method allows for elucidating more complex multi-gene rela-
tions which go beyond pairwise relations retrieved by clustering
algorithms that are widely used for the analysis of gene expression
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data. We tested our method with the data of the S.cerevisiae cell
cycle and found relations between genes consistent with previously
published biological knowledge. Although we have exemplified
our approach on a relatively small subset of genes, it can be readily
applied to larger datasets.

One of the advantages of the Bayesian approach is that it enables
including ‘subjective’ prior information into the model. In this study
we used the subjective prior specification to enforce the number of
gene regulators to lie in the desired range. Potentially, one could
define priors aiming to incorporate previous biological knowledge
into the model learning.

Regulatory pathways of the cell rely not only on the transcriptional
regulation but to a great extent on the post-transcriptional and external
signalling events. The reconstruction of the genetic regulatory inter-
actions from expression data can only reveal an incomplete picture of
the genetic regulatory pathways. Unobserved events on the protein
level can be represented in a probabilistic model by introducing hid-
den variables. When more detailed proteomics data will be available,
it can still be handled by our approach. Our future goal is to extend
the framework described here by integrating information on genes’
regulatory sequences and genes’ functional annotations. An example
of such an integrated approach considering both gene expression and
promoter sequence data in a unified probabilistic model is the work
of Segal et al. (2003b).
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