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Abstract

Dynamic Bayesian networks (DBNs) are considered as a promising model for inferring gene

networks from time series microarray data. DBNs have overtaken Bayesian networks (BNs) as

DBNs can construct cyclic regulations using time delay information. In this paper, a general

framework for DBN modelling is outlined. Both discrete and continuous DBN models are

constructed systematically and criteria for learning network structures are introduced from a

Bayesian statistical viewpoint. This paper reviews the applications of DBNs over the past years.

Real data applications for Saccharomyces cerevisiae time series gene expression data are also

shown.

INTRODUCTION
The development of microarray

technology produces a huge amount of

gene expression data and provides an

innovative perspective for whole genome

analyses. The estimation of a gene

network from cDNA microarray gene

expression data is one of the most

important computational topics. Several

methods have been proposed for

modelling gene networks including:

Boolean networks,1,2 Bayesian networks

(BNs)3–5 and differential equations.6,7 In

particular, researchers have paid great

attention to BNs, which model causal

relationships between variables based on

probabilistic measure. Since microarray

data are usually very noisy, the use of

statistical methods is expected to be

effective for extracting useful information

from such noisy data. Friedman et al.3

proposed both a discrete BN model and a

continuous BN model based on a linear

regression for modelling gene networks.

Imoto et al.4,5 succeeded in employing a

non-parametric regression for capturing

even non-linear relationships between

genes.

Although the above methods are

effective to some degree, BNs have a

limitation that no cycles are allowed. This

can be a serious problem since real gene

networks have cyclic regulatory pathways

including feedback loops. When we have

time series microarray data, the use of

dynamic Bayesian networks (DBNs) is a

promising alternative, since DBNs can

treat time delay information and can

construct cyclic networks. DBNs have

been used in the field of signal processing

and were recently introduced into the

analysis of time series microarray data.

Friedman et al.8 first applied DBNs to the

analysis of gene networks. They

constructed a discrete DBN model and

used the BDe9 metric for learning

networks. Smith et al.10,11 and Ong et al.12

also used discrete models. An interesting

point of Ong et al. is that they imported

biological knowledge into the modelling

of network structures. Their target

organism, Escherichia coli, is already known

to have sets of genes, called operons,

which are transcribed together into

mRNA. Reflecting this information, they

added some nodes representing operons

to the network and restricted edge

directions. Although discrete models have
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some advantages such as robustness,

simplicity of learning and non-linearity,

discretisation often tends to be a problem

for the following two reasons. First,

discretisation might cause information

loss. Secondly, the threshold value for

discretisation must be chosen very

carefully since resulting networks will be

affected by this value. To avoid

discretisation, Kim et al.13 defined a

continuous DBN and non-parametric

regression model to capture more than

linear dependencies.

This paper reviews the methodology of

estimating gene networks from time series

microarray data using DBN models. A

general theory of DBN models is

introduced first, and discrete and

continuous models are then elicidated.

Information criteria for learning unknown

network structures from a Bayesian

statistical viewpoint are derived. The

methods in Friedman et al.,8 Smith et

al.,10,11 Ong et al.12 and Kim et al.13 will

be presented in this framework. The

effectiveness of DBN models through the

analysis of S. cerevisiae microarray data will

be shown.14

DBN MODEL
DBNs can be viewed as an extension of

BNs. In contrast to BNs that are based on

static data, DBNs use time series data for

constructing causal relationships among

random variables. In this section, we

describe a DBN model under a general

framework.

Suppose that we have n microarrays

and each microarray measures expression

levels of p genes. The microarray data,

then, can be summarised as an n 3 p

matrix X ¼ (x1, . . . , xn)
T whose ith row

vector xi ¼ (xi1, . . . , xip)
T corresponds to

a gene expression level vector measured at

time t. Note that xij is considered as an

observation from a random variable Xij.

In DBN modelling, the process of model

construction can be divided into two

steps. First, the DBN models assume a

time dependency. Note that, in general,

edges in a time slice can be allowed, but

in this paper, models are assumed within

which the state vector of time i depends

only on that of time i�1. Figure 1 shows

this relationship as a directed acyclic

graph. Therefore, the joint probability

can be decomposed as:

P(X11, . . . , Xnp) ¼ P(X1)P(X2jX1)

3 . . . 3 P(X njX n�1) (1)

where X i ¼ (xi1, . . . , xip)
T is a

p-dimensional random variable vector.

Next, we consider the gene regulations

described in the right side of Figure 1.

The gene regulations can be modelled

through the construction of P(X ijX i�1)

for i ¼ 2, . . . , n. We assume that gene j

has q j genes as did its parents. As is shown

in Figure 1, the network structure is

assumed to be stable through all time

points. Furthermore, according to the

time dependency, only forward edges, ie

edges from time i�1 to i, are allowed in

these networks. Hence DBNs can model

cycles, as is shown in Figure 2. Under

these conditions, the conditional

probability P(Xi|Xi�1) can also be

decomposed into the product of

conditional probabilities of each gene

given its parent genes:

P(X ijX i�1) ¼ P(Xi1jPi�1,1)

3 . . . 3P(XipjPi�1, p) (2)

where Pi�1, j ¼ (P
( j)
i�1,1, . . . , P

( j)
i�1,q j

)T

is a random variable vector of parent

genes of jth gene at time i� 1.

Equations (1) and (2) hold when we

use density or probability functions

instead of probabilistic measure. We then

obtain a DBN model in the form:

f (x11, . . . , xnp) ¼
Yn
i¼1

Yp
j¼1

gj(xijj pi�1, j)

where poj ¼ �.

In statistics, we parameterise f by a

parameter vector Ł and transfer the

construction of f into the estimation of Ł.

Joint probability

Gene network

Time series microarray
data

Dynamic Bayesian
network

Conditional probability

Time dependency
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Discrete model
Although microarray data are measured as

continuous data, discretisation is

sometimes applied in order to remove

noise. Then a discrete DBN is used for

estimating gene networks. Let

U ¼ fu1, . . . umg be a finite set of

discrete values and I1, . . . , I m be regions

satisfying �m
l¼1 I l ¼ R and I i II j ¼ �

(i 6¼ j). Here R is the set of real values.

An expression value xij is then

transformed to ul when xij 2 i l. The

values g j(xijj pi�1, j) themselves are

considered as parameters, that is

Ł jkl ¼ P(Xij ¼ uljPi�1, j ¼ u jk), where

u jk is the kth entry of the state table of

parents of the jth gene. For example,

suppose that we discretise the expression

values into two classes and that the jth

gene has two parents. That is, the

expression value xij is transformed into 0

or 1 and the state table will have four

entries, u j1 ¼ (0, 0), u j2 ¼ (0, 1),

u j3 ¼ (1, 0), u j4 ¼ (1, 1). Then

f (x11, . . . , xnp; Ł) can be modelled as a

multinomial distribution function:Multinomial distribution

Figure 1: Graphical view of a dynamic Bayesian network model

Figure 2: Example of a network containing a cyclic regulation. The network (left) contains a
cycle X1 ! X2 ! X4 ! X5 ! X1. A Bayesian network model cannot treat such a network. On
the other hand, the dynamic Bayesian network can construct a cyclic regulation by dividing
states of a gene by time points (right)

X1

X2 X3

X4 X5

X1 X2 X3 X4 X5time i-1

time i X1 X2 X3 X4 X5
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f (x11, . . . , xnp; Ł) ¼
Yp
j¼1

YQj

k¼1

Ym
l¼1

Ł
N jkl

jkl

(3)

where Ł ¼ (Ł111, . . . , Ł pQpm)T, Njkl

indicates the number of observations

satisfying xij ¼ ul and pi�1, j ¼ u jk for

i ¼ 2, . . . n, and Qj ¼ mqj is the

number of entries of the state table of

parents of the jth gene.

Recall that microarray data need to be

discretised while using discrete models.

In general, discretisation is performed as

follows: Let t0, . . . , tm be thresholds for

discretisation satisfying

t0 ¼ min
i, j

xij , t1 , . . . , tm ¼ max
i, j

xij

and xij will be classified to ul if

t l�1 , xij , t l. Note that several

methods, such as the k-means algorithm,

have been investigated for discretising

microarray data (see, for example,

Friedman and Goldszmidt15 and Pe’er

et al.)16 Friedman et al.8 do not provide

the details of discretisation. They

discretised Sacccharomyces cerevisiae gene

expression data into three classes,

however: over-expressed, under-

expressed and normal, depending on

whether the expression rate was

significantly greater than, lower than and

similar to control, respectively. Smith et

al.10,11 analysed artificial data generated

from a simulator of a communication

system of birds. They discretised their

data into four classes and set the

thresholds as t1 ¼ r(xij)=4, t2 ¼ r(xij)=2

and t3 ¼ 3r(xij)=4, where

r(xij) ¼ max
i, j

xij � min
i, j

xij. This

discretisation seems to be suitable for

their data. Further discussion is needed

when we apply this discretisation method

to real microarray data in practice,

however. Ong et al.12 used E. coli

microarray data discretised into two

classes. An expression value xij is

transformed to u1 if xij . xi�1, j or u2

otherwise. This discretisation could be

sensitive to noise when the expression

level changes in a narrow range.

Continuous model
When we treat microarray data as

continuous values, g j(xijj pi�1, j; Ł j) can be

modelled as a normal density function:

g j(xijjpi�1, j; Ł j) ¼

1ffiffiffiffiffiffiffiffiffiffiffi
2�� 2

j

q exp � [xij � m( pi�1, j)]
2

2� j

( )

where Ł j is a parameter vector in g j(.)

and m( pi�1, j) is a regression function

from Rq j to R . For example, if we

define

m(pi�1, j) ¼ �( j)
1 p

( j)
i�1,1 þ . . . þ �( j)

q j
p

( j)
i�1,q j

we obtain a linear DBN model, where

�1, . . . , �q j
are parameters.

There is no guarantee that the linear

models can approximate the relationships

between genes, however. For capturing

even non-linear relationships between

genes, Kim et al.13 used a non-parametric

regression model based on B-splines:

m(pi�1, j) ¼
XM j1

m¼1

ª( j)
m1b

( j)
m1( p

( j)
i�1,1) þ . . . þ

XM jq j

m¼1

ª( j)
mq j

b( j)
mq j

( p
( j)
i�1,q j

)

where ª( j)
1k, . . . , ª

( j)
M jk

k are coefficient

parameters and fb( j)
1k

(�), . . . , b( j)
M jk k

(�)g
is a prescribed set of B-splines.

CRITERION FOR
LEARNING NETWORKS
By using DBN models, we can model a

gene network from time series microarray

data, when we know the true

relationships among genes completely.

Many parts of the true gene network are

Normal density

Discretisation

Non-parametric
regression

B-splines
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still unknown and need to be estimated

from microarray data, however. Hence,

construction of a criterion for evaluating

the goodness of the specified model is an

essential point of gene network

modelling. Under a Bayesian statistics

framework, we can choose an optimal

network by maximising the posterior

probability of the network. The posterior

probability of the network G is given by:

P(GjX) ¼ P(G, X)=P(X)

where

P(G, X) ¼
ð
P(G, X, Ł)dŁ

¼ P(G)

ð
P(XjŁ, G)P(ŁjG)dŁ

P(X) ¼
X
G2�

P(G, X)

Here � is the set of possible networks,

P(G) and P(Ł|G) are prior probabilities of

the network G and the parameter ŁŁ,

respectively. By using the density or

probability functions, the posterior

probability can be expressed as

�(GjX) / �(G)

ð Yn
i¼1

f (xi1, . . . , xip; ŁG)

�(ŁG)dŁG (4)

Note that since the form of Ł is

equivalent to the network structure, we

write ŁG as a parameter vector given

network G. The problem now is how to

compute the high-dimensional

integration in equation (4). Usually this

integration can be solved analytically by

using the conjugate prior as �(ŁG).

Discrete model
For the discrete model defined by

equation (3), the parameter vector

ŁG ¼ (ŁT
1 , . . . , ŁT

p)
T can be rewritten as

ŁT
j ¼ (Ł j11, . . . , Ł jQ j m)T, where Ł jkl

corresponds to P(Xij ¼ uljPi�1, j ¼ u jk).

In this case, the Dirichlet distribution is

often used as the prior distribution on the

parameter Ł jkl:

D(Ł jjÆ j)

¼

ˆ
X
k9

X
l9

Æ jk9 l9

 !
Y
k9

Y
l9

(ˆ(Æ jk9 l9))

Y
k

Y
l

Ł
Æ jkl�1

jkl

where ˆ( . ) is the gamma function and

Æ j ¼ (Æ j11, . . . , Æ jQ j m)T is a

hyperparameter vector in the Dirichlet

distribution.

Then the integration in the marginal

likelihood can be solved in a closed form:

ð
f (x11, . . . , xnp; ŁG)�(ŁGjÆ)dŁG ¼

Yp
j¼1

YQj

k¼1

ˆ
X
l

Æjkl

 !

ˆ
X
l

Æ jkl þ Njkl

 !

Ym
l¼1

ˆ(Æ jkl þ Njkl)

ˆ(Æ jkl)

where f (x11, . . . xnp; ŁG) is defined by

equation (3) and

�(ŁGjÆ) ¼ — jD(Ł jjÆ j) with

Æ ¼ ÆT
1 , . . . , ÆT

p)
T.

In Heckerman et al.,9 when
P

k

P
lÆ jkl is

assumed to be constant, the posterior

probability of the network results in the

BDe metric. Note that Friedman et al.8

and Smith et al.10 used the BDe metric as

a criterion for learning networks.

Continuous model
For computing high-dimensional

integration in the marginal likelihood,

Kim et al.13 used Laplace

approximation.17,18 An advantage of using

the Laplace approximation is that it is not

necessary to consider the use of the

conjugate prior distribution. Let �(ŁGjº)

be a prior distribution on ŁG with a

hyperparameter vector º, satisfying

log�(ŁGjº) ¼ O(n). By using Laplace

approximation, the integration can be

computed as:

Posterior probability of
the network

Marginal likelihood

BDe metric

Conjugate prior

Laplace approximation

Dirichlet distribution

Prior distribution on the
parameter
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BNRC dynamic

Prior probability of a
network

MDL encoding

Biological knowledge

ð
f (x11, . . . , xnp; ŁG)�(ŁGjº)dŁG

¼
ð

exp nlº(ŁGjX)f gdŁG

¼ (2�=n) r=2

jJº(Ł̂ŁG)j1=2
exp nlº(Ł̂ŁGjX)

n o

1 þ Op(n
�1)

� �
where r is the dimension of qG,

lº(ŁGjX) ¼ log f (x11, . . . , xnp; ŁG)=n

¼ log�(ŁGjº)=n

Jº(ŁG) ¼ �@2f lº(ŁGjX)g=@ŁG@ŁT
G

and Ł̂ŁG is the mode of lº(ŁGjX).

Then Kim et al.13 defined a criterion,

called BNRCdynamic, of the form:

BNRCdynamic(G) ¼ �2 log

�(G)

ð
f (x11, . . . , xnp; ŁG)�(ŁGjº)dŁG

� �
� �2 log�(G) � r log(2�=n)

þ logj Jº(Ł̂ŁG)j � 2nlº(Ł̂ŁGjX)

The optimal network is chosen such that

the criterion BNRCdynamic is minimal.

For computing the score of criterion

(4), we need to consider a prior

probability of a network denoted by

�(G). Friedman and Goldszmidt19 used a

prior based on the MDL encoding of

network G. Kim et al.13 set �(G) based on

the number of parent genes.

On the other hand, we can embed

biological knowledge in a prior

probability. Imoto et al.20 constructed a

prior probability of a network based on

biological knowledge such as binding site

information, DNA–protein interaction

and so on.

COMPUTATIONAL
EXPERIMENT
In this section, S. cerevisiae cell cycle time

series microarray data14 are analysed. The

DBN and non-parametric regression

model of Kim et al.13 are applied to the

data. These data contain two short time

series (two time points; cln3, clb2) and

four medium length time series (18, 24,

17 and 14 time points; alpha, cdc15,

cdc28 and elu). In the estimation of a

gene network, we use the four medium

length time series. The first observation of

the target gene and the last observation of

parent genes are ignored, for each time

series.

First, we focus on the cell cycle

pathway compiled in the KEGG

database.21 The target network is around

CDC28 (YBR160w; cyclin-dependent

protein kinase). This network contains 45

genes and the partial pathway registered in

KEGG is shown in Figure 3(a). Figures

3(b) and (c) are the resulting networks of

the BN model4,5 and the DBN model13

respectively. A shaded circle represents

the genes that compose a complex. The

edges inside these circles are considered as

correct edges since genes inside the same

circle will co-express with some delay. A

correct estimation is indicated by an edge

attached with a circle. A triangle

represents either a misdirected edge or an

edge skipping at most one gene. A cross

represents a wrong estimation.

Our second example is the metabolic

pathway reported by DeRisi et al.22 This

network contains 57 genes and the target

pathway is partially shown in Figure 4(a).

Compared with the BN and non-

parametric regression, the number of false

positives in the DBN model shown in

Figures 3(c) and 4(c) is much smaller than

those in Figures 3(b) and 4(b).

CONCLUSION
A general framework for the DBN

models for constructing gene networks

from time series microarray data is

summarised. Both discrete and

continuous models are shown in detail

and criteria were introduced for

evaluating these models. Three discrete

models8,10–12 and one continuous model13

were focused on and the strengths and

weaknesses of these methods were

discussed.

We need to find the optimal network
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that gives the best score. The number of

possible DAGs however is huge, even if

we estimate a network containing a

somewhat smaller number of genes. For

example, when we have 20 genes, the

number of DAGs is over 1072. Therefore

the use of heuristic search methods is

required and several methods such as

greedy hill-climbing,8,13 simulated

annealing10,23 and junction tree

algorithm12 have been used to find a

solution. Development of effective

methods for learning networks is needed

to find a better solution.

Although microarray data gives us

valuable information, it is difficult to

know whole gene networks by using only

microarray data. Like Ong et al.12 and

Imoto et al.,20 many researchers are now

interested in combining microarray data

with another technique, such as protein–

protein interactions and binding site

information,24 for extracting more

information.
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