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Abstract
The advent of large data sets, such as those produced in metabolomics, presents a considerable challenge
in terms of their interpretation. Several mathematical and statistical methods have been proposed to ana-
lyse these data, and new ones continue to appear. However, these methods often disagree in their analyses,
and their results are hard to interpret. A major contributing factor for the difficulties in interpreting these data
lies in the data analysis methods themselves, which have not been thoroughly studied under controlled
conditions. We have been producing synthetic data sets by simulation of realistic biochemical network
models with the purpose of comparing data analysis methods. Because we have full knowledge of the
underlying ‘biochemistry’ of these models, we are better able to judge how well the analyses reflect true
knowledge about the system. Another advantage is that the level of noise in these data is under our control
and this allows for studying how the inferences are degraded by noise. Using such a framework, we have
studied the extent to which correlation analysis of metabolomics data sets is capable of recovering features
of the biochemical system. We were able to identify four major metabolic regulatory configurations that
result in strong metabolite correlations. This example demonstrates the utility of biochemical simulation in
the analysis of metabolomics data.

Introduction
Powerful analytical technologies are becoming ubiquitous in
biology, which are characterized by high-throughput parallel
measurement of large numbers of molecular species. At the
forefront are microarrays for nucleic acids and proteins and
MS methods for proteins and metabolites. Even though these
technologies are quite diverse in their details, they are similar
in three important aspects. First, all of them are aimed at pro-
ducing quantitative measurements, even if this may still not
be fully realized yet. Secondly, they all enable a different way
of carrying out science, in which biological systems are char-
acterized by capturing comprehensive, and largely unbiased,
snapshots of the state of the biological system. Thirdly, they
have revealed many challenges in terms of how the data
they generate should be best analysed. Issues about data ana-
lyses range from statistics, such as how best to design
experiments [1], to higher level inferences of biological organ-
ization, for example how to uncover regulatory networks [2].
It is this third aspect of data analysis that is the focus of this
paper.

Recently, researchers have been paying more attention to
metabolite profiling as an extension of functional genomics.
It has been postulated that metabolite profiles of the internal
state of cells could aid in the identification of the function of
genes, especially when mutants in that gene have no apparent
phenotype [3]. The rationale is that, while the mutation would
have caused an effect, the regulatory mechanisms of the
cell counteract that effect, resulting in no clear macroscopic
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observation. However, these internal regulatory mechanisms
would have changed the concentrations of metabolites in the
metabolic network, and one would be able to identify
the function of the mutated gene by determining the resulting
metabolite profiles [3–6]. The first implication here is that, not
knowing a priori which metabolites are expected to be altered,
the profiles then need to be as comprehensible as possible; the
second implication is that studying the metabolite profiles
of a number of mutants might lead to the discovery of the
underlying metabolic network [7–9]. This application of
metabolite profiling in functional genomics is similar to tran-
script and protein profiling, and as with these, it would be
useful to establish the complete composition of the cell in
terms of metabolites – the metabolome. Metabolomics is
the study of cells by measuring the profiles of all of their
metabolites, or at least of a large number thereof. However,
the utility of metabolomics is not restricted to functional gen-
omics. It is useful whenever an assessment of changes in meta-
bolite concentrations is important. Examples already exist for
applications in assessing responses to environmental stress
[10], toxicology [11], drug discovery [12], nutrition [13],
cancer [14], diabetes [15] and natural product discovery [16].
In these applications, the focus is often on identifying meta-
bolites that can statistically discriminate between samples –
biomarkers. Metabolite profiling, whether targeted or un-
targeted, can also be applied as a tool in systems biology
[17,18], where metabolite snapshots [19] are used to study
cellular dynamics [6,20,21] through mathematical models
[22,23].

Many data analysis algorithms have been proposed to
analyse functional genomic data and several are in wide use.
However, the performance of such algorithms has rarely
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been demonstrated unequivocally regarding the type of in-
formation that they recover from the data. Additionally, these
algorithms have rarely been compared in objective terms, in
part because they may require different types of data and
experimental designs. Arguments can be made to the extent
that actual experimental data are of little value to assess
the performance of such algorithms because the molecular
networks underlying the data are not known with complete
accuracy [24]. Many algorithm performance measures require
such complete knowledge, for example the assessment of their
accuracy in network inference.

We propose that data generated from simulations of ex-
periments carried out from mathematical models of biochem-
ical networks are ideally suited for the role of benchmarking
data analysis algorithms [24,25]. These mathematical models
have the advantage that they are completely known and so
can be the basis for accurate assessments of performance.
They are also well suited to compare algorithms that require
different experiments because one can use the same networks
to simulate the experiments required by each method; given
that they would be analysing the same system, it would be
easy to compare their results in terms of the characteristics of
the (in silico) biological system. Another advantage of using
biochemical models for this purpose is that their simulation
provides essentially exact results (to an arbitrary precision),
and one can add to them well-defined sources of noise or
other experimental artifacts like restricted dynamic range.
This allows for the assessment of the robustness of such
methods to the level of noise in the measurements and many
other similar properties.

An important consideration to be made is how noise or
other experimental artifacts should be simulated. We recog-
nize three different types of variance that can be added to the
data: additive noise, intrinsic noise and biological variance.
Additive noise is the type of noise introduced by the measure-
ment apparatus and which is added to the real values. Additive
noise is incorporated into simulated data by simply adding
appropriate random values to the data, after simulation.
Intrinsic noise is generated by time-dependent processes, an
example being thermal noise that can affect the behaviour
of the actual biochemical network. This type of noise must
be injected into the network continuously and at all points
in the network; an appropriate way to simulate these sys-
tems is through the use of stochastic differential equations
(e.g. [26]). Biological variation, which is not truly a form
of noise, is due to small differences in intrinsic proper-
ties between cells, cell cultures or individuals. A way of
representing biological variation is to make each biological
unit different from the others in the level of all proteins of
the network by small amplitude random values [27]. This is
easily performed before the simulation is carried out, each
simulation being slightly different from the others. Obvi-
ously, real experimental data are subject to all these types of
variance and possibly others, but the effect of each of these
components can be studied independently or as a group.

Another artifact that is likely to be present in all analytical
measurements arises from the limited dynamic range of the

measuring apparatus. Dynamic range effects make all values
below a certain threshold (limit of detection) zero, while all
values above another threshold (saturation level) are equal to
a maximal value. Dynamic range effects reduce the range of
scales that the data may contain and are likely to mask some
of the properties of the network. A similar problem relates to
the frequency of sampling, which limits the temporal scales
that are observed in an experiment. Such effects may be
more limiting than noise in some circumstances and so it
is important to include them in studies too.

Biochemical network models
Biochemical network models can be used to predict, to
explain and to hypothesize about phenomena. When made
quantitative and implemented in computer software, models
can be used to carry out large numbers of simulations that are
designed to answer ‘what-if’ questions. There are currently
several software applications (e.g. [28]) that make the process
of modelling biochemical networks and use them to simulate
data for the purpose of assessing the efficiency of analysis
algorithms. In order to fulfil the objectives delineated above
in a relevant manner, it is important that the biochemical
models used reflect the properties of real biological systems.
Thus good candidate models are those that have been suc-
cessful in representing biochemical networks and passed
validation. At times, it may also be necessary to purposely
create artificial models that, while not representing any real
biological system, collectively contain a sufficiently wide
range of properties that make them inclusive of the properties
of real systems. Realistic models are important to argue about
the relevance of analysis algorithms, while artificial models
are important to argue about their robustness.

Examples
We have started using biochemical network models and
simulation to study the utility of application of clustering
algorithms to gene expression time-course data [25]. There
the model was a simple branched metabolic pathway with
two alternative substrate sources and including its trans-
criptional regulation. The combination of metabolism and
gene expression was needed in this case because we were
assessing how well the clustering algorithms could identify
the metabolic pathway using only gene expression data. The
regulation of gene expression in that network was affected
indirectly by the metabolic pathway behaviour because there
were feedback mechanisms of some of the metabolites on to
transcription. Even though the pathway and gene networks
of this model were extremely simple (six genes and six
enzymes only), this exercise revealed that gene expression
data analysed by clustering methods were not able to identify
the metabolic pathways.

Another application has been the study of the performance
of nonlinear parameter estimation algorithms [17,29]. In this
case, we constructed a model that includes a linear meta-
bolic pathway of only three enzymes, representing explicitly
the enzyme synthesis and degradation and also transcript
synthesis and degradation. As in the previous example,
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this model was simple (eight variable concentrations only)
but proved extremely hard to tackle by nonlinear least-
squares methods. One of the reasons for this was the large
dimensionality of the parameter space (36 parameters) and the
nonlinearity of the kinetics. A conclusion of this study was
that evolutionary algorithms seem to outperform all other
methods tested [17,29].

In order to study several aspects of microarray statistical
analysis and gene network inference algorithms, a set of arti-
ficial gene network models was created representing a wide
range of topological characteristics [24]. These models illus-
trate a case where there is still ambiguity in our knowledge
of the topology of real gene networks, and so a wide range
was created. This is then being used to study several micro-
array analysis methods, exploring, among other character-
istics, the algorithms’ robustness towards the topology of
the underlying networks. Robust algorithms inspire more
confidence than those that only work well if the gene network
follows a particular topology.

More recently, we have constructed a realistic model of
yeast carbohydrate metabolism [30], by combining a model
of glycolysis [31,32] with a model of glycerol synthesis [33].
This was used to study the type of knowledge that can be re-
covered from observation of metabolite correlations in meta-
bolomics data. Simulations using this model associated
with biological variation were instrumental in revealing
a number of regulatory characteristics that originate rare
but strong metabolite correlations, such as near-equilibria,
moiety-conservation and asymmetric concentration-control
distributions [27]. A similar approach was used in the context
of intrinsic noise with similar results [26].

Conclusion
Biochemical modelling and simulation are becoming an im-
portant method to study data analysis algorithms in systems
biology. This approach is expected to be particularly import-
ant in comparing competing data analysis methods that re-
quire considerably different experimental setups. In that case,
modelling may be the only way to be able to study their
performance in a truly comparative way.
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