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Abstract
Background: Dense time series of metabolite concentrations or of the expression patterns of
proteins may be available in the near future as a result of the rapid development of novel, high-
throughput experimental techniques. Such time series implicitly contain valuable information about
the connectivity and regulatory structure of the underlying metabolic or proteomic networks. The
extraction of this information is a challenging task because it usually requires nonlinear estimation
methods that involve iterative search algorithms. Priming these algorithms with high-quality initial
guesses can greatly accelerate the search process. In this article, we propose to obtain such guesses
by preprocessing the temporal profile data and fitting them preliminarily by multivariate linear
regression.

Results: The results of a small-scale analysis indicate that the regression coefficients reflect the
connectivity of the network quite well. Using the mathematical modeling framework of Biochemical
Systems Theory (BST), we also show that the regression coefficients may be translated into
constraints on the parameter values of the nonlinear BST model, thereby reducing the parameter
search space considerably.

Conclusion: The proposed method provides a good approach for obtaining a preliminary network
structure from dense time series. This will be more valuable as the systems become larger, because
preprocessing and effective priming can significantly limit the search space of parameters defining
the network connectivity, thereby facilitating the nonlinear estimation task.

Introduction
The rapid development of experimental tools like nuclear
magnetic resonance (NMR), mass spectrometry (MS), tis-
sue array analysis, phosphorylation of protein kinases,
and fluorescence labeling combined with autoradiogra-
phy on two-dimensional gels promises unprecedented,
powerful strategies for the identification of the structure of
metabolic and proteomic networks. What is common to
these techniques is that they allow simultaneous measure-

ments of multiple metabolites or proteins. At present,
these types of measurements are in their infancy and typ-
ically limited to snapshots of many metabolites at one
time point (e.g., with MS; [1,2]), to short time series cov-
ering a modest number of metabolites or proteins (e.g.,
with NMR [3,4], 2-d gels [5] or protein kinase phosphor-
ylation [6]), or to tissue arrays [7] that permit the simulta-
neous high-throughput analysis of proteins in a single
tissue section by means of antibody binding or MS.
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Nonetheless, it is merely a matter of time that these meth-
ods will be extended to relatively dense time series of
many concentration or protein expression values. We will
refer to these types of data as metabolic or proteomic pro-
files and to the time development of a single variable
within such a composite profile as trace. The intriguing
aspect of profiles is that they implicitly contain informa-
tion about the dynamics and regulation of the pathway or
network from which the data were obtained. The chal-
lenge for the mathematical modeler is thus to develop
methods that extract this information and lead to insights
about the underlying pathway or network.

In simple cases, the extraction of information can be
accomplished to some degree by direct observation and
interpretation of the shape of profiles. For instance,
assuming a pulse perturbation from a stable steady state,
Vance et al. [8] present guidelines for how relationships
between the perturbed variable and the remaining varia-
bles may be deduced from characteristics of the resulting
time profiles. These characteristics include the direction
and timing of extreme values (i.e., the maximum devia-
tion from steady state) as well as the slopes of the traces at
the initial phase of the response. Torralba et al. [9] recently
demonstrated that these guidelines, applied to a relatively
small set of experiments, were sufficient to identify the
first steps of an in vitro glycolytic system. Similarly, by
studying a large number of perturbations, Samoilov et al.
[10] showed that it is possible to quantify time-lagged cor-
relations between species and to use these to draw conclu-
sions about the underlying network.

For larger and more complex systems, simple inspection
of peaks and initial slopes is not feasible. Instead, the
extraction of information from profiles requires two com-
ponents. One is of a mathematical nature and consists of
the need for a model structure that is believed to have the
capability of capturing the dynamics of the underlying
network structure with sufficient accuracy. The second is
computational and consists of fitting this model to the
observed data. Given these two components along with
profile data, the inference of a network is in principle a
regression problem, where the aim is minimization of the
distance between the model and the data. If a linear
model is deemed appropriate for the given data, this proc-
ess is indeed trivial, because it simply requires multivari-
ate linear regression, which is straightforward even in
high-dimensional cases. However, linear models are sel-
dom valid as representations of biological data, and the
alternative of a nonlinear model poses several taxing
challenges.

First, in contrast to linear models, there are infinite possi-
bilities for nonlinear model structures. In specific cases,
the subject area from which the data were obtained may

suggest particular models, such as a logistic function for
bacterial growth, but in a generic sense there are hardly
any guidelines that would help with model selection. One
strategy for tackling this problem is the use of canonical
forms, which are nonlinear structures that conceptually
resemble the unalterable linear systems models, but are
nonlinear. Canonical models have in common that they
always have the same mathematical structure, no matter
what the application area is. They also have a number of
desirable features, which include the ability to capture a
wide variety of behaviors, minimal requirements for a pri-
ori information, clearly defined relationships between
network characteristics and parameters, and greatly
enhanced facility for customized analysis.

The best-known examples of nonlinear canonical forms
are Lotka-Volterra models (LV; [11]), their generalizations
[12], and power-law representations within the modeling
framework of Biochemical Systems Theory (BST; [13-15]),
most notably Generalized Mass Action (GMA) systems
and S-systems. Lotka-Volterra models have their origin in
ecology and focus strictly on interactions between two
species at a time. Well-studied examples include competi-
tion processes between species, the dynamics of predators
and prey, and the spread of endemic infections. In the
present context it might seem reasonable to explore the
feasibility of these models for the representation of the
dynamics of proteins and transcription factor networks,
but this has not been done so far.

The strict focus on two-component interactions in LV
models has substantial mathematical advantages, but it
has proven less convenient for the representation of met-
abolic pathways, where individual reaction steps depend
on the substrate, but not necessarily on the product of the
reaction, or are affected by more than two variables. A
simple example of the latter is a bi-substrate reaction that
also depends on enzyme activity, a co-factor and possibly
on inhibition or modulation by some other metabolite in
the system. These types of processes have been modeled
very successfully with GMA and S-systems. Between these
two forms, the S-system representation has unique advan-
tages for system identification from profiles, as was shown
elsewhere [16-24] and will be discussed later in this arti-
cle. In some sense, Karnaukhov and Karnaukhova [25]
used a very simplified GMA system for biochemical sys-
tem identification from dynamic data, in which all mono-
substrate or bi-substrate reactions were of first order. This
reduced the estimation to the optimization of rate con-
stants, which the authors executed with an integral
approach.

The inference of a nonlinear model structure from experi-
mental data is in principle a straightforward "inverse
problem" that should be solvable with a regression
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method that minimizes the residual error between model
and data. In practice, however, this process is everything
but trivial (cf. [26]) as it almost always requires an itera-
tive search algorithm with all its numerical challenges,
such as the existence of multiple local minima and failure
to converge. Recent attempts of ameliorating this problem
have included Bayesian inference methods [27], similarity
measures and correlation [28], mutual information [29],
and genetic algorithms [30]. An indication of the com-
plexity of nonlinear estimation tasks and their solutions is
a recent pathway identification involving an S-system
with five variables, which was based on a genetic algo-
rithm [21]. The algorithm successfully estimated the
parameter values, but although the system under study
was relatively small and noise free, each loop in the algo-
rithm took 10 hours on a cluster of 1,040 Pentium III
processors (933 MHz). It is quite obvious that such an
approach cannot be scaled up to systems of dozens or
hundreds of variables.

Nonlinear estimation methods have been studied for a
long time, and while computational and algorithmic effi-
ciency will continue to increase, the combinatorial explo-
sion of the number of parameters in systems with
increasingly more variables mandates that identification
tasks be made easier if larger systems are to be identified.
One important possibility, which we pursue here, is to
prime the iterative search with high-quality starting condi-
tions that are better than naïve defaults. Clearly, if it is
possible to identify parameter guesses that are relatively
close to the true, yet unknown solution, the algorithm is
less likely to get trapped in suboptimal local minima. We
are proposing here to obtain such initial guesses by pre-
processing the temporal profile data and fitting them pre-
liminarily by straightforward multivariate linear
regression. The underlying assumption is that the struc-
tural and regulatory connectivity of the network will be
reflected, at least qualitatively, in the regression coeffi-
cients. D'haeseleer et al. [31] explored a similar approach
for analyzing mRNA expression profiles, but could not
validate their results because they lacked a mechanistic
model of gene expression. Furthermore, because of the
unique relationship between network structure and
parameters in S-system models (see below), we will dem-
onstrate that it is possible to translate the regression coef-
ficients into constraints on the parameter values of an S-
system model and thereby to reduce the parameter search
space very dramatically.

Several other groups have recently begun to target net-
work identification tasks with rather diverse strategies.
Chevalier et al. [32] and Diaz-Sierra and co-workers
[33,34] proposed an identification approach that is simi-
lar to the one proposed here in some aspects, though not
in others. These authors also used linearization of a non-

linear model, but based their estimation on measured
time developments of the system immediately in response
to a small perturbation. These measurements were used to
estimate the Jacobian of the system at the steady state. In
contrast to this focus on a single point, we are here using
smoothed long-term time profiles and do not necessarily
require system operation at a steady state. Also using line-
arization, Gardner et al. [35] recently proposed a method
of network identification by multiple regression. How-
ever, they only considered steady-state measurements as
opposed to temporal profiles. It is known from theoretical
analyses (e.g., [15,36]) that different dynamical models
may have the same steady state and that therefore steady-
state information alone is not sufficient for the full char-
acterization of a network. Mendes and Kell [37] used a
neural network approach for an inverse problem in meta-
bolic analysis, but their target system was very small and
fully known in structure. Furthermore, their data con-
sisted of a "large number of steady-state simulations",
rather than the limited number of time traces on which
our analysis is based. Chen et al. [38] used neural net-
works and cubic splines for smoothing data and identify-
ing rate functions in otherwise linear mass-balance
models.

Methods
The behavior of a biochemical network with n species can
often be represented by a system of nonlinear differential
equations of the generic form

where X is a vector of variables Xi, i = 1, ..., n, f is a vector
of nonlinear functions fi, and µ is a set of parameters. If
the mathematical structure of the functions fi is known,
the identification of the network consists of the numerical
estimation of µ. In addition to the challenges associated
with nonlinear searches mentioned above, this estimation
requires numerical integration of the differential equa-
tions in (1) at every step of the search. This is a costly proc-
ess, requiring in excess of 95% of the total search time; if
the differential equations are stiff, this percentage
approaches 100% [39]. A simplification, which circum-
vents the problem of integration, consists of substituting
the system of differential equations with decoupled alge-
braic equations by replacing the differentials on the left-
hand side of Eq. (1) with estimated slopes [16,17]. Thus,
if the system consists of n differential equations, and if
measurements are available at N time points, the decou-
pling leads to n × N algebraic equations of the form

d

dt

X
f X= ( , ), ( )µ 1
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It may be surprising at first that it is valid to decouple the
tightly coupled system of nonlinear differential equa-
tions. Indeed, this is only justified for the purpose of
parameter estimation, where the decoupled algebraic
equations simply provide numerical values of variables
(metabolites or proteins) and slopes at a finite set of dis-
crete time points. The experimental measurements thus
serve as the "data points," while the parameters µij are the
"unknowns" that need to be identified.

The quality of this decoupling approach is largely depend-
ent on an efficient and accurate estimation of slopes from
the data. Since the data must be expected to contain noise,
this estimation is a priori not trivial. However, we have
recently shown [23,39] that excellent estimates can be
obtained by smoothing the data with an artificial neural
network and computing the slopes from the smoothed
traces (see Appendix for detail).

Different Linearization Approaches
The smoothing and decoupling approach reduces the cost
of finding a numerical solution of the estimation task con-
siderably. Nonetheless, algorithmic issues associated with
local minima and the lack of convergence persist and can
only be ameliorated with good initial guesses. To this end,
we linearize the model f in Eq. (1) about one or several
reference states. As long as the system stays close to the
given reference state(s), this linearization is a suitable and
valid approximation. We consider four options: (I) linear-
ization of absolute deviations from steady state; (II) line-
arization of relative deviations from steady state; (III)
piecewise linearization; and (IV) Lotka-Volterra
linearization.

Option (I) is based on deviations of the type zi = Xi - Xir,
where Xir denotes the value at a reference state of choice. If
the reference state is chosen at a stable steady state, the
first-order Taylor-approximation is given by

where A is the n × n Jacobian with elements aij = (dfi / dXj)
calculated at Xr (cf. [32-34]). If the reference state is not

chosen at a steady state, the equation contains an addi-
tional constant term ai0, which is equal to fi(Xr).

For option II, we define a new variable ui = zi/Xir. At a
steady state, this yields the linear system

where A' is an n × n matrix in which a'ij = (Xjr / Xir)·aij.

A general concern regarding linearization procedures is
the range of validity of sufficiently accurate representa-
tion, which is impossible to define generically. From an
experimental point of view, the perturbations from steady
state must be large enough to yield measurable responses.
This may require that they be at the order of 10% or more.
Depending on the nonlinearities in f, a perturbation of
this magnitude may already lead to appreciable approxi-
mation errors. While this is a valid argument, it must be
kept in mind that the purpose of this priming step is sim-
ply to detect the topological structure of connectivity and
not necessarily to estimate precise values of interaction
parameters. Simulations (see below) seem to indicate that
this detection is indeed feasible in many cases, even if the
deviations are relatively large.

In order to overcome the limitation of small perturba-
tions, a piecewise linear regression (option III) may be a
superior alternative. In this case, we subdivide the dataset
into appropriate time intervals and linearize the system
around a chosen state within each subset. Most (or all)
reference states are now different from the steady state,
with the consequence that Eq. (3) has a constant term ai0,
which is equal to fi(Xr). The choice of subsets and operat-
ing points offers further options. In the analysis below, we
use the locations of extreme values (maximum deviation
from steady state) of the variables as the breakpoints
between different subsets. Thus, a variable with a maxi-
mum and a later minimum has its time course divided
into three subsets.

The fourth alternative (option IV) is a Lotka-Volterra line-
arization. In a Lotka-Volterra model, the interaction
between two species Xi and Xj is assumed to be propor-
tional to the product XiXj [11]. Furthermore accounting
for linear dependence on the variable of interest itself, the
typical Lotka-Volterra equation for the rate of change in Xi
is
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The right-hand side of this nonlinear differential equation
becomes linear if both sides are divided by Xi, which is
usually valid in biochemical and proteomic systems,
because all quantities of interest are non-zero. Thus, the
differentials are again replaced by estimated slopes, the
slopes are divided by the corresponding variable at each
time point, and fitting the nonlinear LV model to the time
profiles becomes a matter of linear regression that does
not even require the choice of a reference state. The quality
of this procedure is thus solely dependent on the quality
of the data and ability of the LV model to capture the
dynamics of the observed network. It is known (e.g.,
[11,40]) that the mathematical structure of LV models is
rich enough to model any nonlinearities, if sufficiently
many equations are included. However, there is no gen-
eral information about the quality of fit in particular mod-
eling situations.

Regression
No matter which option is chosen, the next step of the
analysis consists of subjecting all measured time traces to
multivariate linear regression and solving for the regres-
sion coefficients (i.e., vij's and wi's, or αij's). The response
variable is the rate of change of a metabolite, while the
predictors are the concentrations of each metabolite in the
network. The different linearization models (I-IV) differ in
the transformations of the original datasets, which are
summarized in Table 1. For example, the response varia-

ble of the linear model in Eq. (4) is given by yi =  /Xir,
and the predictor variables are transformed as xi = (Xi -
Xir)/Xir.

The result of the regression is a matrix of coefficients that
indicate to what degree a metabolite Xj affects the dynam-

ics (slope) of another metabolite Xi. In particular, a coef-
ficient that is zero or close to zero signals that there is no
significant effect of Xj on the slope of Xi. By the same
token, a coefficient that is significantly different from zero
suggests the presence of an effect, and its value tends to
reflect the strength and direction of the interaction. In
either case, the coefficients computed from the linear
regression provide valuable insight into the connectivity
of the network. Furthermore, the estimated coefficients
provide constraints on the parameter values of the desired
nonlinear model f. Indeed, if f consists of an S-system
model, the coefficients estimated from the regression can
be converted into combinations of S-system parameters,
as is demonstrated in the following theoretical section
and illustrated later with a specific example.

Relationships between Estimated Regression Coefficients 
and S-system Parameters
The regression analysis yields coefficients that offer infor-
mation on the connectivity of the network of interest. It
also provides clues about the parameter values of the
underlying nonlinear network model f in Eq. (1) if this
model has the form of an S-system. To determine the rela-
tionships between the regression coefficients and the
parameters of the S-system, it is convenient to work back-
wards by computing the different types of linearizations
discussed before for the particular case of S-system mod-
els. This derivation is simply a matter of applying Taylor's
theorem.

In the S-system formalism, the rate of change in each pool
(variable) is represented as the difference between influx
into the pool and efflux out of the pool. Each term is
approximated by a product of power-law functions, so
that the generic form of any S-system model is

�Xi

Table 1: Transformation of data for regression analysis

RESPONSE VARIABLE PREDICTOR VARIABLE

A. Absolute deviation from a reference state yi = xi = Xi - Xir

B. Relative deviation from a reference state

C. Lotka-Volterra system xi = Xi

We assume the general linear model is y = ai0 + Σ(aij xj). The Xi denote experimental time series data for metabolite i, while the slopes ( ) are 
estimated from the smooth output functions of the artificial neural network that had been trained on the experimental data. Subscript r denotes the 
value of the metabolite at a reference state. Linearization options I and II are included in transformations A and B respectively, assuming that the 
reference state is a steady state. For a piecewise linear linearization (option III), the data may be transformed following either A or B.
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where n is the number of state variables [13,14]. The expo-
nents gij and hij are called kinetic orders and describe the
quantitative effect of Xj on the production or degradation
of Xi, respectively. A kinetic order of zero implies that the
corresponding variable Xj does not have an effect on Xi. If
the kinetic order is positive, the effect is activating or aug-
menting, and if it is negative, the effect is inhibiting. The
multipliers α i and β i are rate constants that quantify the
turnover rate of the production or degradation,
respectively.

If the Taylor linearization is performed at a steady state,
the production term of the S-system model equals the
degradation term. The absolute deviation of the first
option, zi = Xi - Xis, where the subscript s denotes the value
of the variable at steady state, then leads directly to

where

cij = gij - hij,

(cf. [41]). The so-called F-factors Fij are always non-nega-
tive, while cij may be either positive or negative depending
on the relationship between Xi and Xj. A common scenario
is that a variable Xj influences either the production or
degradation of variable Xi, but not both. In this case, a
positive (negative) cij implies activation (inhibition) of
production or inhibition (activation) of degradation. The
special case of cij = 0 permits two possible interpretations:
1) gij = hij = 0, which implies that Xj has no effect on either
production or degradation of Xi; or 2) gij = hij ≠ 0, which
means that Xj has the same effect on both production and
degradation of Xi. The former case is the more likely, but
there are examples where the latter may be true as well,
and this is indeed the case in the small gene network in
Figure 1.

Comparing the expression in Eq. (6) with the linear
regression results, one sees immediately that each coeffi-
cient aij in Eq. (3) corresponds to the product of Fij and cij:

aij = Fijcij.  (7)

Thus, once the regression has been performed and the
coefficients aij have been estimated, the parameters of the
corresponding S-system are constrained – though not
fully determined – by Eq. (7). In particular, Eq. (7) does
not allow a distinction between various combinations of
gij and hij, as long as the two have the same difference. For
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Test System. a) Gene network [42] used as test system for illustrating the proposed methods. Solid arrows represent mate-
rial flow, while dashed arrows indicate regulatory signals that either activate (+) or inhibit (-) a process. The network contains 
two genes, Gene 1 and 2. X1 is the mRNA produced from gene 1, X2 is the enzyme for which the gene codes, and X3 is an 
inducer protein catalyzed by X2. X4 is the mRNA produced from Gene 2 and X5 is a regulator protein for which the gene 
codes. Positive feedback from X3 and negative feedback from X5 are assumed in the production of mRNAs from the two genes. 
b) S-system model of the gene network, according to Hlavacek and Savageau [42] and Kikuchi et al. [21].
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instance, re-interpreting the regression coefficients as S-
system parameters does not differentiate between the
overall absence of effect of Xj on Xi (gij = hij = 0) and the
same effect of Xj on both the production and degradation
of Xi (gij = hij ≠ 0). This observation is related to the obser-
vation of Sorribas and Cascante [36] that steady-state
measurements are insufficient for completely identifying
an S-system model.

Relative deviations from steady state, ui = (Xi - Xis) / Xis, in
option II, are assessed in an analogous fashion. In this
case one obtains

where

cij = gij - hij,

[41]. Again, the F-factors Fi are positive, while cij may be
either positive or negative.

The piecewise linear model for an S-system is easily
derived as well. It is given as

where Xjr denotes the value of the variable at the reference
state. This case also includes the situation of a single
approximation, which however is not necessarily based
on a steady-state operating point.

In the case of the Lotka-Volterra linearization, the corre-
spondence between computed regression coefficients and
S-system parameters is determined most easily by dividing
the S-system equations by the corresponding Xi and then
linearizing around an operating point. The resulting
expressions become especially simple if this point is cho-
sen as the steady state. In this case, the relationship
between the parameters of the LV system and the S-system
are

where cij = gij - hij.

Results
We applied the methods described in the previous sec-
tions to simulated time profiles obtained from the small
gene network in Figure 1a. Hlavacek and Savageau [42]
modeled this network as an S-system with five differential
equations (Figure 1b), and Kikuchi et al. [21] used it
recently for exploring computational features of their pro-
posed structure identification algorithm. The benefit of
working with a known model is that complete informa-
tion is available about both its structure and parameter
values. In particular, it is possible to perform any number
of experiments and to produce data and slopes with pre-
determined noise levels, which is not typically possible
with real data. For this analysis, we thus used simulated
noise free "data," which allowed us to skip the neural net-
work step of smoothing [23,39].

To generate time profiles, the system was implemented
with the parameter values published by Hlavacek and Sav-
ageau [42], and as in the analysis of Kikuchi et al. [21], the
model was initialized with various perturbations from
steady state and numerically integrated over a sufficient
time horizon to allow the system to return to the steady
state.

Preliminary Analysis
Quasi as a pre-analysis, we examined the guidelines pro-
posed by Vance et al. [8]. Indeed, the results show that
many of these are applicable to the gene regulatory net-
work. The order of the extrema (i.e., the maximum devia-
tions from steady state) of the various variables both in
time and size is in accordance with their "topological dis-
tance" from the perturbed variable, and variables not
directly affected by the perturbed variable have zero initial
slopes. As an example, the effect of a perturbation in X3 is
shown in Figure 2. All variables increase in response, with
variables X1 and X4 reaching their maximal deviation from
steady state before X2 and X5, suggesting that X1 and X4
precede X2 and X5 in the pathway. The value of the initial
slope is different from zero for X1 and X4, implying that
these variables are directly affected by X3, whereas X2 and
X5 have zero initial slopes suggesting that their responses
are mediated through other variables.

Maximal information about the network is obtained
when every variable is perturbed sequentially. Experimen-
tally, such perturbations could be implemented with
modern methods of RNA interference [43] or, for biotech-
nological purposes, in a chemostat [9]. In our model case,
we can actually identify all kinetic orders that are zero in
the original model, and this amounts to determining the
connectivity of the pathway. The only relationship this
analysis does not pick up is the effect of X2 on X3. This
result is not surprising, because the effect of X2 is the same
on both the production and degradation of X3, which
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leads to cancellation. It is noted that this analysis does not
necessarily distinguish between transfer of mass and a
positive modulation, because both result in a positive
effect on a variable. In a realistic situation, biological
knowledge may exclude one of the two options, as in this
case, where modulation is the only possibility for the
effect of X3 on both X1 and X4, because the former is a pro-
tein and the latter are RNA transcripts. For the mathemat-
ical model in the S-system form, this is not an issue, as
both types of influence are included in the equations in
the same way (as a positive kinetic order).

Regression Analysis
While Vance's method works well in this simple noise-free
system, it is not scalable to larger and more complex sys-
tems. The next step of our analysis is therefore regression
according to the four options presented above and with a
number of simulated datasets of the gene network that
differ in the variable to be perturbed and the size of the
perturbation. Because the illustration here uses a known
model and artificial data, it is easy to compute the true
regression coefficients through differentiation of the S-
system model. These coefficients can be used as a

reference for comparisons with coefficients computed
from the entire time traces, which mimics the estimation
process for (smoothed) actual data.

Options I, II and IV
The results for three of the options (I, II and IV) can be
summarized in the following three points, while the
piecewise linear model will be discussed afterwards.

(1) The network connectivity is reflected in the values of the
regression coefficients. The values of the estimated coeffi-
cients provide strong indication as to which variables have
a significant influence on the dynamics of other variables.
A comparison between computed and estimated coeffi-
cients is shown in Table 2 for the linear model with rela-
tive deviations (option II, Eq. 8). Most of the coefficients
that in reality are zero (for example a12 and a24) are not
estimated as exactly zero, but their values are at least one
order of magnitude smaller than the coefficients that are
in actuality not zero. Table 2 also indicates that not all
coefficients reflect the network correctly. The linear regres-
sion gives especially poor estimates for the coefficients
associated with variables X3 and X4. A possible explana-
tion for X3 is that the effect of X2 is present in the non-lin-
ear system, but not in the linear system, and thus the
behavior of X3 must be explained by the other variables.
Overall, of the 25 theoretically possible connections, 76%
are correctly identified, while 24 % are false positives.

(2) The different linear models give (qualitatively) the same
results. A comparison of the results of the three models
reveals that the values of the regression coefficients are
very similar (see Table 3). The same applies to their signs.
Most important, all models correctly identify the connec-
tions present in the gene network. They also equally infer
the same incorrect relationships. As an example, consider
the coefficients associated with X4: all models infer the net
positive effect of X3 and the net negative effect of both X4
and X5. At the same time, they also suggest that X1 and X2
have a significant effect on the dynamics of X4. In reality,
they do not directly influence X4 (see Figure 1), and it may
be that their indirect effect, which is mediated by X3, is
causing the false positive result.

(3) The greater the perturbation, the less accurate is the estima-
tion of the regression coefficients. The deviation between the
estimated and computed coefficients increases as the size
of the perturbation increases (see Table 4). For the models
obtained by linearizing about the steady state (Eqs. (6)
and (8)), this is an expected result, as the Taylor-expan-
sion only gives a valid approximation close to steady state.
For these systems, "close" may correspond to a perturba-
tion of less than 5–10% with respect to the steady-state
value. Nonetheless, the greater perturbations still give a
relatively good picture in terms of the connectivity of the

Dynamic response of the network after a perturbation in X3Figure 2
Dynamic response of the network after a perturba-
tion in X3 The response is shown as relative deviation from 
steady state. The guidelines proposed by Vance et al. [8] indi-
cate that X1 and X4 precede X2 and X5 because they reach 
their maximum deviation earlier and the maximal values are 
larger than those of X2 and X5. All variables respond in a pos-
itive manner, which implies either a mass transfer or positive 
modulation (activation). The system determined from this 
analysis is essentially the same as in Figure 1a. The only rela-
tionship missed is the effect of X2 on the production and deg-
radation of X3.
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system. For a 5% perturbation, the fraction of correctly
identified connections is 76% and for a two-fold perturba-
tion it is still 64 %. Perturbations of more than 5–10 % of
the steady state also cause problems for the Lotka-Volterra
model, from which one might have expected a higher tol-
erance as the linearization is independent of a reference
state. It seems that the dynamics of the true system in our
particular example is about equally well modeled by the
nonlinear LV-model as by the linear models.

Option III
The piecewise linear model was obtained by dividing the
whole dataset into three smaller subsets for each variable.
The first interval contained the data points from t = 0 to

the time of the first extreme value for a given variable (in
this case a maximum for all variables). For the perturbed
variable (having its first extreme value at t = 0) the first
limit point was given by the smallest of the limit points of
the other variables. The second interval contained the data
points from the first to the second extreme value (a mini-
mum), while the third interval included the remaining
data points. The midpoint of each interval was taken to be
the reference state. The result of the piecewise linear
regression for a 5% deviation in X3 is given in Table 5. The
first subset does not reflect the interactions of the system
especially well, whereas the other two subsets correctly
classify 88% and 96%, respectively, of the true connec-
tions in the network. It is worth noting that the coeffi-
cients associated with X3 in the two last subsets reflect the
variable's connectivity to a much greater extent than the
other linearization approaches. As the reference state is
different from the steady state, the effect of X2 is present in
the linear system as well, and thus there is no compensa-
tion through the other variables. Another benefit is that
the piecewise model tolerates larger perturbations. Even
for a two-fold perturbation, the fraction of correctly iden-
tified coefficients in the last subset is 84%.

Degree of Similarity as a Measure of Reliability
If we compare the results of all four linearized models, the
degree of similarity may provide a measure of how relia-
ble the estimated coefficients are, assuming that an inter-
action identified in all models is more reliable than an
interaction identified in only one or few of the models.
Considering the piecewise linear model as three models,
yielding a total of 6 models from one dataset, one may
thus determine the most likely connectivity for the small
gene network. The result is presented in Table 6. Of the 25
possible connections, 12 were identified correctly in all
models, either as being positive, negative or non-existent,
while an additional 6 connections were correctly identi-
fied in either 4 or 5 of the six models. For these six, one of
the models misidentifying the type of connection was the
first subset of the piecewise linear approximation, which
does not reflect the connectivity of the network especially
well, as was shown in Table 5. It is also worth noting that
only one of the interactions associated with X3 is identi-
fied correctly from comparing the six models. The classifi-
cation of the remaining four connections varies greatly
among the different models, and it is therefore impossible
to deduce a type of interaction with sufficient reliability.

Constraining the Parameter Values
In addition to reflecting the connectivity, the coefficients
provide likely parameter ranges or likely constraints on
parameter values of the true model. As an example,
consider variable X1. Table 6 indicates that the variables
having a significant effect are X1, X3 and X5. If so, the linear
model in Eq. (8) suggests the following:

Table 2: Comparison of computed and estimated coefficients

Computed coefficients Estimated coefficients

a10 0 0.0000
a11 -14.6780 -14.3647
a12 0 -0.1466
a13 7.3390 7.3414
a14 0 -0.2165
a15 -7.3390 -7.1723
a20 0 0.0000
a21 14.6780 14.6119
a22 -14.6780 -14.6540
a23 0 -0.0009
a24 0 0.0494
a25 0 -0.0309
a30 0 0.0000
a31 0 -2.3527
a32 0 1.3989
a33 -27.2517 -27.9204
a34 0 1.7491
a35 0 -0.9955
a40 0 0.0000
a41 0 2.0843
a42 0 -1.0925
a43 18.5664 19.0295
a44 -18.5664 -20.2112
a45 -9.2832 -8.3594
a50 0 0.0000
a51 0 -0.4026
a52 0 0.1384
a53 0 -0.0059
a54 18.5664 18.8987
a55 -18.5664 -18.7852

Regression coefficients for the small gene network (Figure 1), 
linearized about the steady state and based on relative deviations 
(option II). The first and second columns contain the computed and 
estimated regression coefficients, respectively. The regression 
coefficients aij refer to the influence of variable j on variable i, while ai0 
is the constant term in each regression model. As the table indicates, 
the correspondence is good, except for the coefficients relating to X3 
and X4 (see Text for explanation). The dataset consisted of 401 data 
points in the interval [0,4] and resulted from a simulation in which X3 
was perturbed at t = 0 to a value 5% above its steady-state value.
Page 9 of 14
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where  and the regression coeffi-

cients (aij) are taken from the model in Eq. (4). The values
of the variables at steady state are known. Because the
kinetic orders may be positive or negative and the cij may
result from different combinations of gij's and hij's, it is not
possible to deduce directly which exponent is greater than
the other. However, in many cases one may have addi-
tional information on the system, which further limits the
degrees of freedom (e.g., [23]). In addition, the steady-

state equation  must be

satisfied and provides yet another constraint.

Discussion
Identifying the structure of metabolic or proteomic net-
works from time series is a task that most likely will
require large, parallelized computational effort. The
search space for the algorithms is typically of high dimen-
sion and unknown structure and very often contains
numerous local minima. This generic and frequent prob-
lem may be ameliorated if the search algorithm is pro-
vided with good initial guesses and/or constraints on
admissible parameter values. Here, we have shown that
linear regression may provide such information directly
from the types of data to be expected from future experi-
ments. For illustrative purposes, we used artificial data
from a known network, but all methods are directly appli-
cable to actual profile data and scaleable to large systems.

The coefficients estimated from the different regressions
reflect the effect of one variable on another surprisingly
well and thus provide a simple fashion of prescreening the

Table 3: Comparison of the different linearization options (I, II and IV)

I. Absolute deviation II. Relative deviation IV. Lotka-Volterra

a10 0.0000 0.0000 14.4748
a11 -14.3647 -14.3647 -18.9581
a12 -0.1466 -0.1466 -0.6836
a13 5.3878 7.3414 7.3367
a14 -0.1712 -0.2165 -0.4694
a15 -5.6702 -7.1723 -7.4981
a20 0.0000 0.0000 0.0144
a21 14.6119 14.6119 19.8910
a22 -14.6540 -14.6540 -19.9277
a23 -0.0006 -0.0009 -0.0001
a24 0.0390 0.0494 0.0472
a25 -0.0245 -0.0309 -0.0335
a30 0.0000 0.0000 26.4020
a31 -3.2058 -2.3527 2.8725
a32 1.9062 1.3989 -1.7989
a33 -27.9204 -27.9204 -26.6164
a34 1.8842 1.7491 -1.5871
a35 -1.0724 -0.9955 0.9692
a40 0.0000 0.0000 8.0270
a41 2.6365 2.0843 6.3364
a42 -1.3820 -1.0925 -4.1579
a43 17.6654 19.0295 19.0005
a44 -20.2112 -20.2112 -23.1319
a45 -8.3594 -8.3594 -7.7047
a50 0.0000 0.0000 0.0869
a51 -0.5092 -0.4026 -0.6617
a52 0.1751 0.1384 0.4441
a53 -0.0055 -0.0059 -0.0003
a54 18.8987 18.8987 20.2939
a55 -18.7852 -18.7852 -20.2152

Estimated coefficients for three of the linearization approaches: absolute deviation from steady state (left column), relative deviation from steady 
state (center column) and Lotka-Volterra linearization (right column). The dataset consisted of 401 data points in the interval [0,4] and resulted 
from a simulation in which X3 was perturbed at t = 0 to a value 5% above its steady-state value.
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connectivity of the network. In addition, the estimated
coefficients provide constraints on the parameter values, if
the alleged nonlinear model has the form of an S-system.
To explore the pre-assessment of data as fully as feasible,
we studied four linearization strategies: using an absolute
deviation from steady state; a relative deviation from
steady state; piecewise linearization; and Lotka-Volterra
linearization. Interestingly, all models gave qualitatively
similar results for the analyzed example, and this degree
of similarity may provide a measure of how reliable the
identified connections are. Specifically, of the 25 possible
connections in the small gene network studied, 19 were
identified correctly in at least 83 % of the regression
analyses.

Table 4: The effect of the size of the perturbation

Computed 5 % 10 % 50 % 200 %

a10 0 0.0000 0.0000 0.0001 0.0008
a11 -14.6780 -14.3647 -14.1817 -13.1496 -11.3439
a12 0 -0.1466 -0.1429 -0.0671 0.5735
a13 7.3390 7.3414 7.3438 7.3598 7.3735
a14 0 -0.2165 -0.3673 -1.2462 -2.7619
a15 -7.3390 -7.1723 -7.0780 -6.4846 -5.2501
a20 0 0.0000 0.0000 0.0000 -0.0003
a21 14.6780 14.6119 14.5748 14.4207 14.5029
a22 -14.6780 -14.6540 -14.6623 -14.7503 -15.1862
a23 0 -0.0009 -0.0016 -0.0054 -0.0070
a24 0 0.0494 0.0839 0.2494 0.3462
a25 0 -0.0309 -0.0464 -0.1119 -0.0951
a30 0 0.0000 0.0000 0.0004 0.0038
a31 0 -2.3527 -4.5412 -18.2307 -46.8953
a32 0 1.3989 2.6336 9.8422 24.4004
a33 -27.2517 -27.9204 -28.5955 -34.0204 -54.4047
a34 0 1.7491 3.4009 14.0961 39.3252
a35 0 -0.9955 -1.8949 -7.0627 -15.4759
a40 0 0.0000 0.0000 -0.0001 0.0001
a41 0 2.0843 3.7814 14.7316 41.5863
a42 0 -1.0925 -1.7693 -5.5766 -13.2688
a43 18.5664 19.0295 19.4964 23.2397 37.1866
a44 -18.5664 -20.2112 -21.6608 -31.4631 -58.1065
a45 -9.2832 -8.3594 -7.6404 -3.2226 6.5808
a50 0 0.0000 0.0000 -0.0001 -0.0015
a51 0 -0.4026 -0.6581 -2.5848 -10.1097
a52 0 0.1384 0.0830 -0.1317 0.1582
a53 0 -0.0059 -0.0110 -0.0435 -0.0879
a54 18.5664 18.8987 19.1602 21.0620 27.2722
a55 -18.5664 -18.7852 -18.9201 -20.0013 -24.0836

Overall, the estimated coefficients deviate more strongly from the 
corresponding computed values as the perturbation increases. 
However, there are substantial differences between variables. The 
coefficients associated with variable X2, for example, are hardly 
influenced, while the coefficients associated with X3 are strongly 
affected. Overall, the method seems to produce the best results for 
perturbation up to 10%. The datasets for the regression consisted of 
401 data points in the interval [0,4] and the method of linearization 
was option II.

Table 5: Results for piecewise linear regression

Interval 1 Interval 2 Interval 3

a10 0.1315 -0.0419 0.0000
a11 -42.3980 -14.1738 -14.5490
a12 0.0000 -0.8010 -0.0464
a13 8.9105 7.3653 7.6299
a14 12.7757 -0.3340 -0.1386
a15 -3.3476 -6.9121 -7.2940
a20 0.0567 -0.0197 0.0000
a21 -1.1939 14.4913 14.6792
a22 -32.3300 -14.5116 -14.6784
a23 0.6133 0.0057 -0.0205
a24 7.0917 0.1016 -0.0018
a25 7.9313 -0.1047 0.0067
a30 -0.7858 -0.0181 0.0000
a31 -130.3724 -0.2358 0.0021
a32 0.0000 0.3616 -0.0007
a33 -20.7724 -27.6129 -27.2551
a34 62.1525 0.3496 -0.0027
a35 19.1470 -0.1984 0.0006
a40 0.3164 -0.0709 0.0000
a41 -13.6819 1.1412 -0.0115
a42 0.0000 -2.1478 0.0015
a43 19.8295 18.8534 18.6927
a44 -13.3654 -19.5811 -18.5494
a45 -7.2135 -8.0985 -9.2792
a50 0.1617 -0.0393 0.0000
a51 -149.5199 -0.8195 0.0250
a52 -160.3341 0.8175 -0.0074
a53 5.7537 0.0580 -0.0304
a54 85.3050 19.0394 18.5356
a55 53.9745 -19.1183 -18.5623

The complete dataset is divided into three subsets for each variable, 
where the first and second extreme values serve as breakpoints. The 
datasets for the regression consisted of 401 data points in the interval 
[0,4] and resulted from a simulation in which X3 was perturbed at t = 
0 to a value 5% above its steady-state value.

Table 6: Collective inference of the gene network based on 
results from all linearizations

X1 X2 X3 X4 X5

X1 - (100 %) 0 (67 %) + (100 %) 0 (83 %) - (100 %)
X2 + (100 %) - (100 %) 0 (100 %) 0 (83 %) 0 (83 %)
X3 ? ? - (100 %) ? ?
X4 + (67 %) - (67 %) + (100 %) - (100 %) - (100%)
X5 - (83 %) 0 (83 %) 0 (83 %) + (100 %) - (100 %)

Each minus sign implies a negative influence; a plus sign implies a 
positive influence, while zero implies no influence. Bold symbols 
denote correctly identified interactions, and numbers in parentheses 
give the fraction of models that suggested positive identification. 
Question marks imply that no type of interaction was identified in 
more than 50% of the models.
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A concern of any linearization approach is the validity of
the linear approximation. However, as long as the pertur-
bation from steady state remains relatively small, the esti-
mated linear model is likely to be a good fit of the actual
nonlinear model, at least qualitatively. This limitation
may furthermore be alleviated by fitting the profile data in
a piecewise linear fashion. As most reference states in this
case are different from the steady state, this strategy has
the added benefit that more of the true relationships
within the nonlinear model are likely to be preserved. As
an alternative, one could explore the performance of the
so-called "log-linear" model, which is linear in log-trans-
formed variables [44].

The Lotka-Volterra linearization did not perform as well
as expected with regard to large perturbations. This may
be a consequence of the particular example, which was
originally in S-system form rather than in a form more
conducive to the LV structure, which emphasizes interac-
tions between pairs of variables. Since it is easy to perform
the LV analysis along with the other regressions discussed
here, it may be advisable to execute all four analyses.

The illustrative model used for testing the procedure con-
sisted of a relatively small system with only five variables
and relatively few interactions. Nonetheless, one should
recall that this very system required substantial identifica-
tion time in a direct estimation approach [21]. In order to
check how scaleable the results of the proposed lineariza-
tion method are, the method should be tested on larger
systems. Some preliminary analyses suggest that the
method works well, but that the likelihood of misidenti-
fied connections may grow with the size of the system, as
one might expect. At the same time, experience with actual
biological networks, for instance in ecology and metabo-
lism, suggests that larger systems are often more robust in
a sense that they do not deviate as much from the steady
state as smaller systems. If this trend holds in general, the
linearization becomes a more accurate representation as
larger networks are being investigated and the proposed
methods will therefore yield more reliable initial
indicators of network connectivity. Independent of these
issues, the methods proposed here will very likely be more
valuable for bigger systems than other methods that are
presently available, because without some preprocessing
of the data and effectively priming the search, as it is pro-
posed here, the combinatorial explosion will most cer-
tainly gain the upper hand eventually.
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Appendix
It was recently shown that good parameter estimates of S-
system models from metabolic profiles might be obtained
by training an artificial neural network (ANN) directly
with the experimental data. The result of this training is a
so-called universal function which smoothes the data with
predetermined precision and also allows the
straightforward computation of slopes that can be used
for network identification purposes. This appendix briefly
outlines the procedure; details can be found in Almeida
[45] and Voit and Almeida [24]. The ANN consists of
three layers; one input layer, one hidden layer and one
output layer. The input layer consists of the measurement
time points, the hidden layer has no direct biological
interpretation, and the output layer contains the metabo-
lite concentrations or levels of protein expression that the
ANN is being trained to represent. The node values of the
ANN in the hidden layer are calculated from a linear com-
bination of input values with different weights according
to a multivariate logistic equation. Similarly, the values of
the output layer are determined from linear combinations
of the hidden node values with different weights, again
using a multivariate logistic function. It is known that this
type of nested multivariate logistic function has unlimited
flexibility in modeling nonlinearities [46].

Noise and sample size do not have a devastating effect on
the results of the ANN-method, as long as the true trend is
well represented [39]. In fact, the ANN approach provides
an unlimited number of sampling points, as values at any
desired time points may be estimated from the universal
output function. Finally, the calculation of the slopes of
the smooth output functions is mathematically unwieldy,
but computationally straightforward.

The use of the entire time course is in stark contrast to ear-
lier methods of parameter estimation and structure iden-
tification in metabolic networks. Mendes and Kell [37]
applied their ANN-based parameter estimation to steady-
state data, while we are using time profiles.

Chevalier and co-workers [32] first fitted the nonlinear
solution with a linear model (as shown in Eq. 3),
expressed this solution in terms of eigenvectors and eigen-
values, and then obtained the slopes by numerical differ-
entiation. Sorribas et al. [47] suggested a variation on this
approach, based on discretizing the solution of Eq. (3) as

z(tk + 1) = z(tk)exp(h·A),  (A1)

where h is the step size. The problem is thereby reduced to
a mulitilinear regression in which the matrix Φ =
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exp(h·A) is the output. Instead of estimating the slopes,

they obtain the Jacobian directly by 

expanded in its Taylor-series. This approach yields a faster
convergence to the elements of the Jacobian than the one
suggested by Chevalier et al. [32], but the regression of Eq.
(A1) is very sensitive to noise and missing data points.

Our approach takes advantage of the entire time course
and is therefore less sensitive to the particularities of
assessing a system at a single point. The ANN itself does
not provide much insight, because it is strictly a black-box
model, but it is a valuable tool for controlling problems
that are germane to any data analysis, namely noise, meas-
urement inaccuracies, and missing data.
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