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ABSTRACT
Motivation: Perhaps the greatest challenge of modern biology is
to develop accurate in silico models of cells. To do this we require
computational formalisms for both simulation (how according to the
model the state of the cell evolves over time) and identification (learn-
ing a model cell from observation of states). We propose the use
of qualitative reasoning (QR) as a unified formalism for both tasks.
The two most commonly used alternative methods of modelling bio-
chemical pathways are ordinary differential equations (ODEs), and
logical/graph-based (LG) models.
Results: The QR formalism we use is an abstraction of ODEs. It
enables the behaviour of many ODEs, with different functional forms
and parameters, to be captured in a single QR model. QR has
the advantage over LG models of explicitly including dynamics. To
simulate biochemical pathways we have developed ‘enzyme’ and
‘metabolite’ QR building blocks that fit together to form models. These
models are finite, directly executable, easy to interpret and robust.
To identify QR models we have developed heuristic chemoinformatics
graph analysis and machine learning procedures. The graph analysis
procedure is a series of constraints and heuristics that limit the num-
ber of ways metabolites can combine to form pathways. The machine
learning procedure is generate-and-test inductive logic programming.
We illustrate the use of QR for modelling and simulation using the
example of glycolysis.
Availability: All data and programs used are available on request.
Contact: rdk@aber.ac.uk

1 INTRODUCTION
The completion of the sequencing of the key model genomes and the
rise of post-genomic technologies have opened up the prospect of
modelling cells in silico in unprecedented detail. Such models will
be essential to integrate our growing biological knowledge, and have
the potential to transform medicine and biotechnology. A good sci-
entific model should both reflect the causal structure of the physical
system under study, and be able to efficiently predict the outcome of
new experiments. There are currently two key research questions in
cellular modelling:

(1) What are the most appropriate computational formalisms for
simulation of cellular processes?
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Fig. 1. The relationship between model simulation and system identification.

(2) How can novel cellular models be identified (learned) directly
from experimental data?

In this paper we demonstrate the utility of qualitative reasoning as
a unified formalism for both simulating and identifying metabolic
models.

1.1 Model simulation versus model identification
It is important to clearly distinguish between model simulation and
model identification (Fig. 1). To make experimental predictions we
use a model in conjunction with a simulator. This is a form of deduct-
ive inference. For example, a dynamic model of glycolysis might tell
you how the level of pyruvate in a cell varies over time as the amount
of glucose increases. If the deductive predictions of a model are
inconsistent with observed behaviour then the model is falsified.

The task of forming a model to explain a given set of experimental
results is called model identification. This is a form of inductive
inference. For example, if the levels of the metabolites in glyco-
lysis are observed over a series of time steps, and from this data the
reactions of glycolysis are inferred, this would be model identifica-
tion. The application of automatic model identification is generally
recognised to be essential for large-scale in silico modelling. Model
identification is sometimes referred to as the ‘inverse’ problem in
the bioinformatics literature. In the control engineering literature
model identification is known as system identification and has been
extensively studied (Ljung, 1999).

1.2 Cell modelling
There are three main types of cellular process modelled in bioin-
formatics: biochemical pathways (the metabolome), gene-networks
(the transcriptome) and protein signal-transduction (the proteome).
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In vivo, these processes are interrelated and entangled, but they are
still generally modelled separately. Abstractly, modelling all three
types of process is similar, with models constraining the change over
time of levels of metabolite, mRNA or protein.

Many different formalisms have been applied to cellular mod-
elling: differential equations (Bakker et al., 1997; Eisenthal and
Cornish-Bowden, 1998; Ferrell and Machleder, 1998; Alon et al.,
1999; von Dassow et al., 2000; Santillan and Mackey, 2001), S-
systems (Akutsu et al., 2000), Boolean networks (Kauffman, 1993;
Somogyi and Sniegoski, 1996), logical networks (Karp et al., 1996),
Bayesian networks (Friedman et al., 2000), Petri-nets (Matsuno
et al., 2000), �-calculus (Regev et al., 2001), etc. Given our present
state of knowledge of cellular processes, there is no single best mod-
elling formalism and the choice of formalism depends on the problem
domain. It is a case of ‘horses for courses’. For example, if in a meta-
bolic pathway all the kinetic properties of the enzymes involved are
known, an ordinary differential equation (ODE) model would be
appropriate. However, if these kinetics properties are not known,
an ODE model could be inappropriate; the use of arbitrary kinetics
would produce a misleading impression of precision, and a simpler
qualitative model would be preferred. Similarly for system identi-
fication, it is often appropriate to first learn a qualitative structural
model, and then parameterize this to form an ODE.

1.3 Modelling metabolism
In this paper we focus on models of metabolism: the interaction of
small molecules with enzymes (the domain of classical biochem-
istry). Such models are arguably the best established in biology. The
core biochemical pathways are now known and the KEGG data-
base (Ogata et al., 1999) includes ∼11 000 metabolites involved in
∼5500 reactions. However, much remains to be done: only a tiny
fraction of the enzymes involving these core metabolites have been
quantitatively characterized and an enormous amount of qualitative
biochemistry has still to be discovered, e.g. there are estimated to
be up to 200 000 distinct metabolites in the plant kingdom alone
(Fiehn, 2001). The new science of metabolomics has opened up the
possibility of experimentally measuring the metabolites in cells in
unprecedented breadth and detail (Fiehn, 2001). The most excit-
ing use of such metabolomics data is to identify novel biochemical
pathways.

Two main formalisms have been applied to modelling metabol-
ism: logical/graph-based (LG) models, and ODE. In LG models,
pathways are represented as logical relations between enzymes, sub-
strates and products. The pioneering work in this area was by Karp
et al. (1996) on Escherichia coli—EcoCYC. A particularly use-
ful LG system is KEGG (Ogata et al., 1999). With LG models it
is possible to simulate metabolism at the genome scale, but only
with low fidelity. Typical queries of a LG system are: ‘What is the
most connected metabolite?’, ‘Is it possible to synthesize a particu-
lar compound?’, etc. Such models can be used to guide a biological
experiment. For example, we have used such models with the robot
scientist methodology to automate cycles of experimentation (King
et al., 2004).

The standard way to model (non-spatial) physical systems is using
ODEs and they have been successfully applied to simulating meta-
bolic systems (Bakker et al., 1997; Eisenthal and Cornish-Bowden,
1998). Specialist programs are now available for modelling cellular
ODE models, such as Gepasi (Mendes, 1997), Dbsolve (Goryanin
et al., 1999) and E-Cell (Tomita et al., 1999). Despite the success of

using ODEs to model pathways they have important drawbacks: they
require a large number of kinetic parameters to be accurately known,
and it is generally impossible to determine all the feasible qualitat-
ive states of the model. It is possible to apply ODE based models
to whole genome systems. However to achieve this, strong assump-
tions need to be made about the system (e.g. optimality). Using this
approach interesting experimental predictions are beginning to be
made (Famili et al., 2003).

We propose an intermediate Qualitative reasoning (QR) level of
simulation between the LG and ODE models. This QR formalism
allows us to immediately form dynamic models from LG information
without the need to quantitatively characterize the reactions. This is
possible because our QR formalism is an abstraction of ODEs which
enables the behaviour of many ODEs, with different functional forms
and parameters, to be captured in a single QR model. Thus, we can
apply QR modelling with confidence to many situations where ODE
modelling would be inappropriate—because the necessary kinetic
parameters are unknown. Considering again the example of simulat-
ing glycolysis, conclusions drawn from a QR model of glycolysis are
generally true for any organism with the same set of reactions, while
with an ODE model, the conclusions drawn are specific to the organ-
isms from which the enzymatic kinetic parameters were taken. The
downside of the increased applicability of QR is that the predictions
made are no longer deterministic, and therefore a number of pos-
sible behaviours are produced. The first work on applying QR to the
simulation of biological processes was done by Heidtke and Schulze-
Kremer (1998a). They applied QR to modelling glycolysis, and then
extended the work by simulating the genetic network of the lambda
phage (Heidtke and Schulze-Kremer, 1998b). In our paper we extend
their simulation approach with the use of metabolic components and
show how QR can also be used for model identification.

Compared to the work on simulating metabolism, relatively little
research has been done on model identification (LG or ODE). Perhaps
the most notable work on identification is that of Arkin et al. (1997),
who identified an LG model of the reactions in part of glycolysis
from experimental data. The work of Reiser et al. (2001) presents a
unified logical approach to simulation (deduction) and system iden-
tification (induction and abduction) in LG models. The identification
of ODE models directly from data is a known hard problem (Ljung,
1999). This is especially so if intermediate variables are required in
the model. An intermediate variable is a variable that is not observed
but interacts with the observed variables. In real world problems it
can rarely be ensured that all relevant variables are observed (meas-
ured). An interesting recent approach to identifying metabolic ODE
models is that of Koza et al. (2001) who recast the cellular sys-
tem as an electrical circuit identification problem, and used genetic
programming to search through the space of possible models.

As with model simulation, for model identification QR is interme-
diate between LG and ODE modelling. This means that if we wish
to identify an ODE model from the observations of levels of meta-
bolites, the natural approach is to first learn the LG structure, then
form a QR model with this structure and finally parameterize this
QR model to an ODE. The parameterization problem is the simplest
step, as there already exist many methods of fitting parameters to
ODE models (Ljung, 1999).

The identification of QR models from examples is a challenge
for current machine learning methods because the problem is rela-
tional (requires a first-order learning algorithm); the search space is
very large (even for a relational problem); and the data is positive
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only (when identifying a system, nature provides only examples of
states of the system and not examples the system cannot be in). The
most appropriate form of machine learning for QR identification is
inductive logic programming (ILP), as QR models can be represented
naturally in the form of simplified Prolog programs. In ILP, back-
ground knowledge, examples and theories are all described in logic
programs (e.g. Prolog). ILP systems learn (induce) logical theories
(programs) from examples by searching through a space of possible
solutions (Mitchell, 1997). There is a growing literature on learning
QR models using ILP (Bratko and Muggleton, 1991; Say and Kuru,
1996; Hau and Coiera, 1997). We have earlier developed the Qoph
algorithm, which is a general purpose system identification system
for QR models (Coghill et al., 2002, 2004).

The advantages of identifying QR models versus ODE models
are:

• Machine Learning is generally based on search through a space
(defined by a language) of possible solutions (Mitchell, 1997).
The discrete state space of qualitative models is smaller than the
space of ODE models.

• One of the main problems in numerical methods of system iden-
tification is parameter estimation. By its very nature qualitative
reasoning does not have this problem because there is no need
for the parameters. This reduces the workload of the induct-
ive system by allowing it to concentrate on inducing just the
structure of the model. It may therefore be possible to learn a
qualitative model with less data than a numerical one, e.g. with
fewer time steps in a time series.

2 METHODS

2.1 Qualitative modelling
Qualitative reasoning is a method of reasoning about the structure and beha-
viour of systems that are incompletely known. It was originally devised as a
means of enabling AI systems to reason about the world from first principles
rather than relying on heuristic rules (Hayes, 1979). In QR, incompleteness is
dealt with by lowering the precision of the system variables to focus only on
the qualitative differences in a variable’s values (which in the most abstract
case will be its sign). These qualitative values are formed by discretization
of the real number line. Therefore, QR can be seen as a step towards devel-
oping a quantitative model, as it forms the abstract structure of the model,
which can then be parameterized to form a quantitative model. By eliminat-
ing unnecessary detail, QR models allow the user to focus on the essentials
of the model and to extract quickly the required understanding of the system
being modelled.

Qualitative modelling has been utilized in a number of different application
domains, for example diagnosis, training and control (Weld and de Kleer,
1990). In many ways QR models are similar to standard biological modelling
approaches such as signal transduction or metabolic system diagrams. This
is to be expected, for in many biological systems the key point of interest
is what will happen if a variable increases, decreases or remains unchanged,
not precisely how much it changes.

We use the QR system QSIM, a constraint based qualitative simulation
algorithm (Kuipers, 1994). QSIM is the most highly developed constraint
based QR system. In QSIM each model consists of a set of variables linked
together via a set of constraints, called a qualitative differential equation.
Each variable consists of a 〈qmag, qdir〉 pair. Where qmag is the qualitat-
ive magnitude of the variable and has a quantity space of varying resolution
and consisting of alternating points (called landmark values) and intervals.
The value qdir is the qualitative rate of change of the variable, which has a
fixed, three-valued resolution [the three quantities being ↑ (for increasing),

↓ (for decreasing) and 0 (for steady)]. There are several kinds of constraints
that can appear in a QSIM model: predicates representing the usual algebraic
operations of addition, multiplication and sign inversion, and a derivative pre-
dicate stating that one variable is the derivative of another. Incompleteness in
the knowledge of the model is captured by the monotonic function constraint
(M±) between two variables, which declares that one variable monotonically
increases (+) or decreases (−) with respect to another variable.

QSIM begins simulation from a given initial state. From this initial state a
set of transitions are developed for each variable of the system—the qualitative
equivalent of integration over time. In the behaviour tree that results from the
simulation process, the times associated with the states in the tree form an
ordered set of points and intervals. This transition phase is performed for each
variable individually, as if they are independent of each other. The basis for
this is that, because each variable is represented by a magnitude/derivative
pair, it is effectively an abstraction of a first order approximation of the Taylor
series describing the variable function. Thus a transition to the next qualitative
value is based on Euler integration. After the transition rules have been applied
to the variables, each variable will have associated with it a set of possible
values that it could take in the next time point/interval. The mathematical
foundation of the transition rules are the intermediate value theorem and the
mean value theorem. Having generated all the possible values for the system
variables in accordance with the transition rules, each of these values must
be tested against the constraints of the system.

The advantage of QR simulation versus ODEs are:

• Ease of understanding: By eliminating unnecessary details, qualitative
models allow the user to focus on the essentials of the model and to
extract quickly the required understanding of the system being modelled.
Comparison of equivalent QR and ODE models shows that QR has less
information, and is therefore easier to understand. Of course, QR does
not solve all comprehensibility problems and a complex QR model is
difficult to understand.

• Finite nature: Unlike many real-valued numerical models, a qualitative
model can only be in one of a finite number of states. This set of states
is the model’s complete envisionment.

• Error Reduction: All data gathered by physical measurement contain
a degree of error due to the measuring process on top of this is added
human error. Qualitative modelling can overcome or reduce many of
these problems by considering the data’s qualitative aspects alone.

2.2 Metabolic components
To apply qualitative modelling methodology to biological pathways of the size
of glycolysis would require us to simulate and identify models with ∼100
algebraic primitives. Such large systems are awkward to deal with using a
general QSIM simulator and would probably be impossible to identify using
general system identification methods—due to their computational complex-
ity. We have therefore used specific domain background knowledge to split
the problem into manageable units (a heuristic divide-and-conquer strategy).
In the case of modelling metabolic pathways there are essentially only two
types of objects: metabolites and enzymes. We have therefore designed meta-
bolic components (MCs) to model these to allow us to efficiently simulate
and identify metabolic models.

The concentrations of metabolites vary over time as they are synthesized
or utilized by enzymatically catalysed reactions. As a result, their concentra-
tion at time t is a function of their concentration at the previous time point or
interval, and the amount that they are used or created by various enzyme reac-
tions. This can be expressed as a simple summation in QSIM. The qualitative
equation for the metabolite components (Fig. 2) is therefore,

dM/dt =
∑

flowi .

When modelling enzymes, each enzyme is assumed to have ≤2 substrates
and ≤2 products. If there are two substrates or products these are considered
to form a substrate or product complex, such that the amount of the complex
is proportional to the amount of the substrates or products multiplied together.
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Fig. 2. The QSIM representations of the two MCs in metabolic pathways:
metabolites (Mtb) and enzymes (Enzm). In the metabolite component,
Flow1–Flown is the list of the flows of synthesis and utilization of the
metabolite (these flows come from the enzyme MCs); M_dt is the sum
of Flow1–Flown; and the concentration of the metabolite is related to the
sum M_dt by a qualitative derivative relation. In the enzyme component,
Metabolite1s and Metabolite2s are the levels of substrates; Metabolite1p and
Metabolite2p are the products (the levels of metabolites come from the meta-
bolite MCs); S_forw is the qualitative multiplication of Metabolite1s and
Metabolite2s; P_rev is the qualitative multiplication of Metabolite1p and
Metabolite2p; Flow+ is the overall flow through the reaction (Flow− is its
negation which is required for the metabolite component).

This qualitatively models the probability that the substrates (or products) will
collide with the enzyme with sufficient timeliness to be catalysed into the
product complex (or substrate complex). The substrate complex is converted
into the product complex, which then dissociates into the product metabolites
and vice versa. The overall flow through the enzyme is the amount of sub-
strate complex formed minus the amount of product complex formed. The
qualitative equation for the enzyme components (Fig. 2) is

Flow = M+(�Substrates) − M+(�Products)

This is an abstraction of standard kinetic equations (Cleland, 1963) and is an
expression of the collision probabilities of the metabolites in the reaction. A
key point to note is that this enzyme component is an abstraction of enzymes
with different rate constants. The metabolite and enzyme components are
dynamic and they do not simply model steady-state conditions. However,
note that we assume, for simplicity, that enzymes are taken to exist in constant
amounts—this is also assumed in most ODE modelling.

The above qualitative abstraction of enzymes and metabolites could be
criticized in that it does not explicitly involve the interaction of the substrates
and products with the enzyme. This was a deliberate pragmatic decision.
QSIM can model ODEs of arbitrary complexity, and we could have modelled
the interaction with the enzyme at any level of detail. However, in initial
experiments using a more detailed model, we concluded that most of the states
produced were transients of relatively little biological relevance. These states
would be hard to observe in practice, and would have greatly complicated
the model identification; so we decided to settle on a simpler model. The MC
enzyme is not the ‘mass action law’: it is qualitative, and has no assumption
of equilibrium. Note that any model of an enzymatic reaction short of the
full quantum mechanical description is an abstraction (and even that does not
properly model mass).

3 RESULTS
As a test case for biochemical pathway simulation and identification
we have chosen glycolysis as it is probably the best understood of
all pathways.

3.1 Simulating glycolysis using QR
In our qualitative model of glycolysis 15 metabolites are involved
(Fig. 3): pyruvate (pyr), glucose (glc), phosphoenolpyruvate (pep),
fructose 6-phosphate (f6p), glucose 6-phosphate (g6p), dihydro-
xyacetone phosphate (dhap), 3-phosphoglycerate (3pg), 1,3-
bisphosphoglycerate (13BP), fructose 1,6-biphosphate (f16bp),
2-phosphoglycerate (2pg), glyceraldehyde 3-phosphate (g3p), ADP,
ATP, NAD, and NADH. We have not included H+, H2O, or Ortho-
phosphate as they are assumed to be ubiquitous—they are difficult
to include because of the ≤2 substrate/product restriction.

The qualitative state of glycolysis is defined by the set of qualit-
ative states of the 15 metabolites. Figure 4A details one such state
of glycolysis. To understand this state consider the qualitative state
of NAD: [nad, NADl : 0 . . . ∞/↓, NADf :−∞ . . . 0/↓]. The mean-
ing of this is that the level of NAD (NADl) is positive (0 . . . ∞)

and decreasing (↓), and the flow into NAD (NADf ) is negative
(−∞ . . . 0) and decreasing (↓). Similar meanings apply to the other
14 metabolites. Note, the semantics of a metabolic level means that
it must be between 0 . . . ∞; it cannot be negative, and the 0 state is
uninteresting.

An important reason why it is interesting to consider such qual-
itative states is that it is experimentally much easier to measure
qualitative metabolic states than quantitative ones. This is because
the experiment is required to produce less information and therefore
can be more robust. For example, it is easier to determine that the
level of a metabolite is increasing than to determine by exactly how
much it is increasing.

Figure 5 shows the glycolysis model in the actual logic-
programming format used (with some syntactic sugar). The head
of the model is a possible state of glycolysis, as described above.
These states are constrained from being in any qualitative state by the
enzyme and metabolite MCs in the body of the model. These MCs are
implemented by two predicates, ‘metabolite’ and ‘enzyme’. These
correspond to the MCs described in the methods. For example:

• The metabolite MC metabolite (NADl , NADf , [Enz6f , −])
states that the level (NADl) and flow (NADf ) of the metabolite
NAD is controlled by flow through the single enzyme number
6 (Enz6f : Glyceraldehyde 3-phosphate dehydrogenase).

• The enzyme MC enzyme ([[G3Pl , NADl], [13BPl , NADH l]],
Enz6f ) states that the flow through enzyme 6 (Enz6f ) affects the
levels of the reactants (G3Pl , NADl) and the products (13BPl ,
NADH l) in opposite directions.

The model consists of 10 metabolite MCs and 15 metabolite MCs.
The reactions can be constrained to be reversible or non-reversible.
Comparing Figures 4 and 5, there is a one-to-one mapping. As the
functional form and parameters of the model have been abstracted
out, the model is simpler than an ODE model. Arbitrarily, complex
metabolic pathways can be formed in this way—limited only by the
computational limits of the Prolog compiler.

The qualitative glycolysis model can be used in three distinct
ways:

• with a given initial state, in conjunction with a QSIM simulator,
to simulate glycolysis qualitatively;

• to generate all possible qualitative states of glycolysis—the
complete envisionment;
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Fig. 3. The reactions included in our qualitative model of glycolysis. The reactions that consume ATP and NADH are not explicitly included.

Fig. 4. Example glycolysis system states. In (A) a possible glycolysis system
state is shown. If the flow and level of NAD is increasing, as shown in (B),
the state can no longer be generated by a non-reversible version of glyco-
lysis. Therefore, if such a state is observed then the non-reversible model of
glycolysis is wrong (incomplete or incorrect).

• as an ‘Oracle’ to test whether glycolysis could be in any specific
qualitative state.

Perhaps the most interesting use of qualitative models is as Oracles.
Figure 4 shows an example of a state that glycolysis can be in (A)
and one that it cannot (B). Two possible ways to change the qualit-
ative glycolysis model to account for the production of state B are:
to reverse the direction of reaction 6 (Glyceraldehyde 3-phosphate
dehydrogenase), or to hypothesize a reaction that forms NAD. If
you reverse the direction of reaction 6, then state A can no longer
be produced, but state B can be produced. The model with a reac-
tion that forms NAD is able to produce both states A and B. This
opens up the possibility of an experiment to distinguish between the
two possibilities.

The use of particular states to test models suggests a general mech-
anism of inferring from observations of system states the system that
produced the states. This process is known as system identification.

3.2 System identification of glycolysis using LG and
QR modelling

The specific system identification tasks we were interested in were:
given observation of the metabolites involved in a pathway, how
much can be inferred about that pathway; and given qualitative
observations of metabolic states, how much can be inferred. Our
methodology is described in Figure 6, where we describe two
separate ways of identifying biochemical pathways. We make the
following assumptions:

• The data are sparse and not necessarily measured as part of a
continuous time series—only three consecutive time steps are
required. This assumption is realistic given current experimental
limitations in metabolomics. This rules out the possibility of
numerical system identification approaches.

• Only metabolites of known structure are involved in the model.
This is the strongest assumption we make. Even given the rapid
advance of metabolomics (NMR, mass-spectroscopy, etc.), it is
not currently realistic to assume that all the relevant metabolites
in a pathway are observed and their structure determined.

• Only metabolites of known structure are involved in a particu-
lar pathway. This is a restriction because current metabolomics
technology can observe more compounds than they can be
structurally identified (a heuristic constraint).

• All reactions involve at most three substrates and three products
(a heuristic constraint).

• For the qualitative states: we can measure the direction in the
change of metabolite level. This requires sampling the level at
least three times in succession.

3.2.1 The use of LG constraints to examine reactions We first
considered the LG nature of the problem. The specific domain of
metabolism imposes strong constraints on possible LG models. We
used these heuristic constraints in the following way:

(1) Chemical reactions conserve matter and atom type (Valdes-
Perez, 1994). For glycolysis we generated all possible ways
of combining the 18 metabolites to form matter and atom
type balance reactions (≤3 reactants ≤3 products). This pro-
duced 172 possible reactions where the substrates balanced
the products in the number and type of each element. (Note
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Fig. 5. The qualitative model of glycolysis in Prolog form. The head of the model is the observed state of system, this consists of 15 metabolite levels (subscript
l) and flows (subscript f). Lower-case names are constants and upper-case variables. ← is the reverse logical implication symbol, i.e. A ← B means if B then A.
The body of the model defines the constraints on the system. The enzyme constraints relate the levels of substrates and products in a reaction with the flow
through the enzyme. The metabolite constraints relate the level and flow of metabolites with the flow through enzymes that produce (+) and consume (−) them.
∧ is logical ‘and’. Note that neither the order in the model of the metabolite HLCs, nor enzyme HLCs is important.

All possible 
combinations of 

metabolites 

Conservation of mass 
and element type.

Bonds broken � 2

Typical 
biochemistry

Glycolysis

QR System 
Identification

QR States

QR Modelling

LG Modelling

Glycolysis

Fig. 6. Our system identification methodology. It is a combination of LG and
QR heuristic based system identification.

that this number does not include any identity reactions, A ⇔
A, or reactions which are combinations of simpler reactions,
i.e. if the reactions A ⇔ C and B ⇔ D existed, the reaction
A + B ⇔ C + D would not be counted.) The number 172
compares well with the ∼2 300 000 possible reactions which
would naively be possible.

(2) Typical biochemical reactions only make/break a few bonds
and cannot arbitrarily rearrange atoms to make new com-
pounds. For glycolysis we examined all 172 possible reactions
to test their chemical plausibility. A reaction was considered
plausible if it broke one bond per reactant. This analysis was
done originally by hand and we have subsequently developed
a general computer program that can automate this task. Of the
172 balanced reactions 18 were considered chemically plaus-
ible. Figure 7 shows the list of these reactions that are not
in glycolysis, and examples of infeasible reactions that were
discarded.

(3) Biochemical reactions follow only a limited number of types
of organic reaction: phosphoryl transfer, phosphoryl shift, iso-
merization, dehydration, aldol cleavage, etc. (Stryer, 1996).
For glycolysis, we examined the 18 reactions to see if they
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Fig. 7. Plausible and implausible biochemical reactions. The upper list of eight plausible reactions (low number of bonds broken) were used as decoys with
the ten reactions in glycolysis. The four implausible reactions (high number of bonds broken) are taken from the 172 reactions that have balanced in element
type. The QR problem is to distinguish between the correct model and ones containing plausible reactions.

were ‘typical of biochemistry’. Of the 18 reactions, only the
10 actual glycolysis reactions were typical of biochemistry.

3.2.2 The use of QR constraints to examine models In the above
methodology, the final step is the hardest to justify. We therefore
wished to investigate the use of machine learning to identify the cor-
rect glycolysis model from the decoy reactions. It is important to note
that in doing this, we are examining whole models, not individual
reactions as we did with LG constraints.

A number of general model heuristic constraints are applicable to
the problem (Coghill et al., 2002a, 2004):

• Accuracy: The correct model should be able to produce all of
the observed states.

• Parsimony: Smaller models are favoured over bigger ones. The
rationale for this use of Ockham’s razor is, as there are fewer
small models, the chance of one of them fitting the data is less.

• Non-disjoint: This constraint ensures that the model is unified
and not two or more disjoint model parts. The expectation is
that if a set of measurements is being made within a particular
context, they will emanate from the same system and not from
two or more separate systems. Of course, one may be mistaken
in this assumption. Therefore, models filtered under this heur-
istic can be cached and revisited if no suitable models have been
found.

We used a simple ‘generate and test’ approach to learning. We did
not explore the possibility of using general learning search heurist-
ics (refinement operators) to move through the search space—these
have been extensively studied in ILP. However, these would have
complicated the methodology and it is unclear whether they would
have added much beyond the heuristics we were already using, as
the computational limiting step is the cover test (Section 4.1). For the
first computational experiment we used the ten reactions of glyco-
lysis and the eight decoy reactions that were considered chemically
feasible (Fig. 7). All these reactions, in the absence of evidence to
the contrary, are considered to be irreversible. We first generated all
possible ways of combining the 18 reactions which connected all
the 15 main substrates in glycolysis (models are non-disjoint). This
generated 27 254 possible models with ≤10 reactions—it was not

necessary to look for models with more reactions than that of the
target (parsimony), as the models can be generated in size order. The
smallest number of reactions necessary to include all 15 metabol-
ites was of size 5. All of the 27 254 models involved the reaction,
glyceraldehyde 3-phosphate + NAD ⇔ 1,3-bisphosphoglycerate +
NADH (reaction 6); so we could immediately conclude that this
reaction occurred in glycolysis.

We used qualitative states of glycolysis with our QR simulator (in
a pseudorandom manner) to test these models. Note that we did not
use a numerical simulator. The problem of quantitative to qualitative
conversion is dealt with in the discussion (Section 4.1) and examined
in our previous work (Coghill et al., 2002a, 2004). The 27 254 pos-
sible models were then tested against these states and if a model
could not generate a particular state it was removed from consider-
ation (accuracy constraint). In real wet experiments there is always
the possibility of noise. In this paper we have ignored the problem of
experimental noise as this has been dealt with in our previous work
(Coghill et al., 2002, 2004).

Note that the flows of the metabolites through each enzyme are
not observed—they are intermediate variables. All that we observe
are the overall levels and flows of the metabolites. This makes the
system identification task much harder.

The main difficulty with this generate-and-test approach is that it
can be very computationally expensive to test if a model can gen-
erate a particular state. The task is one of deductive inference and
for which there is no generally efficient solution. For efficiency, we
used the fast YAP Prolog compiler. We also formed compiled down
versions of the enzyme and metabolites MCs (input/output look-up
tables), and compiled down parts of QSIM. The result was that for
some states and models it was possible to show that a state could or
could not be formed in a fraction of a second, but for other states and
models the computation took days. Again for efficiency, we adopted
a resource allocation method that employed increasingly computa-
tionally expensive tests, i.e. forming filter tests with exponentially
increasing numbers of example states. One approach we did not
use, but plan to exploit in the future is the fast subsumption method
of Maloberti and Sebag (2001) which exploits a transforms of the
problem into one of general constraint search.

After several months of computed time on a 65 node Beowulf
cluster we reduced the 27 254 possible models to 35 (a ∼736-fold
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reduction). These models included the target model (glycolysis), and
the 34 other models that could not be qualitatively distinguished from
it. These reactions form the main core of glycolysis. Examining the
35 models also revealed that the correct model had the least cycles,
but we do not know if this is a general phenomenon.

In system identification there are only positive examples available
to learn from—we observe example states of the system, but not
states that the system cannot be in. In machine learning this is tech-
nically known as positive only learning. In our earlier work on the
Qoph algorithm (Coghill et al., 2002) we have used the approach
to ‘positive only’ learning of Muggleton (1995). The information
theoretic idea used is that the true model should cover fewer random
states than the alternatives which cover the same true states. We tried
to apply this idea to glycolysis. We computationally generated thou-
sands of random states (using a uniform distribution) and tested to
see how many of these were covered by the 35 models. Note that this
approach does not require any new observations (wet experiments).
However, despite the large number of random states generated, we
were unable to find any state that was covered by any of the mod-
els. We believe this reflects the vast size of the state space, which
means that the probability that any model covers any random state is
very low. We therefore tested a natural modification of this inform-
ation theoretic approach. We found that if we produced (random)
states from glucogenesis (glycolysis driven in the reverse direction),
then the true model of glycolysis covered fewer examples than any
of the 34 alternatives and so can be identified as the target model.
This approach is related to perturbation based system identification
methods and it would be interesting to explore their empirical and
theoretical relationships. However, this approach (and the perturba-
tion methods) has the disadvantage over the Muggleton approach of
requiring new experimental observations.

4 DISCUSSION

4.1 Quantitative to qualitative states
Our QR approach is designed to simulate and identify qualitative
models from qualitative data. It can therefore be directly applied
to the many biological systems that are naturally qualitative. Most
traditional molecular biology falls into this category.

For systems that are naturally quantitative we believe that QR mod-
els can be still be useful (Section 1.5). In such cases there is a need
to map from observed quantitative states to qualitative states. In this
paper we have generally assumed that the conversion of any quant-
itative data has already been performed. However, in previous work
on QR simulation and identification we have demonstrated a proof of
principle method of automatically converting quantitative to quali-
tative data. This work was based on the standard system science
problems of models of u-tubes, cascaded tanks, coupled tanks and
damped springs (Coghill et al., 2002, 2004). For all four standard
problems we demonstrated system identification from both noise-
free and noisy numerical data. The numerical data were obtained
from numerical simulations of the four physical systems, where each
simulation was constructed using the same relations as the qualitative
models, with the addition of a parameter for each monotonic func-
tion relation. This gave a linear relation between the two variables.
More complex, non-linear functions might have been used, but lin-
ear functions provided a good approximation of the known behavior
of these systems. To convert from quantitative data to qualitative
states we adopted the simple approach of numerical differentiation

by means of a central difference approach to produce a qualitative
state. Note that the use of a minimum of three successive time steps is
required to obtain one qualitative state. The data produced was typic-
ally noisy, either inherently or through the process of differentiation.
We therefore performed smoothing of the first and second derivat-
ive using a Blackman filter. In addition, as floating-point values are
unlikely to be exactly zero, we have found it advantageous to filter
further to eliminate small fluctuations around this value. However,
in addition to generating correct qualitative states (true positives) the
conversion could produce errors: states generated may not corres-
pond to true states (false positives); and some true states may not be
generated (false negatives). We have shown that qualitative system
identification is robust to these errors provided key observations are
made (Coghill et al., 2002, 2004).

4.2 Computational complexity
A major limitation of the systems identification task is the time taken
(several months on a Beowulf cluster) to reduce the models from the
∼27 000 possible ones generated using chemoinformatic constraints,
to the single correct one using the qualitative state constraints. While
it would be preferable for this process to be faster, it is important to
note that identifying a system with 10 reactions and 15 metabolites
from scratch is an extremely hard system identification task. We
doubt if any human could achieve it and we believe it would be a
‘challenge’ for all the system identification methods we are aware of.
It is difficult to compare system identification methods and we believe
there is a need for competitions such as the CASP protein structure
prediction contests, and those run by KDD to compare methods. We
note that in practical systems identification in biology, it is far more
common to start with a partial model, which is then added to (theory
completion) or modified (theory revision).

The computational time of identification is dominated by the time
taken to test if a particular model can produce certain observed states:
examining ∼27 000 models is not unusual for a machine learning
program, but it is unusual for a program to take hours to test if
individual examples are covered. The slow speed of our identification
method is therefore not a problem with our learning method (i.e.
how it searches the space of possible models), but is intrinsic to the
complex relationship between a model and the states it defines.

Our cover-test method is, in the worst case, exponential in the
maximum size of the model. Our empirical average case results are
much better than this, but it notoriously hard to analyse average cases,
and we do not have a good theoretical understanding of these. Note
that our lack of an efficient method, i.e. polynomial algorithm, to
determine cover is not because we are using qualitative states. We
believe that the inherent difficulty of this task applies to both for
quantitative and qualitative models. In some areas of mathematics
moving from the discrete to the real domain can simplify problems—
this is the basis of much of the power of analysis. However, there
is currently little evidence for being the case in cell modelling,
and quantitative models would seem to aggravate the problem. As
cover tests are essentially deductions the question whether a set of
axioms and rules (computer program/model) can output a particu-
lar logical sentence (observed state) is in general non-computable.
However, in real biological systems, as they are bounded in space and
time, non-computability is not a problem, and we expect all system
identification methods to struggle with the task.

We believe that the general problem of the computational complex-
ity of determining whether an in silico model of a biological system

2024



Qualitative reasoning about metabolic pathways

Fig. 8. The Ras.GTP–Ras.GDP cycle in standard biological format and the more precise QR formalism.

can or cannot produce an observed state is a key roadblock in devel-
oping Systems Biology. As the size of cells models increase, this
problem can only be expected to become more intense. It may be that
there will specific solutions for cellular modelling that avoid these
complexity issues, but this is not currently clear. What is certainly to
be expected is that cellular model simulation will require large-scale
computing resources and close collaboration between modellers and
experimentalists will be necessary to select experimental states that
can be used to test models tractably.

4.3 Extension of qualitative reasoning to other omes
It would be quite straightforward to apply qualitative modelling to
simulate and identify gene-network and protein signal-transduction
pathway models. Signal transduction pathways would be the easiest
to model. In such models the qualitative rate of flows and rate of
change of protein concentrations would change. For example, the
standard Ras.GTP–Ras.GDP cycle (Fig. 8) can be modelled using
standard QSIM (without the need for metabolic components). To
model gene-networks would be more complex and would probably
require the formation of specific metabolic components for such ele-
ments as transcription factors, DNA binding sites, etc. Ultimately,
models of biochemical pathways, gene-networks and protein signal-
transduction will need to be fully unified. This will at first have
to be done qualitatively and QR may provide a suitable framework
for this.
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