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ABSTRACT

Motivation:Ametabolicpathway is acoherent setof enzymecatalysed

biochemical reactions by which a living organism transforms an initial

(source) compound into a final (target) compound. Someof the different

metabolic pathways adopted within organisms have been experimen-

tally determined. In this paper, we show that a number of experimentally

determined metabolic pathways can be recovered by a mathematical

optimization model.

Contact: john.beasley@brunel.ac.uk

1 INTRODUCTION

Figure 1 shows a simple example of a metabolic pathway, convert-

ing one compound (the source compound) into another (the target

compound), as a directed graph. In this paper, we are concerned

with the problem of, given a database of reactions/compounds,

recovering via mathematics the specific set of reactions/compounds

that have been experimentally determined to be active in a meta-

bolic pathway.

Previous approaches to this problem have typically been based on

utilizing a database of reactions/compounds to enumerate possible

paths, satisfying various constraints, from the source compound to

the target compound (Croes et al., 2005, 2006; Dooms et al., 2005,
http://www2.info.ucl.ac.be/people/YDE/Papers/wcb05.pdf; King

et al., 2005; Küffner et al., 2000; Mavrovouniotis et al., 1990;
Mavrovouniotis, 1992; McShan et al., 2003; Seressiotis and Bailey,
1986, 1988). This is based on the fact that one of these paths must,

by definition, correspond to the set of reactions/compounds involved

in the experimentally determined (observed) pathway. Such

approaches do not directly address pathway stoichiometry, instead

that must (somehow) be deduced once the reactions/compounds

involved are known, i.e. knowledge of the (ordered) set of reactions/

compounds involved in the path from the source compound to the

target compound does not uniquely define the pathway. To illustrate

this, Figure 2 involves precisely the same source compound to target

compound path as Figure 1, but is a non-trivial alternative pathway.

In addition, enumeration approaches do not directly address the

issue of the number of molecules of source compound converted

into target compound; this is illustrated in Figure 3.

A fundamental difficulty with enumeration approaches, aside

from the issues referred to above is that there are a large number

of possible paths. Küffner et al., 2000, for example, found that

there were some 500 000 paths from glucose to pyruvate. Because

of this large number of possible paths all of the work reported

to date has had limited and mixed success, frequently failing to

unambiguously recover the experimentally determined pathway.

Our approach to recovering metabolic pathways is fundamentally

different to previous approaches. We develop below a mathematical

optimization model, which directly addresses pathway stoichio-

metry, to decide which reactions should be active in a pathway.

When we solve our optimization model for a number of different

pathways we do recover the experimentally determined pathway in

many cases.

2 METHODS

2.1 Reaction variables and constraints

In our approach we have a database of R reactions (where each reaction

has a specified direction so a reversible reaction contributes two different

reactions to the total number R), which collectively involve C different

compounds. Suppose we are seeking a pathway (coherent set of reactions)

that transforms QS molecules of source compound S into QT molecules of

target compound T. A reaction may, or may not, be active in the pathway. So

we have the binary (zero-one) variable:

zr ¼ 1 if reaction r is active in the pathway, 0 otherwise (r ¼ 1, ..., R) and

the associated tick variable:

tr the number of ticks of reaction r in the pathway (this must be an integer

variable (�0) with value 0 if the reaction not active).

We need a constraint relating the number of ticks of a reaction to the

zero-one variable signifying whether the reaction is active or not, this is:

tr � M1zr r ¼ 1‚ . . . ‚±R‚ ð1Þ

where M1 is a large positive constant that represents the maximum number

of ticks of any reaction (since zr ¼ 1 implies tr � M1). If the reaction does

not tick then it must be inactive, so we have the constraint:

zr � tr r ¼ 1‚ . . . ‚R ð2Þ

2.2 Compound variables and constraints

Our approach involves deciding whether compounds are balanced (or not). A

balanced compound is one where the number of molecules needed (con-

sumed) is equal to the number produced. A compound which is balanced can

either be active (number of molecules needed ¼ number produced > 0) or

inactive (number of molecules needed ¼ number produced ¼ 0) in the

pathway. Considering Figure 1, for example, the active balanced compounds

are C2, C5 and C6.

Let ncr be the number of molecules of compound c needed as input for one

tick of reaction r and pcr be the number of molecules of compound c pro-

duced as output by one tick of reaction r. For each compound c (c¼ 1, . . . , C)

define:

bc ¼ 1 if for compound c the number of molecules needed is equal to the

number produced (i.e. if
PR

r¼1 ncrtr ¼
PR

r¼1 pcr tr), 0 otherwise. If bc ¼ 1

compound c is balanced.To whom correspondence should be addressed.
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ec ¼ 1 if for compound c the number of molecules needed is less than the

number produced (i.e. if
PR

r¼1 ncr tr <
PR

r¼1 pcr tr), 0 otherwise. If ec ¼ 1

compound c is produced to excess, since we have ‘spare’ molecules of the

compound to be disposed of (in other pathways).

fc ¼ 1 if for compound c the number of molecules needed is greater than

the number produced (i.e. if
PR

r¼1 ncr tr >
PR

r¼1 pcrtr), 0 otherwise. If fc ¼ 1

compound c must be freely available, since we need ‘spare’ molecules of the

compound that have come from other pathways.

Considering Figure 1, for example, compound C8 is produced to excess

(denoted by the blue colouring) and compounds C3 and C4 are freely

available (denoted by the red colouring). We have the constraint:

bc þ ec þ fc ¼ 1 c ¼ 1‚ . . .‚C: ð3Þ
In order to link the variables ec and fc to the number of molecules of each

compound produced we need the constraints.

ec �
XR
r¼1

pcrtr �
XR
r¼1

ncrtr

 !
/M2 c ¼ 1‚ . . . ‚C ð4Þ

ec � 1þ
XR
r¼1

pcrtr �
XR
r¼1

ncr tr � 1

 !
/M2 c ¼ 1‚ . . . ‚C ð5Þ

fc �
XR
r¼1

ncr tr �
XR
r¼1

pcr tr

 !
/M2 c ¼ 1‚ . . . ‚C ð6Þ

fc � 1þ
XR
r¼1

ncr tr �
XR
r¼1

pcr tr � 1

 !
/M2 c ¼ 1‚ . . . ‚C‚ ð7Þ

where M2 is a large positive constant. Equation (4) forces the zero-one

variable ec to be one if
PR

r¼1 ncr tr <
PR

r¼1 pcrtr whilst Equation (5) forces

ec to be zero if
PR

r¼1 ncr tr �
PR

r¼1 pcr tr . Equations (6) and (7) are as

Equations (4) and (5) but with ncr and pcr interchanged.

2.3 Metabolic constraints

The above has defined the variables that we need and the constraints that

logically (mathematically) must be satisfied given these definitions. We now

Fig. 1. An example metabolic pathway. The reactions and the compounds

(labelledR andC, respectively) are the nodes in the above directed graph. The

numbers associated with each arc are the number of molecules of each com-

pound. For example, reaction R3 takes two molecules of C6 and transforms

them into onemolecule ofC3,C7andC8and twomolecules ofC5.The source

and target compounds (C1 and C7, respectively) are coloured yellow and two

molecules of C1 are transformed into one molecule of C7. The numbers in

brackets after each reaction label are the number of ticks, so for example

reaction R1 ticks twice, each time converting one molecule of C1 and C3 into

onemolecule of C2 andC4. Compounds coloured blue are produced to excess

(number of molecules needed is less than the number produced) whilst com-

pounds coloured red are freely available (number of molecules needed is

greater than the number produced). Compounds shown in white are balanced

(number of molecules needed is equal to the number produced).

Fig. 2. A second pathway involving the same set of reactions/compounds.

Using the path enumeration approach both Figures 1 and 2 correspond to a

path solution of the formC1!R1!C2!R2!C6!R3!C7, from the source

compound C1 to the target compound C7 (equivalently R1!R2!R3).

Although, we have the same set of reactions/compounds here as in

Figure 1 reaction ticks are not a common multiple of those shown in

Figure 1. R1 and R3 have the same tick value as in Figure 1, R2 ticks once

as opposed to twice in Figure 1. Hence, although we have the same path, we

have a different pathway.

Fig. 3. A third pathway involving the same set of reactions/compounds.

As for Figures 1 and 2 we have a path solution of the form C1!R1!
C2!R2!C6!R3!C7. Here one molecule of C1 is transformed to one

molecule of C7. In contrast, Figures 1 and 2 both transform two molecules

of C1 into one molecule of C7.
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present the metabolic constraints that we included in our optimization

approach.

We need constraints specifying that the required number of molecules of

the source compound S (QS) and target compound T (QT) are involved—

these are:

XR
r¼1

nSrtr ¼ QS and
XR
r¼1

pTrtr ¼ QT: ð8Þ

If the source compound and target compound are different then we pro-

duce none of the source compound and consume none of the target com-

pound, i.e.

XR
r¼1

pSr tr ¼
XR
r¼1

nTrtr ¼ 0 if S 6¼ T: ð9Þ

We have found it necessary in our approach to distinguish between

compounds that appear in a significant number of different reactions and

compounds that appear in just a few reactions. We define the percentage

presence (dc) of a compound c to be dc ¼ 100 (number of reactions in which

c appears)/R ¼ 100
PR

r¼1 min[max(pcr, ncr),1]/R. Note that dc is defined

purely with respect to the set of reactions that are considered and hence will

vary as that set of reactions changes. Compounds for which dc� D, (where D
is an input parameter) we call low presence compounds. Compounds for

which dc > D we call high presence compounds. Other authors (Croes et al.,

2006; Horne et al., 2004; Jeong et al., 2000; Ma and Zeng, 2003;Wagner and

Fell, 2001) have also found it necessary to distinguish compounds that

commonly appear from those that appear less often when considering meta-

bolic networks. In the computational results reported later we used D ¼ 4%.

Although this might seem a small value, for our relatively large database (R

¼ 880 cytosolic reactions, involving C ¼ 605 compounds) there were only

16 compounds (shown in Table 1) that had dc > D and so were considered

high presence compounds.

The logic behind this distinction is that high presence compounds appear

in so many reactions that we can reasonably assume that if the metabolic

pathway we are seeking either needs to obtain molecules of a high presence

compound (produced by other pathways); or produces molecules of a high

presence compound that have to be disposed of (in other pathways); then this

can be achieved. High presence compounds can therefore be regarded as

being ‘freely available’ or being ‘produced to excess’ if necessary. Another

way to view high presence compounds is that they represent the interaction/

interface between the pathway we are considering, (which is unknown, but is

to be found) and all the other pathways that exist, (which are unknown, and

remain unknown in terms of our mathematical model).

Low presence compounds, in contrast, cannot be reasonably assumed to

be so easily obtained from, or disposed of in, other pathways and so must be

balanced, i.e. any molecules involved must be internally produced/disposed

of in the pathway chosen from S to T. Hence we have the constraint:

bc ¼ 1 if dc � D; c 6¼ S‚T; c ¼ 1‚ . . . ‚C‚ ð10Þ

which forces low presence compounds (excluding S and T) to be balanced.

Note here that this constraint does not force compounds to be active in the

pathway, merely to be balanced. Equation (10) links our approach to flux

balance analysis (FBA), which underlies extreme pathways and elementary

flux modes, as the requirement that compounds are balanced is the funda-

mental constraint applied there (Klamt and Stelling, 2003; Papin et al., 2003;

Schilling et al., 1999, 2000; Schuster et al., 2000; Stelling et al., 2002).

A similarity between our approach and FBA is that low presence com-

pounds correspond to internal and high presence compounds to external,

compounds in FBA. However one difference is that in our approach external

compounds can be in any state (freely available, produced to excess or

balanced) and their state is decided as a result of solving our optimization

model. A further difference between our approach and FBA is our focus on a

single metabolic pathway.

Our approach is essentially different from either extreme pathways

or elementary flux modes. From a linear optimization viewpoint these

approaches take the entire feasible (continuous) solution space and identify

a special set of solutions within it. For example, the extreme pathway set is

such that all feasible solutions can be written as a non-negative linear

combination of solutions in this set. Because we adopt (see below) an

optimization objective we are seeking just a single solution, not a set of

solutions. Moreover as our optimization model involves integer valued

variables we no longer have a continuous solution space, rather a discrete

disconnected solution space.

In our approach each reaction active in the pathway has at least one active

balanced compound as an output, except any reaction producing the target

compound T. Should a reaction be in the pathway and not satisfy this

condition it can only be producing high presence compounds, which by

definition are freely available anyway. Hence we impose the constraint:

XC
c¼1‚pcr�1

bc � zr pTr ¼ 0; r ¼ 1‚ . . . ‚R ð11Þ

We need to consider the issues of cycles (a closed path in the directed graph

representation, e.g. C3-R1-C2-R2-C6-R3-C3 in Fig. 1) in the pathway.

Cycles do exist in metabolic pathways, but in our approach some types

of cycles are allowed, others are disallowed.

Each reaction in our database of R reactions has a specified direction

associated with it. Define the set B ¼{(a,b) j reaction a and reaction b are

the reverse of each other, a < b}. In order to disallow a cycle around a

reaction and its reverse we impose the constraint:

za þ zb � 1 8 a‚bð Þ 2 B: ð12Þ
Considering a pathway as a directed graph we define a c-cycle to be an

alternating sequence of c active balanced compounds and c active reactions

that starts and ends at the same compound and within which no compound/

reaction is repeated except at the start/end of the sequence. An example

2-cycle (C5-R2-C6-R3-C5) can be seen in Figure 1. In our approach we

regard a c-cycle in a metabolic pathway as allowable if and only if:

� the source compound and the target compound are the same (S¼ T) and

the c-cycle involves that compound or

� the c-cycle involves exactly one high presence balanced compound.

If the above conditions are not met then the c-cycle is disallowed.

The first of these conditions is a logical one. If S ¼ T then the pathway

must be a cycle by definition and so must be allowed. The second of these

Table 1. High presence compounds

Compound Percentage

presence

Hydrogen ion 43.86

Water 28.98

ATP 18.98

Adenosine diphosphate 14.89

Phosphate 14.32

Nicotinamide adenine dinucleotide 9.77

Nicotinamide adenine dinucleotide—reduced 9.32

Diphosphate 8.98

Nicotinamide adenine dinucleotide phosphate 7.16

Carbon dioxide 7.05

Nicotinamide adenine dinucleotide phosphate—reduced 6.93

L-Glutamate 5.91

Coenzyme A 5.23

Pyruvate 4.77

Ammonium 4.43

Adenosine monophosphate 4.43

J.E.Beasley and F.J.Planes
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conditions is based on examination of known pathways. In a random sample

of 25 pathways (taken from http://biocyc.org/ECOLI/, but excluding the ten

pathways dealt with here) we found five pathways where there was an

allowable c-cycle, but only one pathway where there was a disallowed

c-cycle.

To illustrate this second condition if and only if exactly one of the two

balanced compounds (C5 and C6) in the 2-cycle (C5-R2-C6-R3-C5) in

Figure 1 is a high presence compound would the 2-cycle be allowed,

otherwise it would be disallowed.

If a c-cycle is disallowed a constraint must be imposed to prevent it

appearing in the pathway. To illustrate this consider the case c ¼ 2. A

2-cycle involves two balanced compounds and two reactions. Any two

reactions a, b for which there exist two compounds d, e for which: d is

an input for a (nda > 0); and e is an output from a (pea > 0) and e is an input

for b (neb > 0) and d is an output from b (pdb > 0); gives rise to a potential

2-cycle (d-a-e-b-d). If this 2-cycle is disallowed (it does not satisfy the

conditions given above) then the constraint bd + za + be + zb � 3 prevents

it from appearing. In general the constraint required to prevent a c-cycle from

appearing is: sum of the b variables for the compounds in the c-cycle plus

sum of the z variables for the reactions in the c-cycle �2c � 1.

2.4 Objective

Above we have set out a series of variables and constraints (a mathematical

model) that we believe can be used to recover a metabolic pathway. It is

likely that there is more than one feasible solution to the above mathematical

model and so to arrive at a pathway we propose an objective that is to be

optimized. Our computational results (reported below) indicate that two

factors are of importance in terms of an optimization objective: the total

number of reactions involved in the pathway and the number of excess

molecules of Adenosine Triphosphate (ATP).

The total number of reactions involved in the pathway
PR

r¼1 zr

� �
should

be minimized. This makes biological and evolutionary sense as minimising

the number of reactions involved reduces the ‘complexity’ of the pathway.

Broadly speaking we would expect that the fewer the reactions involved in a

pathway the fewer the enzymes that will be needed by an organism to

catalyse the reactions in the pathway. Moreover we would expect that

the more reactions involved in a pathway the greater the chance that it

may be disrupted, for example should an enzyme not be present due to a

genetic defect. Other authors (Ebenhöh and Heinrich, 2003; Meléndez-

Hevia, 1990; Meléndez-Hevia and Isidoro, 1985; Meléndez-Hevia and

Torres, 1988; Meléndez-Hevia et al., 1994,1996; Mittenthal et al., 1998)

have also emphasized minimization of the number of reactions involved in a

metabolic pathway.

Denoting ATP as compound 1 for simplicity the number of excess

molecules of ATP
PR

r¼1 p1r tr �
PR

r¼1 n1r tr

� �
should be maximized.

This makes biological and evolutionary sense as ATP is a key metabolic

compound. ATP has been termed the cell’s energy currency and is the

universal carrier of chemical energy in the cells of all living organisms

from bacteria and fungi to plants and animals including humans. It captures

the chemical energy released by the combustion of nutrients and transfers it

to reactions that require energy. Previous work examining optimality criteria

associated with the structure of metabolic pathways (Heinrich and Ebenhöh,

2001; Heinrich et al., 1997; Meléndez-Hevia et al., 1996,1997; Stephani and
Heinrich, 1998; Stephani et al., 1999) has also focussed on the optimization

of (net) ATP production.

Maximising excess ATP:

� if
PR

r¼1 p1r tr �
PR

r¼1 n1r tr

� �
> 0 produces as many ‘spare’ molecules

of ATP as possible for use in other pathways
� if

PR
r¼1 p1r tr �

PR
r¼1 n1rtr

� �
< 0 uses as few ‘spare’molecules ofATP

(generated in other pathways) as possible in the pathway from S to T.

Attempting to minimize one factor (total number of reactions) whilst

simultaneously maximising another (excess ATP) involves a tradeoff.

Whilst this tradeoff can be treated in a number of ways (e.g. see Heinrich

et al., 1991) in this paper we examine the two extreme cases of this tradeoff:

minimize M3

XR
r¼1

zr

 !
�

XR
r¼1

p1rtr �
XR
r¼1

n1r tr

 !
ð13Þ

maximize M3

XR
r¼1

p1r tr �
XR
r¼1

n1r tr

 !
�

XR
r¼1

zr

 !
‚ ð14Þ

where M3 is a large positive constant. Objective (13) gives primary weight

to minimising the total number of reactions and secondary weight to max-

imising excess ATP, whilst objective (14) gives primary weight to max-

imising excess ATP and secondary weight to minimising the total number of

reactions.

2.5 Overview

Our mathematical optimization model given above for recovering a meta-

bolic pathway [optimize (13) or (14) subject to (1–12) plus c-cycle con-

straints] is a linear integer program. Algorithmically such programs are

solved by linear programming based tree search. Modern software packages

to perform this task, such as (ILOG CPLEX, 2005, http://www.ilog.com/

products/cplex/news/whatsnew.cfm#cplex90), which we used, are well

developed and highly sophisticated.

One computational point here deals with our treatment of c-cycles. We

imposed constraints to prevent all disallowed 2-cycles directly and solved

the integer program as given above. The solution obtained was then checked

to see whether it contained any disallowed c-cycles (for any c>2). Finding a
cycle in the directed graph composed of balanced compounds and active

reactions is (algorithmically) an easy task, and checking to see whether a

c-cycle is allowed or not is trivial. If any disallowed c-cycles were found then

constraints to eliminate them (as discussed above) were added and the

process repeated until a solution without any disallowed c-cycles was found.

Our model neglects three issues: bioenergetics (Gibbs free energy),

enzymes and cofactors/coenzymes. Mathematically all of these can be easily

incorporated into our model, but details as to this have been omitted here as

the data available for the 880 reactions considered was not sufficient to

enable any of these issues to be implemented computationally. Extending

our model to deal with pathways with multiple source/target compounds is

also easily done.

3 RESULTS

3.1 Recovery of known pathways

We applied our optimization model to the 10 pathways shown in

Table 2, which includes a number of well-known pathways fre-

quently encountered in biochemistry texts (e.g. Nelson and Cox,

2005). The reaction/compound database used was drawn from

(Reed et al., 2003, http://systemsbiology.ucsd.edu/organisms/

ecoli/ecoli_reactions.html) and the pathways from (Keseler et al.,
2005; Nelson and Cox, 2005, http://biocyc.org/ECOLI/). One com-

plication arises with pathways 5–10 in Table 2 in that they contain

some low presence unbalanced compounds, [which our approach

would force to be balanced, Equation (10)]. Hence for these path-

ways we did not force these compounds to be balanced [i.e. we

excluded them from Equation (10)]. Table 2 indicates that for 9 of

our 10 pathways one (or both) of our objectives results in the

solution to our mathematical optimization model being precisely

the same as the experimentally determined pathway. In other words

we recover not only the reactions and compounds involved in

the experimentally determined pathway but also its stoichiometry

(reaction ticks). Statistically this is a highly significant result

(significant at the 0.005% level).
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Note in particular that the TCA pathway is recovered by objec-

tive (14). Since this pathway is a cycle of reactions from one

compound to itself (i.e. S ¼ T, QS ¼ QT) it is perhaps not sur-

prising that this pathway is one that gives secondary weight to the

total number of reactions (since we might expect that a cycle from

S back to itself that involves just a few reactions can readily be

found).

Based on Table 2 it appears clear that a pathway is best recovered

by objective (13) if the source compound and target compound are

different, but by objective (14) if the source compound and target

compound are the same.

With respect to computation time the average computation time

over the 20 cases shown in Table 2 was 11 s, no case requiring more

than 85 s (3 GHz pc, 1 Mb RAM). For 9 of the 10 pathways in

Table 2 optimizing using objective (14) took longer than optimizing

using objective (13), on average five times longer.

In 9 of the 10 ‘yes’ cases in Table 2 there is a unique pathway

providing the optimal objective function value and in only one case

is there an alternative pathway providing the same optimal objective

function value.

As we have a significant number of constraints in our optimiza-

tion model the question arises as to the relevance of the objective

adopted. In the limit for example there may be only one unique

solution satisfying the constraints, and if so the objective adopted

becomes irrelevant. We have investigated this issue and have found

that in all 10 ‘yes’ cases in Table 2 we have more than one solution

satisfying the constraints.

Equation (9) explicitly excludes solutions in which reactions in

the pathway produce any of the source compound (or consume any

of the target compound). If we amend our optimization model,

(which is trivially done) to allow such solutions then, with respect

to Table 2, we degrade the results slightly, failing to recover path-

way 9, NAD biosynthesis. In a random sample of 25 pathways

(taken from http://biocyc.org/ECOLI/, but excluding the 10 path-

ways dealt with here) we found only one pathway in which Equation

(9) was violated (and that was for a pathway where the source

compound was itself a high presence compound).

If we do not impose the constraint on allowable c-cycles then,

with respect to Table 2, we degrade the results significantly.

Objective (14) now fails to recover any pathway and objective

(13) now only recovers 6 pathways.

As our approach is linked to FBA the question arises as to the

results we would obtain were we to apply a FBA based approach.

Here such an approach would be to optimize (13) or (14) subject

to (1–10), i.e. excluding Equations (11) and (12) and c-cycle

constraints. If we do this then, with respect to Table 2, we degrade

the results significantly. Objective (13) now only recovers 5 path-

ways and objective (14) fails to recover the TCA pathway (only

recovering one pathway).

3.2 Discussion

In our optimization model it is necessary to specify the user

defined input parameter D, which determines whether a compound

is a low presence, or a high presence compound. We conducted a

sensitivity analysis as to how the results change as D changes. This

can be seen in Table 3, where we have summarized the number of

‘yes’ entries that we obtained in the equivalent of Table 2 for

varying D values. It is clear from this table that over a fairly wide

range of D values a significant number of ‘yes’ entries are

obtained.

Note here that the value of D ¼ 4% associated with the results

presented in Table 2 was originally chosen based on limited com-

putational experience with a number of pathways. It was not chosen

via systematic enumeration of results for all pathways for a range of

D values and then selection of the best D value. As can be seen from

Table 3 we could improve the results presented in Table 2 were

we to use D ¼ 5% for example.

In our optimization model it is necessary to specify the number of

molecules of the source and target compounds (QS, QT) involved in

the pathway. For the results shown in Table 2 these values have

(obviously) been taken as equal to those associated with the experi-

mentally determined pathway. Our optimization model can also

recover the particular (QS, QT) values observed.

As an illustration of this the Gluconeogenesis pathway in Table 2

has (QS, QT) ¼ (2, 1), requiring nine reactions and consuming four

molecules of ATP. For this pathway Table 4 shows for a number of

different (QS, QT) pairs (QS, QT � 6) the number of reactions and

the excess ATP when our optimization model is solved using objec-

tive (13). For this pathway our optimization model indicates that the

pair (QS, QT)¼ (2, 1) dominates all other cases (since it involves an

equal number of reactions but uses less ATP). Hence in this case our

optimization model recovers the (QS, QT) ¼ (2, 1) pair observed in

the experimentally determined pathway.

Table 2. Metabolic pathways considered

Pathway

number

Pathway name Pathway recovered?

Objective (13) Objective (14)

1 Gluconeogenesis Yes No

2 Glycogen Yes No

3 Glycolysis Yes Yes

4 Proline biosynthesis Yes No

5 Ketogluconate metabolism No No

6 Pentose phosphate Yes No

7 Salvage pathway

deoxythymidine phosphate

Yes No

8 Tricarboxylic acid (citric acid,

citrate, TCA, Krebs) cycle

No Yes

9 NAD biosynthesis Yes No

10 Arginine biosynthesis Yes No

Number of ‘yes’ entries 8 2

Table 3. Sensitivity analysis relating to D

Number of ‘yes’ entries

Value of D (%) Objective (13) Objective (14) Total

2.5 4 0 4

3 7 2 9

3.5 7 2 9

4 8 2 10

4.5 8 5 13

5 8 6 14

5.5 8 6 14
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We have repeated the analysis shown in Table 4 for the other

pathways. Our judgment in that for 8 of the 10 pathways our

optimization model recovers the (QS, QT) pair observed in the

experimentally determined pathway. Statistically this is a highly

significant result (significant at the 0.001% level).

4 CONCLUSIONS

In essence the approach given above hypothesises that metabolic

pathways have evolved so as to be the optimal solution of the

mathematical optimization model we have proposed (balancing

minimising the number of reactions with maximising excess

ATP, whilst subject to a variety of constraints). Our success (though

not complete) at using our optimization model to recover the

experimentally determined pathways, including their stoichiometry,

we have examined supports this hypothesis.

Although for reasons of space we will not explore it here, having

a mathematical model for metabolic pathway recovery advances

our ability:

� to predict pathways, e.g. those resulting should a reaction not

function due to a genetic defect meaning a catalysing enzyme is

not available,

� to investigate how to disrupt pathways, e.g. by finding those

reactions/enzymes that should be disabled so as to prevent effi-

cient pathway functioning.

Being able to accomplish prediction and disruption via a mathe-

matical model has clear and significant advantages over any other

means.
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