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ABSTRACT

Motivation: Cells continuously reprogram their gene ex-
pression network as they move through the cell cycle or
sense changes in their environment. In order to under-
stand the regulation of cells, time series expression pro-
files provide a more complete picture than single time point
expression profiles. Few analysis techniques, however, are
well suited to modelling such time series data.

Results: We describe an approach that naturally handles
time series data with the capabilities of modelling causality,
feedback loops, and environmental or hidden variables
using a Dynamic Bayesian network. We also present a
novel way of combining prior biological knowledge and
current observations to improve the quality of analysis and
to model interactions between sets of genes rather than
individual genes. Our approach is evaluated on time series
expression data measured in response to physiological
changes that affect tryptophan metabolism in E. coli.
Results indicate that this approach is capable of finding
correlations between sets of related genes.

Contact: ong@cs.wisc.edu

Keywords: Dynamic Bayesian networks; regulatory path-
ways; time series gene expression; operon model.

INTRODUCTION

Living cells contain thousands of genes, each of which
codes for one or more proteins. Many of these proteins
in turn regulate expression of genes through complex
regulatory pathways to accommodate changes in their
environment or carry out the organism’s developmental
program. The key to understanding living processes is
uncovering this genome-wide circuitry that underlies the
regulation of cells.

Genome-wide DNA microarrays are a powerful tool,
providing a glimpse of the signals and interactions within
regulatory pathways of the cell. They enable the simulta-
neous measurement of mRNA abundance of most if not
all identified genes in a genome under normal conditions
or under various treatments or perturbations. A drawback

of the current technology of DNA microarrays is that
low mRNA expression levels can be very hard to detect.
Additionally, steady state or single time point expression
profiles do not allow us to discover sequences of regula-
tory events. The former problem can be controlled in some
genes by the use of biological knowledge in the analysis.
The latter problem can be alleviated by performing time
series experiments using DNA microarrays, which will
provide a better picture of the signals and interactions
over time'.

Friedman et al. (2000) were the first to address the task
of determining properties of the transcriptional program of
an organism (Baker’s yeast) by using Bayesian networks
to analyse gene expression data. Their method can repre-
sent the dependence between interacting genes, but it does
not show how genes regulate each other over time in the
complex workings of genetic networks. Analysis of time
series data potentially allows us to determine regulatory
pathways rather than just associating genes that are co-
regulated together.

In certain organisms such as Escherichia coli, there
are many sets of genes that are already known to be
transcribed together and hence strongly co-regulated.
These sequences of genes that are transcribed together into
mRNA on their way to being expressed as proteins are
known as operons. In this case, since we already know or
can predict which genes are regulated together, it would
be ideal to use this knowledge in the analysis technique
rather than relearn it.

Using a Dynamic Bayesian network (DBN), a close rel-
ative of Bayesian network (BN), has several advantages.
In addition to being well suited to handling time series
data, this framework can handle missing data in a prin-
cipled way as well as model stochasticity, prior knowl-
edge and hidden variables (Murphy and Mian, 1999). To
our knowledge Friedman et al. (1998) and Murphy and

TTime series experiments will provide a better understanding of the
interactions within the cell provided the time steps are taken within intervals
appropriate for capturing important molecular activity.
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Mian (1999) are to be credited with first proposing the
suitability of DBNs for modelling time series gene ex-
pression microarray data. The primary contribution of our
paper is to test this DBN approach on real time series mi-
croarray data. A secondary contribution is the incorpora-
tion of the results of a previous application of Bayesian
inference (naive Bayes) as background knowledge for this
new application. This naive Bayes approach used a vari-
ety of evidence sources, including earlier microarray data
from the Blattner Laboratory at the University of Wiscon-
sin, to predict the operons in E. coli. The goal of that work
was to produce an accurate operon map that could be used
subsequently in the prediction of regulatory pathways in
E. coli.

The present paper describes a next step in this direc-
tion. The focus of this paper addresses how one could
approximately model the interactions of sets of genes
automatically using prior biological knowledge and
time series expression profiles. Does the use of prior
knowledge or the use of time series expression profiles
help determine broader correlations? Can we learn hier-
archical connections between sets of co-regulated genes,
and ultimately learn connections among multiple signal
transduction pathways?

We introduce an approach to determining transcriptional
regulatory pathways by applying the Dynamic Bayesian
network to time series gene expression data from DNA
microarray hybridization experiments. Our approach in-
volves building an initial DBN structure that exploits bio-
logical knowledge of operons and their associated genes.
We further use a domain expert’s best guess to initialize
the probabilities of how the state of an operon might affect
the genes within that operon or that of another operon.

We evaluate our approach using a recent study by
Khodursky et al. (2000), who performed time series
experiments to analyse gene expression in response to
physiological changes that affect tryptophan metabolism
in E. coli.

MATERIALS: DATA AND SOFTWARE

To test our hypotheses, this paper reports the analysis of
time series gene expression data from Khodursky er al.
(2000). This data set is used because it is focused on
tryptophan metabolism, a well studied regulatory process,
making it an excellent check for the reverse engineering of
a genetic network. Our eventual goal is to develop a tool
for analysing larger collections of time series expression
data on E. coli.

It should be noted that a common problem with current
microarray expression data is a small number of data
points and a large number of features. This is especially
true of time series data. The present data set consists of
12 data points, from 4 time steps under tryptophan-rich
conditions and 2 sets of 4 time steps under tryptophan-

starved conditions. These data points consist of 169 genes
that were selected based on their expression levels by
Khodursky et al. (2000), and were the only data made
available at the start of the present study. Nevertheless
it is hoped that discretization and reasonable priors will
partially offset noise and permit useful results to be
obtained. All the data for both conditions are used (except
where indicated) in each of the experiments below to
learn how the different environmental conditions affect the
regulatory pathway.

The Bayes Net Toolbox (Murphy, 2001) software
package written by Kevin Murphy was used for the
experiments in this paper because it already provided the
necessary functionalities for building Bayesian networks,
as well as an implementation of Expectation Maximiza-
tion (EM) for learning the conditional probability tables.
We constructed the initial BN structure and learned the
parameters of the model using the methods provided
in Bayes Net Toolbox. Within this framework we im-
plemented the structure search described in the Section
Structure learning.

Our operon map includes both known operons from
Salgado et al. (1999) and predicted operons from Craven
et al. (2000). The latter work maps every known and
putative gene in the E. coli genome into its most probable
operon. This map makes the simplifying assumption
(rarely but occasionally violated in reality) that every
gene appears in exactly one operon. The accuracy of the
map (percentage of genes placed in the correct operon) is
estimated at about 95% using 10-fold cross-validation.

We assume that this operon map is correct and use it
to build our initial BN and DBN structures?. Furthermore,
the initial probabilities used in our BN and DBN structures
are Dirichlet priors obtained from a domain expert. The
initial probabilities for DBN could be dependent on the
nature of the experiments and the amount of elapsed time
between time points®. However, our only insight into these
dependencies was gleaned largely from looking at the
data; hence, we did not encode these insights into our
DBN to avoid biasing our results.

The evidence variables in our BN and DBN are the dis-
cretized gene expression levels from the experiments with
excess tryptophan and tryptophan starvation. We define
up regulated (1) or down regulated () as the possible
discrete values to avoid choosing arbitrary thresholds.
In particular, we compare the expression levels between
two consecutive time series measurements to determine
whether there was an increase or decrease in expression
levels. Note that we are determining the relative change
in expression from one time step to another (even for the

*The full operon map, with an interactive graphical interface, is available on-
line at http://apps.biostat.wisc.edu/~ml-group/GenomeViewerButton.html.
YIf time points are not equally spaced, we may want to initialize the DBN
with different probabilities across time points.
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non time series BN model) rather than absolute absent or
present calls.

DYNAMIC BAYESIAN NETWORK
Modelling relationships among genes

The task of automatically discovering a model that rep-
resents relationships among genes from noisy expression
data involves a significant amount of uncertainty. The en-
tire experimental process allows for the introduction of un-
countable variables as well as measurement errors. Also,
the fact that we can only partially observe the happenings
among a collection of cells makes it impossible to con-
struct an accurate model from expression data. Therefore
it is helpful to model this uncertainty. Instead of simply
stating gene A and gene B are correlated, probability pro-
vides us with a way to express how certain we are about
the correlation. If evidence strongly suggests that gene A
and gene B are highly correlated, (i.e., the data show that
when expression level of gene A is up regulated (1), then
gene B is also up regulated) then the probability that gene
B is 1 given that gene A is 1 would be close to 1, other-
wise it would be closer to 0. This probability assignment
can be denoted as P(gene B =1 |gene A =1) = 0.95.

A visual, intuitive and compact way of representing
relationships between genes is via the use of graphical
structures. We let genes A and B be represented by nodes
and an arc from gene A to gene B denote that gene A
influences gene B. We associate small probability tables
with the nodes to summarize how gene B is affected
by gene A (its parent) and how gene A is not affected
by anything since it has no parent. Evidence or data for
genes A and B are assigned to gene A and B’s nodes,
respectively, and are used to adjust the values in the local
probability tables. This example of a Bayesian network is
shown in Figure la.

In order to find the relationships among genes in our
dataset, we can use the BN model to represent all the
genes in our dataset. Initial or prior probability settings
for the local probability tables can be uniform (% where n
is the number of possible values) if no prior information
is known. The local probability tables can then be updated
automatically based on actual counts of the data. Now we
can perform a search for the most likely graph given the
data.

We construct such a network, called BN, and perform
the structure search described in the Section Structure
learning. Below we compare the results of this network
to that of a Bayesian network with an explicit model of
operons. By performing this comparison we will be able
to determine whether the latter model is better at learning
useful correlations among genes than the straightforward
approach of BN.,.
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Fig. 1. (a) Example of a Bayesian network structure. 1 represents up
regulation and |, represents down regulation. (b) Nodes that are not
shaded are hidden, i.e., nodes without observable data, and shaded
nodes indicate nodes that have observable data. Hence the operon
and activator nodes are hidden and the gene nodes are observed
nodes.

Incorporating prior knowledge or environmental
factors

There are three important reasons to incorporate explicit
operon nodes into the BN model even though operon
transcription levels are not observed. First, if we use
nodes for genes only, and allow the learning algorithm
to induce arcs between genes, it will induce many
‘useless’ arcs between genes in the same operon. For
example, if gene A and gene B are both in operon O,
then we would expect the expression level of gene A
to be an excellent predictor of the expression level of
gene B, but this would provide no new insight. Second,
incorporation of operons in the model can help combat
problems due to noise. For example, the operon that
codes for tryptophan, trpLEDCBA (also known as trp),
contains a leader, trpL, which is not detected and five
genes: trpA, trpB, trpC, trpD, and trpE. Because of
noise in microarray experiments, the measured expression
level for #rpC might be low. But the five different
gene expression measurements give us essentially five
independent indicators of trp transcription, reducing the
effect of noise in the measurement of trpC expression.
Third, by searching for interactions among operons rather
than genes, we reduce the space of possible models.

Let us assume that we know gene A and gene B are
co-transcribed genes in an operon, operon O, and that
operon O is transcribed into mRNA when it is initiated
by a molecule called an activator, activator O. The fact
that gene A and gene B are in the same operon explains
the high correlation between the two genes. Hence we
can restructure the graph to represent this knowledge in
Figure 1b. Because we cannot measure the operon or
activator’s expression level directly, we regard them as
hidden nodes since we do not have any evidence for those
nodes. If technology permitted us to obtain a measure of
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the amount of activator molecule in a cell or if we knew the
amount of activator molecule present in the environment,
we would model the activator node as an observed node
just like genes A and B. The values in the local probability
tables for the hidden nodes are estimated from the graph
structure, observed data and initial or prior probabilities
associated with the hidden nodes.

Note that the local probability tables for gene A and
gene B have changed from Figure la. Gene A and
gene B now depend on their parent, operon O. While
gene A and gene B are correlated, once we know the
value of operon O (that it is activated), gene A becomes
independent of gene B. Additionally, genes A and B are
independent of activator O given its parent, operon O.
This is known as conditional independence, which is a key
property of Bayesian networks. The lack of arcs implies
conditional independence, i.e., a node is independent of
all non-descendent nodes in the graph given its parents.
A fundamental property of BNs is that given an acyclic
graph and the set of local probabilities associated with
it (also known as conditional probability tables since the
probabilities are conditional on the parent’s values) we can
determine the joint probability distribution uniquely.

We build our initial BN structure with the model of
operons as described above for all the genes in our dataset
from our operon map. Since an operon’s transcription
level affects the expression levels of the genes in that
operon, we show this causality with arcs from the operon
to its associated genes. Uniform priors are used for the
operons, and a domain expert’s best guess is used to set
the informative priors for how the effect on an operon
would affect the genes within that operon. The latter initial
probability values, the same as those in our initial DBN
model, are shown abstractly in Figure 4. The search results
for this BN model with operons, BN,,,, are compared with
those of BN, in the Section Results.

Two other experiments using the BN,, structure are
performed to determine whether separating the data based
on the treatment of the cells would allow us to learn a finer
structure. BNy cxcess uses the data under tryptophan-
rich conditions, whereas BNy, _siqrve uses data under
tryptophan-starved conditions.

Modelling the concept of time

Time series expression data can provide insight into
causality” and the regulation of cells as they change over
time. Dynamic Bayesian networks gracefully scale up
BNs to handle the analysis of time series data. In addition,
DBNs can also model feedback loops, which are not
possible for BNs due to the acyclicity constraint. To see
why this is an important feature for modelling regulatory

1 Causality can also be inferred by using the method proposed by Pe’er et al.
(2001) if cells with deletions or mutations of specific genes are available.
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produces
tryptophan
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Fig. 2. A model (not a BNgraph) of how the 9 key operons
(italicized) in the tryptophan regulon, groups of operons that are co-
regulated, influence each other. This structure was constructed by
the authors based on Khodursky et al. (2000). Operon names are
abbreviated. The tryptophan node represents the molecule. tyrR
is not part of the tryptophan regulon but it influences key operons
within the regulon. The tryptophan and tyrR nodes serve to connect

L R R
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the interactions between the 9 key operons.

operon
o

(operon) (vpern)

NG o/

Fig. 3. An example of a Dynamic Bayesian network structure. Time
slices are represented by + = 0, = 1,...,¢t = n, where n is
the number of time step experiments for which there are observable
data.

pathways, see Figure 2, which shows how some operons
rely on a feedback mechanism to regulate transcription.

The Dynamic Bayesian network relies on the same
properties as that of Bayesian networks with the addition
of modelling genes or operons as they evolve over time.
Using a simplified version of the model from Figure 1b as
an example, we show in Figure 3 how the concept of time
can be modelled by simply replicating the structure for
each time step. The structure at time ¢ = 0 is not the same
as the other time slices because the purpose of operon O
at r = 0 is to model the effect it has on operon O at t = 1
(to start off the chain).

Since each time slice in a DBN is identical in structure
to the next, we can just replicate the structure of BN,
four times (our data has four time steps) to build our
initial DBN structure modelling operons. This leaves
undetermined the arcs from the hidden variables of one
time step to the hidden variables of the next time step.
Since an operon’s expression level from one time step
typically reflects its expression level at the next time step,
we add these arcs as shown in the detailed DBN structure
in Figure 5.

Note that the operons at time ¢ 4 1 (operon(i);+1, where
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Fig. 4. Abstract Dynamic Bayesian network structure with condi-
tional probability tables (CPTs) for each arc in the model. Time
slices 3 and 4 (not shown) are identical to 1 and 2.

Fig. 5. Detailed view of our initial Dynamic Bayesian network
structure showing intra and inter time slice connections.

i indicates the ith operon) is independent of operon(i);—1
given operon(i); because of the conditional independence
assumptions. This states that the future is independent
of the past given the present. We can work around this
assumption by adding an additional arc from operon,_»
to operon, to indicate that the present also depends
on the events from two time steps ago. However, the
computational costs increase exponentially.

As before, the domain expert’s best guess is used to
set the initial probability values. The abstract structure
of our initial DBN model, DBN,,,, along with the prior
probabilities are shown in Figure 4. Any additional
arc among hidden nodes, as well as all posterior CPT
probabilities, must be inferred from time series microarray
data for E. coli.

Structure learning

To perform structure learning for our BN models, we
focused on key genes or operons known to be affected by
the absence or presence of tryptophan in the environment.
For BN, ., there are 15 such key genes. Similarly, for
BN,, we focused on the corresponding 9 key operons.
For each of these genes (operons) in BN,., (BN,,), we
consider all the other genes (operons) as possible parents.
At each step, we use the Expectation Maximization (EM)
algorithm to update all CPTs in the model to give a (local)
maximum log likelihood. EM will infer values for the
hidden variables as well as for missing observations. The
log likelihood score from the previous step is used as the
scoring measure to select the 20 most probable parents.
This is done because EM is not guaranteed to find the
maximally probable parent and because a large number of
structures have the same or very close scores.

Because of limited data, we consider only simple DBN
structural models in which each operon has at most two
incoming arcs, from (1) the same operon at the previous
time step, and (2) one other operon from the previous
time step. Each operon begins with one parent—the same
operon at the previous time step. In our full algorithm,
for each operon we consider adding a different operon
from the previous time step as a second parent. Each
potential parent is considered. For each such potential
second parent, the EM algorithm is employed. If any
choice of second parent increases the log likelihood, then
the choice that provides the highest log likelihood is
selected.

In general, the preceding cycle through all the operons
may need to be repeated several times for convergence
to a locally optimal structure. Despite our structural
restrictions the run time would take over 9 months
using the junction tree algorithm as implemented in BN
Toolbox. This is because of the large number of nodes
(142 operons, 169 genes, for four time steps) in our DBN
structure. For the long-term, we are experimenting with
approximate approaches to speed up the computations.
For the short-term, we focus the algorithm on the 9 key
operons; the algorithm cycles once through only these,
but all the other 141 operons are considered as potential
parents. For each operon we record the best 20 choices for
the second parent.

RESULTS

The results from the BN, and BN,,, experiments indicate
that modelling operons into the BN structure provide
a more comprehensive view of the tryptophan regulon,
groups of operons that are co-regulated. Without the
operon structure, BN,.., found some correlations between
genes in the same operon but missed many correlations
between genes in different operons.

S$245



I.M.Ong et al.

The BN,, structure was able to identify correlations
with direct siblings (other children of a node’s parent),
parents, or children for 4 of the 9 operons. frp’s parent,
trpR, and siblings, aroH and mtr, were among trp’s 20
most probable parents. Similarly, each of trpR, mtr and
aroH identified correlations with each other and frpR. The
other 3 operons showed correlations with 2 of the 9 key
operons.

The BN, results showed that all 15 key genes corre-
lated with a subset of these six genes: trpR, trp, aroH, mtr,
aroF and aroP. BN, found correlations between some
genes but missed correlations between other genes within
the same operon. All five genes in the #rp operon were
found to be probable second parents when any of the 5
were present. However, tmaA and aroF were not always
found to be correlated with tnaB and tyrA, respectively.

It was interesting that the results for BN, _cxcess Showed
that the operon hisGDCBHAFI influenced 5 of the 9
key operons. These histidine genes might be correlated
to operons in the tryptophan regulon or, alternatively,
the cells may have consumed all the histidine in the
media resulting in histidine biosynthesis. BN, _¢xcess also
showed that many of the 9 key operons were influenced by
the excess tryptophan condition as all of the key operons
(except trpR) have between 2 to 6 (which includes #rpR)
of the 9 operons as a possible 2nd parent.

We were surprised by the results from BNy, sqrve-
BNop_starve showed that known operons, hybGFED-
CBA, artPIQMJ, rplK-rplA, feclRABCDE, and predicted
operons, yciGFE, yafDE, yi21-yi22, were influenced by
all of the 9 key operons. Khodursky et al. (2000) note
that in their cluster analysis genes yciF and yciG form
a tight cluster with #rpR and related operons. They also
noticed that arginine biosynthetic operons were sensitive
to tryptophan changes. The artPIQMJ operon codes for
proteins involved in the arginine transport system.

Are the other correlations meaningful? It turns out
that the rplK ribosomal protein is involved in regulating
the response to starvation for amino acids (Yang et al.,
2001). The feclRABCDE operon is actually 2 distinct
operons fecABCDE and fecIR (probably an error in the
database of Salgado et al. (1999)). fecABCDE is induced
under an iron limiting condition or in the presence of
ferric citrate and is under the control of the regulator
FUR. We are not sure why it would be involved in the
tryptophan starvation response, but aroH is known to be
more active in the presence of iron (Ray et al., 1991). The
hybGFEDCBA operon encodes hydrogenase-2, usually
used under conditions of anaerobiosis (low oxygen). We
do not know of a reason why the culture conditions would
lead to low oxygen levels, although constant vigorous
shaking of the culture during growth is important for
maintaining good aerobic growth conditions. The results
could be related to unknown factors in the experimental

methodology of Khodursky et al. (2000) such as oxygen
levels. yci2l and yci22 proteins are encoded by IS2, an
insertion sequence in E. coli. These insertion sequences
are mobile DNA elements that are often induced by
growth of cells under stressful conditions. The role of the
vafD and yafE proteins is not clear as they are hypothetical
proteins.

BNyp_starve also showed that trpR was identified to be
correlated with almost all of the 9 key operons under the
tryptophan starvation condition. m#r and trp were also
among the 20 most probable parents for 2 of the 9 operons.
No possible correlation was found for any of the other 9
operons.

A summary of the results from the search of the 20
most probable parents in the DBN structure are listed in
Table 1. Seven of the operons that were found among the
20 best parents would correctly model causality if they
were selected as the second best parent to be added. The
probability of at least 1 of the 9 operons plus #yrR being in
the top 20 best parents for each of the 9 operons is quite
low, at 0.059". While further experimentation is required,
these results provide some initial evidence supporting the
use of time series data to learn causality.

DISCUSSION AND FUTURE DIRECTIONS

We have reported an initial experiment in learning Dy-
namic Bayesian networks as a means of modelling time
series gene expression microarray data, with the aim of
gaining insights into regulatory pathways. The prior struc-
ture and prior CPTs of our BN and DBN encode back-
ground knowledge about gene expression in the organism
being modelled, E. coli. The experiments provide evidence
that BN and DBN, together with an explicit model of oper-
ons, are capable of identifying operons in E. coli that are
in a common regulatory pathway.

There are several directions for further research. First,
a larger data set may improve the performance of the
approach and allow us to determine whether causality
can be determined from time series data. Some additional
time series data recently have been made available by
the Blattner Laboratory at the University of Wisconsin,
under a different set of conditions, and we anticipate the
availability of further time series data on E. coli in the year
ahead. Nevertheless, potentially offsetting any such gain is
the need to include additional genes (observed variables)
and operons (hidden variables) in the analysis. The present
data set used only 169 genes appearing in 142 operons.
But the full E. coli genome has over 4000 genes, and

I'The probability of picking an operon that is not one of the 9 key operons or
tyrR (if all genes are equally likely) is %. The probability of picking all 20
operons that are not one of the 10 is (%)20 = 0.27. Thus, the probability
of getting at least one of the 9 key operons is 1 — 0.27 = 0.73. However, the

probability of doing this for all 9 operons is (0.73)° = 0.059.
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Table 1. Summary of the results of the DBN model. The operons listed on the right are one of the 9 key operons or fyrR that appeared as one of the 20 most

probable parents of the operons on the left.

Key operons in tryptophan

Operons known to be involved in the tryptophan regulatory pathway that

regulatory pathway appeared as one of the 20 most probable parents of the operon on the left
aroF-tyrA tyrR, trpR

aroG aroF-tyrA, aroP, aroH, tyrR

aroH tyrR

aroL-yaiA-aroM trpR, tyrR

aroP tyrR

mtr tyrR

tnal AB aroF-tyrA

trpLEDCBA aroH, tyrR

trpR aroG

the predicted operon map has well over 1000 multigene
operons.

A second, and perhaps more important, shortcoming
of the present work is that computation time did not
permit a more encompassing search to be employed. Our
full search algorithm modifies incoming arcs to every
hidden node. As the arcs coming into one hidden node
are modified, and the CPTs updated, this node may
become a better parent for another node. A cascade
of such improvements could improve the fit of the
model dramatically and hence, potentially, the match of
the model with the actual regulatory structure of the
organism. Therefore, a crucial direction for further work
is to decrease the computation time of the learning
algorithm. An approximate approach to updating CPTs
and calculating scores based on local Markov blanket
(the parents, children, and children’s parents of a node)
of operons, where the structure changed, might speed
up the learning process. Alternatively, increasing the
efficiency of the implementation of the learning algorithm
by parallel execution on a Condor pool (Litzkow et al.,
1988) can allow the full algorithm to be tested. In addition,
the faster implementation will facilitate more extensive
experimentation, including cross-validation to estimate
the accuracies of expression levels that the model predicts
for various genes at various time steps.

Third, we could include a variety of other variables, hid-
den or observed. Observed variables might include envi-
ronmental factors such as glucose, tryptophan or temper-
ature. Unobserved variables might include transcription
factors and other protein products. In the present work
we omitted these because we wanted to see the extent to
which changes in the expression levels of a gene could be
predicted solely on the basis of changes to other genes,
regardless of the environmental causes of those changes.

This paper has presented the first application (to our
knowledge) of Dynamic Bayesian networks to time se-
ries gene expression microarray data. It also has shown
how background knowledge about an organism’s genome
(in this case, an operon map) can be used to construct the
initial, core structure of the DBN. This background knowl-
edge can be taken from the scientific literature or can itself
be the output of another modelling system. In this case, the
operon map consisted partially of each type of knowledge.
This paper has provided some evidence that the results of
such an application of DBNs provide additional insights
into the organism’s regulatory network and that such an
application has the potential to reveal hierarchical connec-
tions among signal transduction pathways. This paper also
has demonstrated that our DBN approach has the potential
for inducing direct causal links, that is, direct arcs in the
regulatory network. The approach proposed by Pe’er et al.
(2001) can be used in conjunction with our approach if
knockout experiments are available. Further experiments
will provide insight into whether causality can really be
learned from time series data.
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