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An essential component of proteomics is the efficient translation of mass spectrometry data into peptide 
identifications.  We have developed a semi-supervised machine learning algorithm, Percolator, that 
dynamically learns to combine multiple scores from mapping a fragmentation spectrum to a peptide in a 
sequence database.  Since it is difficult a priori to determine which spectra are well matched to a target 
sequence database, the method instead makes use of the fact that matches of the observed spectra against a 
shuffled sequence database can be trusted as examples of bad identifications.  The SVM-based method 
dramatically increases the number of true spectrum identifications for a given false discovery rate, relative 
to the current state of the art.  Percolator’s power derives primarily from its ability to learn the unique 
features of each data set, a property that current methods are unable to do.  Alternative methods such as 
PeptideProphet [Anal. Chem. 74:5383] are pre-trained using a collection of “true” and “false” peptide 
identifications. 
 
We tested Percolator’s and PeptideProphet’s performance on a collected set of spectra from yeast digested 
with trypsin (Figure 1A).  The results show that Percolator clearly outperforms PeptideProphet.  However, 
Percolator’s real strength is apparent when the data set differs substantially from the data set used to train 
PeptideProphet.  In a second experiment, we ran Percolator and PeptideProphet on a data set with very 
different characteristics from the dataset that PeptideProphet was trained on: a yeast set digested with 
elastase instead of trypsin (Figure 1B).  As expected, PeptideProphet’s performance degrades on this data 
set, relative to Percolator, even though we ran PeptideProphet in its “elastase” mode: Percolator finds 75% 
more peptide-specrum matches than PeptideProphet at a false discovery rate of 1%. Finally, to show that 
the semi-supervised learning is the source of Percolator’s good performance, we trained Percolator on the 
tryptic data set and tested on the elastase dataset.  As expected, Percolator does not perform very well in 
this case (Figure 1B; light blue curve). 
 
In summary, Figures 1A and 1B show that Percolator performs significantly better than PeptideProphet for 
two reasons: because of its semi-supervised nature, Percolator is free to use a larger set of features, and 
Percolator learns the relative weights of these features directly from the data being analyzed. 
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Figure 1: Performance of Percolator and and PeptideProphet. Each panel plots the number of peptide-spectrum 
matches versus a metric closely related to the false discovery rate, the q-value [PNAS 100:9440]. Performance was 
measured on yeast sets digested with (A) trypsin (B) elastase. PeptideProphet (red curve) is not able to generalize to the 
new kind of data even though the method is run in elastase mode. The same behavior is observed when training 
Percolator on tryptic data but testing on the elastase data (B; light blue curve). 
 
 


