Machine Learning Structural and Functional Proteomics

Pierre Baldi* and Gianluca Pollastri
Department of Information and Computer Science
Institute for Genomics and Bioinformatics
University of California, Irvine
Irvine, CA 92697-3425
(949) 824-5809
(949) 824-4056 (FAX)
{gpollast,pfbaldi} Qics.uci.edu

Abstract

While new high-throughput experimental tech-
niques are being developed for proteomics appli-
cations (e.g. mass spectrometry, protein chips),
it is clear that given the fundamental impor-
tance of proteins to biology, biotechnology, and
medicine, computer methods that can rapidly sift
through massive amounts of data and help deter-
mine the structure and function of a large num-
ber of proteins in a given genome remain impor-
tant. We provide a brief overview of the appli-
cation of machine learning methods to proteomic
problems. In particular, we outline a novel strat-
egy for the complete prediction of protein 3D
coordinates. The strategy relies on three main
successive stages: prediction of structural fea-
tures, prediction of topology, and prediction of
actual coordinates. We provide a progress re-
port under this strategy and describe the corre-
sponding suite of web servers available through
http://promoter.ics.uci.edu/BRNN-PRED/. Ap-
plications to functional proteomics are briefly dis-
cussed.

Keywords: protein structure prediction, secondary
structure, protein contacts, contact map, recurrent neu-
ral networks, solvent accessibility, evolutionary infor-
mation.

Introduction: Proteins and Proteomics

Proteins are polymer chains made of 20 simpler build-
ing blocks, or amino acids, that function as the molec-
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ular machines of living systems. While proteins are
first characterized by their primary sequences (i.e. the
corresponding sequence of amino acids), they gener-
ally fold into complex three-dimensional structures that
are essential for their function. Some proteins serve as
structural building blocks for the cell, but the major-
ity can be viewed as molecular “processors” that in-
teract with each other (e.g signaling networks), with
smaller molecules (e.g. metabolic networks), and with
genetic information contained in DNA (e.g. regulatory
networks), to form the complex circuitry of biochemical
reactions associated with life. To a very first approx-
imation, a gene codes for a protein and there are of
the order of 40,000 genes in a typical mammalian cell.
Each corresponding protein can exist in multiple copies,
as well as different chemical variants (posttranslational
modification) so that a typical mammalian cell contains
about 1 billion protein molecules.

Genome and other sequencing projects are produc-
ing a data deluge of DNA and protein sequence data.
In current data bases and sequencing projects, roughly
30% of proteins do not resemble any other known se-
quence and have no structure or functions assigned to
them. Another 20% are homologous to a known se-
quence, for which the structure and/or functions re-
main also largely unknown. Genomics, the large-scale
analysis of complete genomes, has its counterpart at the
protein level in what has become known as proteomics
(Kahn, 1995). Proteomes contain the total protein ex-
pression of a cell at a given time. Proteome analy-
sis not only deals with determining the sequence and
function of protein-encoding genes, but also is strongly
concerned with the precise biochemical state of each
protein in its posttranslational form.



Traditional experimental techniques for determining
the structure and/or function of a protein, such as X-
ray diffraction or NMR methods, remain slow and labo-
rious and do not scale up to current sequencing speeds.
Furthermore, determining the function of many pro-
teins experimentally is a daunting task because of the
complex interactions and specificity of the native en-
vironment in which a particular protein operates that
may be difficult to replicate in the laboratory. While
new high-throughput experimental techniques are being
developed for proteomics applications (e.g. mass spec-
trometry, protein chips), it is clear that given the fun-
damental importance of proteins to biology, biotechnol-
ogy, and medicine, computer methods that can rapidly
sift through massive amounts of data and help deter-
mine the structure and function of say all the proteins
in a given genome are sorely needed.

One of the most powerful approaches for addressing
these problems is homology, i.e. to use dynamic pro-
gramming alignment methods to look for evolutionar-
ily related hence similar sequences in the data bases
of known sequences. Strong sequence similarity im-
plies similar structure and similar function. This ap-
proach works well when something is known about the
structure and function of the homologue sequences, and
when the degree of homology exceeds 25% identical
residues. Thus alignments methods remain extremely
valuable and the method of choice when they work. In
about half the cases, however, they currently do not
work and other methods are necessary to fill the re-
maining gap (Baker & Sali, 2001).

Machine Learning Structural
Proteomics

Let us then focus on the structure problem, which is
related but distinct from the study of the protein fold-
ing process occurring over time scales of a millisecond
or less. From the outset, it is important to note that
proteins can be partitioned into two classes: membrane
proteins and globular proteins (Figure 1). Membrane
proteins are embedded in cell membranes and there-
fore live in a lipid environment. In contrast, globular
proteins live in aqueous environments since they are se-
creted from the cell, or segregated to non-membrane
compartments such as the nucleus or the cytoplasm.
Membrane proteins often act as receptors allowing the
cell to gather information about its external environ-
ment. As such, they are often the targets of drug de-
velopment efforts. In most known genomes, the typi-
cal proportion of membrane proteins is in the 20-30%
range.

Because of this environmental difference, these two
classes of proteins have different structural character-
istics. Although membrane proteins may seem more
constrained (for instance the secondary structure of
known membrane domains consists of all alpha helices
or, in a few cases such as porins, all beta strands) and
hence simpler, they are far more difficult to crystallize.
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Figure 1: Proteins can be subdivided into two classes:
membrane proteins and globular proteins. Membrane
proteins are surrounded by membrane lipid bilayers and
have peculiar structural properties. Roughly 25% of
proteins in a typical genome are membrane proteins.

Hence very few membrane protein structures have been
resolved and are available in the Protein Data Bank
(PDB). Thus the prediction of the structure of mem-
brane proteins per se is an important problem that re-
mains largely unsolved. In the bioinformatics commu-
nity at large, as well as in the rest of this paper, the
main focus remains on the structure of globular pro-
teins, which represent a larger fraction of all proteins
and for which more data is available.

Several complementary computational approaches
exist in order to predict structural features and three-
dimensional structure of proteins (Sanchez & Sali, 1998;
Jones, 2000) including: (1) ab initio; (2) homology
modeling; (3) fold recognition; (4) “lego”; and (5) ma-
chine learning. Naturally these methods should not be
viewed as exclusive of each other, but rather as comple-
mentary approaches that can be combined together in
many ways. For example, the machine learning meth-
ods to be described heavily rely on the use of multiple
alignments and homology.

Ab-initio approaches tackle the problem by the min-
imization of an energy potential derived from physico-
chemical, as well as statistical, considerations. The
main obstacles in this approach are the derivation or
approximation of the right potential and the speed
up of the resulting formidable optimization problem
that have prompted efforts such as IBM’s BlueGene su-
percomputer and Stanford’s protein folding@home dis-
tributed projects.

In homology modeling methods, a given protein is
aligned to all its known homologues. If the 3D structure
of one of the homologue sequences is known, then a
structural model can be inferred for the given protein.

In fold recognition methods a similar approach is
taken, but the new sequence is threaded through all the



existing folds in the protein structure data bases until
an optimal match is found. Differences come not only
from the alignment/threading phase but from the fact
that occasionally homologous sequences have different
structures, and non-homologous sequences have similar
structure. [Likewise, at the functional level, occasion-
ally proteins with the similar structure carry different
functions and proteins with similar function have dif-
ferent structures].

It is essential to notice that the universe of fold classes
for natural proteins is believed to form a finite dictio-
nary with only a few thousand words. The PDB is
the main repository of protein structures, containing
over 15,000 (redundant) structures and undergoing a
phase of exponential growth, like most other biologi-
cal databases. Nowadays, homology modeling and fold
recognition approaches share the same weaknesses when
a suitable target is not found in the PDB database. In
time, however, as the dictionary of structures is com-
pleted (within a decade or so), these approaches will
end up providing a consistent and effective solution to
the structure prediction problem, albeit perhaps not as
satisfactory for some as a purely ab inito approach.

Another approach to structure prediction is the
“lego” approach used by David Baker (Simons et al.,
2001). In the lego approach, a structural dictionary is
extracted from the PDB database for small fragments of
proteins of length 9 or so. A new sequence is then bro-
ken into consecutive fragments, each snippet is aligned
to the dictionary and a rough structure is derived and
converted via some additional massaging into a final
prediction. The field of protein structure prediction
has its own Olympiad, which occurs every two years
in Asilomar, CA. It is the CASP (Critical Assessment
of Protein Structure) competition, a worldwide blind
comparison of structure predictors. At the last CASP
competition in December 2000, some of the best results
in 3D prediction where obtained through the lego ap-
proach (Lesk et al., 2001).

Finally, there are statistical or machine learning ap-
proaches. Machine learning approaches aim at extract-
ing information from data, more or less automatically,
via a process of training from examples, a modern ver-
sion of statistical model fitting. They are ideally suited
for domains characterized by an abundance of data and
a lack of a clear theory, which is precisely the case in
bioinformatics.

Machine Learning Secondary Structure

Observation of thousands of protein structures reveals
the universal presence of three kind of structural mo-
tifs: (1) alpha-helices; (2) beta-sheets; and (3) coils, two
of which (a and ) are characterized by periodic pat-
terns of hydrogen bonding that can be detected from a
PDB 3D file using a program such as DSSP (Kabsch &
Sander, 1983). Machine learning approaches, and neu-
ral networks in particular, have been extensively used
for over 15 years to predict protein secondary structure

and have consistently led to the best secondary struc-
ture predictors.

Without going through an historical summary that
can be found in (Baldi & Brunak, 2001), many success-
ful secondary structure predictors have been built us-
ing feedforward neural networks (Rost & Sander, 1994;
Jones, 1999), with local input windows of 9-15 amino
acids. Over the years, performance has been steadily
improving, by about one percentage point per year,
thanks to the increase in available training data but
also the use of a number of additional techniques in-
cluding: (1) output filters to clean up predictions; (2)
input or output profiles (associated with alignments of
homologous sequences), especially at the input level;
(3) ensemble of predictors. The main weakness of these
approaches probably resides in the use of a local win-
dow that cannot capture long-ranged information such
as those present in beta-sheets. This is in part corrob-
orated by the fact that the beta class is always the one
with the weakest performance results. Substantially in-
creasing the size of the input window, however, does
not seem to improve performance for reasons related to
overfitting and the weak signal to noise ratio associated
with long-ranged interactions that play an important
role but are sparse, hence hard to detect.

The methods we use to try to overcome the limi-
tations of simple feed-forward networks have been de-
scribed in (Baldi et al., 1999; Baldi et al., 2000a) and
(Pollastri et al., 2001b) and consist of BRNNs (Bidirec-
tional Recurrent Neural Networks) with the capability
of capturing at least partial long-ranged information
without overfitting. These architectures are based on
the probabilistic graphical model depicted in Figure 2
where inputs are transformed into outputs using both
forward and backward Markov chains of hidden states.
This can be viewed as a generalization of hidden Markov
models by addition of the input states and the back-
ward chain. The backward chain is predicated on the
fact that biological sequences are spatial objects rather
than temporal sequences. Propagation of information
and learning in these graphical models is somewhat slow
due to the presence of numerous undirected loops in the
graph. A faster architecture is obtained by reparame-
terizing the graphical model using neural networks that
are stationary with respect to time, leading to BRNN
architectures (Figure 3).

In these general architectures for sequence transla-
tion, translation or prediction at a given position de-
pends on a combination of local information, provided
by a standard feedforward neural network, and more
distant context information. More precisely, letting ¢
denote position within a protein sequence, the overall
model outputs for each t a probability vector O; rep-
resenting the membership probability of the residue at
position t in each one of the three classes. This output
is implemented by three normalized exponential output
units. The output prediction has the functional form:

O¢ = n(Fy, By, It) (1)
and depends on the forward (upstream) context Fj, the



Figure 2: Bayesian network graphical model underly-
ing BRNNs consisting of input units, output units, and
both forward and backward Markov chains of hidden
states.
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Figure 3: A BRNN architecture with a left (forward)
and right (backward) context associated with two re-
current networks (wheels). Connections from input to
wheels are not shown.

backward (downstream context) By, and the input I;
at time t. The vector I, € R* encodes the external
input at time ¢. In the most simple case, where the
input is limited to a single amino acid, k£ = 20 by using
orthogonal encoding. Larger input windows extending
over several amino acids are also possible. The function
7 is realized by a neural network N, (see center and top
connections in Figure 3). The performance of the model
can be assessed using the relative entropy between the
estimated and the target distribution.

The novelty of the model is in the contextual infor-
mation contained in the vectors F; € IR"™ and especially
in By € IR™. These satisfy the recurrent bidirectional

equations:
Fy = ¢(F1,1y) 2)
By = B(Biy1,1h)
Here ¢(-) and (3(-) are learnable non-linear state tran-
sition functions, implemented by two NNs, Ny and

N3 (left and right subnetworks in Figure 3). The
boundary conditions for F; and B; are set to 0, i.e.
Fy = Br41 = 0 where T is the length of the protein be-
ing examined. Intuitively, we can think of F; and B; as
“wheels” that can be rolled along the protein. To pre-
dict the class at position ¢, we roll the wheels in opposite
directions from the N and C terminus up to position ¢
and then combine what is read on the wheels with I;
to calculate the proper output using 1. All the weights
of the BRNN architecture, including the weights in the
recurrent wheels, can be trained in a supervised fash-
ion from examples by a generalized form of gradient
descent or backpropagation through time, by unfolding
the wheels in time, or rather space. Architectural vari-
ations can be obtained by changing the size of the input
windows, the size of the window of hidden states con-
sidered to determine the output, the number of hidden
layers, the number of hidden units in each layer and so
forth.

This approach has resulted in the SSpro secondary
structure
prediction server [http://promoter.ics.uci.edu/BRNN-
PRED/] which has been ranked among the top pre-
dictors in the world both at the CASP 00 competi-
tion, and through an independent automatic evaluation
server run by Burkhard Rost at Columbia University
[http://cubic.bioc.columbia.edu/ eva/]. The new ver-
sion of the server (SSpro 2.0) replaced the previous ver-
sion (SSpro 1.0) in April 2001. The current 2.0 version
uses more sensitive algorithms for the construction of
input profiles and, at the time of this writing, achieves
78.1% correct classification, at the single amino acid
level, using the hard CASP assignment for collapsing
the eight output classes of the DSSP program into the
three standard secondary structure classes. With an
alternative easier assignment, also widely used in the
literature, SSpro 2.0 achieves over 80% correct predic-
tion (Pollastri et al., 2001b). This performance exceeds
the performance of simple feedforward neural networks
trained on the same data by a few percentage points and
tests reported in the references show that the wheels are
indeed capable of extracting information over regions
that extend beyond the traditional local window.

It is worth noting that such results are not achieved
by simply training a machine learning system with
raw data from the PDB. Considerable effort goes into
preparing appropriate training and testing sets, using
rigorous cleanup procedures that are essential to the
success. The procedures involve steps such as remov-
ing chains that are too short, that have poor reso-
lution, for which the DSSP program crashes. Even
more important, these procedures must remove any se-
quence redundancy from the sets, since uneven sam-
pling of the space of sequences, or high concentra-
tions of similar structures, can introduce significant bi-
ases in the learning process. Redundancy reduction
is achieved through all-against-all pairwise sequence
alignments and elimination of worse quality homo-
logues when similarity is detected (Hobohm et al., 1992;



Abagyan & Batalov, 1997). Current large cleaned-up
sets are about 1/10 the size of the PDB, with well over
1000 sequences. Considerable work is also required
to produce suitable profiles (Rost & Sander, 1994;
Baldi et al., 1999; Jones, 1999; Pollastri et al., 2001b).

Overall Strategy and Predictor Suite

While secondary structure plays an essential role in
both folding and 3D structure and is directly implicated
in a number of biological processes, it is still a far cry
from the 3D structure. But could a machine learning
system be extended to the prediction of 3D structure?

Training a large neural network to translate primary
sequence information directly into 3D coordinates is
likely to fail. Overfitting issues are compounded by the
high degeneracy of the problem: rotating or translat-
ing the protein completely changes the coordinates, but
leaves the structure invariant. Translation and rotation
invariance must be built into the prediction learning
system.

Thus our current strategy for 3D structure prediction
is to decompose the problem into three steps (Figure 4).
In the first step, from the primary sequence we predict
a number of structural features. Typical structural fea-
tures include: (a) secondary structure; (b) relative sol-
vent accessibility, i.e. whether a given amino acid is on
the surface of a protein or buried inside its hydrophobic
core (Figure 5); (c) coordination or contact number, i.e.
the number of neighboring amino acids of a given amino
acid within a certain radius (Table 1); (d) the presence
of disulphide bonds; and (e) the coupling of amino acids
and strands within beta sheets (Baldi et al., 2000b;
Pollastri et al., 2001a) or disulphide bonds.

model # | 6A 8A 10A | 12A
0 71.59 | 69.29 | 71.04 | 73.00

I 72.03 | 69.45 | 70.96 | 72.42

2 71.04 | 68.91 | 70.58 | 72.71

3 71.39 | 69.28 | 70.84 | 72.68

4 69.99 | 67.80 | 69.79 | 72.54

5 69.77 | 67.72 | 69.54 | 71.93

6 69.95 | 67.49 | 70.16 | 71.69
Ens 73.02 [ 70.57 | 72.00 | 73.93
Comb | 73.24 | 70.95 | 72.13 | 74.09

Table 1: Prediction of coordination number for four
different radiuses (6, 8, 10, and 12A. Percentage of
threefold cross-validation results obtained with several
BRNNs and the corresponding ensemble on the test set,
for PSI-BLAST- based input profiles. Performance re-
sults expressed in percentages of correct prediction. Ens
= ensemble of models in a given radius category. Comb
= combination of 4 ensembles associated with different
radius categories.

In the second step, we go from the primary sequence
and the structural features to a topological representa-
tion of the protein that is invariant under rotation and
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Figure 5: Performances of ACCpro for the recognition
of buried/exposed aminoacids for different thresholds
of relative solvent accessibility. Dashdot-crosses (blue):
base-line statistical predictor (Richardson & Barlow,
1999). Solid-circles (red): test set. Solid-stars (ma-
genta): training set. There are 20 different thresholds.
For thresholds in the 10%-40%, range, where the num-
bers of exposed and buried residues are comparable, the
ensemble of BRNNs outperforms the base-line predictor
by 10% or more.

translation. At a coarse level, this is the contact ma-
trix between secondary structure elements essentially
describing whether the centers of gravity of two sec-
ondary structure elements are close in the 3D structure
or not. A database of coarse-level topological repre-
sentations of proteins in the form of topology cartoons,
called TOPS (Westhead et al., 1998), is available at
http://www3.ebi.ac.uk/tops/. With a higher resolu-
tion, this is the contact matrix between the individual
amino acids of the protein chain.

Our current approach to the problem rests on a gen-
eralization of the graphical model underlying BRNNs
given in Figure 2 to process one-dimensional ob-
jects. The generalization of this architecture to two-
dimensional objects, such as contact maps, is shown in
Figures 6 and 7. In its basic version the Bayesian net-
work consists of nodes regularly arranged in 6 planes:
one input plane, one output plane, and 4 hidden planes.

As in the one-dimensional case, numerous variants of
these ideas are possible including the use of windows in
the input or output layers, the addition of connections
in the hidden planes, or the use of only a subset of hid-
den planes rather than the full complement. Only the
full complement, however, allows for the existence of a
directed path from any input unit to any hidden unit.
In the case of contact map prediction, relevant inputs
may include the actual sequences or the pairwise statis-
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Figure 4: Overall pipeline strategy for machine learning protein structures. Example of 1SCJ (Subtilisin-Propeptide
Complex) protein. The first stage corresponds to modules that predict structural features including secondary

structure, contacts, and relative solvent accessibility.

The second stage correspond to modules that predict the

topology of the protein, using the primary sequence and the structural features. The coarse topology is represented
as a cartoon providing the relative proximity of secondary structure elements, such as alpha helices and beta-strands.
The high-resolution topology is represented by the contact map between the residues of the protein. The final stage
is the prediction of the actual 3D coordinates of all the atoms in the structure.

tics of the corresponding alignments to capture informa-
tion about correlated mutations. Multiwise statistics
could also be helpful in combination with a mechanism
to control combinatorial explosion, possibly in the form
of higher-order neural networks. Secondary structure
and relative solvent accessibility information are also
worth considering as inputs. As in the one-dimensional
case, faster processing is achieved by reparameterizing
the graphical models with recurrent neural networks.
Note also that the graphical models introduced for the
one-dimensional (Figure 2) and two-dimensional (Fig-
ures 6 and 7) cases can easily be generalized to the case
of n dimensions. In three dimensions, for instance, the
complete architecture requires 8 hidden planes, one for
each corner of the cube. In n dimensions, the full com-
plement requires 2" hidden planes, one for each corner
of the hypercube. While it may be possible to use the
3D version of these graphical models for protein 3D-

structure prediction, here we briefly discuss an alterna-
tive approach for the last step of the strategy.

In contrast with the first two stages of the pipeline
strategy that heavily rely on machine learning methods,
the third step can be addressed using distance geometry
and optimization techniques (Vendruscolo et al., 1997)
without learning. Various implementations are possi-
ble and any implementation must deal with chirality
issues since, for instance, a protein and its mirror im-
age yield the same contact map. Current algorithms
seem to work well for relatively short proteins (up to
150 amino acids) but often fail to recover reasonable
(within 5A of root mean square deviation on backbone
carbon atoms) 3D structures for longer proteins. A fun-
damental question that has not yet been addressed sys-
tematically in the literature is the amount of noise that
can be tolerated in the predicted contact map without
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Figure 6: General layout of Bayesian network for pro-
cessing two-dimensional objects such as contact maps,
with units regularly arranged in one input plane, one
output plane, and four planes of hidden units. All the
edges of the square lattice of hidden units in each hid-
den plane are oriented in the direction of one of the four
possible cardinal corners: NE, NW, SW, SE.

compromising the prediction of the actual coordinates.
It is also important to note that in the future feedback
projections could be added, if needed, for instance from
the topology to the structural features.

In short, we are in the process of building a suite of
structure prediction programs and servers, and combin-
ing them into a complete 3D-prediction pipeline soft-
ware. At the present time, the suite contains:

e SSpro: secondary structure/server available

e SSpro8: secondary structure (in 8 categories)/server
available

e ACCpro: accessibility /server available

e CONpro: contact/server available

Additional components at various stages of develop-

ment include:

e DIpro: disulphide bond/under development

e BETApro: beta sheet amino acid and strand part-
ners/partially developed

e CONTO3Dpro: from contact map to 3D coordi-
nates/developed and available but not as a server

e 3Dpro: 3D prediction/under development

All the  existing  servers are  available
at http://promoter.ics.uci.edu/BRNN-PRED/. Users
can submit a protein sequence and select the prediction
categories of interest from their browser windows. Pre-
dictions are emailed to the user within a short period
of time, depending on server load. At the time of this

Figure 7: Details of connections within one column of
Figure 6. The input unit is connected to the four hidden
units, one in each hidden plane. The input unit and the
hidden units are connected to the output unit. . I;;
is the vector of inputs at position (i,7). O;; is the
corresponding ouput. Connections of each hidden unit
to its lattice neighbors within the same plane are also
shown.

writing, the servers are averaging of the order of 100
queries per day.

It should be noticed that statistical correlations be-
tween secondary structure and contact number or ac-
cessibility are quite low and therefore it makes sense
to develop separate predictors. BRNNs are used in
all the machine learning architectures. Current perfor-
mance on the accessibility is 77.51% (at 15% threshold).
Performances for different accessibility thresholds are
shown in Figure 5, against the base-line predictor which
always outputs the most numerous category (Richard-
son & Barlow, 1999). Performance on contact predic-
tion is 73.24% (at 6A) or 74.09% (at 12A) (Pollastri
et al., 2001a) (Table 1). In both instances, these re-
sults are better than any previously reported results,



often by several percentage points.

Thus, in summary, machine learning methods for
the prediction of secondary structure and other protein
structural attributes continue to improve at an average
annual rate of about 1%, and are reaching good lev-
els of performance, close to roughly 80% for secondary
structure. The improvements originate both from data
expansion and new algorithmic developments. We have
developed new machine learning architectures and con-
structed a suite of structural predictors that could be
integrated or combined with other methods to predict
full 3D structures.

Machine Learning Functional
Proteomics

From the get go, as invariably the case with biologi-
cal problems, it should be clear that the boundaries of
the notion of protein structure or function are some-
what fuzzy. Therefore perfect prediction in all cases
cannot be expected. Furthermore, at the structural
level, some protein do not fold spontaneously but may
require other protein (chaperones) for proper folding.
Some proteins may exist in different structural confor-
mations, and conformations could depend on external
variables such as solvent acidity. In many cases, several
distinct protein chains aggregate to form so-called qua-
ternary structures that cannot be predicted from single
chains. Whether the limit horizon in the case, for in-
stance, of secondary structure prediction is 85% or 95%
is not known and for now prediction efforts should con-
tinue unabated.

The situation is even more complex when we consider
the notion of protein function, which also strongly de-
pends on the surrounding molecular context and inher-
ently covers a number of different topics and questions,
including: (1) molecular function (enzymatic cataly-
sis, membrane transport) and analysis of conformation
and active sites; (2) cellular function (inter/intracellular
communication, structural, movement); (3) physiolog-
ical function (organ development); (4) phenotypical
function (visible effects); (5) disfunction (effect of a
protein that is absent or mutated); (6) transcriptional
and posttranscriptional modifications (RNA editing);
(7) post-translational modifications (phosphorylation,
glycosylation); (8) cellular localization (nucleus, cyto-
plasm, membrane, secretion). [The examples in paren-
thesis are not meant to be exhaustive of course and each
one of them could be further expanded (e.g enzymatic
catalysis could yield subcategories such as substrate,
cofactors, and products).]

Here again machine learning methods, together with
other experimental and computational approaches, can
make valuable contributions. Consider, for instance,
the case of post-translational modifications. Proteins,
after they have been translated from their original DNA
sequence, often undergo a large number of modifications
that alter their activities. For example, certain amino
acids can be linked covalently (or noncovalently) to car-

bohydrates, representing so-called glycosylation sites.
Other amino acids are subjected to phosphorylation,
where phosphate groups are added to the polypeptide
chain. Kinases, for instance, are an important family
of proteins involved in phosphorylation which use this
process as a mean of transmitting information along
many different pathways in the cell. Many other types
of post-translational modifications exist, such as addi-
tion of fatty acids and the cleavage of signal peptides
in the N-terminus of secretory proteins translocated
across a membrane. In fact, the total number of dif-
ferent kinds of posttranslational modifications is in the
hundreds. Knowledge of such post-translational sites is
not explicitely present in genomic data but can provide
important clues to function or localization and can be
recovered from the primary sequence.

With the growth of data bases and available train-
ing examples, neural networks, HMMs (Hidden Markov
Models) and other machine learning systems can be
trained to detect, for instance, signal peptides, glycosy-
lation sites, and phosphorylation sites (Baldi & Brunak,
2001), or to recognize specific classes of proteins, such as
membrane proteins. Several servers of this kind can be
found at www.cbs.dtu.dk. In many cases, the best pre-
diction algorithm available today for any of these prop-
erties is indeed a machine learning algorithm. Again
with sufficient resources an entire suite of such programs
can be created and regularly updated with larger train-
ing sets. Training being done off-line, such a suite is ca-
pable of rapidly sifting through large amounts of data.
While by itself it cannot answer entirely the question of
the function of a new protein, it can provide valuable
information regarding a large number of functional at-
tributes. In turn, such a suite can be coupled with
other information ranging from homology, to structure,
to DNA microarrays and other high-throughput tech-
nologies, to literature searches.

Protein structure/function prediction is one of the
central problems in bioinformatics. It is the hinge and
bottleneck between sequencing efforts and drug design.
Its solution should result in new enabling technologies
in several areas of medicine and biotechnology. While
the taxonomy of protein structure/function is complex,
it can be broken down into a large but manageable num-
ber of aspects and categories. For each one of them, in-
creasing amounts of data are rapidly becoming available
in publicly repositories and data bases. This creates sig-
nificant opportunities for intelligent system approaches
to complement currently useful but insufficient meth-
ods, such as homology searches. Unlike conventional ex-
perimental methods, the resulting programs can rapidly
sift through large amounts of data and are readily ap-
plicable to new sequences, whether naturally occurring
or synthetic.
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