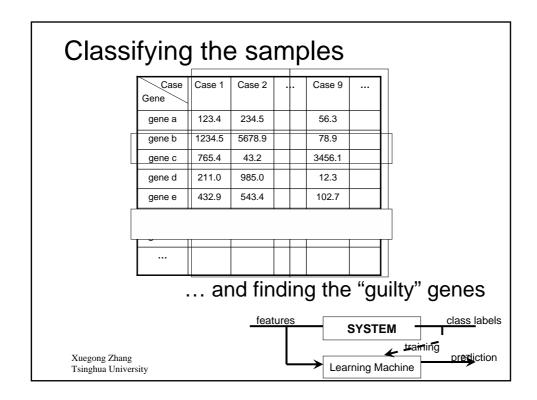
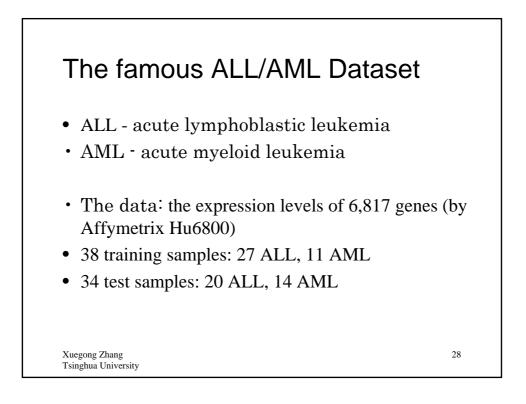
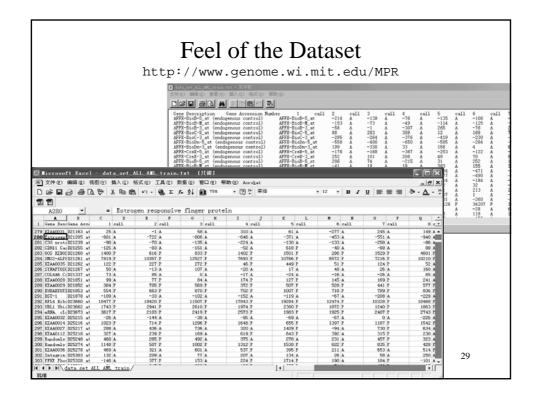
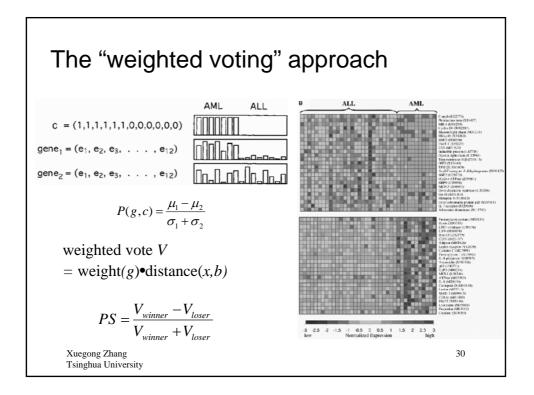
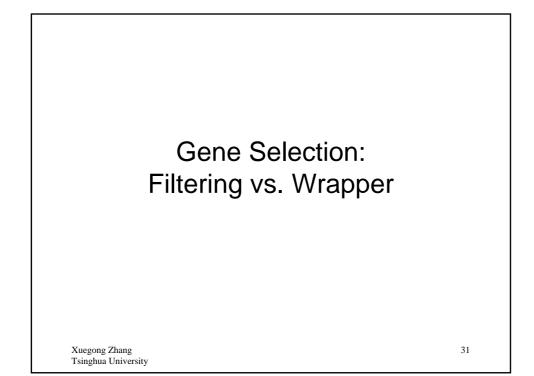

			patients			patients		p-value	
1	1.16	0.99	1	0.84	-0.79	-0.8	-0.9		expressed
2	0.75	0.91	0.96	0.68		-0.73	-0.85		expressed
3	-0.01	0.3	0.08	0.25	-0.63	-0.91	-0.98	0.0005	expressed
4	-0.09	-0.22	-0.12	0.14	-0.64	-1.21	-1.01	0.0032	
5	0.43	0.69	0.47	0.56	-0.24	-0.29	0.14	0.0038	
6	-0.41	-0.46	-0.73	-0.52	0.41	0.09	-0.07	0.0055	
7	0.36	0.26	0.12	0.34	-0.16	-0.67	-0.29	0.0064	
8	0.37	0.74	0.69	0.97	-0.37	-0.17	0.25	0.0137	
9	0.2	0.15	0.02	0.08	-0.05	-0.4	-0.47	0.0159	
10	-0.13	-0.31	-0.19	-0.15	-1.03	-0.41	-0.91	0.0166	
11	-0.43	-0.44	-0.25	-0.57	0.49	-0.02	-0.1	0.0262	
12	0.03	0.36	0.03	0.28	-0.06	-0.04	-0.17	0.0535	
:									
:									
:									
48	-0.15	0.5	-0.28	-0.04	0.16	-0.11	0.08	0.8734	
49	0.11	0.09	-0.3	0.77	0.05	0.03	0.54	0.8958	
50	-0.29	0.29	0.44	-0.15	0.21	0.21	-0.15	0.9328	

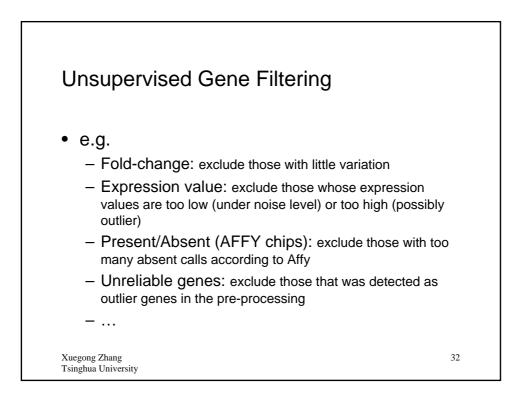


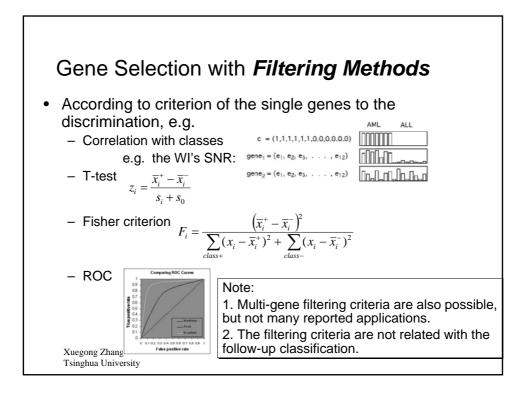

		Cancer	patients		Normal	patients		p-value	Bonferroni*	FDR method*
1	1.16	0.99	1	0.84	-0.79	-0.8	-0.9	0.0000	expressed	0.0010
2	0.75	0.91	0.96	0.68	-0.68	-0.73	-0.85	0.0000	expressed	0.0020
3	-0.01	0.3	0.08	0.25	-0.63	-0.91	-0.98	0.0005	expressed	0.0030
4	-0.09	-0.22	-0.12	0.14	-0.64	-1.21	-1.01	0.0032		0.0040
5	0.43	0.69	0.47	0.56	-0.24	-0.29	0.14	0.0038		0.0050
6	-0.41	-0.46	-0.73	-0.52	0.41	0.09	-0.07	0.0055		0.0060
7	0.36	0.26	0.12	0.34	-0.16	-0.67	-0.29	0.0064		0.0070
8	0.37	0.74	0.69	0.97	-0.37	-0.17	0.25	0.0137		0.0080
9	0.2	0.15	0.02	0.08	-0.05	-0.4	-0.47	0.0159		0.0090
10	-0.13	-0.31	-0.19	-0.15	-1.03	-0.41	-0.91	0.0166		0.0100
11	-0.43	-0.44	-0.25	-0.57	0.49	-0.02	-0.1	0.0262		0.0110
12	0.03	0.36	0.03	0.28	-0.06	-0.04	-0.17	0.0535		0.0120
:										
:										
:										
48	-0.15	0.5	-0.28	-0.04	0.16	-0.11	0.08	0.8734		0.0480
49	0.11	0.09	-0.3	0.77	0.05	0.03	0.54	0.8958		0.0490
50	-0.29	0.29	0.44	-0.15	0.21	0.21	-0.15	0.9328		0.0500

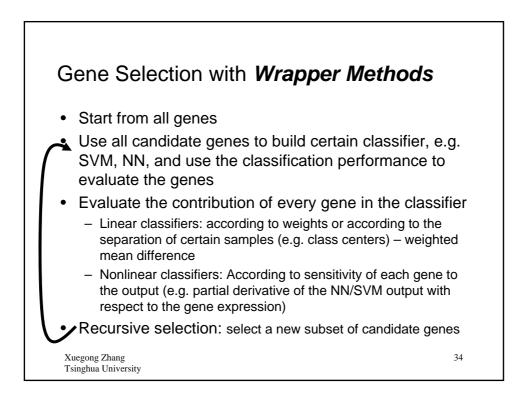


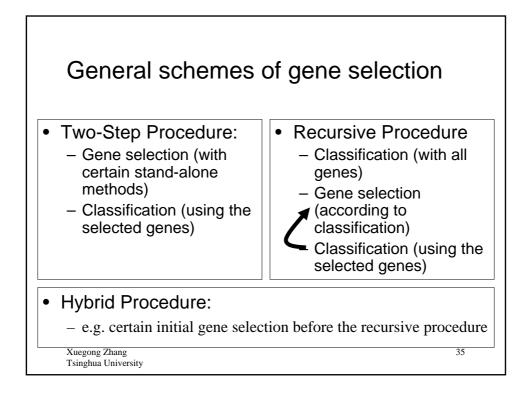


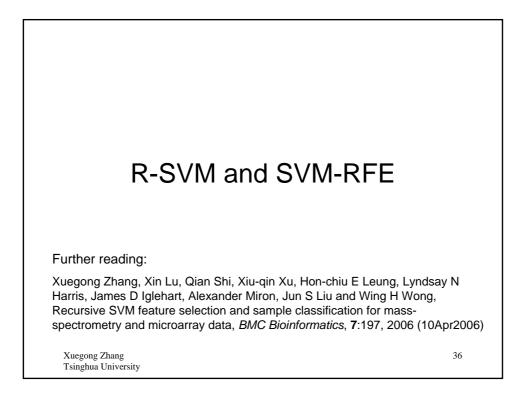


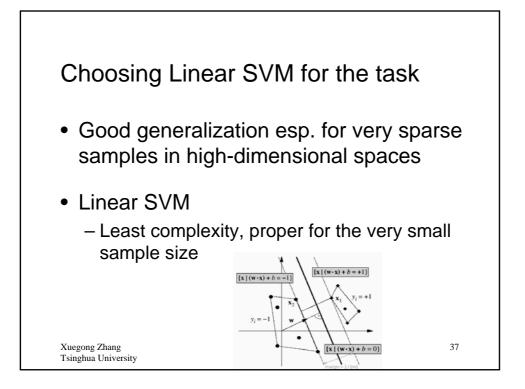


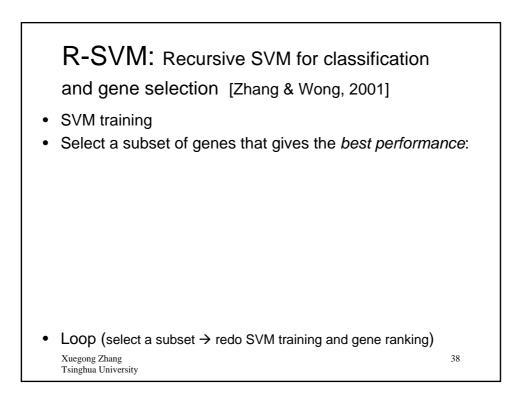


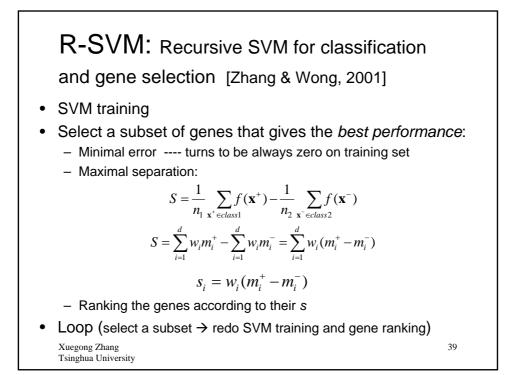


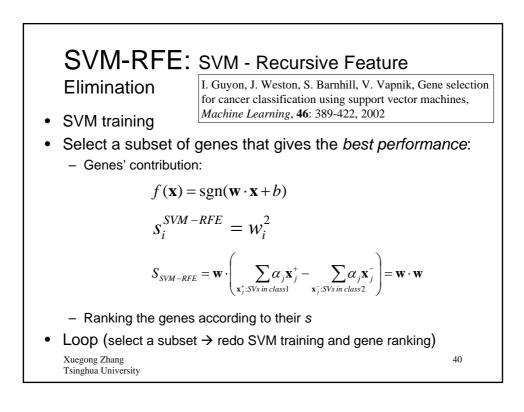


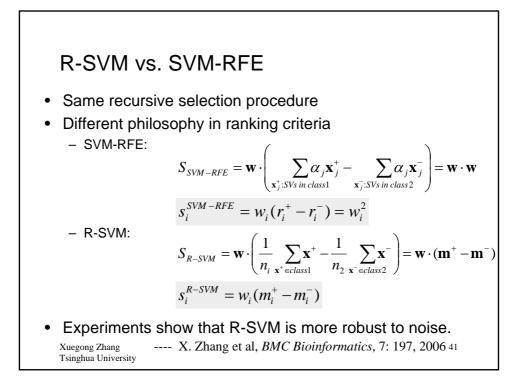


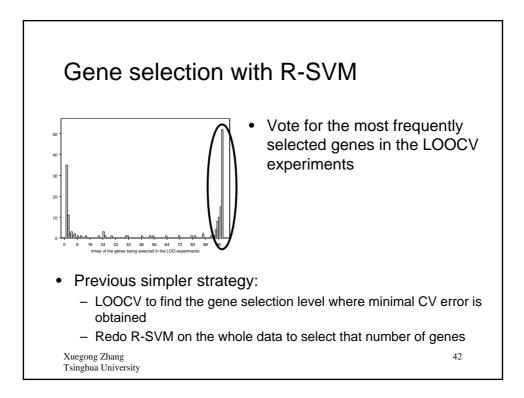


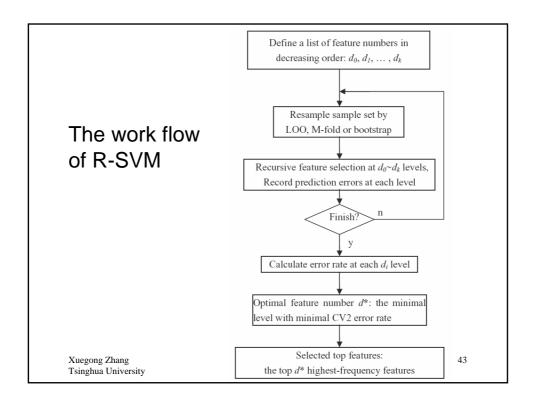












Comparison on Simulated Data-G (with gene outliers)

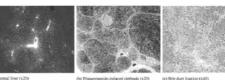
Level ^a	ReduceSV ^b	P(sv-diff) ^c	ReduceTest ^d	P(test-diff) ^e	ImproveRec ^f	P(rec-diff) [§]
800	4.01%	1.81E-42	-7.70%	4.72E-03	-3.90%	1.71E-39
600	5.77%	1.74E-49	-2.50%	4.64E-01	-1.70%	5.21E-15
500	6.83%	2.75E-51	-4.00%	1.62E-01	-0.30%	0.079189
400	8.35%	3.26E-60	2.80%	3.48E-01	1.10%	4.48E-06
300	9.33%	3.83E-58	7.40%	3.65E-02	3.70%	1.77E-31
200	8.22%	1.28E-48	19.20%	6.36E-09	6.30%	5.79E-44
150	8.55%	1.51E-53	19.50%	1.16E-08	7.10%	9.76E-46
100	4.97%	6.20E-22	11.90%	1.83E-04	6.00%	6.43E-40
90	5.84%	1.66E-27	13.70%	4.20E-06	4.60%	1.07E-30
80	5.17%	8.20E-29	12.40%	4.14E-06	4.50%	7.12E-29
70	4.14%	1.46E-27	8.50%	4.77E-04	3.80%	1.05E-24
60	3.10%	1.23E-20	10.20%	3.14E-05	3.40%	4.99E-24
50	2.27%	2.01E-15	10.20%	4.11E-06	2.90%	2.37E-21
uegong 2	Zhang					4

Comparison on Simulated Data-S (with sample outliers)

Level ^a	ReduceSV ^b	$P(sv-diff)^{c}$	ReduceTest ^d	P(test-diff) ^e	ImproveRec ^f	$P(rec-diff)^g$	ReduceOSV ^h	P(osv-diff) ⁱ
800	3.25%	4.49E-41	-65.19%	5.65E-36	-10.14%	3.36E-75	50.37%	5.97E-35
600	5.80%	1.90E-57	-70.27%	3.04E-35	-7.14%	5.18E-56	72.28%	1.10E-49
500	7.02%	8.20E-63	-59.63%	1.81E-37	-5.13%	3.37E-39	80.54%	1.17E-56
400	8.26%	1.68E-67	-41.43%	8.31E-25	-2.57%	4.53E-12	89.04%	2.51E-64
300	7.72%	1.20E-58	-19.14%	2.18E-13	0.75%	4.92E-02	93.44%	7.46E-65
200	7.21%	4.54E-51	-6.53%	2.56E-04	4.00%	7.15E-16	93.91%	1.47E-61
150	9.13%	1.29E-71	2.63%	1.20E-01	6.47%	8.41E-23	93.59%	6.27E-61
100	8.30%	1.42E-64	5.56%	8.04E-04	7.69%	3.50E-22	92.44%	1.33E-61
90	8.36%	2.01E-72	4.31%	1.15E-02	6.99%	8.74E-19	91.37%	2.60E-61
80	8.01%	6.63E-71	4.45%	1.99E-02	6.99%	9.33E-18	90.26%	2.65E-60
70	7.17%	1.29E-67	6.59%	3.78E-04	7.52%	2.80E-16	88.56%	7.55E-62
60	6.67%	2.65E-65	6.16%	2.32E-03	7.27%	5.72E-13	86.38%	2.60E-62
50	5.82%	1.08E-58	7.70%	1.34E-04	7.42%	3.71E-12	83.82%	1.23E-61

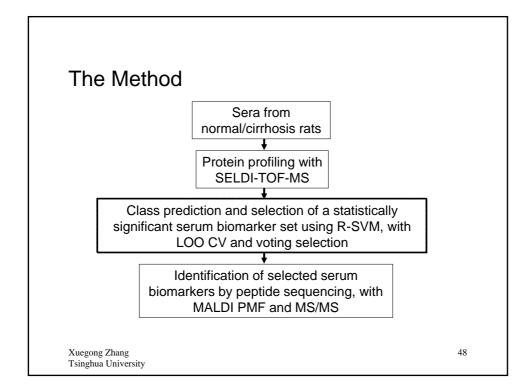
Tsinghua University

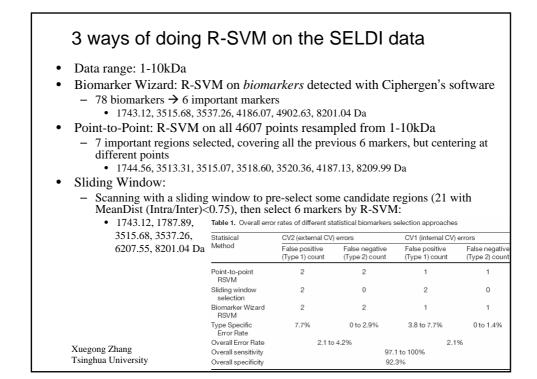
Comparison on Simulated Data-R (generated from real data)

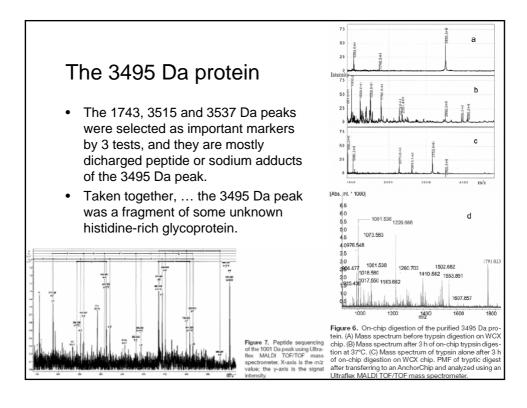

Table 3. Comparison of R-SVM and SVM-RFE on Data-R

Level ^a	ReduceSV ^b	P(sv-diff) ^e	ReduceTest ^d	P(test-diff) ^e	ImproveRec ^f	P(rec-diff) ^g
800	15.35%	1.24E-53	-3.59%	1.26E-05	-3.60%	1.50E-23
600	18.65%	3.14E-56	-7.06%	4.09E-04	2.69%	2.20E-09
500	19.58%	7.71E-58	-6.46%	1.79E-03	9.18%	1.24E-37
400	21.07%	1.80E-63	-2.74%	3.22E-05	17.32%	4.25E-59
300	22.51%	5.12E-67	-4.64%	1.26E-05	24.14%	5.43E-65
200	22.16%	9.38E-68	-0.93%	1.83E-04	30.64%	2.25E-71
150	21.78%	4.57E-64	-3.44%	8.74E-04	29.14%	5.86E-71
100	21.01%	3.21E-57	0.31%	3.22E-05	29.95%	7.74E-69
90	22.57%	1.88E-60	-2.52%	3.52E-03	27.51%	9.74E-66
80	22.88%	1.67E-65	1.84%	7.85E-05	27.92%	4.03E-62
70	21.42%	2.96E-59	0.59%	4.09E-04	27.16%	1.15E-58
60	20.20%	1.64E-55	6.16%	1.83E-04	26.83%	2.55E-60
50	18.67%	4.40E-52	4.23%	8.74E-04	25.89%	9.63E-53
40	15.37%	5.66E-46	8.99%	4.69E-06	25.39%	1.09E-55
30	11.85%	6.90E-33	9.61%	1.67E-06	24.19%	2.07E-45
20	7.87%	2.19E-18	11.43%	3.22E-05	20.86%	1.09E-34

Example: R-SVM to find proteomics markers for liver cirrhosis

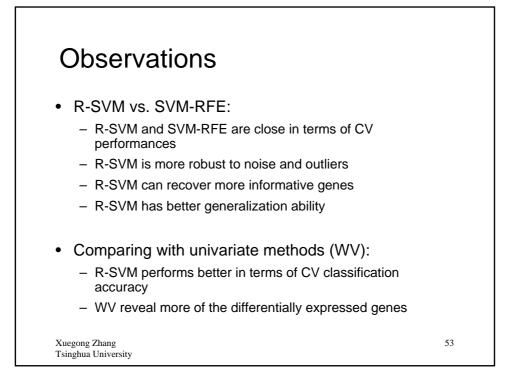

Molecular classification of liver cirrhosis in a rat model by proteomics and bioinformatics Cirrhosis Xiu-Cin Xu¹, Chon K. Leow^{1,2}, Xin Lu¹, Xuegong Zhang⁴, Jun S. Liu², Wing-Hung Weng³ and Asparage². Sören Daislange² and Hong-this Eastwood Leuno¹

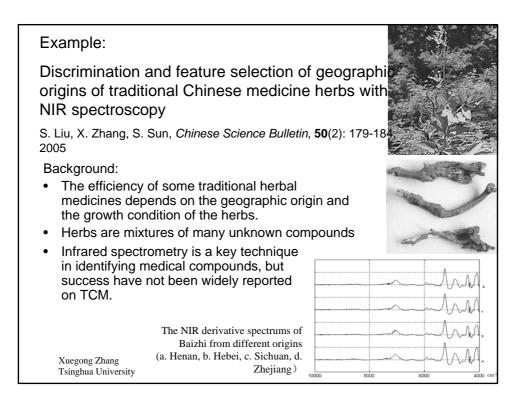

- Diagnosis of liver cirrhosis
 Siu-Gin Xu¹, Chon K, Leow^{1,2}, Xin Lu¹, Xuegong Zhang⁴, Jun S. Liu¹ And Asperge², Sten Delinger² and Hon-chiu Estwood Leurg¹
 - Biopsy: invasive, potential risk of internal bleeding
 - CT scanning: not able to detect early cirrhosis accurately
 - At present, there are no sensitive and specific serum or plasma markers available
 - cDNA microarray: need liver tissue by an invasive procedure
 - 2DE: not good for hydrophobic proteins, low abundant proteins and low molecular weight proteins
 - SELDI-TOF-MS: good resolution, surfaces for different proteins
- Material:
 - Normal rat (n=8)
 - Liver cirrhosis rat (n=22)
 - Liver fibrosis rat (n=5)

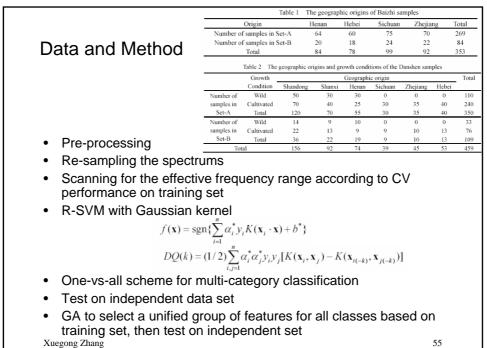


as $\times 20$

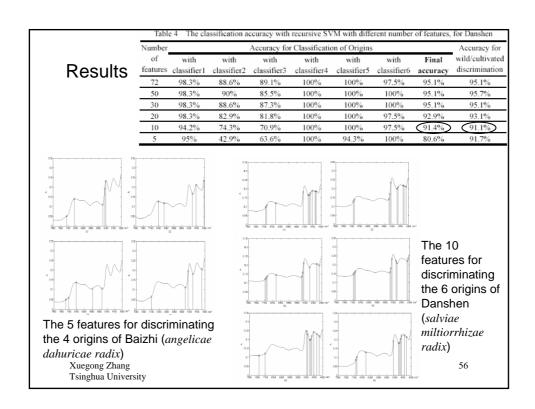
Xuegong Zhang Tsinghua University

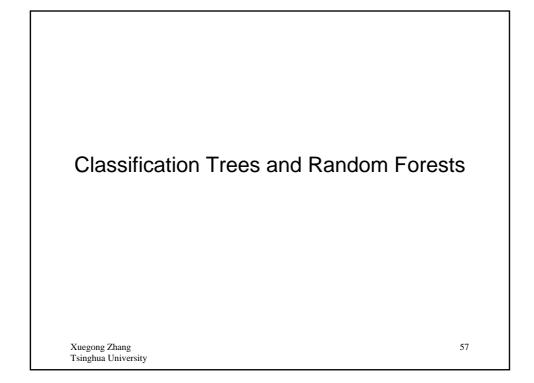


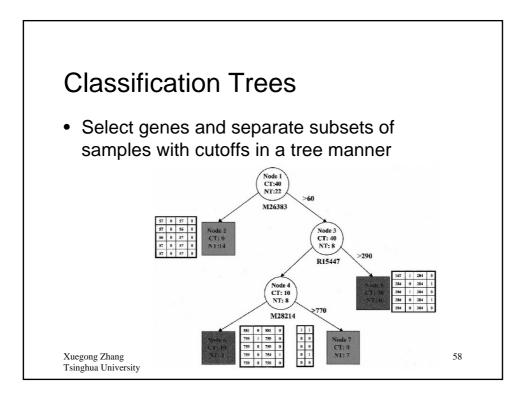


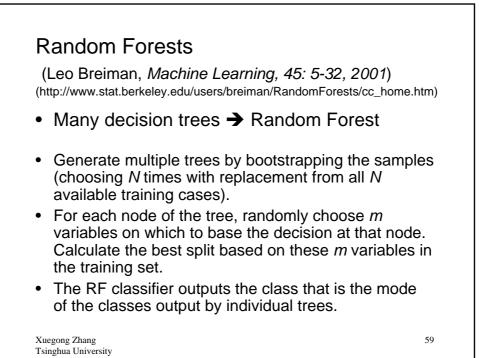

The R-SVM LOOCV feature selection and classification results on the rat cirrhosis data

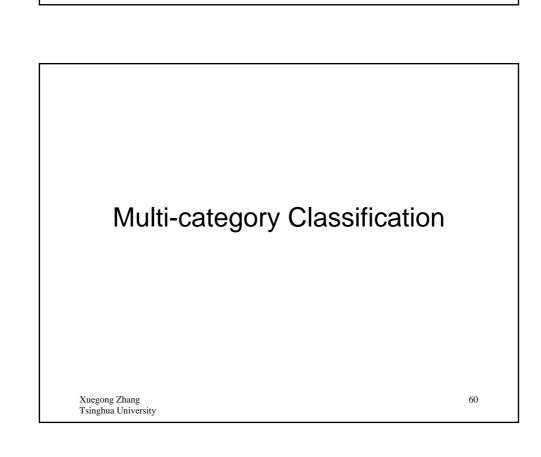
Level ^a	R	SVM	SV	M-RFE
Level	CV2 ^b	AveSV ^c	CV2 ^b	AveSV °
93	4.2%	14.75	4.2%	14.75
80	4.2%	11.91	4.2%	14.74
70	4.2%	9.95	4.2%	14.73
60	3.2%	9.22	4.2%	13.91
50	3.2%	9.03	4.2%	13.82
40	3.2%	9.02	4.2%	14.65
30	3.2%	8.95	4.2%	13.65
20	3.2%	8.93	4.2%	9.98
18	4.2%	8.14	4.2%	9.97
16	4.2%	8.08	3.2%	7.26
15	4.2%	7.60	3.2%	7.15
14	4.2%	7.54	3.2%	7.94
13	6.3%	7.58	4.2%	7.98
12	6.3%	7.41	4.2%	8.05
11	6.3%	7.65	4.2%	8.02
10	6.3%	7.64	3.2%	9.83
9	5.3%	6.50	3.2%	8.83
8	4.2%	5.97	4.2%	7.01
7	4.2%	6.73	4.2%	6.05
6	4.2%	5.98	3.2%	5.97
5	5.3%	5.94	4.2%	5.05

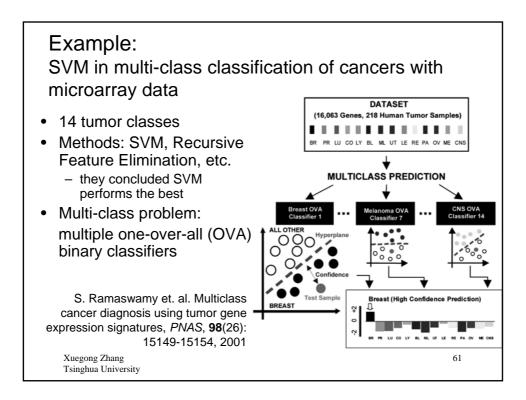

	Table 6	. The C\	/ results or	n the hur	nan breast cancer data
	Level ^a	R	-SVM	SV	M-RFE
	Lever	CV2 ^b	MeanSV ^e	CV2 ^b	MeanSV ^c
Example: R-SVM to	98	28.7%	54.65	28.70%	54.65
	88	27.9%	50.10	29.40%	55.25
find proteomics	79	29.4%	49.28	30.10%	52.21
•	71	29.4%	47.48	30.90%	50.88
markers for breast	63	27.9%	44.65	27.90%	48.42
	56	27.2%	42.50	27.90%	46.02
cancer	50	27.9%	40.04	26.50%	40.13
	45	25.7%	38.65	26.50%	40.25
	40	24.3%	37.04	27.90%	34.88
[Q. Shi et al, 2005]	36	23.5%	35.16	27.90%	34.51
	32	22.1%	33.26	27.90%	30.75
	28	22.8%	32.04	27.20%	27.77
	25	22.1%	31.24	30.90%	24.61
	22	22.1%	31.15	34.60%	23.93
	19	22.8%	32.10	30.10%	26.79
	17	25.7%	33.26	29.40%	31.28
	15	23.5%	35.68	25.70%	35.10
	13	19.9%	37.40	26.50%	42.15
	11	22.1%	37.83	25.00%	46.03
	9	21.3%	42.01	24.30%	50.18
	8	17.6%	44.07	22.10%	49.93
	7	23.5%	50.29	20.60%	51.43
	6	22.1%	54.73	20.60%	52.39
V 71	5	22.1%	57.98	20.60%	52.18
Xuegong Zhang	4	22.8%	59.75	25.00%	58.92
Tsinghua University	3	27.2%	78.90	32.40%	77.46

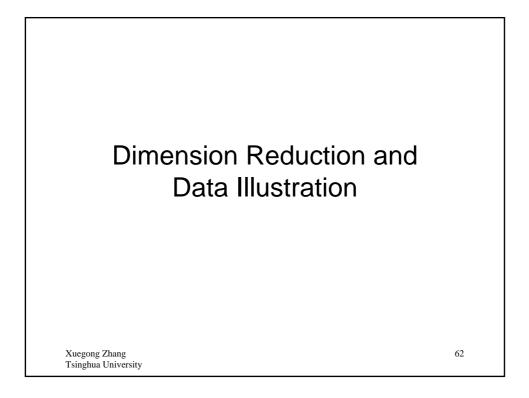


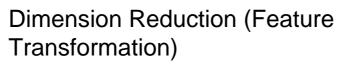


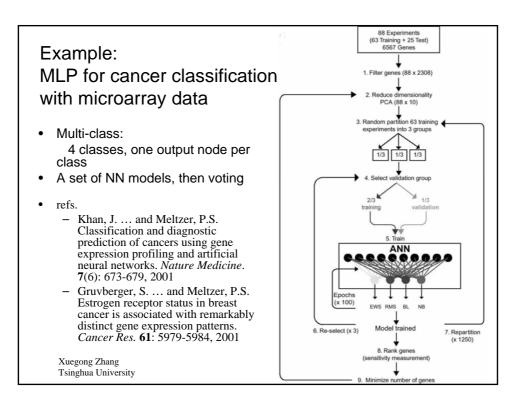


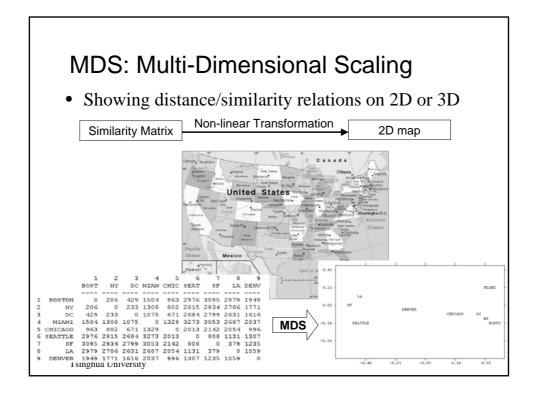

Tsinghua University

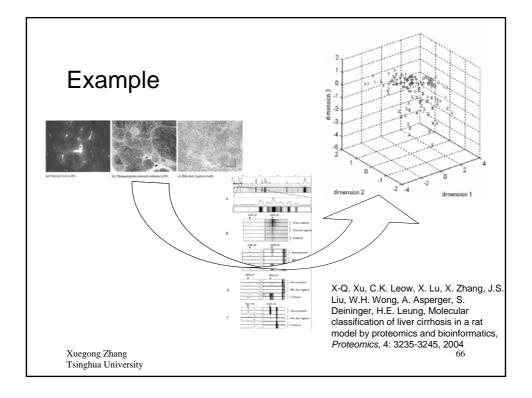


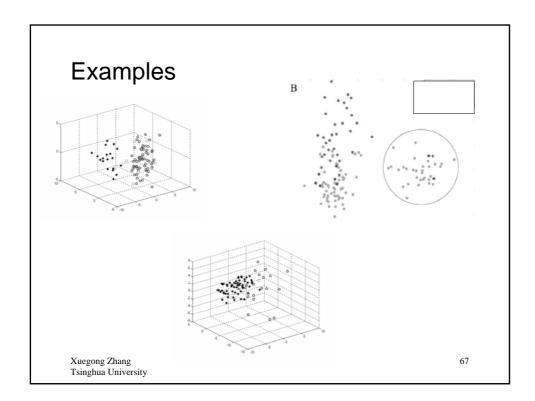


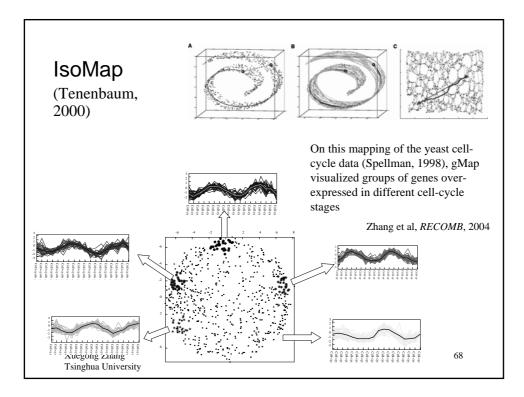







- To reduce the feature dimension by eliminating redundancy
 - PCA
 - SVD
 - KL Transform
- To eliminate the minor factors that might be due to noise
- To illustrate high-dimensional data on a plane or in a cube


63


Xuegong Zhang Tsinghua University

