Positive-only semi-supervised classification

UCSD Data Mining Contest

Given unlabeled two-class training data and a few points belonging to one class, correctly classify a test set

Problems involved:

- 20-dimensional data difficult to visualize
- 68,500 unlabeled training points
 - Any n² algorithm is out of the question
 - Just 60 positive points given (~0.1 % labeled)
 - No negative points!
- Real-world data from a physical experiment
- Roughly 1/8th of the data is positive (inferred from quiz set results).

Progress measured by F1-score against a given quiz set

F1 = harmonic mean of precision and recall

$$= 2PR/(P+R)$$

$$2/F1 = 1 + (AII-TN)/TP$$

Initial plans of attack

Clustering

- see if there are clearly visible clusters of points
- spectral clustering with local scaling can recover intricate patterns
- SVD and visualization to capture pattern in data
 - reduce dimensionality

Co-training

Make an assumption that two disjoint sets of features are sufficient for independently learning the concept. Use one classifier to suggest labels for the other iteratively

Learn a distance metric

With 20-dimensional data simple Euclidean distance may be snuffing out important differences in the data

Bayesian inference

Estimate independent feature-wise probability functions for given positive data and use Bayes Rule to infer a function for negative data

$$P(-|x) = P(x) - P(x|+)P(+)$$

1 - P(+)

Ranking

Rank the points by distance or another measure from positive points

The (Harsh?) Reality :)

- **Bayes**: Paucity of positive examples led to massively negative probabilities.
- **Clustering**: Most algorithms not feasible at this scale. Clustering on subsamples yielded no meaningful results.
- SVD and dimensionality reduction: No easily discernible separation or pattern distinguishing positives from the rest in top half of significant dimensions.
- **Sampling Negatives**: Needed for any conventional classifier.
 - Based on distance from positives and distance from each other.
 - Based on voting by different classifiers.
- **SVM**: Used seed negatives as those farthest from positives, and iteratively trained SVM classifiers adding to training set at each step.
 - Later used Non-linear kernels
 - Marginally improved results

Reality contd..

Nearest neighbor techniques:

NN can help detect a non-linear manifold structure in the data. Most helpful so far. Several variants

- one-at-a-time

- batches

(Best results yet – in terms of F1 score)

- average distance

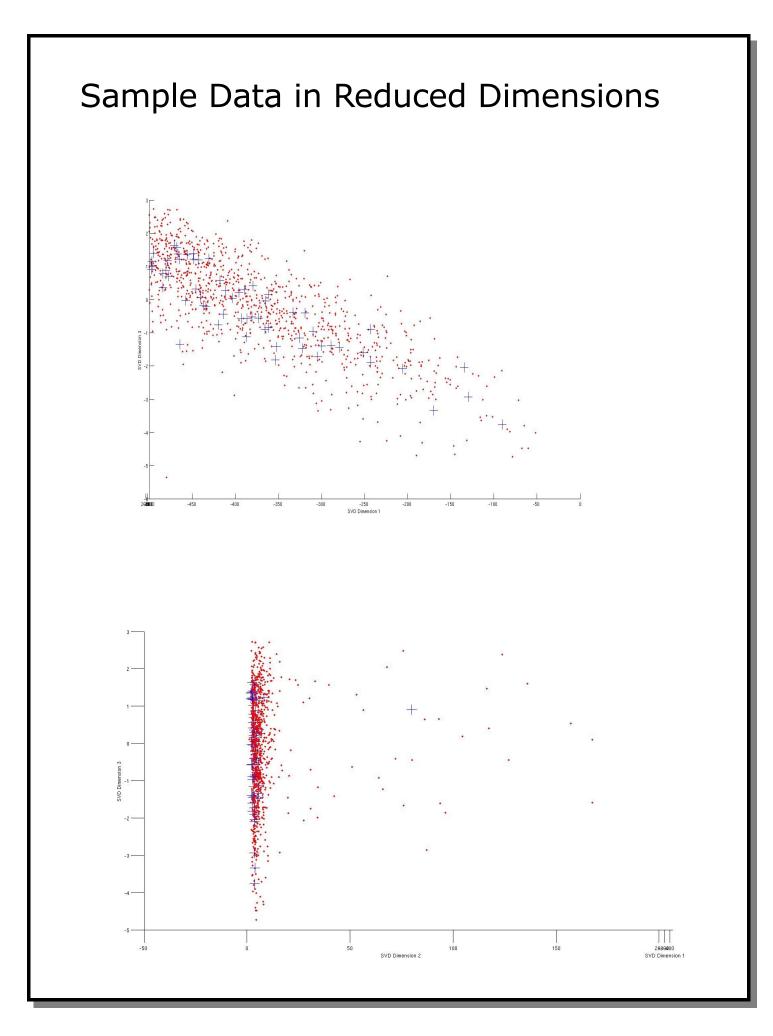
- Clustering and then growing each clusters

• One-class SVM:

Used the libsvm implementation.

Iteratively added positives to the given positive examples.

• **Hybrids**: Combining information from several techniques above.


Results

Quiz data: 11427 unlabeled examples

Number of Positives submitted	Fraction of True Positives
1700	0.32
4005	0.26
4020	0.12
1014	0.37
1307	0.31
	submitted 1700 4005 4020 1014

Future Work!

- Trying other classifiers such as ANNs (e.g. one-class classifier using ANN instead of SVM)
- Identify a subset (might be large but not too large) covering all the positive examples, then Refine e.g. using Clustering
- Combining the approaches and utilizing the results to improve.
- If we knew anything more, we would have tried it :)

