
Understanding and
Evaluating
Kubernetes

Haseeb Tariq
Anubhavnidhi “Archie” Abhashkumar

▣ Overview of project

▣ Kubernetes background and
overview

▣ Experiments

▣ Summary and Conclusion

Agenda

● Goals

● Our approach

● Observations

1.
Overview of

Project

▣ Kubernetes
□ Platform to manage containers in a cluster

▣ Understand its core functionality
□ Mechanisms and policies

▣ Major questions
□ Scheduling policy
□ Admission control
□ Autoscaling policy
□ Effect of failures

Goals

▣ Monitor state changes
□ Force system into initial state
□ Introduce stimuli
□ Observe the change towards the final state

▣ Requirements
□ Small Kubernetes cluster with resource

monitoring
□ Simple workloads to drive the changes

Our Approach

▣ Kubernetes tries to be simple and
minimal

▣ Scheduling and admission control
□ Based on resource requirements
□ Spreading across nodes

▣ Response to failures
□ Timeout and restart
□ Can push to undesirable states

▣ Autoscaling as expected
□ Control loop with damping

Observations

● Motivation

● Architecture

● Components

2.
Kubernetes
Background

▣ Workloads have shifted from using VMs
to containers
□ Better resource utilization
□ Faster deployment
□ Simplifies config and portability

▣ More than just scheduling
□ Load balancing
□ Replication for services
□ Application health checking
□ Ease of use for

■ Scaling
■ Rolling updates

Need for Container Management

api-server

scheduler

kublet

pod pod

High Level Design

kublet

pod pod

User Master Nodes

Pods

▣ Small group of containers
▣ Shared namespace

□ Share IP and localhost
□ Volume: shared directory

▣ Scheduling unit
▣ Resource quotas

□ Limit
□ Min request

▣ Once scheduled, pods do
not move

File Puller Web Server

Volume

Content Consumer

Pod

General Concepts

Pod

▣ Replication Controller

□ Maintain count of pod replicas

▣ Service

□ A set of running pods accessible by virtual IP

▣ Network model

□ IP for every pod, service and node

□ Makes all to all communication easy

3.
Experimental

Setup

Experimental Setup

Pod

▣ Google Compute Engine cluster
□ 1 master, 6 nodes

▣ Limited by free trial
□ Could not perform experiments on

scalability

Google Compute Engine

Simplified Workloads

Low request - Low usage

Low request - High usage

High request - Low usage

High request - High usage

▣ Simple scripts
running in
containers

▣ Consume specified
amount of CPU and
Memory

▣ Set the request and
usage

5.
Experiments

Scheduling
Behavior

● Scheduling
based on min-
request or
actual usage?

Scheduling based on min-request or
actual usage?

Pod

▣ Initial experiments showed that scheduler

tries to spread the load,

□ Based on actual usage or min request?

▣ Set up two nodes with no background

containers

□ Node A has a high cpu usage but a low request

□ Node B has low cpu usage but higher request

▣ See where a new pod gets scheduled

Scheduling based on Min-Request or
Actual Usage CPU? - Before

 Node A

Pod1
Request: 10%
Usage : 67%

 Node B

Pod2
Request: 10%

Usage : 1%

Pod3
Request: 10%

Usage : 1%

Scheduling based on Min-Request or
Actual Usage CPU? - Before

 Node A

Pod1
Request: 10%
Usage : 42%

 Node B

Pod2
Request: 10%

Usage : 1%

Pod3
Request: 10%

Usage : 1%

Pod4
Request: 10%
Usage : 43%

Scheduling based on Min-Request or
Actual Usage Memory?

▣ We saw the same results when running pods

with changing memory usage and request

▣ Scheduling is based on min-request

5.
Experiments

Scheduling
Behavior
● Are Memory

and CPU given
equal
weightage for
making
scheduling
decisions?

Are Memory and CPU given Equal
Weightage?

▣ First Experiment (15 trials):

□ Both nodes have 20% CPU request and 20%

Memory request

□ Average request 20%

▣ New pod equally likely to get scheduled on

both nodes.

New Pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 20%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 20%

Pod3
CPU Request: 20%

Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 20%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 20%

Pod3
CPU Request: 20%

Memory Request : 20%

▣ Second Experiment (15 trials):

□ Node A has 20% CPU request and 10% Memory

request

■ Average request 15%

□ Node B has 20% CPU request and 20% Memory

request

■ Average request 20%

▣ New pod should always be scheduled on

Node A

Are Memory and CPU given Equal
Weightage?

New Pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 20%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 10%

Pod3
CPU Request: 20%

Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 20%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 10%

Pod3
CPU Request: 20%

Memory Request : 20%

Are Memory and CPU given Equal
Weightage?

▣ Third Experiment (15 trials):

□ Node A has 20% CPU request and 10% Memory

request.

■ Average 15%

□ Node B has 10% CPU request and 20% Memory

request

■ Average 15%

▣ Equally likely to get scheduled on both again

New pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 10%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 10%

Pod3
CPU Request: 20%

Memory Request : 20%

New pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 10%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 10%

Pod3
CPU Request: 20%

Memory Request : 20%

Are Memory and CPU given Equal
Weightage?

▣ From the experiments we can see that

Memory and CPU requests are given equal

weightage in scheduling decisions

5.
Experiments

Admission Control

● Is Admission
control based
on resource
usage or
resource
request?

Is Admission Control based on
Resource Usage or Request?

 Node A

Pod1
Request: 1%
Usage : 21%

Pod2
Request: 1%
Usage : 21%

Pod3
Request: 1%
Usage : 21%

Pod4
Request: 1%
Usage : 21%

Is Admission Control based on Actual
Usage? : 70% CPU request

 Node A

Pod3
Request: 1%
Usage : 2%

Pod4
Request: 1%
Usage : 2%

Pod5
Request: 70%
Usage : 78%

Pod2
Request: 1%
Usage : 2%

Pod1
Request: 1%
Usage : 2%

Is Admission Control based on Actual
Usage?: 98% CPU request

 Node A

Pod1
Request: 1%
Usage : 21%

Pod2
Request: 1%
Usage : 21%

Pod3
Request: 1%
Usage : 21%

Pod4
Request: 1%
Usage : 21%

Pod1
Request: 98%

Usage : 1

Is Admission Control based on Actual
Usage?: 98% CPU request

 Node A

Pod1
Request: 1%
Usage : 21%

Pod2
Request: 1%
Usage : 21%

Pod3
Request: 1%
Usage : 21%

Pod4
Request: 1%
Usage : 21%

Pod1
Request: 98%

Usage : 1

Is Admission Control based on Actual
Usage?

▣ From the previous 2 slides we can show that

admission control is also based on min-

request and not actual usage

5.
Experiments

Does kubernetes
always guarantee
minimum request?

Before Background Load

 Node A

Pod1
Request: 70%
Usage : 75%

After Background Load (100 Processes)

 Node A

Pod1
Request: 70%
Usage : 27%

High load
background
process

Does Kubernetes always guarantee Min
Request?

▣ Background processes on the node are not

part of any pods, so kubernetes has no control

over them

▣ This can prevent pods from getting their min-

request

5.
Experiments

Fault Tolerance
and effect of
failures

● Container and
Node crash

Response to Failure

▣ Container crash

□ Detected via the docker daemon on the node

□ More sophisticated probes to detect slowdown

deadlock

▣ Node crash

□ Detected via node controller, 40 second heartbeat

□ Pods of failed node, rescheduled after 5 min

5.
Experiments

Fault Tolerance
and effect of
failures

● Interesting
consequence
of crash,
reboot

Pod Layout before Crash

 Node A

Pod1
Request: 10%
Usage : 35%

 Node B

Pod2
Request: 10%
Usage : 45%

Pod3
Request: 10%
Usage : 40%

Pod Layout after Crash

 Node A

Pod1
Request: 10%
Usage : 35%

 Node B

Pod2
Request: 10%
Usage : 45%

Pod3
Request: 10%
Usage : 40%

Pod Layout after Crash & before
Recovery

 Node A Node B

Pod2
Request: 10%
Usage : 27%

Pod3
Request: 10%
Usage : 26%

Pod1
Request: 10%
Usage : 29%

Pod Layout after Crash & after
Recovery

 Node A Node B

Pod2
Request: 10%
Usage : 27%

Pod3
Request: 10%
Usage : 26%

Pod1
Request: 10%
Usage : 29%

Interesting Consequence of Crash,
Reboot

▣ Can shift the container placement into an

undesirable or less optimal state

▣ Multiple ways to mitigate this

□ Have kubernetes reschedule

■ Increases complexity

□ Users set their requirements carefully so as not to

get in that situation

□ Reset the entire system to get back to the desired

configuration

5.
Experiments

Autoscaling

● How does
kubernetes do
autoscaling?

Autoscaling

▣ Control Loop
□ Set target CPU utilization for a pod

□ Check CPU utilization of all pods

□ Adjust number of replicas to meet target utilization

□ Here utilization is % of Pod request

▣ How does normal autoscaling behavior look

like for a stable load?

Normal Behavior of Autoscaler

Target
Utilization
50%

Normal Behavior of Autoscaler

Target
Utilization
50%

High load is added to the system.
The cpu usage and number of
pods increase

Normal Behavior of Autoscaler

Target
Utilization
50%

The load is now spread across nodes and
the measured cpu usage is now the average
cpu usage of 4 nodes

Normal Behavior of Autoscaler

Target
Utilization
50%

The load was
removed and pods
get removed

Autoscaling Parameters

▣ Auto scaler has two important parameters
▣ Scale up

□ Delay for 3 minutes before last scaling event

▣ Scale down
□ Delay for 5 minutes before last scaling event

▣ How does the auto scaler react to a more
transient load?

Autoscaling Parameters

Target
Utilization
50%

Autoscaling Parameters

Target
Utilization
50%

The load
went down

Autoscaling Parameters

Target
Utilization
50%

The number
of pod don’t
scale down
as quick

Autoscaling Parameters

Target
Utilization
50%

The number
of pod don’t
scale down
as quick

The is
repeated in
other runs too

Autoscaling Parameters

▣ Needs to be tuned for the nature of the

workload

▣ Generally conservative

□ Scales up faster

□ Scales down slower

▣ Tries to avoid thrashing

5.
Summary

▣ Scheduling and Admission control policy is

based on min-request of resource

□ CPU and Memory given equal weightage

▣ Crashes can drive system towards

undesirable states

▣ Autoscaler works as expected

□ Has to be tuned for workload

Summary

6.
Conclusion

▣ Philosophy of control loops
□ Observe, rectify, repeat
□ Drive system towards desired state

▣ Kubernetes tries to do as little as possible
□ Not a lot of policies
□ Makes it easier to reason about
□ But can be too simplistic in some cases

Conclusion

Thanks!
Any questions?

References

▣ http://kubernetes.io/
▣ http://blog.kubernetes.io/
▣ Verma, Abhishek, et al. "Large-scale cluster management at

Google with Borg." Proceedings of the Tenth European
Conference on Computer Systems. ACM, 2015.

http://kubernetes.io/
http://kubernetes.io/
http://blog.kubernetes.io/
http://blog.kubernetes.io/

Backup slides

4.
Experiments

Scheduling
Behavior

● Is the policy
based on
spreading load
across
resources?

Is the Policy based on Spreading Load
across Resources?

Pod

▣ Launch a Spark cluster on kubernetes

▣ Increase the number of workers one at a time

▣ Expect to see them scheduled across the

nodes

▣ Shows the spreading policy of scheduler

Individual Node Memory Usage

Increase in Memory Usage across
Nodes

Final Pod Layout after Scheduling

 Node A

Worker 1 Worker 2 Worker 3

DNS Logging

 Node B

Worker 4 Worker 5 Worker 6

Graphana Logging Master

 Node C

Worker 7 Worker 8 Worker 9

LB
Controller Logging Kube-UI

 Node D

Worker
10

Worker
11

Worker
12

Heapster Logging KubeDash

Is the Policy based on Spreading Load
across Resources?

Pod

▣ Exhibits spreading behaviour

▣ Inconclusive

□ Based on resource usage or request?

□ Background pods add to noise

□ Spark workload hard to gauge

▣ CPU Utilization of pod
□ Actual usage / Amount requested

Target Num Pods = Ceil(Sum(All Pods Util) / Target Util)

Autoscaling Algorithm

Master
▣ API Server

□ Client access to
master

▣ etcd
□ Distributed consistent

storage using raft

▣ Scheduler
▣ Controller

□ Replication

Control Plane Components

Node
▣ Kubelet

□ Manage pods,
containers

▣ Kube-proxy
□ Load balance among

replicas of pod for a
service

Detailed Architecture

Autoscaling for Long Stable Loads (10
high, 10 low)

New Pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 20%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 20%

Pod3 (Iter 1)
CPU Request: 20%

Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 20%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 20%

Pod3 (Iter 2)
CPU Request: 20%

Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 20%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 20%

Pod3 (Iter 3)
CPU Request: 20%

Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 20%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 10%

Pod3 (Iter 1)
CPU Request: 20%

Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 20%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 10%

Pod3 (Iter 2)
CPU Request: 20%

Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 20%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 10%

Pod3 (Iter 3)
CPU Request: 20%

Memory Request : 20%

New pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 10%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 10%

Pod3 (Iter 1)
CPU Request: 20%

Memory Request : 20%

New pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 10%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 10%

Pod3 (Iter 2)
CPU Request: 20%

Memory Request : 20%

New pod with 20% CPU and 20%
Memory Request

 Node A Node B

Pod2
CPU Request: 10%

Memory Request : 20%

Pod1
CPU Request: 20%

Memory Request : 10%

Pod3 (Iter 3)
CPU Request: 20%

Memory Request : 20%

