Understanding and
Evaluating
Kubernetes

Haseeb Tariq
Anubhavnidhi “Archie” Abhashkumar

Agenda

Overview of project

Kubernetes background and
overview

Experiments

Summary and Conclusion

1 ® e Goals

Overview of e Ourapproach
PrOjeCt e Observations

Goals

Kubernetes
Platform to manage containers in a cluster

Understand its core functionality
Mechanisms and policies

Major questions
Scheduling policy
Admission control
Autoscaling policy
Effect of failures

Our Approach

Monitor state changes
Force system into initial state
Introduce stimuli
Observe the change towards the final state

Requirements

Small Kubernetes cluster with resource

monitoring
Simple workloads to drive the changes

Observations

Kubernetes tries to be simple and
minimal

Scheduling and admission control
Based on resource requirements
Spreading across nodes

Response to failures
Timeout and restart
Can push to undesirable states

Autoscaling as expected
Control loop with damping

2 ® e Motivation

KLI bernetes e Architecture
Backg round e Components

Need for Container Management

|
Workloads have shifted from using VMs
to containers

Better resource utilization
Faster deployment
Simplifies config and portability

More than just scheduling
Load balancing
Replication for services
Application health checking
Ease of use for
Scaling
Rolling updates

High Level Design

User Master Nodes

api-server

scheduler

Pods

Small group of containers

Shared namespace

Share IP and localhost
Volume: shared directory

Scheduling unit
Resource quotas

Min request

Once scheduled, pods do
not move

File Puller

) =

General Concepts

Replication Controller

Maintain count of pod replicas
Service

A set of running pods accessible by virtual IP
Network model

IP for every pod, service and node

Makes all to all communication easy

3 o Google Cloud Platform

Experimental
Setup

Experimental Setup

Google Compute Engine cluster
1 master, 6 nodes

Limited by free trial

Could not perform experiments on
scalability

Google Compute Engine

Simplified Workloads

Simple scripts
running in
containers

Consume specified
amount of CPU and
Memory

Set the request and
usage

Low request - Low usage

Low request - High usage

High request - Low usage

High request - High usage

Scheduling

Behavior

5 e Scheduling
@ based on min-
request or

EXpeI"imentS actual usage?

Scheduling based on min-request or
actual usage?

Initial experiments showed that scheduler

tries to spread the load,
Based on actual usage or min request?

Set up two nodes with no background

containers

Node A has a high cpu usage but a low request

Node B has low cpu usage but higher request

See where a new pod gets scheduled

Scheduling based on Min-Request or
Actual Usage CPU? - Before

Percentage (%)
= BB 8 & 858 3 8

/ Node A \ / Node B \

Pod2 Pod3
Request: 10% Request: 10%
Usage : 1% Usage : 1%

Node A

CPU Request CPU Ussge o
Request W5 Usage

Node B

CPU Request CPUU=ge
Request V5 Usage

Scheduling based on Min-Request or
Actual Usage CPU? - Before

Node A / Node B \

Pod2 Pod3
Request: 10% Request: 10%
Usage : 1% Usage : 1%

\ AN /

Node A Node B
90 90
B0 B0
0 70
£ 60 = B0
-1} w
fﬂn 50 w50
s i
= o
= 30 30

oo
20
0
CPU Request CPUUsage

CPU Request CPUU=ge
Request V5 Usage

Request V5 Usage

Scheduling based on Min-Request or
Actual Usage Memory?

We saw the same results when running pods

with changing memory usage and request

Scheduling is based on min-request

Scheduling
Behavior

e Are Memory
5 and CPU given
@ equal

weightage for

Experiments making

scheduling
decisions?

Are Memory and CPU given Equal
Weightage?

First Experiment (15 trials):

Both nodes have 20% CPU request and 20%

Memory request

Average request 20%

New pod equally likely to get scheduled on
both nodes.

New Pod with 20% CPU and 20%
Memory Request

-

Node A

Pod1
CPU Request: 20%
Memory Request : 20%

~

/

-

\

Node B

Pod2
CPU Request: 20%
Memory Request : 20%

~

Pod3

CPU Request: 20%

Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

/ Node A \ / Node B \

Pod1 Pod2
CPU Request: 20% CPU Request: 20%
Memory Request : 20% Memory Request : 20%

\ AN /

Pod Placement on Nodes

14
12

10
Pod3

= m

(=]

Mumber of Times Scheduled

CPU Request: 20%
Memory Request : 20% .
1]
Fil B

Node

Are Memory and CPU given Equal
Weightage?

Second Experiment (15 trials):

Node A has 20% CPU request and 10% Memory

request

Average request 15%
Node B has 20% CPU request and 20% Memory

request

Average request 20%
New pod should always be scheduled on

Node A

New Pod with 20% CPU and 20%
Memory Request

-

Node A

Pod1
CPU Request: 20%
Memory Request : 10%

N O

AN

Node B

Pod2
CPU Request: 20%
Memory Request : 20%

~

Pod3
CPU Request: 20%
Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

/ Node A \ / Node B \

Pod1 Pod2
CPU Request: 20% CPU Request: 20%
Memory Request : 10% Memory Request : 20%

\ A /

Pod Placement on Nodes

14

12

Pod3
CPU Request: 20%
Memory Request : 20%

10

E=T = N -]

Mumber of Times Schedul ed

Node

Are Memory and CPU given Equal
Weightage?

Third Experiment (15 trials):

Node A has 20% CPU request and 10% Memory

request.

Average 15%
Node B has 10% CPU request and 20% Memory

request

Average 15%
Equally likely to get scheduled on both again

New pod with 20% CPU and 20%
Memory Request

-

Node A

Pod1
CPU Request: 20%
Memory Request : 10%

N O

AN

Node B

Pod2
CPU Request: 10%
Memory Request : 20%

~

Pod3
CPU Request: 20%
Memory Request : 20%

New pod with 20% CPU and 20%
Memory Request

///'

"

Node A

CPU Request: 20%
Memory Request : 10%

Pod1

~

/

Pod3
CPU Request: 20%
Memory Request : 20%

Mumber of Times Schedul ed

14
12
10

b= m m

(o=}

Pod Placement on Nodes

///'

"

Node B

Pod2
CPU Request: 10%
Memory Request : 20%

~

Mode

Are Memory and CPU given Equal
Weightage?
|
From the experiments we can see that
Memory and CPU requests are given equal

weightage in scheduling decisions

S.

Experiments

Admission Control

Is Admission
control based
oh resource
usage or
resource
request?

Is Admission Control based on
Resource Usage or Request?

]
Node A
Node A
90
B0
70
60
% 50
€ 40
o
oo

CPU Request CPU Usage
Request V5 Usage

Is Admission Control based on Actual
Usage? : 70% CPU request

Node A

Node A

50
40
30
20
10

0

CPU Request CPU Usage
Request VS Usage

53888

ntage (%)

Parce

Is Admission Control based on Actual
Usage?: 98% CPU request

Node A

Node A

CPU Request CPU Usage
Request V5 Usage

Is Admission Control based on Actual
Usage?: 98% CPU request

Node A
Node A
90
B0
70
60
% 50
€ 40
o
oo

CPU Request CPU Usage
Request V5 Usage

Is Admission Control based on Actual
Usage?
]
From the previous 2 slides we can show that
admission control is also based on min-

request and not actual usage

Does kubernetes
always guarantee

minimum request?

S.

Experiments

Before Background Load

-~

Node A

~

Node A

CPU Request

Request VS Usage

CPU Uszge

After Background Load (100 Processes)

/ Node A

Node A

70

&0
b |
£ 40
30
20
10

CPU Request CPU Usage
Request V3 Usage

Does Kubernetes always guarantee Min
Request?

Background processes on the node are not

part of any pods, so kubernetes has no control

over them

This can prevent pods from getting their min-

request

Fault Tolerance

and effect of

5 failures
® e Container and

Node crash

Experiments

Response to Failure

Container crash
Detected via the docker daemon on the node

More sophisticated probes to detect slowdown

deadlock

Node crash

Detected via node controller, 40 second heartbeat

Pods of failed node, rescheduled after 5 min

S.

Experiments

Fault Tolerance

and effect of
failures

e Interesting
conseguence
of crash,
reboot

Pod Layout before Crash

[2E]
& th

Percentage (%)
w B B R

(=]

Node A

~

CPU Request

Node A

CPU Usage

Request VS Usage

-

~

Node B \

Parcentaga (%)

o588 5583838

Node B

CPU Request CPUUsage
Request V3 Usage

Pod Layout after Crash

/ Node B \

-
\

Node B
Node A
90
i
B
09
S 70
F 07 # 60
— o
[=11] i)
8os c ap
% 04 S 20
; oo
o 0.3 20
0.1
i 0

CPU Request CPUUsage
CPU Request CPU Ussge

Request V3 Usage
Request V5 Usage

Pod Layout after Crash & before
Recovery

Node A Node B
Node A Node B

1 o0

09 BOD

08 70

E 07 E 60

oAl & 50

"E a= *E A0
804 3

& 03 5 30

02 20

0 0

CPU Request CPU Ussge CPU Reguest CPU Usage

Request V5 Usage Request V5 Usage

Pod Layout after Crash & after
Recovery

09
08
= o0y

B as

=

g 04

o 03
02
01

/ Node A

~

Node A

CPU Request CPU Ussge

Request V5 Usage

20
70
£ 60
&n 50
oy
40
[%]
% 30
o
0
10
0

Node B

Node B

CPU Reguest CPU Usge
Request V5 Usage

Interesting Consequence of Crash,
Reboot

Can shift the container placement into an
undesirable or less optimal state

Multiple ways to mitigate this

Have kubernetes reschedule

Increases complexity
Users set their requirements carefully so as not to
get in that situation
Reset the entire system to get back to the desired

configuration

Autoscaling

e How does

5 ®
kubernetes do

Experiments autoscaling?

Autoscaling

Control Loop
Set target CPU utilization for a pod

Check CPU utilization of all pods

Adjust number of replicas to meet target utilization

Here utilization is % of Pod request

How does normal autoscaling behavior look

like for a stable load?

Normal Behavior of Autoscaler

] CPU-usage
200
180
— 150 |_|
“EE’ 140
Target o
Utilization s
50% = BD
o 60
e =

mf
I)

10 20 30 ap 50 B0
Time (mins)
Num-pods
45
a
35
= i85
o
= 215
5 2
0
E s
= e L
0.5
0
0 10 0 30 a0 50 ED

Time [mins)

Normal Behavior of Autoscaler

] CPU-usage
200 :
180
ol 5
£ 14 |
Target o
Utilization § ton
50% = BD
|
5

H_

&

P
=

=

10 20 30 40 50 60

[=]

Time (mins)

Num-pods

Mumber of Pods
a3

0 10 20 30 40 50 60
High load is added to the system. Time (mins)

The cpu usage and number of

pods increase

Normal Behavior of Autoscaler

| CPU-usage

200
180
160 |
140 |
120

w | |
20 -
g il - lx_

0 . . 10 20 30 40 50 &0

Target
Utilization
50%

CPU Percentage (%)
[=
]

Time (mins)

Num-pods

Mumber of Pods

0 10 20 30 40 50 60
The load is now spread across nodes and Time (mins)
the measured cpu usage is now the average
cpu usage of 4 nodes

Normal Behavior of Autoscaler

| CPU-usage

200
180
—. 160
— 140
120

Target
Utilization
50%

CPU Percentage (%

0 . . 10 20 30 40 . 50]

Time (mins)

Num-pods

Mumber of Pods

o 10 20 30 40 50 &0
The load was
removed and pods
getremoved

Time [mins)

Autoscaling Parameters

Auto scaler has two important parameters
Scale up

Delay for 3 minutes before last scaling event
Scale down

Delay for 5 minutes before last scaling event

How does the auto scaler react to a more
transient load?

Autoscaling Parameters

]
CPU-usage
Target 2 5 [
Utilization g
50% -

i

10 15 20 25 30 35 40 45

Time (mins)
Num-pods
45
a
35
u
2 i3
[=1
w25
a2
E ’ \
L5
= 1 |_
05
0

0 5 10 15 20 25 30 35 40 45

Time (mins)

Autoscaling Parameters

|
CPU-usage

8

180

2
AN
]

=
=

Target
Utilization
50%

120
100

60 |

CPU Percentage (%)

20

10 15 20 35 30 35 40 45

L=
L

Time [mir{s)

Num-pods -
45 :

The load 4
went down 3

25

2 L
15 / \
1 ; £

0.5

Mumber of pods

0 5 10 15 20 25 30 35 40 45

Time (mins)

Autoscaling Parameters

|
CPU-usage
200 |

180 —
160 I_j B

Target % 140 -
Utilization =

50% o

%)

&0

CPU Percentage

20

10 15 20 i5 . 30 35 40 a5

L=
L

Time {mirjs] *

Num-pods -

45 :

The number 4

of pod don’t 3

scale down
as quick

25

2 L
15 ’ \ .]
1 = £

0.5

Mumber of pods

0 5 10 15 20 25 30 35 40 45

Time (mins)

Autoscaling Parameters

]
CPU-usage
200
180 | - .
& 160 I_j r|
Target % 140 - :
Utilization 8 ﬁg
50% S_E.- BO
o 60
S 4
20
1] : a
0 5 10 15 20 2:5 D os0 535 40 a5
Time {mirjs] *
Num-pods -
45 .
The number 4
of pod don’t w2 i il *
scale down g 9 [==
ick b 3 . :
as quic _“E 5 : . -
. ks f \ [I |
Theis = - o
repeated in 05 P [
other runs too 0 :
1] 5 10 15 20 25 530 35 a0 45

Time (mins)

Autoscaling Parameters

Needs to be tuned for the nature of the

workload

Generally conservative

Scales up faster

Scales down slower

Tries to avoid thrashing

S.

Summary

Summary

Scheduling and Admission control policy is

based on min-request of resource
CPU and Memory given equal weightage
Crashes can drive system towards

undesirable states

Autoscaler works as expected

Has to be tuned for workload

6.

Conclusion

Conclusion

Philosophy of control loops
Observe, rectify, repeat
Drive system towards desired state

Kubernetes tries to do as little as possible
Not a lot of policies
Makes it easier to reason about
But can be too simplistic in some cases

References

= http://kubernetes.io/

= http://blog.kubernetes.io/

= Verma, Abhishek, et al. "Large-scale cluster management at
Google with Borg." Proceedings of the Tenth European
Conference on Computer Systems. ACM, 2015.

http://kubernetes.io/
http://kubernetes.io/
http://blog.kubernetes.io/
http://blog.kubernetes.io/

Backup slides

Scheduling

Behavior

e Is the policy
® based on
spreading load
across

Experiments resources?

Is the Policy based on Spreading Load
across Resources?

Launch a Spark cluster on kubernetes
Increase the number of workers one at a time
Expect to see them scheduled across the
nhodes

Shows the spreading policy of scheduler

Memory Usage

Memory Usage

Individual Node Memory Usage

INDIVIDUAL NODE MEMORY USAGE
Mode A Mods B
2868 aGa
)
ke E pbc P
19 Gl Pty
g 19GE
14 GiB _’/_/ 5
. 1468
477 MIB B54 B
1930 1932 Ie34 1936 1928 1930 1937 1934 136 193 1940 10 1077 1924 136 1028 1930 IB3E 1934 1036 1938 1940
= Usage Cument 208 GIB = Working Set Curment: DEZ 77 Mg Wall Clock Tima = Uspge Cument 150 G = Working Sot Cusment: 1.03 G Wall Clock Time
Mode & Mods D
28GR 23 Gl
zaom /_/—/ o 1968 /_/_/
1968 o
= 1468
14 GiB B
E msame
954 MiB e
47T B 477 B
1930 1927 1924 1038 1928 1930 1932 1934 1036 1938 1940 1920 1022 1934 1826 1028 1930 1932 1934 1836 1938 1940

Wall Clock Time Wi ok Ti
= Usage Cument L83 G = Working St Curent 053 13 MiB Wall Clock Time = UUsage Cument)54 GIE = Working Set Curent: 070 34 MiB Wall Clock Time

Increase in Memory Usage across
Nodes

Memory Usage

Final Pod Layout after Scheduling

-

\

~

-

~

/

-

~

Node A
Worker 1 Worker 2 Worker 3
DNS Logging
Node C
Worker 7 Worker 8 Worker 9
LB i
Controller Logging Kube-Ul

\

\

/

-

~

Node B
Worker 4 Worker 5 Worker 6
Graphana | | Logging Master
Node D
Worker Worker Worker
10 11 12
Heapster Logging KubeDash

\

/

Is the Policy based on Spreading Load
across Resources?

Exhibits spreading behaviour

Inconclusive

Based on resource usage or request?
Background pods add to noise

Spark workload hard to gauge

Autoscaling Algorithm

CPU Utilization of pod

Actual usage / Amount requested

Target Num Pods = Ceil(Sum(All Pods Util) / Target Util)

Control Plane Components

o
Master Node
APl Server Kubelet
Client access to Manage pods,
master containers
etcd Kube-proxy
Distributed consistent Load balance among
storage using raft replicas of pod for a
Scheduler service
Controller

Replication

Detailed Architecture

kubectl (user commands)

A

authentication

authorization

v

REST

APIs
scheduling -
actuator kel
A

/ 4

(pods, services,
rep. controllers)

1

Scheduler

controller manager
(replication controller etc.)

Master components

as dictated by cluster size.

Colocated, or spread across machines,

Distributed
Watchable
Storage

(implemented via etcd)

Firewall

Node

/-)I kubelet

Node

T~

e I

Autoscaling for Long Stable Loads (10
high, 10 low)

CPU-usage

1BD
160 |_|
= 140
120
100

ntage (%

60

CPU Perce

20

New Pod with 20% CPU and 20%
Memory Request

-

Node A

~

Pod1

CPU Request: 20%

Memory Request :

20%

N/

-

\

Node B

Pod2
CPU Request: 20%
Memory Request : 20%

~

Pod3 (lter 1)

CPU Request: 20%
Memory Request : 20%

New Pod with 20% CPU and 20%

Memory Request

-

Node A

Pod1
CPU Request: 20%
Memory Request : 20%

~

/

/ Node B

Pod2

CPU Request: 20%
Memory Request : 20%

.~

~

CPU Request: 20%
Memory Request : 20%

Pod3 (lter 2)

New Pod with 20% CPU and 20%
Memory Request

-

Node A

~

Pod1

CPU Request: 20%

Memory Request :

20%

N/

-

\

Node B

Pod2
CPU Request: 20%
Memory Request : 20%

~

Pod3 (lter 3)

CPU Request: 20%
Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

-

Node A

N O

Pod1

CPU Request: 20%

Memory Request :

10%

AN

Node B

Pod2
CPU Request: 20%
Memory Request : 20%

~

Pod3 (Iter 1)
CPU Request: 20%
Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

-

Node A

N O

Pod1

CPU Request: 20%

Memory Request :

10%

AN

Node B

Pod2
CPU Request: 20%
Memory Request : 20%

~

Pod3 (Iter 2)
CPU Request: 20%
Memory Request : 20%

New Pod with 20% CPU and 20%
Memory Request

-

Node A

N O

Pod1

CPU Request: 20%

Memory Request :

10%

AN

Node B

Pod2
CPU Request: 20%
Memory Request : 20%

~

Pod3 (Iter 3)
CPU Request: 20%
Memory Request : 20%

New pod with 20% CPU and 20%
Memory Request

-

Node A

N O

Pod1

CPU Request: 20%

Memory Request :

10%

AN

Node B

Pod2
CPU Request: 10%
Memory Request : 20%

~

Pod3 (Iter 1)
CPU Request: 20%
Memory Request : 20%

New pod with 20% CPU and 20%
Memory Request

-

Node A

Pod1
CPU Request: 20%
Memory Request : 10%

N O

AN

Node B

Pod2
CPU Request: 10%
Memory Request : 20%

d

~

/

Pod3 (Iter 2)
CPU Request: 20%
Memory Request : 20%

New pod with 20% CPU and 20%
Memory Request

-

Node A

N O

Pod1

CPU Request: 20%

Memory Request :

10%

AN

Node B

Pod2
CPU Request: 10%
Memory Request : 20%

~

Pod3 (Iter 3)
CPU Request: 20%
Memory Request : 20%

