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Goals

Kubernetes
Platform to manage containers in a cluster

Understand its core functionality
Mechanisms and policies

Major questions
Scheduling policy
Admission control
Autoscaling policy
Effect of failures



Our Approach

Monitor state changes
Force system into initial state
Introduce stimuli
Observe the change towards the final state

Requirements

Small Kubernetes cluster with resource

monitoring
Simple workloads to drive the changes



Observations

Kubernetes tries to be simple and
minimal

Scheduling and admission control
Based on resource requirements
Spreading across nodes

Response to failures
Timeout and restart
Can push to undesirable states

Autoscaling as expected
Control loop with damping
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Need for Container Management

|
Workloads have shifted from using VMs
to containers

Better resource utilization
Faster deployment
Simplifies config and portability

More than just scheduling
Load balancing
Replication for services
Application health checking
Ease of use for
Scaling
Rolling updates



High Level Design

User Master Nodes

api-server

scheduler




Pods

Small group of containers

Shared namespace

Share IP and localhost
Volume: shared directory

Scheduling unit
Resource quotas

Min request

Once scheduled, pods do
not move

File Puller

) =




General Concepts

Replication Controller

Maintain count of pod replicas
Service

A set of running pods accessible by virtual IP
Network model

IP for every pod, service and node

Makes all to all communication easy



3 o Google Cloud Platform

Experimental
Setup




Experimental Setup

Google Compute Engine cluster
1 master, 6 nodes

Limited by free trial

Could not perform experiments on
scalability

Google Compute Engine




Simplified Workloads

Simple scripts
running in
containers

Consume specified
amount of CPU and
Memory

Set the request and
usage

Low request - Low usage

Low request - High usage

High request - Low usage

High request - High usage



Scheduling

Behavior
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Scheduling based on min-request or
actual usage?

Initial experiments showed that scheduler

tries to spread the load,
Based on actual usage or min request?

Set up two nodes with no background

containers

Node A has a high cpu usage but a low request

Node B has low cpu usage but higher request

See where a new pod gets scheduled
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Scheduling based on Min-Request or
Actual Usage Memory?

We saw the same results when running pods

with changing memory usage and request

Scheduling is based on min-request
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Are Memory and CPU given Equal
Weightage?

First Experiment (15 trials):

Both nodes have 20% CPU request and 20%

Memory request

Average request 20%

New pod equally likely to get scheduled on
both nodes.
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New Pod with 20% CPU and 20%
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Are Memory and CPU given Equal
Weightage?

Second Experiment (15 trials):

Node A has 20% CPU request and 10% Memory

request

Average request 15%
Node B has 20% CPU request and 20% Memory

request

Average request 20%
New pod should always be scheduled on

Node A
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Are Memory and CPU given Equal
Weightage?

Third Experiment (15 trials):

Node A has 20% CPU request and 10% Memory

request.

Average 15%
Node B has 10% CPU request and 20% Memory

request

Average 15%
Equally likely to get scheduled on both again
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New pod with 20% CPU and 20%
Memory Request
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Are Memory and CPU given Equal
Weightage?
|
From the experiments we can see that
Memory and CPU requests are given equal

weightage in scheduling decisions
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Admission Control
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Is Admission Control based on
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Is Admission Control based on Actual
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Is Admission Control based on Actual
Usage?
]
From the previous 2 slides we can show that
admission control is also based on min-

request and not actual usage



Does kubernetes
always guarantee

minimum request?

S.

Experiments
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After Background Load (100 Processes)
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Does Kubernetes always guarantee Min
Request?

Background processes on the node are not

part of any pods, so kubernetes has no control

over them

This can prevent pods from getting their min-

request



Fault Tolerance

and effect of

5 failures
® e Container and

Node crash

Experiments




Response to Failure

Container crash
Detected via the docker daemon on the node

More sophisticated probes to detect slowdown

deadlock

Node crash

Detected via node controller, 40 second heartbeat

Pods of failed node, rescheduled after 5 min
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and effect of
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e Interesting
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of crash,
reboot




Pod Layout before Crash
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Pod Layout after Crash
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Pod Layout after Crash & before
Recovery
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Pod Layout after Crash & after
Recovery
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Interesting Consequence of Crash,
Reboot

Can shift the container placement into an
undesirable or less optimal state

Multiple ways to mitigate this

Have kubernetes reschedule

Increases complexity
Users set their requirements carefully so as not to
get in that situation
Reset the entire system to get back to the desired

configuration



Autoscaling

e How does

5 ®
kubernetes do

Experiments autoscaling?




Autoscaling

Control Loop
Set target CPU utilization for a pod

Check CPU utilization of all pods

Adjust number of replicas to meet target utilization

Here utilization is % of Pod request

How does normal autoscaling behavior look

like for a stable load?



Normal Behavior of Autoscaler
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Normal Behavior of Autoscaler
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Normal Behavior of Autoscaler
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Normal Behavior of Autoscaler
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Autoscaling Parameters

Auto scaler has two important parameters
Scale up

Delay for 3 minutes before last scaling event
Scale down

Delay for 5 minutes before last scaling event

How does the auto scaler react to a more
transient load?



Autoscaling Parameters
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Autoscaling Parameters
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Autoscaling Parameters
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Autoscaling Parameters
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Autoscaling Parameters

Needs to be tuned for the nature of the

workload

Generally conservative

Scales up faster

Scales down slower

Tries to avoid thrashing



S.

Summary




Summary

Scheduling and Admission control policy is

based on min-request of resource
CPU and Memory given equal weightage
Crashes can drive system towards

undesirable states

Autoscaler works as expected

Has to be tuned for workload



6.

Conclusion




Conclusion

Philosophy of control loops
Observe, rectify, repeat
Drive system towards desired state

Kubernetes tries to do as little as possible
Not a lot of policies
Makes it easier to reason about
But can be too simplistic in some cases
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Is the Policy based on Spreading Load
across Resources?

Launch a Spark cluster on kubernetes
Increase the number of workers one at a time
Expect to see them scheduled across the
nhodes

Shows the spreading policy of scheduler



Memory Usage

Memory Usage

Individual Node Memory Usage
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Increase in Memory Usage across
Nodes

Memory Usage




Final Pod Layout after Scheduling
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Is the Policy based on Spreading Load
across Resources?

Exhibits spreading behaviour

Inconclusive

Based on resource usage or request?
Background pods add to noise

Spark workload hard to gauge



Autoscaling Algorithm

CPU Utilization of pod

Actual usage / Amount requested

Target Num Pods = Ceil( Sum( All Pods Util ) / Target Util )



Control Plane Components

o
Master Node
APl Server Kubelet
Client access to Manage pods,
master containers
etcd Kube-proxy
Distributed consistent Load balance among
storage using raft replicas of pod for a
Scheduler service
Controller

Replication



Detailed Architecture

kubectl (user commands)
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Autoscaling for Long Stable Loads (10
high, 10 low)
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