
Paving the Way for NFV:
Simplifying Middlebox Modi�cations using StateAlyzr

Junaid Khalid, Aaron Gember-Jacobson, Roney Michael,
Anubhavnidhi Abhashkumar, Aditya Akella

University of Wisconsin-Madison
Abstract

Important Network Functions Virtualization (NFV)
scenarios such as ensuring middlebox fault tolerance or
elasticity require redistribution of internal middlebox
state. While many useful frameworks exist today for mi-
grating/cloning internal state, they require modi�cations
to middlebox code to identify needed state. �is process
is tedious and manual, hindering the adoption of such
frameworks. We present a framework-independent sys-
tem, StateAlyzr, that embodies novel algorithms adapted
from program analysis to provably and automatically
identify all state that must be migrated/cloned to ensure
consistent middlebox output in the face of redistribu-
tion. We �nd that StateAlyzr reducesman-hours required
for code modi�cation by nearly 20�. We apply State-
Alyzr to four open source middleboxes and �nd its algo-
rithms to be highly precise. We �nd that a large amount
of, but not all, live state matters toward packet process-
ing in these middleboxes. StateAlyzr’s algorithms can re-
duce the amount of state that needs redistribution by 600-
8000� compared to naive schemes.

1 Introduction
Network functions virtualization (NFV) promises to of-
fer networks great �exibility in handling middlebox load
spikes and failures by helping spin up new virtual in-
stances and dynamically redistributing tra�c among in-
stances. Central to realizing the bene�ts of such elasticity
and fault tolerance is the ability to handle internal mid-
dlebox state during tra�c redistribution. Becausemiddle-
box state is dynamic (it can be updated for each incom-
ing packet) and critical (its current value determinesmid-
dlebox actions), the relevant internal state must be made
available when tra�c is rerouted to a di�erent middlebox
instance [16, 26, 30].
Recognizing this, and given the high-overhead and

poor e�ciency of existing approaches for replicating and
sharing application state [16, 24, 26], researchers have
developed several exciting frameworks for transferring,
cloning, or sharing live middlebox state across instances,
e.g., OpenNF [16], FTMB [30], Split/Merge [26], Pico
Replication [24], and StatelessNF [20].
However, for middleboxes to work with these frame-

works, middlebox developers must modify, or at least
annotate, their code to perform custom state allocation,
track updates to state, and (de)serialize state objects. �e

central contribution of this paper is a novel, framework-
independent system that greatly reduces the e�ort in-
volved in making such modi�cations.

�ree factors make such modi�cations di�cult today:
(i) middlebox so�ware is extremely complex, and the
logic to update/create di�erent pieces of state can be intri-
cate; (ii) there may be 10s-100s of object types that corre-
spond to state that needs explicit handling; and (iii) mid-
dleboxes are extremely diverse. Factors i and ii make it
di�cult to reason about the completeness or correctness
of manual modi�cations. And, iii means manual tech-
niques that apply to one middlebox may not extend to
another. Our own experience in modifying middleboxes
to work with OpenNF [16] underscores these problems.
Making even a simple monitoring appliance (PRADS [6],
with 10K LOC) OpenNF-compliant took over 120 man-
hours. We had to iterate over multiple code changes and
corresponding unit tests to ascertain completeness of our
modi�cations; moreover, the process we used for modi-
fying this middlebox could not be easily adapted to other
more complex ones!

�ese di�culties signi�cantly raise the bar for the
adoption of these otherwise immensely useful state han-
dling frameworks. To reduce manual e�ort and ease
adoption, we develop StateAlyzr, a system that relies on
data and control-�ow analysis to automate identi�cation
of state objects that need explicit handling. Using State-
Alyzr’s output, developers can easily make framework-
compliant changes to arbitrary middleboxes, e.g., iden-
tify which state to allocate using custom libraries for [20,
24, 26], determine where to track updates to state [16,
26, 30], (de)serialize relevant state objects for transfer/-
cloning [16], andmerge externally provided state with in-
ternal structures [16, 24]. In practice we �nd StateAlyzr
to be highly e�ective. For example, leveraging StateAlyzr
to make PRADS OpenNF-compliant took under 6 man-
hours of work.

Importantly, transferring/cloning state objects identi-
�ed with StateAlyzr is provably sound and precise. �e
former means that the aggregate output of a collection of
instances following redistribution is equivalent to the out-
put thatwould have been produced had redistribution not
occurred.�e lattermeans that StateAlyzr identi�esmin-
imal state to transfer so as to ensure that redistribution
o�ers good performance and incurs low overhead.

However, achieving high precision without compro-

1

mising soundness is challenging. Key attributes of mid-
dlebox code contribute to this: e.g., numerous data struc-
tures and procedures, large callgraphs, heavy use of
(multi-level) pointers, and indirect calls to packet pro-
cessing routines that modify state (See Table 2).

To overcome these challenges, StateAlyzr cleverly
adapts program analysis techniques, such as slicing [18,
33] and pointer analysis [9, 31], to typical middlebox
code structure and design patterns, contributing new al-
gorithms for detailed classi�cation of middlebox state.
�ese algorithms can automatically identify: (i) variables
corresponding to state objects that pertain to individual
or groups of �ows, (ii) the subset of these that correspond
to state objects that can be updated by an arbitrary incom-
ing packet at runtime, (iii) the �ow space correspond-
ing to a state object, (iv) middlebox I/O actions that are
impacted by each state object, and (v) objects updated at
runtime by an incoming packet.

To evaluate StateAlyzr, we both prove that our algo-
rithms are sound (Appendix B) and use experiments to
demonstrate precision and the resultant impact on the
e�ciency of state transfer/cloning. We run StateAlyzr
on four open sourcemiddleboxes—Passive Real-timeAs-
set Detection System (PRADS) [6], HAProxy load bal-
ancer [2], Snort Intrusion Detection System [7], and
OpenVPN gateway [5]—and �nd:

• StateAlyzr’s algorithms improve precision signi�-
cantly: whereas the middleboxes have 1500-18k vari-
ables, only 29-131 correspond to state that needs ex-
plicit handling, and 10-148 are updateable at run time.
By automatically identifying updateable state, State-
Alyzr allows developers to focus on the necessary sub-
set of variables among the many present. StateAlyzr
can be imprecise: 18% of the updateable variables are
mis-labeled (they are in fact read-only), but the infor-
mation StateAlyzr provides allows developers to ig-
nore processing these variables.

• Using StateAlyzr output, we modi�ed PRADS and
Snort to support fault tolerance using OpenNF [16].
We �nd that StateAlyzr reduces the manual e�ort
needed. We could modify Snort (our most complex
middlebox) and PRADS in 90 and 6 man-hours, re-
spectively. Further, by helping track which �ows-
pace an incoming packet belongs to, and which state
objects it had updated, StateAlyzr reduces unneeded
runtime state transfers between the primary and
backup instances of PRADS and Snort by 600� and
8000� respectively compared to naive approaches.

• StateAlyzr can process middlebox code in a reason-
able amount of time. Finally, it helped us identify im-
portant variables that we missed in our earlier modi-
�cations to PRADS, underscoring its usefulness.

1
Launch
instance

Start buffering traffic

SDN
Controller

2

3

Transfer
state

4
Release buffered

traffic

Redistribute
traffic 5

(a) Scaling with Split/Merge [26]

Launch VM

Failure!

Snapshot VM

Log state accesses
and packets

2

1
Persistent
storage

4

Reprocess
packets

5

3

6
Redistribute
traffic

(b) Failure recovery with FTMB [30]
Figure 1: Scaling and failure recovery process with recently
state management frameworks

2 Motivation
A central goal of NFV is to create more scalable and fault
tolerant middlebox deployments, where middleboxes au-
tomatically scale themselves in accordance with network
load and automatically heal themselves when so�ware,
hardware, or link failures occur [4]. Scaling, and possibly
fault tolerance, requires launching middlebox instances
on demand. Both require redistributing network tra�c
among instances, as shown in Figure 1.

2.1 Need for Handling State

Middlebox scaling and failure recovery should be trans-
parent to end-users and applications. Key to ensuring
this is maintaining output equivalence: for any input traf-
�c stream, the aggregate output of a dynamic set of mid-
dlebox instances should be equivalent to the output pro-
duced by a single, monolithic, always-available instance
that processes the entire input [26]. �e output may in-
clude network tra�c and middlebox logs.

As shown in prior works [16, 26, 30], achieving out-
put equivalence is hard because middleboxes are stateful.
Every packet the middlebox receives may trigger updates
to multiple pieces of internal state, and middlebox out-
put is highly dependent on the current state. �us, mal-
functions can occur when tra�c is rerouted to a middle-
box instancewithout the relevant internal state beingmade
available at the instance. Approaches like naively rerout-
ing newly arriving �ows or forcibly rerouting �ows with
pertinent state can violate output equivalence. �e reader
is referred to [16, 24] for a more formal treatment of the
need to handle internal state.

2.2 Approaches for Handling State

Traditional approaches for replicating and sharing ap-
plication state are resource intensive and slow [16, 24,
26]. �us, researchers have introduced fast and e�-
cient frameworks that transfer, clone, or share live inter-
nal middlebox state across instances. Examples include:

2

Required Modi�cations
State State Serial- Merge

Framework Provides Alloc. Access ization State
Split/Merge [26] Elasticity

Pico Rep. [24] Fault tol.

OpenNF [16] Both

FTMB [30] Fault tol.

StatelessNF [20] Both

Table 1: Middlebox modi�cations in di�erent frameworks

Split/Merge [26] and StatelessNF [20] that focus on elastic-
ity; Pico replication [24] and FTMB [30] that focus on fault
tolerance; and OpenNF [16] that applies to both. Unfor-
tunately, these frameworks require detailedmodi�cations
to middlebox code to handle state (see Table 1):

• Split/Merge [26] and Pico Replication [24] require
middleboxes to allocate and access all per- and
cross-�ow state—i.e., state that supports the pro-
cessing of multiple packets within and across �ows,
respectively—through a specialized shared library,
instead of using system-provided functions (e.g.,
malloc). �is allows the frameworks to transfer and
replicate middlebox state without serializing or up-
dating middlebox-internal structures.

• OpenNF [16] requires middleboxes to identify and
serialize per- and cross-�ow state objects pertaining
to a particular �owspace, as well as deserialize and
integrate objects received from other middlebox in-
stances. �is allows OpenNF to transfer and copy
�ow-related state between middlebox instances.

• FTMB [30] requires middleboxes to log: (i) ac-
cesses to cross-�ow state, and (ii) invocations of
non-deterministic functions (e.g., gettimeofday).
�e logs allow FTMB to deterministically reprocess
packets on a di�erentmiddlebox instance in case the
current instance fails before an up-to-date snapshot
of its state can be captured.

• StatelessNF [20] requires middleboxes to create,
read, and update all state values from a central,
RDMA (remote direct memory access) based key/-
value store. �is enables any middlebox instance to
have access to any state, and hence any instance can
safely process any packet.

Making the above modi�cations to middleboxes is dif-
�cult because middlebox code is complex. As shown in
Table 2, several popular middleboxes have between 60K
and 275K lines of code (LOC), dozens of di�erent struc-
tures and classes, and, in some cases, complex event-
based control �ow. If a developermisses a change to some
structure, class, or function, then output equivalencemay
be violated under certain input patterns, and amiddlebox
may fail in unexpectedways at run time. FTMB is the only
system that aims to avoid such problems. It automatically
modi�es middleboxes using LLVM [3]. However, there
are two problems: (i) developersmust still manually spec-

ify which variables may contain/point-to cross-�ow state;
(ii) the tool is limited to Click-based middleboxes [21].

2.3 Simplifying Modi�cation and its Requirements

Making the aforementioned changes to even simple mid-
dleboxes can take numerous man-hours as our own ex-
perience with OpenNF suggests. �is is a serious barrier
to adopting any of the previously mentioned systems.

A system that can automatically identify what state a
middlebox creates, where the state is created, and how the
state is used could be immensely helpful in reducing the
man-hours. It can provide developers guidance on writ-
ing custom state allocation routines, and on adding ap-
propriate state �ltering, serialization, and merging func-
tions.�us, it would greatly lower the barriers to adopting
the above frameworks.

Building such a system is challenging because of sound-
ness and precision requirements. Soundness means that
the system must not miss any types, storage locations, al-
locations, or uses of state required for output equivalence.
A precise system identi�es the minimal set of state that
requires special handling to ensure state handling at run-
time is fast and low-overhead.

2.4 Options

Well-known program analysis approaches can be applied
to identify middlebox state and its characteristics.
Dynamic analysis. We could use dynamic taint analy-
sis [29] to monitor which pieces of state are used and
modi�ed while a middlebox processes some sample in-
put. Unfortunately, the sample inputs may not exercise
all code paths, causing the analysis to miss some state.
We also �nd that such monitoring can signi�cantly slow
middleboxes down (e.g., PRADS [6] and Snort IDS [7] are
slowed down A 10�).
Static analysis. Alternatively, we could use symbolic ex-
ecution [10] or data-/control-�ow analysis [15, 18].1

Symbolic execution can be employed to explore all pos-
sible code paths by representing input and runtime state
as a series of symbols rather than concrete values. We
can then track the state used in each path. While this
is sound, the complexity of most middleboxes (Table 2)
makes it impossible to explore all execution paths in a
tractable amount of time. For example, we symbolically
executed PRADS—which has just 10K LOC—for 8 hours
using S2E [10], and only 13% of PRAD’s code was cov-
ered. �e complexity worsens exponentially for middle-
boxeswith larger codebases. Recent advances in symbolic
execution of middleboxes [14] do not help as they over
come state space explosion by abstracting away middle-
box state, which is precisely what we aim to analyze.

1Abstract interpretation [12] is another candidate, but it su�ers from
the well known problem of incompleteness, i.e., it over-approximates
the middlebox’s processing and may not identify all relevant state.

3

LOC Classes/ Event Level of Number of Size of
Middlebox (C/C++) Structs based? pointers procedures callgraph
Snort IDS [7] 275K 898 No 10 4617 3391
HAProxy load balancer [2] 63K 191� No 8� 2560 1018
OpenVPN [5] 62K 194� No 2� 2023 1184
PRADS asset detector [6] 10K 40 No 4 297 115
Bro IDS [23] 97K 1798 No - 3034 -
Squid caching proxy [8] 166K 875 Yes - 2133 -

*Shows the lower bound. It does not include the number of structs used by the libraries and kernel.
Table 2: Code complexity for popular middleboxes. �ose above the line are analyzed in greater detail later.

while (!done)

packet = receive()

send(packet) write(log)

Packet processing loop

while (event = dequeue())

Event thread

Packet processing procedures

foo()

processIndirect(event)

processIndirect(event)

process(packet)

process(packet)

Main

loopProcedure() init()

raiseEvent()

Figure 2: Logical structure of middlebox code
In this paper, we make clever use of data-/control-�ow

analysis to automatically evaluate how to handle middle-
box state. Naively applying standard data-/control-�ow
analysis identi�es all variables as pertaining to ‘state that
needs handling’ (e.g., variables pertaining to per-packet
state, read-only state, and state that falls outside the scope
of a �owspace of interest); if developers modify a mid-
dlebox to specially handle all these variables, it can re-
sult in arbitrarily poor runtime performance during re-
distribution. We show how middlebox code structure and
design patterns can be used to design novel algorithms
that employ static program analysis techniques in a way
that signi�cantly improves precisionwithout compromis-
ing soundness. Our approach is general and does not as-
sume use of any particular state management framework.

3 Overview of StateAlyzr
Most middleboxes’ code can be logically divided into
three basic parts (Figure 2): initialization, packet receive
loop, and packet processing. �e initialization code runs
when the middlebox starts. It reads and parses con�gu-
ration input, loads supplementary modules or �les, and
opens log �les. All of this can be done in the main()
procedure, or in separate procedures called by main. �e
packet receive loop is responsible for reading a packet (or
byte stream) from the kernel (via a socket) and passing it
to the packet processing procedure(s).�e latter analyzes,
and potentially modi�es, the packet. �is procedure(s)
reads/writes internal middlebox state to inform the pro-
cessing of the current (and future) packet.
Our approach consists of three primary stages that

leverage this structure. In each stage we further re�ne
our characterization of amiddlebox’s state.�e stages and
their main challenges are described next:
1) Identify Per-/Cross-Flow State. In the �rst stage, we
identify the storage location for all per- and cross-�ow

state created by the middlebox. �e �nal output of this
stage is a list of what we call top-level variables that con-
tain or indirectly refer to such state.

Unlike state that is only used for processing the cur-
rent packet, per-/cross-�ow state in�uences other pack-
ets’ processing. Consequently, the lifetime of this state ex-
tends beyond the processing a single packet. We leverage
this property, along with knowledge of the relation be-
tween variable and value lifetimes, to �rst identify vari-
ables that may contain or refer to per-/cross-�ow state.

We improve precision by considering which variables
are actually used in packet processing code, thereby elim-
inating variables that contain or refer to state that is only
used for middlebox initialization. We call the remaining
variables “top-level”. �e main challenge here is dealing
with indirect calls to packet processing in event-based
middleboxes (Figure 2), which complicate the task of
identifying all packet processing code. We develop an al-
gorithm that adapts forward program slicing [18] to ad-
dress this challenge (§4.1).
2) Identify Updateable State. �e second stage fur-
ther categorizes state based on whether it may be up-
dated while a packet is processed. If state is read-
only, we can avoid repeated cloning (in Pico Replica-
tion andOpenNF), avoid unnecessary logging of accesses
(FTMB), and allow simultaneous access frommultiple in-
stances (StatelessNF); all of these will reduce the frame-
works’ overhead. We can trivially identify updateable
state by looking for assignment statements in packet pro-
cessing procedures. However, this strawman is compli-
cated by heavy use of pointers in middlebox code which
can be used to indirect state update. To address this chal-
lenge we show how to employ �ow-, context-, and �eld-
insensitive pointer analysis [9, 31] (§4.2).
3) Identify States’ Flowspace Dimensions. Finally, the
third stage determines a state’s �owspace: a set of packet
header �elds (e.g. src ip, dest ip, src port, dest port &
proto) that delineate the subset of tra�c that relates to
the state. Flowspace must be considered when modifying
a middlebox to use custom allocation functions [24, 26]
or �lter state in preparation for export [16]. It is impor-
tant to avoid the inclusion of irrelevant header �elds and
the exclusion of relevant �elds in a state’s �owspace, be-
cause it impacts runtime correctness and performance,
respectively. To solve this problem we developed an al-
gorithm that leverages common state access patterns in

4

middleboxes to identify program points where we can ap-
ply program chopping [27] to determine relevant header
�elds (§4.3).
Soundness. In order for StateAlyzr to be sound it is nec-
essary for these three stages to be sound. In Appendix B,
we prove the soundness of our algorithms.
Assumptions about middlebox code. Our proofs are
based on the assumption that middleboxes use standard
API or system calls to read/write packets and hashtables
or link-lists to store state. �ese assumption are not limi-
tations of our analysis algorithms. Instead, they are made
to ease the implementation of StateAlyzr. Our imple-
mentation can be extended to add additional packet read-
/write methods or other data structures to store the state.

4 StateAlyzr Foundations
We now describe our novel algorithms for detailed state
classi�cation. To describe the algorithms, we use the ex-
ample of a simple middlebox that blocks external hosts
creating too many new connections (Figure 3).

4.1 Per-/Cross-Flow State

Our analysis begins by identifying the storage location for
all relevant per- and cross-�ow state created by the mid-
dlebox. �is has two parts: (i) exhaustively identifying
persistent variables to ensure soundness, and (ii) carefully
limiting to top-level variables that contain or refer to per-
/cross-�ow values to ensure precision.

4.1.1 Identifying Persistent Variables

Because per-/cross-�ow state necessarily in�uences two
or more packets within/across �ows, values correspond-
ing to such state must be created during or prior to the
processing of one packet, and be destroyed during or af-
ter the processing of a subsequent packet. Hence, the cor-
responding variables must be persistent, i.e., their values
persist beyond a single iteration of the packet processing
loop. In Figure 3, variables declared on lines 7 to 11 are
persistent, whereas curr on line 61 is not. Our algorithm
�rst identi�es such variables.
Analysis Algorithm. We traverse a middlebox’s code, as
shown in Figure 4. �e values of all global and static vari-
ables exist for the entire duration of the middlebox’s exe-
cution, so these variables are always persistent. Variables
local to the loop-procedure2—i.e., the procedure contain-
ing the packet processing loop—exist for the duration of
this procedure, and hence the duration of the packet pro-
cessing loop, so they are also persistent.
Local variables of procedures that precede the loop-

procedure on the call stack are also persistent, because
the procedures’ stack frames last longer than the packet
processing loop. However, these variables cannot be used

2To automatically detect packet processing loops, we use the fact that
middleboxes read packets using standard library/system functions.

1 s t r u c t ho s t {
2 u i n t i p ;
3 i n t count ;
4 s t r u c t ho s t * n ex t ;
5 }
6
7 p c a p t * in tPcap , * e x tP c ap ;
8 i n t t h r e s h o l d ;
9 cha r * queue [1 0 0] ;
10 i n t head = 0 , t a i l = 0 ;
11 s t r u c t ho s t * h o s t s = NULL ;
12
13 i n t main (i n t a rgc , cha r * * a r g v) {
14 p t h r e a d t t h r e a d ;
15 i n t P c ap = p c a p c r e a t e (a r g v [0]) ;
16 ex tPc ap = p c a p c r e a t e (a r g v [1]) ;
17 t h r e s h o l d = a t o i (a r g v [2]) ;
18 p t h r e a d c r e a t e (& th r e ad , (vo id *)& p r o c e s s P a c k e t) ;
19 }
20
21 i n t l oopProc edu r e () {
22 wh i l e (1) {
23 s t r u c t p c ap pk thd r pcapHdr ;
24 cha r * pk t = p c ap n e x t (ex tPcap , &pcapHdr) ;
25 i f F u l l W a i t () ;
26 enqueue (pk t) ;
27 i f (en t r y �>count < t h r e s h o l d)
28 p c a p i n j e c t (i n tPcap , pkt , pcapHdr�>c ap l e n) ;
29 } }
30
31 vo id enqueue (cha r * pk t){
32 head = (head + 1)% 1 00 ;
33 queue [head] = pk t ;
34 }
35
36 cha r * dequeue (){
37 i n t * index = & t a i l ;
38 * index = (* index + 1)% 1 00 ;
39 r e t u r n queue [* index] ;
40 }
41
42 vo id p r o c e s s P a c k e t (){
43 wh i l e (1){
44 i fEmpty Wa i t () ;
45 cha r * pk t = dequeue () ;
46 s t r u c t e thhd r * ethHdr= (s t r u c t e thhd r) pk t ;
47 s t r u c t i phd r * ipHdr= (s t r u c t i phd r *) (ethHdr + 1) ;
48 s t r u c t t cphd r * tcpHdr= (s t r u c t t cphd r *) (ipHdr + 1) ;
49 s t r u c t ho s t * e n t r y = lookup (ipHdr�>saddr , h o s t s) ;
50 i f (NULL == ho s t){
51 s t r u c t ho s t *new = ma l l o c (s i z e o f (s t r u c t ho s t)) ;
52 new�> i p = ipHdr�>saddr ;
53 new�>nex t = h o s t s ;
54 h o s t s = new ;
55 }
56 i f (tcpHdr�>syn && ! tcpHdr�>ack)
57 en t r y �>count ++;
58 } }
59
60 s t r u c t ho s t * lookup (u i n t i p) {
61 s t r u c t ho s t * c u r r = h o s t s ;
62 wh i l e (c u r r != NULL) {
63 i f (cu r r �> i p == i p)
64 r e t u r n cu r r ;
65 c u r r = cur r �>nex t ;
66 } }

Figure 3: Code for our running example.
within the packet processing loop, or a procedure called
therein, because the variables are out of scope. �us we
exclude these fromour list of persistent variables, improv-
ing precision.
�e above analysis implicitly considers heap-allocated

values by considering the values of global, static, and lo-
cal variables, which can point to values on the heap. Val-
ues on the heap exist until they are explicitly freed (or
themiddlebox terminates), but theirusable lifetime is lim-

5

Input: prog
Output: persistVars

1 persistVars = {}
2 persistVars = persistVars 8 GlobalVarDecls(prog)
3 foreach proc in Procedures(prog) do
4 persistVars = persistVars 8 StaticVarDecls(proc)
5 persistVars = persistVars 8 LocalVarDecls(loopProc)
6 persistVars = persistVars 8 FormalParams(loopProc)

Figure 4: Identifying persistent variables
ited to the time frame in which they are reachable from a
variable’s value.3 �erefore, we can conclude that a heap-
allocated value’s persistence is predicated on the persis-
tence of a variable identi�ed by our algorithm.

4.1.2 Limiting to Top-level Variables

�e above algorithm identi�es a superset of variables
that may be bound, or point, to per-/cross-�ow state. It
includes variables bound to state used in initialization
for loading/processing con�guration/signature �les: e.g.,
variables intPcap and extPcap in Figure 3. Such vari-
ables don’t need handling during tra�c redistribution;
they can simply be copied when an instance is launched.
To eliminate such variables and improve precision, the
key insight we leverage is that, by de�nition, per-/cross-
�ow state is used in some way during packet processing.
However, identifying all such variables is non-trivial, and
missing variables impact analysis soundness.

Input: prog, persistVars
Output: pktProcs, percross�owVars

1 pktProcs = {}
2 sdg = SystemDependenceGraph(prog)
3 foreach stmt in Statements(loopProc) do
//Statements() returns all statements in a procedure

4 if stmt calls PKT RECV FUNC then
5 slice = ForwardSlice(sdg, stmt, stmt.LHS)
6 pktProcs = pktProcs 8 Procedures(slice)

//Procedures() returns all procedures in a slice
7 percross�owVars = {}
8 foreach proc in pktProcs do
9 foreach stmt in Statements(proc) do
10 foreach var in Vars(stmt) do

//Vars() returns all variables used in a statement
11 if var in persistVars then
12 percross�owVars = percross�owVars 8 {var}

Figure 5: Identifying per-/cross-�ow variables

Identifying Packet Processing Procedures. Figure 5
shows our algorithm for identifying top-level variables
that contain or refer to per-/cross-�ow values. �e �rst
half of the algorithm (lines 1–6) focuses on identifying
packet processing code. Obviously any code contained in
the packet processing loop is used for processing packets,
but, crucially, the code of procedures (indirectly) called
from within the loop is also packet processing code.

3A heap value whose lifetime is longer than its usable lifetime is a
memory leak.

We considered a strawman approach of using call
graphs to identify packet processing procedure. A call
graph is constructed by starting at each procedure call
within the packet processing loop, and classifying each
appearing procedure as a packet processing procedure.
However, this analysis does not capture packet process-
ing procedures that are called indirectly.�e Squid proxy,
e.g., does initial processing of the received packet, then
enqueues an event to trigger further processing through
later calls to additional procedures. Hence the analy-
sis may incorrectly eliminate some legitimate per-/cross-
�ow state which is used in such procedures.

�us, we need an approach that exhaustively consid-
ers the dependencies between the receipt of a packet and
both direct and indirect invocations of packet process-
ing procedures. Below, we show how system dependence
graphs [15] and program slicing [18] can be used for this.
A system dependence graph (SDG) consists of multiple

program dependence graphs (PDGs)— one for each pro-
cedure. Each PDG contains vertices for each statement
along with their data and control dependency edges. A
data dependence edge is created between statements p and
q if there is an execution path between them, and p may
update the value of some variable that q reads. A control
dependence edge is created if p is a conditional statement,
and whether or not q executes depends on p. A snippet
of the control and data edges for our example in Figure 3
is in Figure 6.

Whereas control edges capture direct invocations of
packet processing, we can rely on data edges to capture
indirect procedure calls. For example, the dashed yel-
low lines in Figure 6 fail to capture invocation of the
processPacket procedure on bottom right (because
there is no control edge from the while loop or any of its
subsequent procedures to processPacket). In contrast,
we can follow the data edges, the dashed red line, to track
such calls.

Given a middlebox’s SDG, we compute a forward pro-
gram slice from a packet receive function call for the vari-
able which stores the received packet. A forward slice
contains the set of statements that are a�ected by the value
of a variable starting from a speci�c point in the pro-
gram [18]. Mostmiddleboxes use standard library/system
functions to receive packets—e.g., pcap next, or recv—
sowe can easily identify these calls and the variable point-
ing to the received packet. We consider any procedure
appearing in the computed slice to be a packet processing
procedure. For middleboxes which invoke packet receive
functions at multiple points, we compute forward slices
from every call site and take the union of the procedures
appearing in all such slices.
Values Used in Packet Processing Procedures. �e sec-
ond half of our algorithm (Figure 5, lines 7–12) focuses
on identifying persistent values that are used within some

6

entry
loopProcedure

pcapHdr

PDG – loopProcedure()

while 1

call ifFull_wait
call pcap_next

call enqueue

pkt = ret

pktin = pkt

entry
pcap_next

entry
processPacket

entry
enqueue

entry
dequeue

pkt = pktinhead =
(head+1)%100

queue[head]
= pkt

pkt =
queue[*index] *index =

(*index+1)%100

ret = pkt

queue

head

tail

while 1

call dequeue

pkt = ret

*index = &tail

hosts = NULL

PDG – pcap_next()

PDG –
enqueue()

PDG – processPacket()

PDG – dequeue()

PDG –
#System()

legend
data edge

control edge

Figure 6: Snippet of System dependence graph (SDG) for the
code in Figure 3; green edges indicate data dependencies and
blue edges indicate control dependencies; light yellow nodes
represent formal and actual parameters, while dark yellow
nodes represent return values.

packet processing procedure. We analyze each statement
in the packet processing procedures. If the statement con-
tains a persistent variable, then we mark that persistent
variable as a top-level variable.

4.2 Updateable State

Next, we delineate updateable top-level variables from
read only variables to further improve precision. In Fig-
ure 3, variable head, tail, hosts and queue are up-
dateable, whereas threshold is not. Because state is
updated through assignment statements, one strawman
choice here is to statically identify top-level variables on
the le�-hand-side (LHS) of assignment statements. In
Figure 3, this identi�es head, hosts and queue.

However, this falls short due to aliasing, where mul-
tiple variables are bound to the same storage location
due to the use of pointers [11]. Aliasing allows a value
reachable from a top-level variable to be updated through
the use of a di�erent variable. �us our strawman can
mis-label top-level variables as read-only, compromising
soundness. For example, tail is mislabeled in Figure 3,
because it never appears on the LHS of assignment state-
ments. But on line 38 index is updated which points to
tail.
Analysis Algorithm. We develop an algorithm to iden-
tify updateable top-level variable (Figure 7). Since we
are concerned with variables whose (referenced) values
are updated during packet processing, we analyze each
assignment statement contained in the packet process-

Input: pktProcs, percross�owVars
Output: updateableVars

1 percross�owVars = {}
2 foreach proc in pktProcs do
3 foreach stmt in AssignmentStmts(proc) do

//AssignmentStmts() returns all assignment
statements in a procedure

4 foreach var in percross�owVars do
5 if stmt.LHS == var

or var in PointsTo(stmt.LHS)
or PointsTo(var) 9 PointsTo(stmt.LHS) x g

then
6 updateableVars = updateableVars 8 {var }

Figure 7: Identifying updateable variables

ing procedures identi�ed in the �rst stage of our analy-
sis (§4.1.2). If the assignment statement’s LHS contains a
top-level variable, then we mark the variable as update-
able (similar to our strawman). Otherwise, we compute
the points-to set for the variable on the LHS and com-
pare this with the set of updateable top-level variables and
their points-to sets. A variable’s points-to set contains all
variables whose associated storage locations are reachable
from the variable. To compute this set, we employ �ow-
, context-, and �eld-insensitive pointer analysis [9]. If
the points-to set of the variable on the LHS contains a
top-level variable, or has a non-null intersection with the
points-to set of a top-level variable, thenwemark the top-
level variable as updateable.

Due to limitations of pointer analysis, our algorithm
may stillmark read-only top-level variables as updateable.
E.g., �eld insensitive pointer analysis canmark a top-level
struct variable as updateable even if just one of its sub-
�elds is updateable.

4.3 State Flowspaces

Finally, we identify the packet header �elds that de�ne
the �owspace associated with the values of each top-level
variable. Identifying too �ne-grained of a �owspace for
a value—i.e., more header �elds than those that actu-
ally de�ne the �owspace—is unsound; such an error will
cause a middlebox to incorrectly �lter out the value when
it is requested by a middlebox state management frame-
work [16, 20, 24, 26]. Contrarily, assuming an overly per-
missive �owspace (e.g., the entire �owspace) for a value
hurts precision.

To identify �owspaces, we leverage common middle-
box design patterns in updating or accessing state. Mid-
dleboxes typically use simple data structures (e.g., a hash
table or linked list) to organize state of the same type
for di�erent network entities (connections, applications,
subnets, URLs, etc.). When processing a packet, a mid-
dlebox uses header �elds4 to lookup the entry in the

4In cases where keys are not based on the packet header �elds e.g.
URL, a middlebox usually keeps another data structure to maintain the

7

data structure that contains a reference to the values that
should be read/updated for this packet. In the case of a
hash table, the middlebox computes an index from the
packet header �elds to identify the entry pointing to the
relevant values. For a linked list, the middlebox iterates
over entries in the data structure and compares packet
header �elds against the values pointed to by the entry.

Input: pktProcs, percross�owVars
Output: chop, �owspace

1 keyedVars = {}
2 foreach var in percross�owVars do
3 if Type(var) == pointer

or Type(var) == struct then
4 keyedVars = keyedVars 8 {keyedVars}
5 foreach proc in pktProcs do
6 foreach loopStmt in LoopStmts(proc) do
7 condVars = {}
8 foreach var in Vars(loopStmt.condition) do
9 if var in keyedVars

or PointsTo(var) 9 keyedVars x g then
10 for condStmt in

ConditionalStmts(loopStmt.body) do
11 for condVar in Vars(condStmt) do
12 if condVar x var then
13 condVars = condVars 8 {condVar}
14 chop = Chop(sdg,pktVar,condVars)
15 �owspace = ExtractFlowspace(chop)

Figure 8: Identifying packet header �elds that de�ne a
per-/cross-�ow variable’s associated �owspace

Algorithm. We leverage the above design patterns in our
algorithm shown in Figure 8. In the �rst step (lines 2-
4), if the top-level variable is a struct or a pointer, we
mark it as a possible candidate for having a �owspace as-
sociated with it. �is �lters out all the top-level variables
which cannot represent more than one entry; e.g., vari-
ables head and tail in Figure 3.

We assume that middleboxes use hash tables or
linked lists to organize their values,5 and that these data
structures are accessed using:
square brackets, e.g.
entry = table[index];

pointer arithmetic, e.g.
entry = head + offset;

or iteration6, e.g.
while(entry->next!=null){entry=entry->next;}
for(i=0; i<list.length; i++) {...}

�e second step is thus to identify all statements like
these where a top-level variable marked above is on the
right-hand-side (RHS) of the statement (square brackets
or pointer arithmetic scenario) or in the conditional

mapping between such keys and packet header �elds
5Our approach can easily be extended to other data structures.
6Middleboxes may also use recursion, but we have not found this

access pattern in the middleboxes we study, so we do not consider it in
our algorithm.

expression (iteration scenario).
When square brackets or pointer arithmetic are used,

we compute a chop between the variables in the access
statement and the variable containing the packet returned
by the packet receive procedure. A chop between a set of
variablesU at program point p and a set of variables V at
program point q is the set of statements that (i) may be
a�ected by the value of variables in U at point p, and (ii)
may a�ect the values of variables inV at point q.�us, the
chop we compute above is a snippet of executable code
which takes a packet as input and outputs the index or
o�set required to extract the value from the hashtable.

In a similar fashion, when iteration is used, we iden-
tify all conditional statements in the body of the loop.
We compute a chop between the packet returned by the
packet receive procedure and the set of all the variables
in the conditional expression which do not point to any
of the top-level variables; in our example (Figure 3), the
chop starts at line 24 and terminates at line 63. We output
the resulting chops, which collectively contain all condi-
tional statements that are required to lookup a value in
a linked list data structure based on a �ow space de�ni-
tion. Assuming that the middlebox accesses packet �elds
using standard system-provided structs (e.g., struct ip

as de�ned in netinet/ip.h), we conduct simple string
matching on the code snippets to produce a list of packet
header �elds that de�ne a state’s �owspace.

5 Enhancements
Data and control �ow analysis can help improve preci-
sion, but they have some limitations in that they cannot
guarantee that exactly the relevant state and nothing else
has been identi�ed. In particular, static analysis cannot
di�erentiate between multiple memory regions that are
allocated through separate invocations ofmalloc from the
same call site. �erefore, we cannot statically determine
if only a subset of these memory regions have been up-
dated a�er processing a set of packets. To overcome po-
tential e�ciency loss due to such limitations, we can em-
ploy custom algorithms that boost precision in speci�c
settings. We present two candidates below.

5.1 Output-Impacting State

In addition to the threemain code blocks (Figure 2), mid-
dleboxesmay optionally have packet and log output func-
tions.�ese pass a packet to the kernel for forwarding and
record the middlebox’s observations and actions in a log
�le, respectively. �ese functions are usually called from
within the packet processing procedure(s).

In some cases, operators may desire output equiva-
lence only for speci�c types of output. For example, an
operator may want to ensure client connections are not
broken when a NAT fails—i.e., packet output should be
equivalent—but may not care if the log of NAT’d connec-

8

tions is accurate. In such cases, internal state that only
impacts non-essential forms of output does not need spe-
cial handling during redistribution and can be ignored.
To aid such optimizations, we develop an algorithm to

identify the type of output that updateable state a�ects.
We use two key insights. First, middleboxes typically use
standard libraries and system calls to produce packet and
log output: either PCAP (e.g. pcap dump) or socket (e.g.
send) functions for the former, and regular I/O functions
(e.g. write) for the latter.7 Second, the output produced
by these functions can only be impacted by a handful of
parameters passed to these functions. �us, we focus on
the call sites of these functions, and their parameters.
Algorithm. We use program slicing [18] to identify the
dependencies between a speci�c type of output and up-
dateable variables. We sketch the algorithm and relegate
details to Appendix A. We �rst identify the call sites of
packet or log output functions by checking each state-
ment in each packet processing procedure (§4.1.2). �en
we use the SDG produced in the �rst stage of our analysis
(Figure 5) to compute a backward slice from each call site.
Such a slice contains the set of statements that a�ect (i)
whether the procedure call is executed, and (ii) the value
of the variables used in the procedure call, such as the
parameters passed to the output function. We examine
each statement in a backward slice to determine whether
it contains an updateable per-/cross-�ow variable. Such
variables aremarked as impacting packet (or log) output.

5.2 Tracking Runtime Updates

Developers aiming to design fault-tolerant middleboxes
can use the algorithms in §4 and §5.1 to e�ciently clone
state to backup instances. For example, if tra�c will be
distributed among multiple instances in the case of fail-
ure, then only state whose �owspace overlaps with that
assigned to a speci�c instance needs to be cloned to that
instance. However, the potential performance gains from
these optimizationsmay be limited due to constraints im-
posed by data/control-�ow analysis. For example, our
analysis can only identify whether a persistent variable’s
value may be updated during the middlebox’s execution.
If we can determine at runtime exactly which values are
updated, and when, then we can further improve the e�-
ciency of state cloning and speed up failover.
To achieve higher precision, we must use (simple) run

time monitoring. For example, we can track, at run time,
whether part of an object is updated during packet pro-
cessing. To implement this monitoring, we must mod-
ify the middlebox to set an “updated bit” whenever a
value reachable from a top-level variable is updated dur-
ing packet processing. Figure 9a shows such modi�ca-
tions, in red, for a simple middlebox. We create a unique

7Our approach can be easily extended to consider non-standard out-
put functions.

1 s t r u c t conn t b l [1 0 0 0] ; // Assigned id 0
2 i n t count ; // Assigned id 1
3 i n t t c p c n t ; // Assigned id 2
4 char updated[3];
5 vo id main () {
6 wh i l e (1) {
7 cha r * pk t = r e c v () ;
8 updated[1] = 1;
9 count = count + 1 ;
10 s t r u c t * i phd r i = ge t IpHdr (pk t) ;
11 i f (i �>p r o t o c o l == TCP) {
12 hd l (& t cp cn t , & t b l [hash (pk t)] , getTcpHdr (pk t)) ;
13 } } }
14 vo id hd l (i n t * c , s t r u c t conn * s , s t r u c t t cphd r * t) {
15 updated[2] = 1;
16 c = c + 1 ;
17 updated[0] = 1;
18 s�> f l a g s = s�> f l a g s | t�> f l a g s ;
19 i f (t�> f l a g s & ACK)
20 updated[0] = 1; // Pruned
21 s�>acknum = t�>acknum ;
22 } }

(a) Example middlebox code instrumented for update
tracking at run time; statements in red are inserted based
on our analysis

entry updated[2] = 1

updated[0] = 1

updated[0] = 1

C = c + 1

S->flags = s->flags | t->flags

if (t->flags & ACK)

S->acknum = t->ackum

{ } { 2}

{ 2,0}

{ 2}

{ 2,0} { 2,0}

exit

{ 2,0}

{ 2,0} { 2,0}

(b) Annotated control �ow graph used for pruning re-
dundant updated-bit-setting (shaded) statements
Figure 9: Implementing update tracking at run time

updated bit for each top-level variable—there are three
such variables in the example—and we set the appropri-
ate bit before any statement that updates a value that may
be reachable from the corresponding variable.

We use the same analysis discussed in §4.2 to de-
termine where to insert statements to set updated bits.
For any statement where a top-level variable is up-
dated, we insert a statement—just prior to the assignment
statement—that sets the appropriate updated bit.

However, this approach can add a lot more code than
needed: if one assignment statement always executes be-
fore another, and they always update the same value, then
we only need to set the updated bit before the �rst assign-
ment statement. For example, line 21 in Figure 9a updates
the same compound value as line 18, so the code on line
20 is redundant.

We use a straightforward control �ow analysis to prune
unneeded updated-bit-setting statements. First, we con-
struct a control �ow graph (CFG) for each modi�ed
packet processing procedure. Next, we perform a depth-
�rst traversal of each CFG, tracking the set of updated
bits that have been set along the path; as we traverse each
edge, we label it with the current set of updated bits. Fig-
ure 9b shows this annotated CFG for the handleTcp pro-
cedure shown in lines 14-22 of Figure 9a. Lastly, for each
updated-bit-setting statement in a procedure’s CFG, we
check whether the bit being set is included in the label for

9

every incoming edge. If this is true, then we prune the
statement; e.g., we prune line 20 in Figure 9a.

6 Implementation
We implement StateAlyzr using CodeSurfer [1] which
has built-in support for constructing CFGs, perform-
ing �ow- and context-insensitive pointer analysis, con-
structing PDGs/SDGs, and computing forward/back-
ward slices and chops for C/C++ code. CodeSufer uses
proven sound algorithms to implement these static anal-
ysis techniques. We use CodeSurfer’s Scheme API to ac-
cess output from these analyses in our algorithms. We
applied StateAlyzr to four middleboxes: PRADS asset
monitoring [6] and Snort IntrusionDetection System [7],
HAproxy load balancer [2], and OpenVPN gateway [5].
Fault Tolerance. We use the output from StateAlyzr to
add fault tolerance to PRADS and Snort, both o�-path
middleboxes. We added code to both to export/import
internal state (to a standby). We used the output of our
�rst two analysis phases (§4.1 and §4.2) to know which
top level variables’ values we need to export, and where
in a hot-standby we should store them. We used the out-
put of our third analysis phase (§4.3) as the basis for code
that looks up per-/cross-�ow state values. �is code takes
a �owspace as input and returns an array of serialized val-
ues. We use OpenNF [16] to transfer serialized values to a
hot-standby. Similarly, import code deserializes the state
and stores it in the appropriate location. We also imple-
mented both enhancements discussed in §5.

7 Evaluation
We report on the outcomes of applying StateAlyzr to four
middleboxes. We address the following questions:
• E�ectiveness: Does StateAlyzr help withmakingmod-
i�cations to today’s middleboxes? How many top-
level variables do these middleboxes maintain, rela-
tive to all variables? What relative fractions of these
pertain to state that may need to be handled during
redistribution? How precise is StateAlyzr?

• Runtime e�ciency and manual e�ort: To what extent
do StateAlyzr’smechanismshelp improve the runtime
e�ciency of state redistribution? How much manual
e�ort does it save?

• Practical considerations: Does StateAlyzr take pro-
hibitively long to run (like symbolic execution; §2.4)?
Is it sound in practice?

7.1 E�ectiveness

In Table 3, we present a variety of key statistics de-
rived for the four middleboxes using StateAlyzr. We use
this to highlight StateAlyzr’s ability to improve precision,
thereby underscoring its usefulness for developers.
�e complexity of middlebox code is underscored by

the overall number of variables in Table 3, which can vary

pkt/log require
Mbox All Persistent Top Update output serial-

-level -able impacting ization
PRADS 1529 61 29 10 N.A. / 6 14
Snort 18393 507 333 148 N.A. /148 176
HAproxy 7876 272 176 115 101 / 109 59
OpenVPN 8704 156 131 106 97 / 102 8

Table 3: Variables and their properties

1 2 3 4 5 6
Number of packet header fields

0

1

2

#
 o

f u
ni

qu
e

fie
ld

 c
om

bo
s

Snort
PRADS

1 2 3 4 5 6
Number of packet header fields

0

1

2

3

#
 o

f v
ar

ia
bl

es

Snort
PRADS

Figure 10: Flowspace dims. of keyed per-/cross-�ow vars

between 1500 and 18k, and other relevant code complex-
ity metrics shown in Table 2. �us, manually identifying
state that needs handling, and optimizing its transfer, is
extremely di�cult.

We also note from Table 3 that StateAlyzr identi�es 61-
507 variables as persistent across the four middleboxes.
A subset of these, 29-333, are top-level variables. Finally,
6-148 top-level variables are updateable; operators only
have to deal with handling the values pertaining to these
variables at run time. Snort is the most complex middle-
box we analyze (�275K lines of code) and has the largest
number of top-level variables (333); the opposite is true
for PRADS (10K LOC and 29 top-level variables).

�e drastic reduction to the �nal number of update-
able variables shows that naive approaches that attempt to
transfer/clone values corresponding to all variables can be
very ine�cient at runtime. (We show this empirically in
§7.2.) Even so, the number of updateable variables can be
as high as 148, and attempting to manually identify them
and argument code suitably can be very di�cult. By au-
tomatically identifying them, StateAlyzr simpli�es modi-
�cations; we provide further details in §7.2.

Finally, the reductions we observe in going from per-
sistent variables to top-level variables (16-53% reduction)
and further to updateable ones (19-65% reduction) show
that our techniques in §4.1 and §4.2 o�er useful improve-
ments in precision.

In Figure 10, we characterize the �owspaces for the
variables found in Snort and PRADS. From the le� �g-
ure, we see that Snort maintains state objects that could
be keyed by as many as 5 or 6 header �elds; the maximum
number of such �elds for PRADS is 3. �e �gure on the
right shows the number of variables that use a particular
number of header �elds as �owspace keys; for instance,
in the case of Snort, 3 variables each are keyed on 1 and 6
�elds. �e total number of variables keyed on at least one
key is 2 and 10 for Snort and PRADS, respectively (sum
of the heights of the respective bars).

�ese numbers are signi�cantly lower than the update-
able variables we discovered for thesemiddleboxes (6 and
148, respectively). Digging deeper into Snort (for exam-
ple) we �nd that:

10

• 111 updateable variables pertain to all �ows (i.e., a
�owspace key of “*”). Of these, 59 variables are related
to con�gurations and signatures, while 30 are func-
tion pointers (that point to di�erent detection and
processing plugins). �ese 89 variables can be up-
dated from the command line at middlebox run time
(when an operator provides new con�gurations and
signatures, or new analysis plugins).

• 27 updateable variables—or 18%—are only used for
processing a single packet; hence they don’t corre-
spond to per-/cross-�ow state. �is points to State-
Alyzr’s imperfect precision. �ese variables are global
in scope and are used by di�erent functions for pro-
cessing a single incoming packet, which is why our
analysis labels them as updateable. A developer can
easily identify these variables and can either remove
them from the list of updateable variables or modify
code to make them local in scope.

7.2 Runtime e�ciency and manual e�ort

7.2.1 Fault Tolerant Middleboxes

Using fault tolerant PRADS/Snort versions (§5), we show
that StateAlyzr helps signi�cantly cut unneeded state
transfers, improving state operation time/overhead.
Man-hours needed. Modifying PRADS based on State-
Alyzr analysis took roughly 6 man-hours, down from
over 120man-hours whenwe originallymodi�ed PRADS
for OpenNF (Two di�erent persons made these modi�-
cations.). Modifying Snort, a much more complex mid-
dlebox, took 90 man-hours. In both cases, most of the
time (A 90%) was spent in writing serialization code for
the data structures identi�ed by StateAlyzr (14 for PRADS
and 176 for Snort; Table 3). Providing support for export-
ing/importing state objects according to OpenNF APIs
took just 1 and 2 hours, respectively.
Runtime bene�ts. We consider a primary/hot standby
setup, where the primary sends a copy of the state to
the hot standby a�er processing each packet. We use a
university-to-cloud packet trace [17] with around 700k
packets for our trace-based evaluation of this setup. �e
primary instance processes the �rst half of the trace �le
until a random point, and the hot standby takes over af-
ter that. We consider three models for operating the hot
standby which re�ect progressive application of the dif-
ferent optimizations in §4 and §5: (i) the primary instance
sends a copy of all the updateable states to the hot standby,
(ii) the primary instance only sends the state which ap-
plies to the �owspace of the last processed packet, and
(iii) in addition to considering the �owspace, we also con-
sider which top level variables are marked as updated for
the last processed packet.
Figure 11a shows the average case results for the amount

of per packet data transferred between the primary and
secondary instances for all three models for PRADS.

0 5k 10k 15k 20k 25k 30k 35k
packet number

100

101

102

103

pe
r p

kt
 s

ta
te

 tr
an

sf
er

 (K
B)

Flowspace
Flowspace + marking
All updateable state
All persistent state

(a)

0 50 100 150
packet number

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

pe
r p

kt
 s

ta
te

 tr
an

sf
er

 (K
B)

Flowspace + marking
Flowspace

(b)
Figure 11: (a) Per packet state transfer (b) Per packet state
transfer for a single connection

Transferring state which only applies to the �owspace of
the last processed packet, i.e., the second model, reduces
the data transferred by 305� compared to transferring all
per-/cross-�ow state. Furthermore, we �nd that the third
model, i.e., run time marking of updated state variables,
further reduces the amount of data transferred by 2�, on
average. �is is because not all values are updated for ev-
ery packet: the values pertaining to a speci�c connection
are updated for every packet of that connection, but the
values pertaining to a particular host and its services are
only updated when processing certain packets. �is be-
havior is illustrated in Figure 11b, which shows the size
of the state transfer a�er processing each of the �rst 200
packets in a randomly selected �ow.

We measured the increase in per packet processing
time purely due to the code instrumentation needed to
identify state updates for highly available PRADS.We ob-
served an average increase of 0.04µsec, which is around
0.14% of the average per packet processing time for un-
modi�ed PRADS.

Figure 12 shows the corresponding results for Snort.
Transferring just the updateable state results in a 8800�
reduction in the amount of state transferred compared
to transferring all per-/cross-�ow state. �is is because,
a signi�cant portion of the persistent state in Snort con-
sists of con�guration and signatures which are never up-
dated during packet processing. Transferring state which
only applies to a particular �owspace further reduces the
data transfer by 2.75�. Unlike PRADS, the amount of state
transfer in the second model remains constant for a par-
ticular �ow becausemost of the state is created on the �rst
few packets of a �ow. Finally, runtimemarking further re-
duces the amount of state transferred by 3.6�.

7.2.2 Packet/Log Output

Table 3 includes the number of variables that impact
packet or log output. For on-path HAproxy (OpenVPN),
87% (91%) of updateable variables a�ect packet output; a
slightly higher fraction impact log output. 95 (93) vari-
ables impact both outputs. A much smaller number im-
pacts packet output but not log (6 and 4, respectively).
Another handful impact logs but not packets (14 and 9);
operators who are interested in just packet output consis-
tency can ignore transferring the state pertaining to these
variables, but the bene�t will likely not be signi�cant for

11

300k

310k

320k

330k
av

g.
 p

er
 p

kt
 s

ta
te

 tr
an

sf
er

 (K
B)

All persistent
 state

All updateable
 state

Flowspace Flowspace +
marking

0

20

40

60

Figure 12: Per packet state transfer in Snort

these middleboxes given the low counts.
Being o�-path, PRADS and Snort have no variables

that impact packet output. For PRADS, 6 out of 10 up-
dateable variables impact log output. StateAlyzr did �nd
4 other updateable variables—tos, tstamp, in pkt, and
mtu—but did not mark them as a�ecting packet output
or log output. Upon manual code inspection we found
that these values are updated as packets are processed, but
they are never used; thus, these variables can be removed
from PRADS without any impact on its output, pointing
to another bene�t of StateAlyzr—code clean-up.

7.3 Practicality

Table 4 shows the time and resources required to run our
analysis. CodeSurfer computes data and control depen-
dencies and points-to sets at compile time, so the mid-
dleboxes take longer than normal to compile. �is phase
is also memory intensive, as illustrated by peak memory
usage. Snort, being complex, takes the longest to compile
and analyze (�20.5h). �is is not a concern since State-
Alyzr only needs to be run once, and it runs o�ine.

7.3.1 Empirically Verifying Soundness

Empirically showing soundness in practice is hard. Nev-
ertheless, for the sake of completeness, we use two ap-
proaches to verify soundness of the modi�cations we
make on the basis of StateAlyzr’s outputs.
First, we use the experimental harness from §7.2. We

compare logs at PRADS/Snort in the scenario where a
single instance processes the complete trace �le against
concatenated logs of the primary and hot standby, using
the trace and the three models as above. In all cases, there
was no di�erence in the two sets of logs.
Next, we compare with manually making all changes.

Recall that we had manually modi�ed PRADS to make
it OpenNF-compliant. We compared StateAlyzr’s output
for PRADS against the variables contained in the state
transfer code we added during our prior modi�cations to
PRADS. StateAlyzr found all variables we had considered
in our prior modi�cations, and more. Speci�cally, we
found that our prior modi�cations hadmissed an impor-
tant compound value that contains a few counters along
with con�guration settings.

Mbox Compile time Analysis time Memory
PRADS 0.2 0.25 0.3
Snort 1.5 19 6
HAproxy 0.25 6 6
OpenVPN 0.5 5 7.3

Table 4: Time (h) and memory usage (GB)
8 Other RelatedWork
Aside from the works discussed in §2 and §4 [9, 16, 18, 22,
24, 25, 26, 28, 31, 33] StateAlyzr is related to a few other
e�orts. Some prior studies have focused on transform-
ing non-distributed applications into distributed applica-
tions [19, 32]. However, these works aim to run di�erent
parts of an application at di�erent locations. We want all
analysis steps performed by a middlebox instance to run
at one location, but we want di�erent instances to run on
a di�erent set of inputs without changing the collective
output from all instances.

Dobrescu and Argyarki use symbolic execution to ver-
ify middlebox code satis�es crash-freedom, bounded-
execution, and other safety properties [14]. �ey employ
small, Click-based middleboxes [21] and abstract away
accesses to middlebox state. In contrast, our analysis fo-
cuses on identifying state needed for correct middlebox
operation and works with regular, popular middleboxes.

Lorenzo et al. [13] use similar static program analysis
techniques to identify �owspace, but their identi�cation
is limited to just hashtables.

9 Summary
Our goal was to aid middlebox developers by identify-
ing state objects that need explicit handling during redis-
tribution operations. In comparison with today’s man-
ual and necessarily error-prone techniques, our program
analysis based system, StateAlyzr, vastly simpli�es this
process, and ensures soundness and high precision. Key
to StateAlyzr is novel state characterization algorithms
that marry standard program analysis tools with middle-
box structure and design patterns. StateAlyzr results in
nearly 20� reduction in manual e�ort, and can automati-
cally eliminate nearly 80% of variables in middlebox code
for consideration during framework-speci�c modi�ca-
tions, resulting in dramatic performance and overhead
improvements in state reallocation. Ultimately, we would
like to fully automate the process of making middlebox
code framework-compliant, thus ful�lling the promise of
using NFV e�ectively for middlebox elasticity and fault
tolerance. Our work addresses basic challenges in code
analysis, a di�cult problem on its own which is necessary
to solve �rst.

Acknowledgments
We thank our shepherd, Mona Attariyan, and the anony-
mous reviewers for their insightful feedback. �is work is
supported in part byNational Science Foundation (grants

12

CNS-1302041, CNS-1330308 and CNS-1345249) and the
Wisconsin Institute on So�ware-De�ned Datacenters of
Madison.

References
[1] Codesurfer. http://grammatech.com/

research/technologies/codesurfer.

[2] HAProxy: �e reliable, high performance
TCP/HTTP load balancer. http://haproxy.

1wt.eu/.

[3] �e LLVM compiler infrastructure. http://llvm.
org.

[4] Network functions virtualisation – update white
paper. https://portal.etsi.org/nfv/nfv_

white_paper2.pdf.

[5] OpenVPN. http://openvpn.net.

[6] Passive Real-time Asset Detection System. http:

//prads.projects.linpro.no.

[7] Snort. http://snort.org.

[8] Squid. http://squid-cache.org.

[9] L. O. Andersen. Program analysis and specialization
for the C programming language. PhD thesis, Uni-
versity of Cophenhagen, 1994.

[10] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A
platform for in-vivo multi-path analysis of so�ware
systems. In ASPLOS, 2011.

[11] J.-D. Choi, M. Burke, and P. Carini. E�cient �ow-
sensitive interprocedural computation of pointer-
induced aliases and side e�ects. In POPL, 1993.

[12] P. Cousot and R. Cousot. Abstract interpretation: a
uni�ed lattice model for static analysis of programs
by construction or approximation of �xpoints. In
ACM SIGPLAN-SIGACT, 1977.

[13] L. De Carli, R. Sommer, and S. Jha. Beyond pattern
matching: A concurrency model for stateful deep
packet inspection. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communica-
tions Security, pages 1378–1390. ACM, 2014.

[14] M. Dobrescu and K. Argyarki. So�ware dataplane
veri�cation. In NSDI, 2014.

[15] J. Ferrante, K. J. Ottenstein, and J. D. Warren. �e
program dependence graph and its use in optimiza-
tion. ACMTrans. Program. Lang. Syst., 9(3):319–349,
July 1987.

[16] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling innovation in network function control. In
SIGCOMM, 2014.

[17] K. He, A. Fisher, L.Wang, A. Gember, A. Akella, and
T. Ristenpart. Next stop, the cloud: Understanding
modern web service deployment in ec2 and azure.
In Proceedings of the 2013 conference on Internetmea-
surement conference, pages 177–190. ACM, 2013.

[18] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Trans. Pro-
gram. Lang. Syst., 12(1):26–60, Jan. 1990.

[19] G. C. Hunt and M. L. Scott. �e coign automatic
distributed partitioning system. In OSDI, 1999.

[20] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and
E. Keller. Stateless network functions. In HotMid-
dlebox, 2015.

[21] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. �e Click modular router. ACM Trans-
actions on Computer Systems (TOCS), 18:263–297,
2000.

[22] Y. G. Park and B. Goldberg. Escape analysis on lists.
In PLDI, 1992.

[23] V. Paxson. Bro: a system for detecting network in-
truders in real-time. In USENIX Security (SSYM),
1998.

[24] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico
Replication: A high availability framework for mid-
dleboxes. In SoCC, 2013.

[25] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. War�eld. Escape capsule: Explicit state is robust
and scalable. In HotOS, 2013.

[26] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. War�eld. Split/Merge: System support for elas-
tic execution in virtual middleboxes. In NSDI, 2013.

[27] T. Reps and G. Rosay. Precise interprocedural chop-
ping. In ACM SIGSOFT, 1995.

[28] C. Ruggieri and T. P. Murtagh. Lifetime analysis of
dynamically allocated objects. In POPL, 1988.

[29] E. J. Schwartz, T. Avgerinos, and D. Brumley. All
you ever wanted to know about dynamic taint analy-
sis and forward symbolic execution (but might have
been afraid to ask). In IEEE Symposium on Security
and Privacy, 2010.

13

[30] J. Sherry, P. Gao, S. Basu, A. Panda, A. Krish-
namurthy, C. Macciocco, M. Manesh, J. Martins,
S. Ratnasamy, and L. R. S. Shenker. Rollback recov-
ery for middleboxes. In SIGCOMM, 2015.

[31] B. Steensgaard. Points-to analysis in almost linear
time. In POPL, 1996.

[32] E. Tilevich and Y. Smaragdakis. J-orchestra: En-
hancing java programs with distribution capabili-
ties. ACM Trans. So�w. Eng. Methodol., 19(1):1:1–
1:40, Aug. 2009.

[33] M.Weiser. Program slicing. IEEE Trans. on So�ware
Engineering, SE-10(4):352–357, July 1984.

Appendix
A. Output-Impacting State - Algorithm
Figure 13 outlines the algorithm for identifying state that
impacts packet/log output (from §5.1).

Input: sdg, updateableVars
Output: pktoutputVars, logoutputVars

1 pktoutputVars = {}
2 logoutputVars = {}
3 foreach proc in pktProcs do
4 foreach stmt in Statements(proc) do
5 if stmt calls PKT OUTPUT FUNC

or stmt calls LOG OUTPUT FUNC then
6 slice = BackwardSlice(sdg, stmt,

Vars(stmt.RHS))
7 foreach sliceStmt in Statements(slice) do
8 foreach var in Vars(sliceStmt) do
9 if var in updateableVars then
10 if stmt calls PKT OUTPUT FUNC then
11 pktoutputVars = pktoutputVars 8 {var}
12 else
13 logoutputVars = logoutputVars 8 {var}

Figure 13: Identifying output-impacting variables

B. Proofs of soundness
We now prove the soundness of our algorithms.

Identifying Per-/Cross-Flow State

Slicing [18] and pointer analysis [9] have already been
proven sound.

�eorem 1. If a middlebox uses standard packet receive
functions, then our analysis identi�es all packet processing
procedures.

Proof. For a procedure to perform packet processing: (i)
there must be a packet to process, and (ii) the procedure
must have access to the packet, or access to values derived
from the packet. �e former is true only a�er a packet
receive function returns. �e latter is true only if some

variable in a procedure has a data dependency on the re-
ceived packet. �erefore, a forward slice computed from
a packet receive function over the variable containing (a
pointer to) the packet will identify all packet processing
procedures.

�eorem 2. If a value is per-/cross-�ow state, then our
analysis outputs a top-level variable containing this value,
or containing a reference from which the value can be
reached (through arbitrarily many dereferences).

Proof. Assume no top-level variable is identi�ed for a
particular per-/cross-�ow value. By the de�nition, a per-
/cross-�ow must (i) have a lifetime longer than the life-
time of any packet processing procedure, and (ii) be used
within some packet processing procedure. For a value
to be used within a packet processing procedure, it must
be the value of, or be a value reachable from the value
of, a variable that is in scope in that procedure. Only
global variables and the procedure’s local variables will be
in scope.

Since we identify statements in packet processing pro-
cedures that use global variables, and points-to analysis
is sound [9], our analysis must identify a global variable
used to access/update the value; this contradicts our as-
sumption.

�is leaves the case where a local variable is used to ac-
cess/update the value. When the procedure returns the
variable’s value will be destroyed. If the variable’s value
was the per-/cross-�ow value, then the value will be de-
stroyed and cannot have a lifetime beyond the packet pro-
cessing procedure; this is a contradiction. If the variable’s
value was a reference through which the per-/cross-�ow
value could be reached, then this reference will be de-
stroyed when the procedure returns. Assuming a value’s
lifetime ends when there are no longer any references to
it, the only way for the per-/cross-�ow value to have a life-
time beyond any packet processing procedure is for it be
reached through another reference. �e only such refer-
ence that can exist is through a top-level variable. Since
points-to analysis is sound [9] this variable would have
been identi�ed, which contradicts our assumption.

Identifying Updateable State

�eorem 3. If a top-level variable’s value, or a value reach-
able through arbitrarily many dereferences starting from
this value, may be updated during the lifetime of some
packet processing procedure, then our analysis marks this
top-level variable as updateable.

Proof. According to the language semantics, scalar and
compound values can only be updated via assignment
statements. According to �eorem 1, we identify all
packet processing procedures. �erefore, identifying all
assignment statements in these procedures is su�cient to

14

identify all possible value updates that may occur during
the lifetime of some packet processing procedure.
�e language semantics also state that the variable on

the le�-hand-side of an assignment is the variable whose
value is updated. �us, when a top-level variable ap-
pears on the le�-hand-side of an assignment, we know
its value, or a reachable value, is updated. Furthermore,
�ow-insensitive context-insensitive pointer alias is prov-
ably guaranteed to identify all possible points-to relation-
ships [9].�erefore, any assignment to a variable thatmay
point to a value also pointed to (indirectly) by a top-level
variable is identi�ed, and the top-level variable marked
updateable.

Identifying Flowspaces

�eorem 4. If a middlebox uses standard patterns for
fetching values from data structures, and the �owspace for
a top-level variable’s value (or a value reachable through ar-
bitrarily many dereferences starting from this value) is not
constrained by a particular header �eld, then our analysis
does not include this header �eld in the �owspace �elds for
this top-level variable.

Proof. A header �eld can only be part of a value’s �ows-
pace de�nition if there is a data or control dependency
between that header �eld in the current packet and the
fetching of an entry from a data structure. It follows from
the proven soundness and precision of �ow-sensitive
context-insensitive pointer analysis [11] that the SDG will
not include false data or control dependency edges. It
also follows from the proven soundness of program slic-
ing [18] that only data and control dependencies between

source variables (i.e., the packet variable) and target vari-
ables (i.e., the index variable, increment variable, or vari-
able in a conditional inside a loop) will be included in the
chop.

Identifying Output-Impacting State

�eorem 5. If a top-level variable’s value, or a value reach-
able through arbitrarily many dereferences starting from
this value, may a�ect a call to a packet output function
or the output produced by the function, then our analysis
marks this top-level variable as impacting packet output.

Proof. Follows from SDG construction soundness [15,
18]. If/when a packet output function is called is deter-
mined by a sequence of conditional statements. �e path
taken at each conditional depends on the values used in
the condition. Control and data dependency edges in a
system dependence graph capture these features. Since
SDG construction is sound [15, 18], we will identify all
such dependencies, and thus all values that may a�ect a
call to a packet output function.

Only parameter values, or values reachable through ar-
bitrarily many dereferences starting from these values,
can a�ect the output produced by a packet output func-
tion. �us, knowing what values a parameter value de-
pends on is su�cient to know what values a�ect the out-
put produced by an output function. Again, since SDG
construction is sound, wewill identify all such dependen-
cies.

15

