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Chip multiprocessors (CMPs) combine multiple processors on a single die, typically with private leve

caches and a shared level-two cache. However, the increasing number of processors cores on a sin

increases the demand on two critical resources: the shared L2 cache capacity and the off-chip pin

width. Demand on these critical resources is further exacerbated by latency-hiding techniques s

hardware prefetching. In this dissertation, we explore using compression to effectively increase cac

pin bandwidth resources and ultimately CMP performance.

We identify two distinct and complementary designs where compression can help improve CMP p

mance: Cache Compression and Link Compression. Cache compression stores compressed line

cache, potentially increasing the effective cache size, reducing off-chip misses and improving p

mance. On the downside, decompression overhead can slow down cache hit latencies, possibly de

performance. Link (i.e., off-chip interconnect) compression compresses communication messages

sending to or receiving from off-chip system components, thereby increasing the effective off-chi

bandwidth, reducing contention and improving performance for bandwidth-limited configurations. W

compression can have a positive impact on CMP performance, practical implementations of compr

raise a few concerns: (1) Compression algorithms have too high an overhead to implement at the

level; (2) compression overhead can degrade performance; (3) the potential for compression on a

unknown; (4) most benefits of compression can be achieved by hardware prefetching; and (5) the im

compression on a balanced CMP design is not well understood.

In this dissertation, we make five contributions that address the above concerns. We propose a com

L2 cache design based on a simple compression algorithm with a low decompression overhea

develop an adaptive compression scheme that dynamically adapts to the costs and benefits of cac

pression, and employs compression only when it helps performance. We show that cache and lin
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pression both combine to improve CMP performance for commercial and (some) scientific workload

show that compression interacts in a strong positive way with hardware prefetching, whereby a syste

implements both compression and hardware prefetching can have a higher speedup than the pro

speedups of each scheme alone. We also provide a simple analytical model that helps provide qu

intuition into the trade-off between cores, caches, communication and compression, and use full-

simulation to quantify this trade-off for a set of commercial workloads.
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Introduction

In today’s information era, commercial applications—including on-line banking, airline reservations,

searching and browsing—have become essential to many aspects of everyday life. The increasing

dence on these multi-threaded, throughput-oriented applications drives the increasing demand for e

throughput-oriented computer systems. These workloads exhibit ample thread-level parallelism,

makes them suitable for running on multiprocessor systems.

Chip multiprocessors (CMPs) have become an increasingly appealing alternative to run such comm

workloads. The exponential increase in available on-chip transistors provides architects with the res

to build multiple processor cores and large shared caches on a single chip. However, given a fixed

tor (i.e., area) budget, designers must determine the “optimal” breakdown between cores and cach

choice is not obvious, as the 2004 ITRS Roadmap [45] predicts that transistor performance will conti

improve faster than DRAM latency and pin bandwidth (26%, 10%, and 11% per year, respectively)

increasing number of processor cores on a single chip increases the demand on two critical resour

shared cache capacity and the off-chip pin bandwidth. In this dissertation, we explore using compres

effectively increase these resources and ultimately overall system throughput. To achieve this go

identify two distinct and complementary designs where compression can help improve CMP perform

Cache Compression and Link Compression.

Cache compression stores compressed lines in the L2 cache, potentially increasing the effective cac

reducing off-chip misses, and improving performance. Moreover, cache compression can also allow

designers to spend more transistors on processor cores. On the downside, decompression overh
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2
slow down cache hit latencies, which degrades performance for applications that would fit in an un

pressed cache. Such negative side-effects motivate a compression scheme that avoids compressi

lines when compression is not beneficial.

Link (i.e., off-chip interconnect) compression compresses communication messages before sendin

receiving from off-chip system components. Link compression has the potential to increase the ef

off-chip communication bandwidth, potentially reducing contention for pin bandwidth. Link compres

can improve performance for applications that have a high demand for pin bandwidth, especially for

width-limited configurations. Link compression can also shift the balance between cores and c

towards more cores. On the other hand, decompression overheads can degrade performance for w

that are not bandwidth-limited.

In this dissertation, we propose using cache and link compression to improve the performance of ch

tiprocessor systems. We introduce a simple compression scheme that is suitable for hardware comp

of cache lines, and propose a compressed cache design based on that scheme. We develop an adap

pression scheme that dynamically adapts to the costs and benefits of cache compression, and imp

compression only when it helps performance. We propose and evaluate a CMP design that impl

both cache and link compression. We show that compression interacts in a strong positive way with

ware prefetching, whereby a system that implements both compression and hardware prefetching c

a higher speedup than the product of the speedups due to either scheme alone. We derive a simple

cal model that can help provide qualitative intuition into the trade-off between cores, caches, comm

tion and compression, and use full-system simulation to quantify this trade-off for a set of comm

workloads. While we focus in this dissertation on improving performance of commercial application

show that compression can also improve the performance of some (compressible) scientific applica

In this chapter, we motivate why architects are currently building chip multiprocessors (Section 1.1

discuss the technology and workload trends that guide CMP design (Section 1.2). We then discuss
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of compression in uniprocessor and CMP design (Section 1.3). We identify the main contributions o

dissertation (Section 1.4), and provide a roadmap for the remainder of this document (Section 1.5).

1.1  Why CMPs

The Need For More Throughput. In today’s information era, commercial servers constitute the backb

of the global information and communication system infrastructure. Such servers run useful comm

applications that are essential to many aspects of everyday life such as banking, airline reservation

searching and web browsing. As more people depend on these multi-threaded throughput-oriented a

tions, demand for more throughput is likely to increase for the forseeable future. Commercial server

therefore improve their performance by providing more throughput to keep up with the applic

demand.

Commercial Server Design.Since commercial applications have abundant thread-level parallelism, c

mercial servers were designed as multiprocessor systems—or clusters of multiprocessors—to prov

ficient throughput. While traditional symmetric multiprocessors (SMPs) can exploit thread-

parallelism, they also suffer from a performance penalty caused by memory stalls due to cache mis

cache-to-cache transfers, both of which require waiting for long off-chip delays. Several researcher

shown that the performance of commercial applications, and database applications in particular, i

dominated by sharing misses that require cache-to-cache transfers [7, 14, 100]. To avoid these ove

architects proposed several schemes to integrate more resources on a single chip. Barroso, et al., s

chip-level integration of caches, memory controllers, cache coherence hardware and routers can i

performance of online transaction processing workloads by a factor of 1.5 [16]. Simultaneous m

threading designs [39, 124] allow the processor to execute several contexts (or threads) simultaneo

adding per-thread processor resources. This approach also improves the performance of database

tions compared to a superscalar processor with comparable resources [87]. The trend towards mo
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gration of resources on a single chip is becoming more apparent in CMP designs where multipro

systems are built on a single chip.

Chip Multiprocessors (CMPs). As predicted by Moore’s law, the number of transistors on a single se

conductor chip has been increasing exponentially over the past 40 years [91]. Architects currentl

enough transistors on a single chip that they can use to improve the throughput of multi-threaded a

tions. To achieve this goal, architects developed a system design in which multiprocessors are bu

single semiconductor chip [15, 51, 56, 68, 74, 90, 117, 128]. Chip multiprocessor (CMP) systems ca

vide the increased throughput required by multi-threaded applications while reducing the ove

incurred due to sharing misses in traditional shared-memory multiprocessors. A chip multiproc

design is typically composed of two or more processor cores (with private level-one caches) sharing

ond-level cache. CMPs in various forms are becoming popular building blocks for many current and

commercial servers. CMPs and multi-CMP systems have the potential to improve throughput for

multi-threaded applications.

1.2  Balanced CMP Design

Chip multiprocessors are becoming popular building blocks for commercial servers. However, an i

tant question in CMP design is how to build a chip that can provide the best possible throughput for a

chip area. For a fixed transistor (i.e., area) budget, architects must decide on the “optimal” brea

between cores and caches such that neither cores, caches nor communication is the only bottlene

choice is not obvious, since the number of transistors per chip is increasing at a much faster pac

DRAM latency or pin bandwidth, while software applications are demanding higher throughput e

year. In this section, we discuss some technology and software trends that affect CMP design.
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1.2.1  Technology Trends

Memory Wall. Over the past few decades, transistor performance has been improving at a much

pace compared to memory performance. Wulf and McKee [132] show that the rate of improvem

microprocessor speed exceeds the rate of improvement in DRAM memory speed. While each is imp

exponentially, the exponent for microprocessors is substantially larger than that for DRAMs, and th

ference between diverging exponentials also grows exponentially. The 2004 ITRS Roadmap [45] p

that transistor speed will continue to improve at a much faster annual rate (21%) over the next fifteen

compared to the rate of improvement in DRAM latency (10%). The trend toward increasingly deep

lines [58, 60] further exacerbates this problem, increasing main memory latencies to hundreds of c

Addressing the Memory Wall. The memory wall has been a problem for a long time, leading to ma

architectural enhancements that target hiding the memory latency. Thread-level speculation and

threading [3, 5, 39, 108, 109], prefetching [26, 65, 66, 92, 102, 110], and runahead execution [37, 9

among many schemes that target hiding memory access latencies by increasing memory-level para

Value prediction targets reducing memory access latency by predicting load values that later have

verified [86]. A more direct approach to hide memory latency is to avoid some cache misses by incr

the cache size. This can be achieved through cache compression [9, 24, 77, 139].

Pin Bandwidth Bottleneck. The presence of more processors on a single chip in CMPs can significa

increase demand on the off-chip pin bandwidth required for inter-chip and chip-to-memory commu

tion. However, pin bandwidth is not improving at the same rate as transistor performance. According

2004 ITRS roadmap [45], the number of pins available per chip will increase at a rate of approxim

11% per year over the next fifteen years. This is a much lower rate than the predicted rate of increas

number of transistors per chip, which is projected at 26% per year in the same span. This implies t

number of processor cores on a single chip will increase at a much faster rate compared to the num

communication pins available. Even though pins are expected to run at a higher frequency thus inc



t the

than

rease

rate of

d that

affect

pins

eans to

band-

width

good

p [32].

bot-

ements

nology

hip

ng sys-

at the

lution

requency

ff-chip

band-
6
the effective bandwidth, the on-chip frequency will increase at the same rate [45], which will offse

increase in pin frequency1. In addition, the cost per pin is predicted to decrease at a lower rate (~5%)

that of the increase in the number of pins [45]. This means that the overall cost of packaging will inc

at a rate of approximately 5% a year. If no effort is made to reduce the cost further (or reduce the

increase in the number of pins), the overall packaging cost will double in the next fifteen years, a tren

is opposite to other design cost trends.

While the number of pins is one aspect of the pin bandwidth bottleneck problem, other factors also

using on-chip signal pins to increase pin bandwidth. Increasing the number of communication

requires increasing their pad and driver area [45]. Moreover, increasing the speed of each pin as a m

increase bandwidth also requires significant increases in area allocated to drivers. Overall, off-chip

width appears to be a problem that will significantly increase for future CMP designs. The pin band

bottleneck is a problem that can hinder the development of CMPs with a large number of cores. A

design balances demands for bandwidth against the limited number of pins and wiring area per chi

In order to design CMPs—or multi-CMP systems—in which off-chip bandwidth is not a performance

tleneck, architects must find solutions to balance these systems by reducing their bandwidth requir

or increasing their pin bandwidth. To achieve these goals, several architectural, software, and tech

proposals have been proposed to address pin bandwidth bottleneck.

Addressing Pin Bandwidth Bottleneck.Architectural and software proposals include increasing on-c

cache sizes, increasing area allocated for on-chip memory controllers, or using CMP-aware operati

tems. Devoting more area for on-chip caches should decrease the required off-chip bandwidth

expense of slowing down the increase in the number of on-chip processors. However, this so

1. The 2004 ITRS roadmap predicts that the off-chip frequency is expected to increase at the same rate as processor f

only for a small number of high-speed pins, which will be used with a large number of lower-speed pins to get the total o

bandwidth. This implies that while the off-chip latency will remain constant relative to processor frequency, the off-chip

width will effectively decrease.
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addresses only capacity and conflict misses, and not coherence misses. Devoting more chip area

chip memory controllers can increase pin bandwidth. For example, the Sun Niagara chip allocates fo

chip memory controllers to increase pin bandwidth beyond 20 GB/sec. [21]. However, the area alloca

memory controllers reduces the area used by cores and/or caches. CMP-aware operating syste

schedule threads that share a lot of data on the same chip to limit off-chip communications (i.e., sim

prior work on cache affinity process scheduling for SMPs [118, 126]). This can help systems that ru

ferent workloads at the same time, but provides less benefit for systems that run a homogeneous

threaded workload (e.g., OLTP).

Technology enhancements to address pin bandwidth bottleneck include modifying the memory inter

well as using different interconnect technologies. Fully-Buffered DIMM (FBDIMM) is a new technolo

designed to increase memory bandwidth and capacity [53]. FBDIMM uses a buffer as an interface be

a memory controller and DRAM chips. The interface between the buffer and the memory control

changed to a point-to-point serial interface (instead of a shared parallel interface). Such an interface

allows for a higher memory bandwidth per memory controller channel (nearly 7 GB/sec.) as well

higher memory capacity. Optical interconnects are currently being pursued as a means to signifi

increase pin bandwidth. The ITRS 2004 roadmap [45] identifies optical interconnects as one of the

tial interconnect designs to succeed copper wires. Luxtera is currently designing optical links with a

width per link greater than 10 Gb/sec. [103]. However, such technology requires significant chan

chip design and packaging [20].

Summary. The memory wall and pin bandwidth bottleneck are two technology trends whose impa

expected to increase over the next few years. Both trends can be addressed in a CMP design by in

the chip area allocated to on-chip caches. This can reduce cache misses (thereby alleviating the im

the memory wall), and can also reduce demand on off-chip pin bandwidth (thereby reducing the pin

width bottleneck).
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1.2.2  Workload Trends

Many current and future software applications have increasing throughput and computational dem

For example, systems at the top of the online transaction processing benchmark TPC-C performa

have improved throughput by more than 50% each of the last five years [119], with the current to

former achieving approximately 3.2 million transactions per minute. Media and gaming applica

which are increasing in popularity, also require increasing parallelism. World data doubles every

years and is now measured in billions of billions of bytes [36]. Intel predicts that software applicatio

the next decade and beyond will be more computationally intensive and can use more parallelism [

The above trends imply that current and future software applications demand more thread-level para

and computational power. Such demand can be satisfied by increasing the number of processor c

threads) on a CMP. So while technology trends favor allocating more area for shared caches, wo

trends favor allocating more area for processor cores. CMP design has to balance the needs and

ments of software applications against technology limitations to build a system where none o

resources is the only bottleneck.

1.2.3  Balance in CMP Design

An important question in CMP design is how to use the limited area resources on chip to achieve th

possible system throughput for a wide range of applications. To achieve this goal, a CMP design has

ance cores, caches, and communications such that none of these resources is the only bottleneck.

cores that cannot support enough threads, cores become a bottleneck and degrade system through

too many cores and smaller caches, caches and/or pin bandwidth become a bottleneck and also

system throughput. Should the design center on caches, to hide DRAM latency and conserve pin

width, or on cores, to maximize thread-level parallelism? The optimal balanced design point obvious

somewhere between these two extremes.
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Many hardware proposals —such as those we described in Section 1.2.1—address only one or tw

main technology and workload trends (i.e., memory wall, pin bandwidth bottleneck, and the incre

thread-level parallelism). Furthermore, some of these techniques reduce the impact of one at the exp

increasing the impact of another. For example, prefetching and thread-level speculation schem

reduce the impact of the memory wall at the expense of increasing demand on pin bandwidth. In th

sertation, we show that compression can address all these requirements at the same time. Compres

increase the effective cache size at a small area cost and also increase the effective pin bandwidth. I

compression allows a CMP design where the optimal balanced design point has a larger effective

size and pin bandwidth compared to a CMP design without compression.

1.3 Compression and Changing the Balance

In this dissertation, we advocate using compression to address constraints on cores, caches, and p

width. On-chip cache compression can increase the effective cache size without significantly increas

area, thereby avoiding some off-chip misses. In addition, cache compression can potentially allow a

where more on-chip area is allocated to processor cores. Link compression can also reduce off-chi

width demand for inter-chip and chip-to-memory communication, effectively increasing pin bandw

Both cache and link compression help achieve a balanced CMP system with higher throughput com

to a system without compression. We next describe how our proposed cache and link compress

affect uniprocessor and CMP design.

1.3.1  Cache Compression in Uniprocessors

We propose using cache compression to increase effective cache size, reduce off-chip misses and p

width demand, and ultimately improve system performance. Our proposed compressed cache desi

uniprocessor system is shown in Figure 1-1. We propose storing cache lines in a compressed forma
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second level caches (and potentially memory) while leaving the L1 cache uncompressed. The ben

this technique for many workloads are two-fold. Storing compressed cache lines can increase the e

cache size, potentially decreasing L2 miss rates and achieving better overall performance. In ad

transferring compressed data between the L2 cache and memory decreases the demand on pin ba

We discuss this design in more detail in Chapter 3.

Unfortunately, cache compression also has a negative side effect, since L2 cache lines have to be

pressed before moving to the L1 cache or being used by the processor. This means that storing com

lines in the L2 cache increases the L2 hit latency. While achieving a high compression ratio is import

increase the effective cache size, any cache compression algorithm should also have a small impac

hit latency so as not to hinder performance in the common case. Most software-based compressio

rithms are not suitable for low-latency hardware implementation. In addition, many hardware compre

schemes that were previously proposed for memory compression have a significant relative decomp

penalty when used for cache compression. To address this problem, we propose a simple low-latenc

compression algorithm that compresses cache lines on a word-by-word basis. Each word in a cach

stored in a compressed form if it matches one of a few frequent patterns. Otherwise the word is store

L1 I-Cache
(Uncompressed)

L1 D-Cache
(Uncompressed)

Decompression
Pipeline Compression

Pipeline

L2 Cache (Compressed)

L1 Victim Cache

FIGURE 1-1. Compressed Cache Hierarchy in a Uniprocessor System

Load-Store
Queue

Instruction
Fetcher

Uncompressed
Line Bypass
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uncompressed form. We describe this simple hardware compression algorithm, Frequent Pattern Co

sion (FPC), in Chapter 3.

Even when using a simple hardware compression scheme with low decompression overhead, man

loads are still hurt by cache compression. For workloads whose working set sizes fit in an uncomp

cache, cache compression only serves to increase the L2 hit latency without having an impact on

miss rate. In such cases, the cost of compression (i.e., increasing hit latency) outweighs its potential

(i.e., reducing miss rate), which may significantly hurt performance. To address this problem, we pr

an adaptive cache compression scheme that uses the stack of the cache replacement algorithm

determine when compression helps or hurts individual cache references. We use this cost and bene

mation to implement a predictor that measures whether compression is helping performance (and th

should be used for future cache lines) or hurting performance (and therefore should be avoided for

cache lines). This adaptive scheme achieves most of the benefits of always compressing while a

significant performance slowdowns when compression hurts performance. We describe this adaptiv

compression design in Chapter 4.

1.3.2  Cache Compression in Chip Multiprocessors

The increasing number of processor cores on a chip increases demand on shared caches and p

width. Hardware prefetching schemes further increase demand on both resources, potentially de

performance. Cache compression addresses the increased demand on both of these critical resou

CMP. In this dissertation, we propose a CMP design that supports cache compression, as sh

Figure 1-2. CMP cache compression can increase the effective shared cache size, potentially dec

miss rate and improving system throughput. In addition, cache compression can decrease demand

bandwidth due to the decreased miss rate. We describe and evaluate our CMP compressed cache s

Chapter 5.
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Due to the significant impact of the memory wall on performance, many existing uniprocessor and

systems implement hardware prefetching to tolerate memory latency [58,68]. Prefetching is successful for

many workloads on a uniprocessor system. For a CMP, however, prefetching further increases dem

both shared caches and pin bandwidth, potentially degrading performance for many workloads. This

tive impact of prefetching increases as the number of processor cores on a chip increases. In Chapt

show that cache compression can alleviate the increased demand on shared caches due to prefetch

ing to significant performance improvements. Combining compression with stride-based har

prefetching can lead to speedups that exceed the product of speedups from either scheme alone.

1.3.3  Link Compression

CMP designs have limited off-chip bandwidth due to the chip’s area and power limitations. Furtherm

limitations on both packaging area and the number of pins available on a chip exacerbate the pin

width bottleneck. With a large number of processor cores on a CMP, limited pin bandwidth can lead

Shared L2 Cache (Partially Compressed)

FIGURE 1-2. A Single-Chip p-core CMP with Compression Support

Processor 1

L1 Cache
(Uncompressed)

Decom-
pression

Compr-
ession

.........................

Processor p

L1 Cache
(Uncompressed)

Decom-
pression

Compr-
ession

L3/Memory Controller (Could Compress/Decompress Data)

To other chips / memory

Compressed/Uncompressed Data
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unbalanced system. In addition, this pin bandwidth bottleneck can have a significant impact on p

mance due to increased queuing latencies for cache-to-cache inter-chip coherence requests as we

chip memory requests. For these reasons, future CMP designs should consider off-chip bandwidth

order design constraint.

In any multiprocessor or CMP system, off-chip bandwidth is consumed by either address messages

messages that are used to communicate between processors, multiprocessor chips, memory and

tory. In this dissertation, we only target the bandwidth demand required for data messages. We p

using link compression to compress data messages before transferring to/from a CMP. We descr

CMP design with link compression support in Chapter 5.

Hardware prefetching schemes increase demand on pin bandwidth due to the increased volume of p

requests. Pin bandwidth demand increases significantly when prefetching’s accuracy is low, leading

formance degradations due to increased queuing delays. Link compression alleviates the pin ban

demand increase due to prefetching, thereby turning significant performance losses due to prefetch

performance gains. We describe this positive interaction between compression and hardware prefet

Chapter 6.

Both cache and link compression complicate the trade-off between cores, caches, and communicat

CMP. The optimal breakdown of a CMP area between cores and caches can change when a syst

ports compression. In Chapter 7, we use analytical modeling and simulation to study the trade-off be

cores and caches for a fixed-area CMP, and the impact of compression on such trade-off. We show

optimal, balanced design achieves a significantly higher throughput compared to unbalanced con

tions. We show that cache and link compression can shift the optimal design to achieve higher thro

for many CMP configurations.
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1.4  Thesis Contributions

In our view, the most important contributions of this dissertation are:

• Frequent Pattern Compression (FPC).We propose and evaluate a hardware-based compres

scheme, Frequent Pattern Compression (FPC), that is suitable for compressing cache lines. W

propose a cache design based on this compression scheme (Chapter 3). Compared to other

hardware-based compression schemes, FPC is less complex to implement in hardware, has

decompression overhead, and has a comparable compression ratio for cache lines.

• Adaptive Cache Compression.We develop an adaptive cache compression algorithm that dyna

cally adapts to the costs and benefits of cache compression (Chapter 4). This adaptive scheme a

nearly all the benefit of cache compression when it helps, and avoids hurting performance when

compression’s overheads exceed its benefits.

• CMP Cache and Link Compression.We propose and evaluate a CMP design that supports b

cache and interconnect (link) compression (Chapter 5). We show that cache compression im

performance by 5-18% for commercial workloads, and that link compression reduces their off

bandwidth demand by 30-41%. Both cache and link compression combine to improve comm

workloads’ performance by 6-20%, and reduce their bandwidth demand by 34-45%.

• Interactions Between Compression and Prefetching.We study the interactions between cache com

pression and hardware-directed prefetching (Chapter 6). We show that the positive impact of ha

stride-based prefetching is significantly diminished for CMPs compared to uniprocessors, lead

performance degradations for some workloads. We show that compression and prefetching i

positively, leading to a combined speedup that is greater than the product of the speedups of pr

ing alone and compression alone.
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• Model Balanced CMP Design.We develop a simple analytical model that estimates throughput

different CMP configurations with a fixed area budget (Chapter 7). This model provides intuition

the trade-off between cores and caches, but makes many simplifying assumptions that signifi

affect its accuracy. We use the model to qualitatively demonstrate the positive impact of cache an

compression on CMP throughput, and quantify these throughput improvements using simulat

commercial benchmarks.

1.5  Dissertation Structure

We begin this dissertation by discussing an overview of data compression and research efforts in ha

compression schemes (Chapter 2). In Chapter 3, we discuss our frequent pattern compression

(FPC), its hardware implementation and an evaluation of its main properties. We make minor chan

the compression scheme previously published as a technical report [10] by eliminating zero run-

encoding. We also provide a more thorough analysis of compression and decompression hardw

latencies. We further describe our compressed cache design which was first presented in our ISC

paper [9].

In Chapter 4, we show how compression can help some uniprocessor benchmarks while hurting

This motivates our adaptive compression algorithm, which we describe and evaluate. The gist of this

ter was first published in our ISCA 2004 paper [9], but we extend the published work by analyzing the

sitivity of our adaptive compression scheme to different system parameters and discussing some

limitations.

We describe our compressed cache and link CMP design in Chapter 5. In addition, we evaluate the

mance of cache and link compression on an eight-core CMP, and its sensitivity to various design p

ters. In Chapter 6, we study the interactions between compression and hardware prefetching. We d

terminology for such interactions, discuss different factors that cause positive and negative intera



interact

imple

tively

nclu-
16
and evaluate such interactions on an eight-core CMP. We show that compression and prefetching

in a strong positive way for many commercial and scientific applications. In Chapter 7, we present a s

analytical model that measures CMP throughput for a fixed chip area. We use this model to qualita

evaluate optimal CMP configurations, and use simulation to quantitatively validate our model’s co

sions. Chapter 8 concludes this dissertation and outlines some potential areas of future research.
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Compression Overview and Related Work

In this chapter, we present an overview of compression and related research. We first present a bri

view of data compression in Section 2.1. We discuss many hardware memory compression imple

tions in Section 2.2. We present an overview of prior work on cache compression (Section 2.3) an

compression (Section 2.4). We intend for this chapter to present an overview of related work and no

exhaustive list for all prior research related to all contributions of this dissertation. In the next five cha

we discuss related work that is relevant to each particular chapter’s topic.

2.1  Compression Background

Data compression is a widely used technique that aims at reducing redundancy in stored or commu

data [84]. Compression has a wide variety of applications in software and hardware; including image

pression [99], sparse data compression [115], web index compression [104, 143], main memory co

sion [73, 121], code compression [11, 23, 29, 81], and many applications for embedded processors

83, 136]. Some compression techniques arelosslesswhere decompression can exactly recover the origin

data, while others arelossywhere only an approximation of the original data can be recovered. Lossy c

pression is widely used in many applications where lost data do not affect their usefulness (e.g.,

image, and video compression). In this dissertation, we only consider lossless compression since a

gle memory bit loss or change can affect the validity of results in most computer programs.

Data compression techniques provide a mapping from data messages (source data) to code word

pressed data). These techniques can be either static or dynamic [84]. Static techniques (e.g., Huffm
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ing[61]) provide a fixed mapping from data messages to code words. Dynamic (or adaptive) techniqu

change that mapping over time. Dynamic techniques include adaptive Huffman algorithms [127], ad

arithmetic coding [131], and Lempel-Ziv (LZ) coding [141, 142]. These dynamic techniques require

one pass on the input data (as compared to two for static Huffman encoding) [84]. Since dynamic

niques do not require knowing the data input beforehand, they are more widely used for hardware

pression.

Most dynamic compression techniques operate on sequential inputs at a bit, byte, word or block gra

ity. However, several techniques where proposed to perform parallel compression [46, 48, 80, 111],

the input data can be partitioned and compressed in parallel. Parallel compression is better suited

hardware compression since parallel hardware circuitry can provide the necessary parallel speed. H

many of these parallel compression schemes achieve lower compressibility compared to their seq

counterparts. The success of parallel compression algorithms is measured by the compression and

pression speedup, as well as by the compression ratio they achieve. In this dissertation, we use t

compression ratioas the size of original uncompressed data divided by the size of data after compres

The Lempel-Ziv (LZ) algorithm [141, 142] and its derivatives are currently the most popular class of

less compression algorithms, and form the basis for many hardware implementations. LZ methods a

higher compression ratios by parsing data input and defining source messages on the fly. The LZ alg

consists of a rule for parsing strings of symbols from a finite alphabet into substrings whose length

not exceed a certain integer, and a coding scheme that maps these substrings sequentially into u

decipherable code words of fixed length [141]. Storer and Syzmanski [112] present a general mo

data compression that encompasses LZ encoding, and discuss the theoretical complexity of encod

decoding and the lower bounds on amount of compression obtainable. Franaszek, et al., present a

implementation of block-referential compression with lookahead, a technique that is similar to LZ7

allows both backward and forward pointers to match locations [48].
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2.2  Hardware Memory Compression

Dictionary-based vs. Significance-based Compression.Several researchers and hardware designers p

posed hardware-based compression schemes to increase effective memory size. Most previous pro

hardware cache or memory compression are hardware implementations of dictionary-based softwa

pression algorithms (e.g., LZ77 [141]). Such hardware dictionary-based schemes depend mainly on

cally or dynamically) building and maintaining a per-block dictionary. This dictionary is used to enc

words (or bytes) that match in the dictionary, while keeping words (bytes) that do not match in their

nal form with an appropriate prefix. Dictionary-based compression algorithms are effective in compre

large data blocks and files. Another class of compression algorithms, significance based compr

depend on the fact that most data types can be stored in a fewer number of bits than those used in

eral case. We next discuss a few hardware memory compression implementations.

IBM’s Memory Compression. IBM’s Memory Expansion Technology (MXT) [121] employs real-tim

main-memory content compression that can be used to effectively double the main memory capacit

out a significant added cost. MXT was first implemented in the Pinnacle chip [120], a single-chip me

controller. Franaszek, et al., described the design of a compressed random access memory (C

which formed the basis for the memory organization for the MXT technology, and studied the optima

size for such an organization [47].

Data in main memory is compressed using a parallel version of theBlock-Referential Compression with

Lookahead (BRCL)compression algorithm, a derivative of the Lempel-Ziv (LZ77) sequential algorithm

[141]. BRCL’s parallel version, Parallel Block-Referential Compression with Directory Sharing, div

the input data block (1 KB in MXT) into sub-blocks (four 256-byte sub-blocks), and cooperatively

structs dictionaries while compressing all sub-blocks in parallel [48]. It decompresses data (with d

clocking) at a speed of 8 bytes per cycle [121]. It depends on having long enough lines/pages to incre

overall compression ratio [48].
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MXT is shown to have a negligible performance penalty compared to standard memory. In addition,

ory contents for many applications and web servers can be compressed by a factor of two to one [2]

ever, this scheme requires support from the operating system since it can change memory size and

mapping [1].

X-Match. Kjelso, et al., demonstrated that hardware main memory compression is feasible and w

while [73]. They used the X-Match hardware compression algorithm that maintains a dictionary

replaces each input data element (whose size is fixed at four bytes) with a shorter code when it m

with a dictionary entry. X-Match attempts to compress more data with a small dictionary by allowing

tial matches of data words to dictionary entries [73]. Nunez and Jones [95] propose XMatchPRO, a

throughput hardware FPGA-based X-Match implementation.

Other Hardware Memory Compression Designs.Ekman and Stenstrom [40] used our frequent patte

compression scheme (a significance-based compression algorithm which we discuss in detail in Ch

to compress memory contents. Their compression scheme uses a memory layout that permits a sm

fast TLB-like structure to locate the compressed blocks in main memory without a memory indirec

They arrange memory pages logically into a hierarchical structure with a different compressibility at

level.

Zhang and Gupta [137] introduce a class of common-prefix and narrow-data transformations for ge

purpose programs that compress 32-bit addresses and integer words into 15-bit entities. They imple

these transformations by augmenting six data compression extension (DCX) instructions to the

instruction set.

2.3  Cache Compression

Several researchers proposed hardware cache compression implementations that aim at increa

effective cache size and reducing cache miss rate. These implementations apply known hardware c
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sion algorithms to the contents of the L1 or the L2 cache. We next describe many of these cache co

sion proposals. We also describe significance-based compression schemes, which form the basis

frequent pattern compression algorithm (Chapter 3).

Cache Compression and Related Designs.Lee, et al., propose a compressed memory hierarchy mo

that selectively compresses L2 cache and memory blocks if they can be reduced to half their origin

[77, 78, 79]. Their selective compressed memory system (SCMS) uses a hardware implementation

X-RL compression algorithm [73], a variant of the X-Match algorithm that gives a special treatmen

runs of zeros. They propose several techniques to hide decompression overhead, including parallel

pression, selective adaptive compression for blocks that can be compressed to below a certain th

and the use of a decompression buffer to be accessed on L1 misses in parallel with an L2 access.

al., propose several improvements on the X-RL technique that capture common values [4]. Chen,

propose a scheme that dynamically partitions the cache into sections of different compressibility u

variant of the LZ compression algorithm [24]. Hallnor and Reinhardt’s Indirect-Index Cache [54] de

ples index and line accesses across the whole cache, allowing fully-associative placement and the

of compressed lines [55].

Frequent-Value-Based Compression.Yang and Gupta [134] found from analyzing SPECint95 benc

marks that a small number of distinct values represent a large fraction of accessed memory value

value locality phenomenon enabled them to design energy-efficient caches [133] and data comp

caches [135]. In their compressed cache design, each line in the L1 cache represent either one

pressed line or two lines compressed to at least half their original sizes based on frequent values

Zhang, et al., designed a value-centric data cache design called the frequent value cache (FVC

which is a small direct-mapped cache dedicated to holding frequent benchmark values. They show

augmenting a direct mapped cache with a small frequent value cache can greatly reduce the cac

rate. FVC represents a single dictionary for the whole cache, which increases the chances of a sing
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to be found and compressed with little space overhead. FVC designs are based on the observatio

few cache values are frequent and thus can be compressed to a fewer number of bits. However, a lar

requires an increased decompression latency due to the increased FVC access time.

Significance-Based Compression.Significance-based compression is based on the observation that

data types (e.g., 32-bit integers) can be stored in a fewer number of bits compared to their original si

example, sign-bit extension is a commonly implemented technique to store small integers (e.g., 8-b

32-bit or 64-bit words, while all the information in the word is stored in the least-significant few bits.

In contrast with dictionary-based compression schemes (e.g., Lempel-Ziv), significance-based co

sion [23, 27, 28, 42, 69, 72] does not incur a per-line dictionary overhead. Hardware implementatio

significance-based compression schemes can be simpler and faster when compared to dictionar

schemes. Both of these properties make significance-based compression more suitable for the ty

short cache lines. As an example, Kim, et al., use a significance-based compression scheme to sto

pressed data in the cache and reduce cache energy dissipation [72]. However, compressibility can

nificantly lower for long cache lines when compared to LZ-based compression. Since these signifi

based compression algorithms were initially proposed to compress communication messages, we

such techniques in the next section.

2.4  Link Compression

Communication bandwidth compression (which we refer to in this dissertation as link compressio

used to reduce memory traffic and increase the effective memory bandwidth. Traffic can be redu

“compacting” cache-to-memory address streams [42] or data streams [28]. Benini, et al., propose

compression/decompression scheme to reduce memory traffic in general-purpose processor syste

They propose storing uncompressed data in the cache, and compressing data on the fly when trans

to memory. They also decompress memory-to-cache traffic on the fly. They use a differential compr
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scheme that is based on the assumption that it is likely for data words in the same cache line to hav

bits in common [18].

Significance-based Link Compression.Many link compression proposals are variations of significanc

based compression. Farrens and Park [42] make use of the fact that many address references—tra

between processor and memory—have redundant information in their high-order (i.e., most signi

portions. They cached these high-order bits in a group of dynamically allocated base registers an

transferred the low-order address bits in addition to small register indices (in place of the high-

address bits) between the processor and memory. Citron and Rudolph [28] use a similar appro

address and data words. They store common high-order bits in address or data words in a table and

only an index plus the low order bits between the processor and memory. Canal, et al., proposed a

that compresses data, addresses and instructions into their significant bytes while using two or three

sion bits to maintain significant byte positions [23]. They use this method to reduce dynamic powe

sumption in a processor pipeline. Kant and Iyer [69] studied the compressibility properties of addre

data transfers in commercial workloads, and reported that the high-order bits can be predicted wit

accuracy in address transfers but with less accuracy for data transfers. Citron [27] utilized the low e

of address and data messages to transfer compressed addresses and data off chip as a stopgap s

reduce off-chip wire delay. He proposes transferring high-entropy data directly on the bus, while com

ing low-entropy data into a fewer number of bits before sending them on the bus.

2.5  Summary

Hardware compression has been proposed and used to compress memory, caches and comm

bandwidth. In this section, we described many hardware compression proposals. Compressions s

used in hardware implementations are either dictionary-based or significance-based. Dictionary

compression algorithms depend on building a dictionary and using its entries to encode repeated d
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ues. Significance-based compression algorithms are based on the observation that most data type

stored in a fewer number of bits compared to their original size. Dictionary-based algorithms typ

have high compression ratios, while significance-based algorithms can have lower compression or

pression overheads.

In the next chapter, we propose a significance-based compression scheme that provides reasona

pressibility for the typically short cache lines with relatively fast compression and decompression

ware. This scheme, Frequent Pattern Compression (FPC), compresses a cache line on a word-

basis. For each word, FPC detects whether it falls into one of the patterns that can be stored in a

number of bits, and stores it in a compressed form with an appropriate prefix.
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Compressed Cache Design

As semiconductor technology continues to improve, the rising disparity between processor and m

speed increasingly dominates performance. Effectively using the limited on-chip cache resources be

increasingly important as memory latencies continue to increase relative to processor speeds. Cac

pression has been previously proposed to improve the effectiveness of cache memories [9, 24, 55,

135, 139]. Compressing data stored in on-chip caches increases their effective capacity, potentially

ing misses and improving performance. However, for complex hardware compression schemes, d

pression overheads can offset compression benefits. For cache compression to be an appealing so

is necessary to develop hardware compression algorithms with low decompression overheads.

In this chapter, we propose and evaluate a simple significance-based compression scheme that

compression and decompression overheads (Section 3.1). This scheme, Frequent Pattern Com

(FPC), compresses individual cache lines on a word-by-word basis by storing common word patter

compressed format accompanied by an appropriate prefix. This simple scheme provides comparab

pression ratios to more complex schemes that have higher decompression overheads (Section 3.2

64-byte cache line, compression can be completed in three cycles and decompression in five cycles,

ing 12 fanout-of-four (FO4) delays per cycle (Section 3.3).

In order to make use of FPC in cache compression, we propose a compressed cache design in whic

stored in a compressed form in the L2 caches, and in an uncompressed form in the L1 caches (Secti

L2 cache lines are compressed to predetermined sizes to reduce decompression overhead, never e

their original size. Our compressed cache design, the Decoupled Variable-Segment Cache, builds o
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This design decouples tag and data areas in the cache and divides the data area into compression u

ments). Using small 8-byte segments allows our cache design to store more compressed lines into t

space allocated for fewer uncompressed lines.

In this chapter, we make the following contributions:

• We propose a hardware compression scheme, Frequent Pattern Compression (FPC), that is su

compress cache lines in the L2 cache and beyond. We show that FPC achieves comparable c

sion ratios to more complex hardware schemes for a wide range of scientific and commercial ap

tions.

• We propose a hardware implementation for FPC and estimate its complexity. We show that d

pression of a 64-byte cache line can be performed in five cycles (or fewer), and compression in

cycles, assuming a 12 FO4 delays per cycle.

• We propose a compressed cache hierarchy that stores uncompressed lines in the L1 cache, a

pressed lines in the L2 cache. We propose a compressed cache design, the Decoupled Varia

ment Cache, that decouples tag and data areas in the cache and divides the data area into com

units (segments). We use our compressed cache design throughout this dissertation to evalua

pressed caches in uniprocessors and chip multiprocessors.

3.1  Frequent Pattern Compression (FPC)

In contrast with dictionary-based compression schemes, significance-based compression [23, 27,

69, 72] does not incur a per-line dictionary overhead, as we described in the previous chapter. In ad

compression and decompression hardware is faster than dictionary-based encoding and decoding

properties make significance-based compression schemes more suitable for the typically-short cach

However, compressibility can be significantly lower for long cache lines.
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In this dissertation, we propose and use a significance-based compression scheme,Frequent Pattern Com-

pression (FPC)to compress cache lines. This scheme is based on the observation that some data p

are frequent and are also compressible to a fewer number of bits. For example, many small-value i

can be stored in 4, 8 or 16 bits, but are normally stored in a full 32-bit word. These values are fre

enough to merit special treatment, and storing them in a more compact form can increase the cache

ity. Zeros are also frequent and merit special treatment, as in the X-RL scheme [73]. FPC is a comp

algorithm that strives to achieve most of the benefits of dictionary-based schemes while keeping th

line overhead at a minimum.

3.1.1  Frequent Patterns

Frequent Pattern Compression (FPC) compresses / decompresses on a cache line basis. Each cac

divided into 32-bit words (e.g., 16 words for a 64-byte line). Each 32-bit word is encoded as a 3-bit p

plus data. Table 3-1 shows the different patterns corresponding to each prefix.

Each word in the cache line is encoded into a compressed format if it matches any of the patterns

first seven rows of Table 3-1. These patterns are: zero (an all-zero word), 4-bit sign-extended, on

sign-extended, one halfword sign-extended, one halfword padded with a zero halfword, two byte

TABLE 3-1. Frequent Pattern Encoding

Prefix Pattern Encoded Data Size

000 Zero 0 bits (no data stored)

001 4-bit sign-extended 4 bits

010 One byte sign-extended 8 bits

011 halfword sign-extended 16 bits

100 halfword padded with a zero halfword The nonzero halfword (16 bits)

101 Two halfwords, each a byte sign-extended The two bytes (16 bits)

110 word consisting of repeated bytes 8 bits

111 Uncompressed word Original Word (32 bits)
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extended halfwords, and a word consisting of repeated bytes (e.g. “0x20202020”, or similar pattern

can be used for data initialization). These patterns are selected based on their high frequency in m

our integer and commercial benchmarks. A word that doesn’t match any of these categories is store

original 32-bit format. All prefix values are stored at the beginning of the line to speed up decompre

3.1.2  Segmented Frequent Pattern Compression (S-FPC)

To exploit compression, the L2 cache must be able to compress cache lines into a fewer number

compared to their original size. In theory, a cache line can be compressed into any number of bits

ever, such designs add more complexity to cache management. In most practical cache designs, ca

cannot occupy an arbitrary number of bits. In designing a practical compressed cache, selecting a

basesegmentsize is critical. Small segment sizes decrease fragmentation, therefore increasing com

sion ratios at the expense of a higher cache design complexity. The opposite is true for large segmen

In our compressed cache design, the decoupled variable segment cache (Section 3.4), we selecte

ment size of eight bytes. Each cache line can be stored as a group of one or more 8-byte segme

example, a 64-byte line can be stored in 1-8 segments. A compressed line is padded with zeros until

gets to be a multiple of the segment size. These extra zeros (that do not correspond to any prefix

ignored during decompression. While this approach doesn’t permit high compression ratios for some

lines (e.g., all zero lines), it allows for a more practical and faster implementation of cache line acce

3.2  FPC Evaluation

We evaluate the FPC scheme in terms of its achieved compression ratio compared to other comp

schemes. We show compression results for our frequent patterns, and demonstrate that zeros are

frequent. We also analyze the performance of segmented compression, and show the sensitivity o

pression ratios to FPC’s base segment size.



mercial

2000

suite

riefly

ression

TP

em.

ata-

r dis-

rs,

-

eri-

of

y of

ts

for

the

ar-

s

op-

ach
29
3.2.1 Workloads

To evaluate the FPC scheme against alternative schemes, we used several multi-threaded com

workloads from the Wisconsin Commercial Workload Suite [6]. We also used eight of the SPEC

benchmarks [114], four from the integer suite (SPECint2000) and four from the floating point

(SPECfp2000). All workloads run under the Solaris 9 operating system. These workloads are b

described in Table 3-2. We ran multiple simulation runs for each benchmark, and measured comp

TABLE 3-2. Workload Descriptions

Online Transaction Processing (OLTP).DB2 with a TPC-C-like workload. The TPC-C benchmark models

the database activity of a wholesale supplier, with many concurrent users performing transactions. Our OL

workload is based on the TPC-C v3.0 benchmark using IBM’s DB2 v7.2 EEE database management syst

We use a 5 GB database with 25,000 warehouses stored on eight raw disks and an additional dedicated d

base log disk. We reduced the number of districts per warehouse, items per warehouse, and customers pe

trict to allow more concurrency provided by a larger number of warehouses [6]. There are 16 simulated use

and the database is warmed up for 100,000 transactions.

Java Server Workload: SPECjbb. SPECjbb2000 is a server-side java benchmark that models a 3-tier sys

tem, focusing on the middleware server business logic. We use Sun’s HotSpot 1.4.0 Server JVM. Our exp

ments use two threads and two warehouses, a data size of ~44 MB, and a warmup interval

200,000 transactions.

Static Web Serving: Apache.We use Apache 2.0.43 for SPARC/Solaris 9, configured to use pthread locks

and minimal logging as the web server. We use SURGE [13] to generate web requests. We use a repositor

20,000 files (totalling ~500 MB), and disable Apache logging for high performance. We simulate 400 clien

each with 25 ms think time between requests, and warm up for 50,000 requests.

Static Web Serving: Zeus.Zeus is another static web serving workload driven by SURGE. Zeus uses an

event-driving server model. Each processor of the system is bound by a Zeus process, which is waiting

web serving event (e.g., open socket, read file, send file, close socket, etc.). The rest of the configuration is

same as Apache (20,000 files of ~500 MB total size, 400 clients, 25 ms think time, 50,000 requests for w

mup).

SPEC2000.We use four integer benchmarks (bzip, gcc, mcf and twolf) and four floating point benchmark

(ammp, applu, equake, and swim) from the SPECcpu2000 set to cover a wide range of compressibility pr

erties and working set sizes. We use the first reference input for each benchmark. We warm up caches of e

benchmark run for 1 billion instructions.
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statistics periodically every 300 million cycles for each simulation run. For each data point in our re

we present the average and the 95% confidence intervals of these multiple measurements to acc

both time and space variability [8].

3.2.2  Compression Ratio

To evaluate the success of our compression scheme, we estimated the compressibility properties o

of benchmarks. For each simulation run, we computed compression statistics for the whole L2 cach

tents every 300 million cycles (after a warm-up interval). Assuming variable length cache lines tha

occupy any number of bits, we compared the compression ratio from our Frequent Pattern Comp

scheme (FPC) with two other memory compression schemes:

• The X-RL algorithm [73] used in some compressed cache implementations [77, 78, 79].

• The Block-Referential Compression with Lookahead (BRCL) scheme [48], applied to cache

This scheme is a serialized implementation of the parallel compression scheme used for memor

pression in the IBM MXT technology [121]. The compression ratio of this scheme presents an

bound on the compressibility of its parallel version.

We also compare against the “Deflate” algorithm used in the gzip unix utility, which combines an LZ-

ant implementation with Huffman encoding of codewords in the dictionary. For this algorithm, we run

gzip utility on the whole cache snapshot file (as opposed to 64-byte lines individually compressed

other three schemes). The “Deflate” algorithm is used to provide a practical bound on compressib

dictionary-based schemes for arbitrarily long cache lines.

Figure 3-1 compares compression ratios for the four compression schemes. While FPC is faster to

ment in hardware, it provides comparable compression ratios to the dictionary-based X-RL and B

and even approaches gzip for some benchmarks. For some floating point benchmarks (applu and
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none of the hardware schemes achieve a high compression ratio, and even gzip’s compression ra

low. We attribute this to the low compressibility of floating point numbers, since we only consider los

compression schemes. FPC’s compression ratio is higher than 2.0 for five of the twelve benchmar

note that the wide confidence intervals for some benchmarks’ compression ratios (e.g., gcc) is due t

benchmarks exhibiting different phase behavior during the benchmarks’ runtime. Cache lines are s

cantly more compressible in some program phases compared to other (less compressible) phases

As we discussed in the previous section, cache lines cannot occupy any arbitrary number of bits i

practical cache designs. Restricting the compressed line sizes to a certain subset of all possible len

we do in our segmented design) partially reduces compressibility. To assess the loss in compressib

compare the compression ratio from our Segmented Frequent Pattern Compression scheme (Seg

FPC) against the compression ratio from the Frequent Pattern Compression scheme assuming v
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FIGURE 3-1. Compression ratios (original size / compressed size) for FPC, XRL,
BRCL and gzip
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length lines are possible (FPC). We also compare against segmented and ideal versions of the X

BRCL. Figure 3-2 shows the compression ratios for our benchmarks.

We note that the simple scheme (Segmented-FPC) achieves most of the compression benefit from v

length lines of the ideal version (FPC). Segmented-FPC has compression ratios of 1.15-2.15 for th

SPECint2000 benchmarks, 1.07-2.08 for the four SPECfp2000 benchmarks, and 1.61-1.98 for th

commercial benchmarks. We note that OLTP had a low compression ratio since its data is randomly

ated. A real OLTP application would have much less randomness, and thus have a higher comp

ratio. In addition, our FPC scheme only targets data and not code which constitutes a large frac

cache lines in commercial benchmarks, especially OLTP.

Compression ratios are, on average, higher for integer benchmarks compared to floating point bench

For example, only 3.3% of all cache lines across ourswimsnapshots are compressible. However, som

benefit is still possible for floating point benchmarks with a high percentage of zero words. This low

pression ratio is because floating point numbers (except zero) rarely fit any of the frequent patterns

ever, low floating point compression ratios is not only limited to the FPC scheme. Lossless compr

remains a hard problem for floating point data, even for more complex software schemes that dep

knowing the specific application domain of floating point data (e.g., compression of floating-point ge

try data [64], fluid dynamics data compression using wavelets [122], or JPEG image compression [

3.2.3  Which Patterns Are Frequent?

Frequent Pattern Compression (FPC) is based on the observation that some word patterns are m

quent than others. We experimented with cache snapshots for our different benchmarks to come up

reasonable set of frequent patterns (described in Table 3-1). Figure 3-3 shows the relative freque

incompressible words, zero words and words compressible to 4, 8 and 16 bits. The 4-, 8-, and 16-

terns are present with various frequencies across our integer and commercial benchmarks. Unfort



33

0

1

2

3

C
om

pr
es

si
on

 R
at

io FPC
Segmented FPC 
XRL
Segmented XRL
BRCL
Segmented BRCL 

bzip gcc mcf twolf

0

1

2

C
om

pr
es

si
on

 R
at

io FPC
Segmented FPC 
XRL
Segmented XRL
BRCL
Segmented BRCL 

apache zeus oltp jbb

FIGURE 3-2. Compression ratios for segmented and variable-length FPC, XRL
and BRCL. The three graphs show ratios for SPECint, SPECfp and commercial
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most of the words in floating point benchmarks are incompressible with FPC, since its patterns are

integer patterns.

As Figure 3-3 demonstrates, zero words are the most frequent compressible pattern across all benc

For five benchmarks (gcc, twolf, ammp, apache, zeus), at least 40% of all cache words are zero

causes some compression techniques (e.g., X-RL) to specifically optimize for runs of zeros. Figu

shows the average number of zeros in a zero run for our set of benchmarks. The figure shows that o

benchmarks (ammp, apache, zeus, oltp) have an average of 4 or more zeros in a zero run. In develo

FPC scheme, we had two options to compress zeros: either to have a prefix for each zero word w

data, or to encode zero runs with a single prefix and save the length of the run in the data part corre

ing to that prefix. However, the savings that could be achieved using the second alternative (ze

encoding) would be mostly lost due to segmentation in S-FPC. Furthermore, the first alternative—

we selected—also allows implementations with a lower compression and decompression overhead
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3.2.4  Sensitivity to Segment Size

In designing a practical compressed cache implementation, selecting a specific base segment si

important design decision. A compressed line can only be stored in a size that is an integer multiple

base segment size. Selecting a small segment size would likely decrease the amount of fragme

which allows for higher compression ratios. However, a small segment size increases cache desig

plexity. The opposite is true for large segment sizes. Cache design should balance the trade-off b

these two conflicting design constraints. We selected a base segment size of 8-bytes (i.e., up to 8 s

for 64-byte lines) in the Segmented FPC design as a reasonable design point.

Figure 3-5 shows the sensitivity of FPC to the base segment size. The four bars for each benchmar

sent compression ratios if we divide up a 64-byte cache line into two segments (i.e., 32-byte segm

four (16-byte segments), eight (8-byte segments, which is the same as Segmented-FPC in Figure 3

64 (1-byte segments). Our 8-byte-segment design increases the compression ratio by 4-59% vs.
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FIGURE 3-4. Average number of words in a zero run for our ten benchmarks. Large
confidence intervals are due to the variability of cache contents between different time
samples
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segments, and 2-22% vs. 16-byte segments. Compared to 1-byte segments, our 8-byte segment de

a 2-12% lower compression ratio. This data shows that our 8-byte segment selection is a reasonable

point.

We characterize our benchmarks further by showing the percentage of cache lines (across all snaps

each benchmark) that can be compressed into 1-8 segments (Figure 3-6). The figure shows that d

benchmarks favor different sizes. For example, nearly 97% ofswimlines are uncompressed (8 segments

while nearly 55% ofmcf lines can be compressed to six segments. For completeness, we show a

detailed distribution in Figure 3-7, demonstrating the cumulative distribution of compressed cach

sizes (1-512 bits) assuming ideal FPC compression (i.e., 1-bit segments) for our twelve benchmark

3.3  FPC Hardware Implementation

Frequent Pattern Compression is an appealing compression scheme for cache lines because it ach

atively high compression ratios with a small overhead for compression and decompression. In this s
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FIGURE 3-5. FPC Compression ratios for segment sizes (1 byte to 32 bytes)



nd esti-

hes and

ses that

ds the

allows a

e, or

it that

le pat-

h was
37

we present high-level and gate-level designs of FPC’s compression and decompression hardware, a

mate their circuit delay.

3.3.1  High-Level Design

We propose a compressed cache design in which data is stored uncompressed in the level-1 cac

compressed in the level-2 caches (Section 3.4). This helps reduce many of the costly L2 cache mis

hinder performance, while not affecting the common case of an L1 hit. However, such a design ad

overhead of compressing or decompressing cache lines when moved between the two levels. FPC

relatively fast implementation of both of these functions.

Compression.Cache line compression occurs when data is written back from the L1 to the L2 cach

when data is fetched from memory to the L2. A cache line is compressed easily using a simple circu

checks each word (in parallel) for pattern matches. If a word matches any of the seven compressib

terns, a simple encoder circuit is used to encode the word into its most compact form. If no matc

found, the whole word is stored with the prefix‘111’ .
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FIGURE 3-7. Cumulative Distribution of Compressed Line Lengths (1 to 512 bits)
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Cache line compression can be implemented in a memory pipeline, by allocating three pipeline sta

the L1-to-L2 write path (one for pattern matching, and two for gathering the compressed line). A sma

tim cache that contains a few entries in both compressed and uncompressed form can be used to

compression latency on L1 writebacks. However, since compression is off the critical path, we do no

sider compression latency a first order design constraint.

Decompression.Cache line decompression occurs when data is read from the L2 to the L1 cache. Th

frequent event for most benchmarks whose working sets do not fit in the L1 cache. Decompression

is critical since it is directly added to the L2 hit latency, which is on the critical path. Decompression

slower process than compression, since compressed lengths for all words in the line (except the la

to be added. Each prefix is used to determine the length of its corresponding encoded word and th

the starting location of all the subsequent compressed words. Figure 3-8 presents a schematic diag

a five-stage hardware pipeline that can be used to decompress 64-byte cache lines. Each pipeline

12 FO4 delays or less, assuming the parallel resources required are available for the parallel add

register and pattern decoder. Assuming one processor cycle requires 12 FO4 gate delays, this me

the decompression latency is limited to five processor cycles.

3.3.2  Gate-Level Design

In order to estimate circuit delays for the compression and decompression circuits, we constructed

level design of their critical paths. We used the method of logical effort [113] to estimate FO4 gate d

for each circuit.

Compressor.We present the first stage of the compression pipeline in Figure 3-9. The input for this c

is the 32-bits of an uncompressed word. The output is the three prefix bits that encode the word’s

(as specified in Table 3-1). The critical path for this circuit passes through a 16-input 3-output AND g
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2-input 1-output AND GATE, a 2-input 2-output OR gate, a 1-input 1-output inverter, a 7-input 2-ou

AND gate and a 4-input 1-output OR gate, from input bits 16-31 through pattern #5 (two sign-exte

halfwords) to the output of Prefix0 or Prefix2. Using the method of logical effort, delay in a logic ga

computed using:

d = g . h + p  (3.1)

whereg is the gate’s logical effort,h is the gate’s electrical effort, andp is the gate’s parasitic delay [113]

We use theg, h andp assumptions for various gates from Sutherland, et al. ([113]):

FIGURE 3-8. Cache line decompression pipeline for a 64-byte (16-word) cache line

This is a five-stage pipeline used to decompress a compressed cache line, where each stage contains 1
gate delays or less. The first pipeline stage (containing the parallel prefix decoder) decodes the prefix arr
determine the length (in bits) of each word. The second and third stages (Parallel carry-lookahead a
array) compute the starting bit address for each data word by adding the length fields of the preceding w
in a hierarchical fashion. The fourth stage (parallel shift registers) contains 16 registers each of whic
shifted by the starting address of its word (in 4-bit increments). The fifth and last stage contains the pa
decoder, which decodes the content of each 32-bit register into an uncompressed word according to its c
sponding prefix.
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p(INV) = 0.6 delay units,g(INV) = 1  (3.2)

p (NAND(n,1)) =n . p(INV), g(NAND(n,1)) = (n+2)/3  (3.3)

p(NOR(n,1)) =n . p(INV), g(NOR(n,1)) = (2n + 1)/3  (3.4)

p(XOR(2,1)) = 4 .p(INV), g(XOR(2, 1)) = 4  (3.5)

FIGURE 3-9. First pipeline stage of compression circuit

This circuit obtains the pattern prefix for a 32-bit word. For compression, parallel instances should be use
obtain the prefix of all words in a cache line in parallel
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p(MUX(n,1)) = 2 .n . p(INV), g(MUX(n,1)) = 2  (3.6)

h = Cout/Cin (Output capacitance divided by input capacitance)  (3

The total delay for the above compression circuit is computed from the following equation (obtained

the critical path Figure 3-9):

Total_delay =d(AND(16,3)) +d(AND(2,1)) +d(OR(2,2)) +d(INV(1,1)) + d(AND(7,2)) +d(OR(4.1)) (3.8)

Values for different gate delays can be directly computed from Equations 3.1-3.7. For example, the

for AND(16,3) can be computed from:

d(AND(16,3)) =d(NAND(16, 1)) +d(INV(1, 3)) = (16+2)/3 * 1/16 + 16*0.6 + 1 * 3/1 + 0.6 = 13.575  (3.9

We omit the details for the remaining gates. Summing up all gate delays, we get Total_delay = 3

delay units.

The fanout-of-four delay using the same assumptions is:

d(INV(1,4)) = 1 * 4/1 + 0.6 = 4.6  (3.10)

So the above circuit has a 35.254/4.6 = 7.66 fanout-of-four delays (or less than 8 FO4 delays). This

implemented in one clock cycle for most processes. We are assuming 12 FO4 delays per clock

which is close to the estimated per-cycle delay for current processes [60]. The second pipeline sta

presented here, is used to gather significant bits (0, 4, 8, 16 or 32 bits based on the prefix) from all w

the cache line into a single compressed word, using multiplexers and barrel shifters. This can be pip

in two single-clock pipeline stages.
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Decompression.We present different stages of the decompression pipeline in Figure 3-10, Figure

Figure 3-12 and Figure 3-13.

Figure 3-10 illustrates part of the first stage in the decompression pipeline (the parallel prefix dec

where we compute the compressed word length of each word in the cache line from its prefix. Th

fairly simple circuit with the critical path going through an inverter, a three input one output AND g

(both inside the 3-to-8 decoder), and a three input one output OR gate. Using the method of logical

the total delay for this circuit is 9.733 delay units, or less than 3 FO4 delays (i.e., less than one cycle

FO4 delays).

In Figure 3-11, we show the critical path for second and third stages of the decompression pipeline,

the computed word lengths are used to compute the starting location for each word. This stage cons

series of carry lookahead adders that compute the starting bit address of each word in the cache li

critical path shown in the circuit is that required to compute the starting address of the last word (i.e.

#15) in the 16-word cache line. This critical path goes through the following gates: XOR(2,4), AND(

OR(4,1), XOR(2,5), AND(5,1), OR(5,1), XOR(2,6), AND(6,1), OR(6,1), XOR(2,7), AND(7,1) a

FIGURE 3-10. First stage of the decompression pipeline: Parallel Prefix Decoder

For each prefix in the line header, we use the decoder to figure out the length of the corresponding word.
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FIGURE 3-11. Critical path for second and third stages of the decompression
pipeline. High-level design is shown at the top, and gate-level design at the bottom

This circuit uses the compressed word lengths (output of Figure 3-10) to compute the starting bit addre
each word in the cache line. A multi-stage carry lookahead adder network computes the starting bit addre
of all words. The above circuit shows the path for computing the starting address of the last word (word 
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OR(7,1). Using the method of logical effort, the total delay for this circuit is 97.56 delay units, or less

22 FO4 delays. This is less than two cycles assuming a 12 FO4 delay per cycle.

In Figure 3-12, we demonstrate the fourth stage in the decompression pipeline, where the comp

words are extracted by shifting the cache line bits in 4-bit increments based on the starting location

puted at the end of the third stage. The critical path of this circuit is the series of seven 2-to-1 multipl

Again using the method of logical effort, the total delay is 40.6 delay units, or less than 9 FO4 delay

In Figure 3-13, we present part of the fifth stage of the decompression pipeline used to compute the d

pressed words given their compressed format and the word prefix. The critical path for this circuit is

to-1 multiplexer, with a delay of 9.85 delay units (or less than 3 FO4 delays) according to the meth

logical effort.

We could optimize this circuit further by combining the fourth and fifth pipeline stages into one, thus u

four cycles for decompression instead of five. However, we chose not to optimize the circuit design

cifically for speed or power. Our objective was to illustrate that decompression can be done in five

or fewer, which is faster than other hardware schemes such as X-RL or BRCL. It is possible to optimi

FIGURE 3-12. Fourth stage of the decompression pipeline (parallel shifter)

For each word starting bit location (obtained from the output of Figure 3-11), we shift the cache line right
a the corresponding number of four-bit nibbles using a barrel-shifter design. The above circuit is repeate
all line bits. The critical path for this stage is seven 2-to-1 multiplexers. Due to the large number of multipl
ers in the parallel shifter circuit (512x7 array of 2-to-1 multiplexers), it is uneconomical to replicate this c
cuit for all cache words. A more appealing alternative is to have two copies of the above circuit, and tim
multiplex the shift operations for eight words on each circuit.
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decompression pipeline for power by using non-parallel resources with time multiplexing in pip

stages with a lot of slack (e.g., the first and the last). This low decompression overhead is partic

important for use in our compressed cache design, as we show in the next section. We analyze the s

ity of a compressed cache’s performance to decompression latency in the next chapter.

3.4  Decoupled Variable-Segment Cache

In this section, we propose a two-level cache hierarchy consisting of uncompressed L1 instruction an

caches, and an optionally compressed L2 unified cache [9]. We evaluate the performance of ou

pressed cache design in the next chapter. While many of the mechanisms and policies we develop

FIGURE 3-13. Part of the fifth stage of the decompression pipeline (Parallel Pattern
Decoder)

We show the circuits used to compute bits 4, 8, 16 and 24 of the decompressed word.
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adapted to other cache configurations (e.g., three-level hierarchies), we only consider two-level hier

in this dissertation.

Figure 3-14 illustrates the proposed cache hierarchy. L1 instruction and data caches store uncom

lines, eliminating the decompression overhead from the critical L1 hit path. This design also comp

isolates the processor core from the compression hardware. The L1 data cache uses a writeback, w

cate policy to simplify the L2 compression logic. On L1 misses, the controller checks an uncompr

victim cache in parallel with the L2 access. In addition to its normal function, the victim cache acts

rate-matching buffer between the L1s and the compression pipeline [79]. On an L2 hit, the L2 li

decompressed if stored in compressed form. Otherwise, it bypasses the decompression pipeline. O

miss, the requested line is fetched from main memory. We assume compressed memory, though

largely an orthogonal decision. The L1 and L2 caches maintain inclusion. Lines are allocated in t

cache on L1 replacements and writebacks, L1 misses (that also miss in the L2), and L1 or L2 prefe

For design simplicity, we assume a single line size of 64-bytes for all caches.

L1 I-Cache
(Uncompressed)

L1 D-Cache
(Uncompressed)

Decompression
Pipeline Compression

Pipeline

L2 Cache (Compressed)

L1 Victim Cache

FIGURE 3-14. Compressed Cache Hierarchy

Load-Store
Queue

Instruction
Fetcher

Uncompressed
Line Bypass
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To exploit compression, the L2 cache must be able to pack more compressed cache lines than

pressed lines into the same space. One approach is to decouple the cache access, adding a level o

tion between the address tag and the data storage. Seznec’s decoupled sector cache does this on

basis to improve the utilization of sector (or sub-block) caches [105]. Hallnor and Reinhardt’s Ind

Index Cache (IIC) decouples accesses across the whole cache, allowing fully-associative placemen

ware managed replacement policy, and (recently) compressed lines [54, 55]. The recently proposed

cache [98] adopts a similar decoupled approach. Lee, et al.’s selective compressed caches use t

nique to allow two compressed cache blocks to occupy the space required for one uncompressed bl

78, 79]. Decoupled access is simpler if we serially access the cache tags before the data. Fortunatel

increasingly necessary to limit power dissipation [71].

In our design, we use a similar approach to previous proposals by decoupling the cache access, a

level of indirection between the address tag and the data storage. We also use more tags than (

pressed) cache lines to support storing compressed lines. Pomerene, et al. [97], used a similar sch

shadow directory with more address tags than data blocks to improve upon LRU replacement.

We show our compressed cache design in Figure 3-15. Each set is 8-way set-associative, with a co

sion information tag stored with each address tag. The data array is broken into eight-byte segmen

32 segments statically allocated to each cache set. Thus, each set can hold no more than four uncom

64-byte lines, and compression can at most double the effective capacity. Each line is compressed

eight-byte segments, with eight segments being the uncompressed form. The compression tag ind

the compressed size of the line (CSize) and ii) whether or not the line is stored in compressed form

tus). A separate cache state indicates the line’s coherence state, which can be any of M (modifi

(Owned), E (Exclusive), S (shared), I (invalid). We maintain the compression tag even for invalid

since we use these tags in our adaptive compression policy (discussed in the next chapter).
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Data segments are stored contiguously in address tag order. That is, the offset for the first data seg

line k is:

 (3.11)

A line’s actual size is determined by the compression tag (Figure 3-15) and the eight segment offs

computed in parallel with the address tag match using 5-bit parallel adders (similar to the circ

Figure 3-11, though much smaller). On an address tag match, the segment offset and actual length

to access the corresponding segments in the data array. The array is split into banks for even and o

ments, allowing two segments (16 bytes) to be fetched per cycle regardless of the alignment [52].

An L1 replacement writes back dirty lines to the L2 cache, where it finds a matching address tag sin

maintain inclusion. An L2 fill can also replace a line in the L2 cache. If the new line’s compressed s

the same as the replaced line (or smaller), this writeback or fill is trivial. However, if the new size is la

the cache controller has to allocate space in the set. This may entail replacing one or more L2 lines o

pacting invalid lines to make space. More than one line may have to be replaced if the newly allocate

LRU
State

Tag 7Tag 0  Tag 1 ... ... ... ... ...

Segments

Tag Area Data Area

Cstatus

312

Permissions: States M (modified), S (shared), I (invalid), NP (not present)
CStatus: 1 if line is compressed, 0 otherwise
CSize: Size of compressed line (in segments) if compressed
CStatus and CSize are used to determine the actual size
(in segments) of the cache line :

CStatus     CSize    Actual Size

      0                s               8

    

      1                s               s

1..k−1

16−byte−wide 2−input multiplexor

16 bytes

Permissions

segment

segment_offset(k) = Sum (actual_size(i))

segment_offset

segment_offset+1

segment_offset

segment_offset+1

 16 Even
Segments

segment
8−byte 8−byte

Tag
AddressCSize

(Compression Tag)

 16 Odd

FIGURE 3-15. A single set of the decoupled variable-segment cache

segment_offsetk( ) actual_sizei( )
i 1=

k 1–

∑=
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is larger than the LRU line plus the unused segments. In this case, we replace at most two lines by

ing the LRU line and searching the LRU list to find the least-recently-used line that ensures we

enough space.

Compacting a set requires moving tags and data segments to maintain the contiguous storage in

This operation can be quite expensive, because it may require reading and writing all the set’s da

ments. For this reason, compaction is deferred as long as possible and is never needed on a read

fill) access. In the next chapter, we evaluate the impact of compaction on the number of bits read/w

for our compressed cache design. With a large L1 victim cache and sufficient L2 cache banks, comp

can have a negligible impact on performance.

A decoupled variable-segment cache adds relatively little storage overhead. For example, consid

way, 4 MB uncompressed cache with 64-byte lines. Each set has 2048 data bits, in addition to fou

Each tag includes a 24-bit address tag, a 2-bit LRU state, and a 3-bit permission, for a to

4*(24+2+3)=116 bits per set. Our scheme adds four extra tags, increases the LRU state to three b

adds a 4-bit compression tag per line. This adds 116+8*1+8*4=156 bits per set, which increases th

cache storage by approximately 7%. For an 8-way 4 MB cache, the overhead per set is 312 bit

approximately 7%.
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Adaptive Cache Compression

Cache compression increases the effective cache size at the expense of increasing cache hit lat

compressed lines. On the one hand, compression can potentially help some applications by elim

many off-chip misses. On the other hand, applications that fit in an uncompressed cache can be

decompression overhead.

In this chapter, we develop an adaptive policy that dynamically balances the benefits of cache comp

against its overheads. We use the cache replacement algorithm’s stack depth [89] and compressio

mation to determine whether compression (could have) eliminated a miss or incurs an unnecessary

pression overhead (Section 4.1). Based on this determination, we develop an adaptive policy that up

single global saturating counter. This counter predicts whether to allocate future cache lines in comp

or uncompressed form (Section 4.2).

We evaluate our adaptive cache compression policy using full-system simulation of a uniprocessor

and a range of benchmarks (Section 4.3). We show that compression can improve performance fo

memory-intensive workloads by 2-34%. However, always using compression hurts performance fo

miss-rate benchmarks—due to unnecessary decompression overhead—degrading performance by

By dynamically monitoring workload behavior, the adaptive policy achieves comparable benefits

compression, while avoiding most of the performance degradation for benchmarks that are hurt by

pression (Section 4.4). We analyze the sensitivity of compressed cache performance to different m

system parameters (Section 4.5). We conclude by discussing limitations of our adaptive compr

scheme (Section 4.6) and presenting relevant related work (Section 4.7).



bench-

hether

or sys-

lps. We

a simple

cache

more

ut oth-

fit of

ncy for
52
This chapter makes the following contributions:

• We show that cache compression in a uniprocessor system can help the performance of some

marks while hurting the performance of others.

• We propose a scheme that uses the stack of a cache replacement algorithm [89] to identify w

compression helps or hurts each individual cache reference.

• We propose an adaptive prediction scheme that dynamically adapts to a benchmark’s behavior

tem configuration. This adaptive scheme compresses cache lines only when compression he

show that our adaptive compression scheme performs similar to the best of the two extremes:Always

Compress andNever Compress.

4.1  Cost/Benefit Analysis

In this section, we analyze the costs and benefits associated with cache compression. We present

analytical model for compression’s costs and benefits, and discuss how we classify different

accesses according to whether compression helped, hurt or did not affect each access.

4.1.1  Simple Model

While compression helps eliminate long-latency L2 misses, it increases the latency of the (usually

frequent) L2 hits. Thus, some benchmarks (or benchmark phases) will benefit from compression, b

ers will suffer. For a simple, in-order blocking processor, L2 cache compression will help if the bene

compression due to avoiding some L2 misses is greater than the cost due to increasing L2 hit late

compressed lines:

 (4.1)
Avoided L2 Misses L2 Miss Penalty L2 Hit Latency–( )× Penalized L2 Hits Decompression Penalty×>
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Where penalized L2 hits are those that unnecessarily incur the decompression penalty. Rearrangin

yields:

 (4.2)

For a 5-cycle decompression penalty and 400-cycle L2 miss penalty, compression wins if it elimina

least one L2 miss for every 400/5=80 penalized L2 hits (or a ratio of less than 80 penalized hits per a

miss). While this may be easily achieved for memory-intensive commercial workloads, smaller w

loads—whose working set size fits in an uncompressed L2 cache—may suffer performance degra

We note, however, that this model might not be accurate for more complex processors that use

latency hiding techniques (e.g., out-of-order execution and prefetching).

Ideally, a compression scheme should compress data when the benefit (i.e., avoided misses) outwe

cost (i.e., penalized L2 hits). We next describe how we classify cache accesses according to the cost

efit of compression, and use that information in the next section to update a compression predictor.

4.1.2  LRU Stack and the Classification of Cache Accesses

The key insight underlying our adaptive compression policy is that the LRU stack depth [89] and

pressed line sizes determine whether compression helps or hurts a given reference. As an e

Figure 4-1 illustrates the LRU stack of a single cache set, where a stack depth of 1 indicates the

recently used line. In our decoupled variable-segment cache design, only the top half of the stack (i

most recently used four lines) would be in the cache without compression. Lines in the bottom hal

exist in the cache because of compression. Based on the cache lines in Figure 4-1, we next classif

references (hits and misses) according to whether compression helps or hurts these references.

Penalized L2 Hits
Avoided L2 Misses
----------------------------------------------- L2 Miss Penalty L2 Hit Latency–( )

Decompression Penalty
--------------------------------------------------------------------------------------<
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Classification of hits:

• A reference to Address A hits at stack depth 1. Because the set can hold four uncompressed lin

the LRU stack depth is less than or equal to four, compression provides no benefit. Conversely

the data is stored uncompressed, the reference incurs no decompression penalty as we by

decompression pipeline for uncompressed lines. We call this case anunpenalized hit.

• A reference to Address C hits at stack depth 3. Compression does not help, since the line wo

present even if all lines were uncompressed. Unfortunately, since the block is stored in comp

form, the reference incurs an unnecessary decompression penalty. We call this case apenalized hit.

• A reference to Address E hits at stack depth 5. As only the top four lines would have been in the

without compression, this reference is a hit only because of compression. In this case, compress

eliminated a miss that would otherwise have occurred. We call this case anavoided miss.

Stack Depth Address Tag CStatus CSize (Segments) Permissions

1 A Uncompressed 2 Modified

2 B Uncompressed 8 Modified

3 C Compressed 4 Modified

4 D Compressed 3 Modified

5 E Compressed 2 Modified

6 F Compressed 7 Modified

7 G Uncompressed 5 Invalid

8 H Uncompressed 6 Invalid

FIGURE 4-1. A cache set example

Address tags are shown in LRU order (Address A is the most recent). The first six tags corresponds to lin
the cache, while the last two correspond to evicted lines (Permissions = Invalid). Addresses C, D, E and F
stored in compressed form.
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Classification of misses:

• A reference to Address G misses in the cache, but matches the address tag at LRU stack depth

sum of the compressed line sizes at stack depths 1 through 7 totals 29. Because this is less than

total number of data segments per set), this reference misses only because one or more lines

depths less than 7 are stored uncompressed (i.e., Address A could have been stored in two seg

Since compression could have helped avoid a miss, we call this case anavoidable miss.

• A reference to Address H misses in the cache, but matches the address tag at LRU stack depth

ever, this miss cannot be avoided because the sum of compressed sizes for stack depths 1-8 exc

total number of segments available (i.e., 35 > 32). Similarly, a reference to Address I does not

any tag in the cache set, so its LRU stack depth is greater than 8. We call both of these ca

unavoidable miss.

While we assume LRU replacement in this dissertation, any stack algorithm—including random [8

will suffice. Moreover, the stack property only needs to hold for lines that either do or might have fit d

compression (e.g., LRU stack depths 5–8 in the example of Figure 4-1). We can use any arbitrary re

ment policy for the top four elements in the “stack.”

In our adaptive compression scheme, the cache controller uses the LRU state and compression tags

sify each L2 reference. The avoidable miss calculation can be implemented using a five-bit parallel

with 8:1 multiplexors on the inputs to select compressed sizes in LRU order. To save hardware, a

carry-lookahead adder can be time-multiplexed, since gathering compression information is not on th

ical path, and the data array access takes longer than the tag access. We use the above classificati

and misses to monitor the actual effectiveness of cache compression. We next describe our adaptive

tor that uses this information to dynamically determine whether to store a line in a compressed or u

pressed form.
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4.2  Compression Predictor

Like many predictors, the adaptive compression policy uses past behavior to predict the future. S

cally, the L2 cache controller uses the classification in the previous section to update a global sat

counter—called the Global Compression Predictor (GCP)—to aggregate the recent history of compr

benefit minus cost. On a penalized hit (a compression cost), the controller biases against compres

subtracting the decompression penalty. On an avoided or avoidable miss (a compression benefit o

tial benefit), the controller increments the counter by the (unloaded) L2 miss penalty. To reduce the c

size, we normalize these values to the decompression latency, subtracting one and adding the miss

divided by decompression latency (e.g., 400 cycles / 5 cycles = 80).

The L2 controller uses the GCP when allocating a line in the L2 cache. Positive values mean compr

has been helping eliminate misses, so the L2 controller stores the newly allocated line in compresse

Negative values mean compression has been penalizing hits, so the controller store the line uncomp

All allocated lines—even those stored uncompressed—must run through the compression pipeline

culate their compressed size, which is used in the avoidable misses calculation.

The size of the saturating counter determines how quickly the predictor adapts to workload phase ch

The results in this dissertation use a single global 19-bit counter that saturates at 262,143 or -2

(approximately 3300 avoided or avoidable misses). Using a large counter means the predictor

slowly to phase changes, preventing short bursts from degrading long-run behavior. On the other h

small counter can quickly identify phase changes. Section 4.5.8 examines the impact of workload

behavior on the predictability of cache compression. We next evaluate the performance of this globa

tive compression policy.
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4.3  Evaluation

We present an evaluation of adaptive compression on a dynamically-scheduled out-of-order unipro

system. We use full-system simulation of commercial workloads and a subset of the SPECcpu2000

marks. The workloads we use in this chapter are the same as those of Section 3.2.1. We ran warme

benchmarks as specified in the previous chapter. We then ran apache, zeus, oltp, and jbb for 3000

300 and 20000 transactions, respectively. We also ran SPEC2000 benchmarks for one billion instr

after the warm interval. We summarize our simulated system parameters next.

4.3.1  System Configuration

We evaluated the performance of our compressed cache designs on a dynamically-scheduled SPA

uniprocessor using the Simics full-system simulator [88], extended with the Multifacet General Exec

driven Multiprocessor Simulator [130]. Our target system is a superscalar processor with out-of-orde

cution. Table 4-1 presents some of our basic simulation parameters.

4.3.2  Three Compression Alternatives

To evaluate the effectiveness of adaptive compression, we compare it with two extreme policies:Neverand

Always. Nevermodels a standard 8-way set associative L2 cache design, where data is never store

pressed.Alwaysmodels a decoupled variable-segment cache (Section 3.4) that always stores compr

data in compressed form. ThusNeverstrives to reduce hit latency, whileAlwaysstrives to reduce miss rate

Adaptiveuses the policy described in Section 4.2 to utilize compression only when it predicts that its

fits outweigh decompression overheads.
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4.4  Compression Performance

In this section, we present performance results for the three compression alternatives:Never, Alwaysand

Adapt. For each data point in our results, we present the average and the 95% confidence interval o

ple simulations to account for space variability [8]. Our runtime results for commercial workloads re

sent the average number of cycles per transaction (or request), whereas runtime results for

benchmarks represent the average number of cycles per instruction (CPI). We evaluate cache mis

performance and the effect of compression on the number of bits read and written (as an indirect m

of dynamic power).

4.4.1  Cache Miss Rate

Using compression to increase effective cache capacity should decrease the L2 miss rate. Figure

sents the average miss rates for our set of benchmarks. The results are normalized toNeverto focus on the

TABLE 4-1. Uniprocessor Simulation Parameters

L1 Cache Configuration
Split I & D, each 64 KB 4-way set associative with LRU replacement, 64-byte

line, 3-cycle access time

L2 Cache Configuration

Unified 4 MB (unless otherwise specified), 8-way set associative with LRU

replacement for both compressed and uncompressed caches (compressed

caches have double the number of sets), 64-byte lines,

L2 Cache Hit Latency

Uncompressed caches have a 10-cycle bank access latency plus a 5-cycle wir

delay. Compressed caches add a 5-cycle decompression overhead for com-

pressed lines.

Memory Configuration
4 GB of DRAM, 400 cycles access time with a 50 GB/sec. memory bandwidth

16 outstanding memory requests (including prefetches).

Processor Configuration
4-wide superscalar, 11-stage pipeline—Pipeline stages: fetch (3), decode (4)

schedule (1), execute (1 or more), retire (2).

IW/ROB 64-entry instruction window, 128-entry reorder buffer.

Branch Predictors
4 KB YAGS direct branch predictor [38], a 256-entry cascaded indirect branch

predictor [35], and a 64-entry return address stack predictor [67].
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benefit of compression, but the absolute misses per 1000 instructions forNeverare included at the bottom.

Both AlwaysandAdaptivehave lower or equal miss rates when compared toNeverwith one exception,

ammp. In the next section, we show that ammp’sAdaptivepolicy predicts that no compression compare

favorably to compression. WhenAdaptivepredicts no compression, the effective L2 cache configuration

a 4 MB, 4-way set associative cache, as compared to a 4 MB, 8-way set associative cache forNever. This

difference in associativity accounts for the small increase in the miss rate forAdaptivewhen compared to

Never in ammp (about 0.2%).

Not surprisingly, the commercial benchmarks achieve substantial benefits from compression, reduc

miss rates by 4–18%. Some other benchmarks achieve significant reductions in miss rate (e.g., mc

rate decreases by 15%). Benchmarks with small working sets (e.g., twolf) get little or no miss rate r

tion from compression. The four floating-point benchmarks, despite very large working sets, do not b
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FIGURE 4-2. L2 cache miss rates (misses per thousand instructions) for the
three compression alternatives. Miss rates are normalized to theNever miss
rate (shown at the bottom)
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from compression (except for ~4% for equake) due to the poor compression ratios that our compr

algorithm achieves for floating-point data.

4.4.2  Performance

The ultimate objective of adaptive cache compression is to achieve performance that is comparable

best ofAlwaysandNever. Reducing the cache miss rate, asAlwaysdoes for some benchmarks, may be ou

weighed by the increase in hit latency. Figure 4-3 presents the simulated runtime of our twelve b

marks, normalized to theNevercase. Most of the benchmarks that have substantial miss rate reduc

underAlwaysalso improve runtime performance (e.g., a speedup of 18% for apache, 7% for zeus, an

for mcf1). However, the magnitude of this improvement depends upon the absolute frequency of m

For example, jbb and zeus have similar relative miss rate improvements, but since zeus has more th

times as many misses per instruction, its performance improvement is greater. On the other hand,
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FIGURE 4-3. Runtime for the three compression alternatives, normalized to the
Never runtime
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marks with smaller working sets (e.g., gcc, twolf, ammp) do not benefit from bigger cache capacit

example,Alwaysdegrades performance compared toNeverby 16% for ammp, 5% for gcc and 4% fo

twolf.

Figure 4-3 also shows thatAdaptiveachieves the benefit ofAlwaysfor benchmarks that benefit from com

pression. In addition, for benchmarks that do not benefit from compression, it degrades performa

less than 4% compared toNever. The 4% is in the case of ammp due to the lower associativity forAdaptive

compared toNever.

In summary, while some memory-intensive benchmarks benefit significantly from compression,

benchmarks receive little benefit or even degrade significantly. For our benchmarks,Adaptiveachieves the

best of both worlds, improving performance by using compression when it helps, while not hurting p

mance (except marginally) when compression does not help. We next discuss the impact ofAlwaysand

Adaptive on the number of bits read and written from/to the L2 cache.

4.4.3  Bit Activity level

Our adaptive cache compression scheme specifically targets being close in performance to the

Alwaysor Never. However, it does not specifically adapt to other system aspects such as power or

bandwidth. While doing a complete study of the impact of cache compression on power is beyon

scope of this dissertation, we present a study of bits read and written from/to the L2 cache as an i

measure of dynamic power. This study doesn’t take into account the power savings due to avoiding

misses.

1. We note that some benchmarks (e.g., mcf in this section, and others in later sections) have super-linear speedups that

than expected from the reduction in miss rate. This is attributed to compression decreasing the miss rates to a degree w

number of outstanding misses (i.e., number of MSHRs) is not a bottleneck. A miss rate of ~40 per 1000 instructions f

mean a near 100% utilization of MSHRs, since each miss penalty is 400 cycles. Compression helps reduce miss rates

where utilization is significantly lower.
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Figure 4-4 shows the number of bits read and written from/to the L2 cache for the three compression

natives, normalized toNever. Compression can increase the number of bits read and written since al

tions may require repacking, i.e., reading all lines in a cache set and writing an aligned, compact ver

it back. This increases the number of bits read and written compared toNeverfor many benchmarks, by up

to 164% for applu and 133% for equake. Other than these two benchmarks, only apache, zeus and

show increases of more than 10% in bits read/written (46% for zeus).

We further studied the percentage of cache allocates in which repacking is needed. Figure 4-5 show

percentage forAlways. The percentage of repacks required is at its highest for twolf and ammp, but

impact on power (in terms of number of bits read/written) is minimal since the absolute number of c

allocations is small. The two benchmarks with the most increase in bits read/written are applu and e

whose repack percentages are 37% and 36%, respectively. However, since the absolute number o

tions is large, the impact of such percentage on bits read/written is significant.
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FIGURE 4-4. Bits read and written from/to the L2 cache for the three compression
alternatives, normalized to theNever case
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Our adaptive compression policy did not take the metric of cache set repacking into account when up

the predictor. However, the policy can be slightly modified to bias against compression when a repa

event occurs. In this case, the predictor can be decremented by the number of cycles required to rea

ify and write a whole cache set (normalized to decompression penalty). While we did not implemen

policy in this dissertation, we anticipate it will cause applu and equake to adapt toNever, avoiding such

high bit activity level. Furthermore, this policy will not affect benchmarks that benefit from compres

since the benefit clearly outweighs the cost (even when adding the cost of repacking) in all such b

marks.

4.5  Sensitivity Analysis

The effectiveness of cache compression depends upon the interaction between a workload’s work

size and the caches’ sizes and latencies. Adaptive cache compression is designed to dynamically a

compression decisions to approach the performance of the better of the two static policiesAlwaysand
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FIGURE 4-5. Percentage of cache allocations that require repacking forAlways

The absolute number of allocations (in thousands) is shown at the bottom
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Never. In this section, we investigate how wellAdaptiveadjusts to changes in L1 and L2 cache sizes a

associativities, memory latency, decompression latency, prefetching, cache line size and benc

phases. We vary a single parameter in each of the following subsections while keeping the rem

parameters constant. We focus on three benchmarks where compression helps (mcf, apache, z

three where compression hurts (ammp, gcc, twolf).

4.5.1  L1 Cache Size and Associativity

The effectiveness of L2 cache compression depends on the overhead incurred decompressing line

hits. Since the L1 cache filters requests to the L2, the L1 cache size impacts this overhead. As the

(or associativity) increases, references that would have hit in the L2 can be satisfied in the L1. Th

decompression overhead tends to decrease. Conversely, as the L1 size (or associativity) decrease

incurs more penalized hits due to the increased number of L1 misses. Figure 4-6 illustrates this tra

for a 4 MB L2 cache, assuming a fixed L1 access latency.

For our set of benchmarks and configuration parameters, increasing L1 size has very little impact

relative benefit of compression. Only mcf’s performance is slightly degraded (by approximately 1%

Alwayswith the smaller L1 cache compared to the original 128K L1 cache. The figure also shows th

associativity has little impact on the performance of compressed caches.

4.5.2  L2 Cache Size

Cache compression works best when it can increase the effective L2 cache size enough to hold a

load’s critical working set. Conversely, compression provides little or no benefit when the working

either much larger or much smaller than the L2 cache size. Figure 4-7 illustrates this phenomenon

senting normalized runtimes for various L2 cache sizes, assuming a fixed L2 access latency.
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bottom
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For benchmarks that were hurt by compression for a 4 MB L2 cache (ammp, gcc and twolf), compre

helps performance for smaller cache sizes. This is due to compression allowing the L2 cache to hol

data (e.g., compression allows gcc to hold an average of ~1 MB in a 512 KB L2, resulting in more t

3x speedup). However, compression hurts performance for larger cache sizes, since compression in

the hit latency but doesn’t significantly increase the effective cache size. At the other extreme, mcf, a

and zeus benefit more from compression for larger caches (2 to 16 MB), since the working set is too

to fit in the smaller cache sizes, even with compression. For all cases,Adaptiveadapts its behavior to match

the better ofAlways andNever.

4.5.3  L2 Cache Associativity

Our cache compression proposal helps performance when it is able to increase the effective cac

Since we are comparing to an uncompressed cache with the same associativity as a fully-comp

cache, L2 associativity plays an important role in the performance of cache compression. For cach

low associativities (e.g., 2-way set associative caches), a compressed cache has—in effect—a low

ciativity than an uncompressed cache. For example, we compare a 1-2 way set-associative com

cache to a 2-way uncompressed cache. Such associativity can be too low and can cause many more

misses for most benchmarks. When cache associativity is high, reduction in associativity has a

impact on the performance of compressed caches.

Figure 4-8 illustrates the impact of L2 cache associativity on the relative performance ofAlwaysandAdap-

tive compared toNever. For benchmarks that are helped by compression (on the left hand side), com

sion’s benefit increases for higher associativities. For example, mcf has a speedup of 70% for 16-w

associative caches compared toNever. However, that trend does not hold for high associativities for ben

marks that are hurt by compression (on the right hand side).
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FIGURE 4-8. Sensitivity to L2 cache associativity of the three compression
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Figure 4-8 also clearly shows that compression is ineffective when the associativity is low (e.g., 2-

Even for benchmarks that are helped by compression for 8-way set associative caches, compressi

for 2-way caches. This is due to the fact that compressed caches decrease the effective associativi

ing an increase in conflict misses that exceeds the decrease in misses due to compression. This is

bated for benchmarks that are hurt by compression. The extreme example in our experiment is am

which Always increases the number of misses by 7%. Combined with decompression overhead

causes a 51% slowdown compared toNever. Even worse,Adaptiveadapts toNever, thus negating the per-

formance gains due to the increased cache size, while still increasing the number of misses due to r

associativity. The net increase in misses forAdaptiveis 27% compared toNever, which causes a relative

slowdown of 70%. This shows a weakness in our adaptive model which only considers avoided miss

to compression, and not additional misses due to reduced associativity caused by our compresse

design. We do not consider reduced associativity since our decoupled variable-segment cache c

hold half the uncompressed lines per cache set, soAdaptiveis comparing the performance of a 2-way com

pressed cache to that of a direct-mapped uncompressed cache in this case.

4.5.4  Memory Latency

As semiconductor technology continues to improve, processors may use faster clocks and deeper pi

A consequence of this trend is that cache and memory latencies are likely to increase (in terms of pro

cycles), potentially decreasing the relative compression overhead (i.e., decompression latenc

increasing the potential benefit (i.e., eliminating longer latency misses). On the other hand, with the

towards faster clocks slowing down, memory speeds may get to be smaller (in terms of cycles) com

to what they are now. We analyze the sensitivity of cache compression to both higher and lower m

latencies in Figure 4-9.
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FIGURE 4-9. Sensitivity to memory latency of the three compression alternatives.
The number of penalized hits per avoided miss forAlways is shown at the bottom
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For benchmarks that benefit from cache compression, performance benefits are smaller for the

memory latencies, and are larger for the longer memory latencies. In mcf, for example, compre

speeds up performance by only 18% for a 200-cycle memory latency, and by 49% percent for a 800

memory latency. On the other hand, performance of benchmarks that are hurt by compression

slightly with a change in memory latency (e.g., less than a 2% swing in relative performance forAlwaysin

ammp). This phenomenon is due to the fact that such benchmarks have very few misses, and th

penalized hits dominate performance. We note also that in all cases,Adaptiveadapts its behavior to match

the better ofAlwaysandNever(again with the notable exception of ammp where it is 4% slower th

Never).

4.5.5  Decompression Latency

All cache compression schemes are highly sensitive to the decompression latency. Larger decomp

latencies decrease the appeal of cache compression by increasing the effective access latency. On

hand, smaller decompression latencies increases the benefits due to compression. We study the s

of the three compression alternatives to decompression latency in Figure 4-10, where decompressio

cies vary from 0 to 25 cycles.

For benchmarks that benefit from compression, speedup increases—as expected—when the dec

sion penalty is low and decreases when it is high. In mcf,Alwaysspeeds up performance by 40% for a 0

cycle decompression overhead, but by only 19% for a 25-cycle overhead. On the other hand, benc

that are hurt by compression are penalized more forAlwayswhen the decompression latency is high (e.g

ammp’s performance is slowed down by 83% for a 25-cycle overhead, compared to 16% for a 5

overhead). However, small changes in decompression latency do not have a significant impact on

mance, since we simulate an out-of-order processor that can partly hide cache latency. Figure 4-
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show thatAdaptiveadjusts to changes in decompression latency, and therefore achieves performanc

parable to the better ofAlways andNever.

4.5.6  Prefetching

Hardware prefetching is a technique that is used in many modern processors to hide memory l

Hardware-directed stride-based prefetchers make use of repeatable memory access patterns to av

cache misses and tolerate cache miss latency [26, 96]. Current hardware prefetchers [58, 116, 117]

the unit or fixed stride between two cache misses, then verify the stride using subsequent misses. O

prefetcher reaches a threshold of strided misses, it issues a series of prefetches to the next level in th

ory hierarchy to reduce or eliminate miss latency. Since compression is another technique used

memory latency, we studied the sensitivity of compression speedups to whether prefetching was

mented or not. We present a more detailed study for chip multiprocessors in Chapter 6.

We implemented a strided L1 and L2 prefetching strategy based on the IBM Power 4 implementation

117] with some minor modifications, which we discuss in more detail in Chapter 6. Figure 4-11 show

prefetching impacts the performance benefit due to compression. For most benchmarks, the only a

difference in performance is the increase in the number of penalized hits per avoided miss when pr

ing is implemented. For example, apache’s penalized hits per avoided miss increases from 4.9 to 9

both L1 and L2 prefetching. This is expected since prefetching avoids some of the misses that coul

been avoided by compression, thus reducing compression’s share of avoided misses. However, the

speedup of cache compression is almost the same compared toNeverregardless of whether prefetching i

implemented.

The only exception to the above observation is gcc, where prefetching causesAlwaysand Adaptiveto

achieve a small speedup as compared to a slowdown in the case ofNever. This is cause by L1 prefetching

triggering L2 fill requests from memory at a higher rate compared to gcc’s original miss rate. Prefet
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FIGURE 4-11. Sensitivity of compression benefit to L1 and L2 prefetching. The
number of penalized hits per compression-avoided miss is shown at the bottom
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therefore increases the L2 cache footprint (or working set size) of gcc to greater than 4 MB. Since

pression can increase the effective cache size, it can alleviate some of the increased demand on

cache and therefore speed up gcc’s performance forAlwaysandAdaptivecompared toNever. We discuss

similar interactions between compression and hardware prefetching in Chapter 6.

4.5.7  Cache Line Size

We evaluated the performance of cache compression for 64-byte cache lines. However, some mod

cessors have longer lines in their L2 cache as a technique to tolerate memory latency at the exp

increasing demand on memory bandwidth. Shorter cache lines increase the number of misses, while

cache lines increase the required chip-to-memory bandwidth. We studied the sensitivity of cache co

sion’s performance to various cache lines sizes (16, 32, 64, 128 and 256) in Figure 4-12.

For most benchmarks, compression provides a bigger benefit for the small cache line sizes. For ex

twolf shows a 68% speedup due to compression for 16-byte line sizes. This is because compression

icantly reduces the absolute number of misses, thus improving performance.

Longer cache lines do not follow a single trend regarding the impact of compression on performan

some cases, longer lines tend to decrease the performance benefit because of compression. For

Alwaysachieves only a 5% speedup for 128-byte lines, and a 6% slowdown for 256-byte lines in th

benchmark. However, this comes at the expense of increased bandwidth (more than 5x from 64 to 25

lines). In some other cases (e.g., apache and zeus), longer cache lines increase the performance be

to compression (e.g., 22% for 128-byte lines and 39% for 256-byte lines in zeus, compared to 7% f

byte lines). This is because the absolute number of misses is lower for larger cache line sizes,

inflates the relative improvement due to compression for these benchmarks. In all cases,Adaptiveadapts

its behavior to match the better ofAlways andNever (again except for long cache lines in ammp).
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FIGURE 4-12. Sensitivity to cache line size of the three compression alternatives.
We assume almost infinite off-chip bandwidth available

The actual bandwidth (in GB/sec.) required forNever is shown at the bottom
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4.5.8  Benchmark Phases

Many benchmarks exhibit phase behavior [106], and a benchmark’s working set size may change b

different phases. Such changes can affect theAdaptivepolicy, since the past (the previous phase) may n

be a good predictor of the future (the next phase). On the other hand, adaptive compression can out
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FIGURE 4-13. Phase Behavior for gcc with adaptive compression

(a) Changes in the Global Compression Predictor (GCP) values over time;
(b) Changes in effective L2 cache size over time
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bothAlwaysandNeverfor benchmarks with a changing working set size where neither extreme polic

the best all the time.

For our set of benchmarks, gcc had the most recognizable phase behavior. Figure 4-13 shows the

over time of the Global Compression Predictor values (Figure 4-13 (a)) and the effective cach

(Figure 4-13 (b)) for a two-billion instruction run of gcc. It is clear from the figure that gcc has two dist

phases: A phase with a working set that is smaller than 4 MB (up to approximately 1.6 billion cycles

a second phase with a working set bigger than 4 MB. In the first phase,Adaptiveadapts toNever(since

values of GCP are below zero) to avoid decompression overheads associated withAlways. In the second

phase, however,Adaptiveadapts toAlways, and the effective cache size shoots up to 8 MB to accomm

date the bigger working set size. As a result,Adaptiveoutperforms bothAlways and Never for gcc,

although by small margins (3% and 1%, respectively).

4.6  Discussion and Limitations

Evaluation of adaptive compression shows that our adaptive compression scheme adapts to ben

behavior, adapting toNeverwhen compression hurts performance, and adapting toAlwayswhen compres-

sion helps performance. With a few exceptions,Adaptiveprovides performance that is very close to th

better ofAlwaysandNever, and outperforms both in some cases (Section 4.5.8). However, this ada

policy is a simple, global scheme with room for improvement. In this section, we discuss some of the

sible improvements and limitations for adaptive compression.

4.6.1  Possible Extensions

Since our adaptive compression scheme is a simple, global scheme, it has room to improve predicto

racy. We list some of the possible improvements below.
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• We can build a distributed predictor where each cache bank has its own saturating counter that

to make compression predictions for that bank. This has the potential to help performance if dif

cache banks show different compression characteristics (i.e., different ratios for penalized h

avoided miss). The number of bits per predictor should be adjusted to the ratio between the num

bits in the global predictor to the number of cache banks since each instance of the predictor is lik

be updated fewer times. In the general case, however, it is unlikely that such a distributed predict

have a significant impact on performance. On the other hand, it may be necessary to build such

tributed predictor to avoid wiring delay between the global predictor and different banks.

• A smaller, simpler predictor can be attached to each cache set. This can help performance since

ent cache sets are likely to have different compression characteristics. While compression ca

reduce miss rate for some cache sets, it can also hurt by increasing miss rates for other sets. H

a per-set predictor can significantly increase the overhead for each cache set in terms of area

and bandwidth. The area and power increases are due to the additional predictor bits, as well as

cuitry required to update all predictors. Updates to multiple predictors may also place additiona

straints on cache bank bandwidth.

• For heterogeneous multi-threaded applications, different applications might have different workin

sizes that can be affected by compression in different (and sometimes opposite) ways. Having s

predictors for different threads can improve performance by avoiding compression for threads th

hurt by it, and compressing data for threads that benefit from it. However, it is not clear that such

diction strategy is going to be effective since all threads share the same cache. The compression

of one thread can affect the performance of another thread (e.g., a thread that is hurt by comp

can store uncompressed lines where the space used by such lines could have been used by

thread that benefits from compression). In addition, such a predictor will require maintaining th

information (e.g.,. thread IDs) for L2 cache lines.
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In order to estimate the potential benefits possible from any of these extensions, we studied a pseud

compression scheme in the next section.

4.6.2  Ideal Compression

Our adaptive compression scheme maintains a single predictor for the whole L2 cache. Similar to

predictors, the accuracy of our global compression predictor can be improved, as discussed in the p

section. However, it is not clear that even a perfect predictor will lead to much improvement in pe

mance. In this section, we study the limitations of a perfect compression predictor.

An ideal compression predictor would base its cache line allocation predictions on perfect knowled

future accesses for every cache set. Unfortunately, simulating such a predictor requires prohibitive s

tion time, since each prediction needs to compare the outcome of simulation for both cases (i.e., allo

a compressed or an uncompressed cache line). Another easier-to-implement upper bound on perfo
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FIGURE 4-14. Normalized performance of the three compression alternatives
(Never, Always, Adaptive), compared to an unrealistic pseudo-perfect compression
scheme“Optimal”  that is similar to Always with no decompression overhead
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of such a perfect predictor is the performance ofAlwayswith zero decompression overhead. Figure 4-

compares the performance of our three compression alternatives with such pseudo-perfect comp

scheme.

Figure 4-14 shows that our adaptive compression policy achieves performance that is very close

unrealistic pseudo-perfect upper bound. The“Optimal” scheme achieves a speedup of 0-4.6% overAdap-

tive across all benchmarks. Only three benchmarks show improvements that are greater than 2

“Optimal” overAdaptive(4.6% for ammp, 4% for mcf, and 2.4% for gcc). For the remaining benchma

the pseudo-perfect compression scheme had an insignificant impact on performance. Based o

results, we find it hard to justify the additional hardware, area, power and bandwidth required for a

accurate compression prediction scheme.

4.6.3  Limitations

Our adaptive compression scheme is built on top of a decoupled variable-segment L2 cache. Its

mance is limited by the limitations of our cache design. First, we assume Frequent Pattern Compr

(FPC) as our compression algorithm. Second, we are limited to double the number of lines for each

set compared to an uncompressed cache. Third, we assume only a two-level cache hierarchy. Howe

can also apply adaptive compression when these limitations are removed. We discuss such design

Fully-associative caches.The indirect-indexed cache and the V-Way cache are examples of recent pro

als for fully-associative cache implementations [54, 55, 98]. For such schemes, the global replaceme

icy is responsible for classifying different types of cache misses (Section 4.1.2). Unfortunately,

proposals do not maintain accurate replacement stack information. However, approximate informati

be used to update the compression predictor since it does not need to be completely accurate. For e

the generational replacement algorithm in the Indirect Index Cache can be extended by adding mor

to accommodate compressed cache lines [54]. An access to higher-priority pools can be consid
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penalized hit (for compressed lines), whereas an access to lower-priority pools can be conside

avoided miss. Another coarse approximation can be implemented for the reuse replacement algorith

in the V-Way cache [98]. In this case, an access to a line whose reuse counter value is in the top ha

2 or 3 for 2-bit reuse counters) can be considered a penalized hit. An access to a line with a reuse

value in the bottom half is considered an avoided miss with some probability that corresponds to the

ability of evicting this line without compression. However, further study for these schemes is need

estimate their effectiveness.

Different compression algorithms.The implementation of adaptive compression is straight-forward w

a different compression algorithm. The only parameter that needs adjustment is the decompression

For compression algorithms with variable decompression penalties, a variable latency can be tak

consideration in updating the compression predictor. Alternatively, an average can be used as an e

decompression penalty to minimize the predictor update overhead (since predictor updates can be c

accurate).

Deeper cache hierarchies.Our adaptive compression scheme is implemented at the second-level cac

a two-level cache hierarchy. We believe that compression at the L1 level has a high overhead and a n

impact on performance. However, adaptive compression can be implemented at any other level

cache or memory hierarchy where compression can help or hurt performance. Adaptive compress

been proposed for virtual memory systems as we discuss in the next section.

4.7  Related Work

Adaptive compression has been previously proposed for virtual memory management schemes.

systems, portions of main memory are compressed (and thus called compression caches) to avoid I

ations caused by page faults. Douglis observes that different programs need compressed caches of

sizes [34]. He implements a simple adaptive scheme that dynamically split main memory pages be
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uncompressed and compressed portions. Both portions compete for the LRU page in memory. Howe

biases allocating a new page towards the compression cache. Cortes, et al., classify reads to the c

sion cache according to whether they were caused by swapping or prefetching, and propose op

mechanisms to swap pages in/out [30].

Wilson, et al., propose dynamically adjusting the compressed cache size using a cost/benefit analy

compares various target sizes, and takes into account the compression cost vs. the benefit of avoid

[129]. Their system uses LRU statistics of touched pages to compare the costs and benefits of targ

and adjusts the compression cache size on subsequent page accesses. However, the adaptive co

scheme we propose in this chapter is different since it is not restricted to specific compressed-cache

Freedman [49] optimizes the compression cache size for handheld devices according to the energy

decompression vs. disk accesses.
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Cache and Link Compression for Chip
Multiprocessors

Chip multiprocessor caches experience greater capacity demand compared to uniprocessor cach

they are shared among multiple processors. Such high demand can increase cache miss rates an

tion for the limited off-chip pin bandwidth. A CMP design should balance processor cores, shared c

and off-chip pin bandwidth so that no single resource is the only bottleneck. In this chapter, we ex

using cache and off-chip interconnect (link) compression to more efficiently utilize the shared cach

communication resources on a CMP.

Compression increases the effective cache capacity (thereby reducing off-chip misses) and increa

effective off-chip bandwidth (reducing contention). On an 8-processor CMP with no prefetching, we

that L2 cache compression improves commercial workloads’ performance, but has little benefit for

tific workloads. We also show that adding link compression greatly reduces pin bandwidth deman

most of our workloads.

We first present our Chip Multiprocessor design with cache compression support in Section 5.1. W

motivate interconnect compression and discuss how to implement it on a CMP (Section 5.2). We ev

our compressed CMP design for an 8-core CMP with commercial and SPEComp workloads (Sectio

We show that cache compression improves performance by 5-18% for commercial workloads, an

link compression reduces off-chip bandwidth demand for most workloads by 17-41% (Section 5.4

study the sensitivity of our results to various system parameters in Section 5.5. We summarize our

in Section 5.6.



rts link

iss rate

l and

de gap

r perfor-

-chip

reasing

rates.

ources,

ressed

misses.

off-chip

re an

gara

d a pri-
86
In this chapter, we make the following contributions:

• We extend our compressed cache design to CMPs. We also propose a CMP design that suppo

compression.

• We show that cache compression helps increase the effective CMP shared cache size, reduce m

and improve performance for commercial workloads.

• We show that link compression greatly reduces off-chip pin bandwidth demand for commercia

(some) scientific workloads, potentially improving performance.

5.1  C-CMP: A CMP with Compression Support

As we discussed in Chapter 1, semiconductor technology trends continue to exacerbate the wi

between processor and memory speeds as well as the increasing gap between on-chip transisto

mance and the available off-chip pin bandwidth. Both of these trends favor allocating more of the on

transistors to caches. On the other hand, throughput-oriented commercial workloads place an inc

demand on the processor resources of a system to sustain their increasing transaction processing 

With technology trends favoring more cache area and workload trends favoring more processing res

cache compression provides an appealing alternative to achieve the best of both worlds. A comp

cache system has the potential to increase the effective cache capacity, thereby reducing off-chip

Having fewer misses leads to improved performance, power savings, and decreased demand for

pin bandwidth. We next describe our design for a CMP with compression support.

5.1.1  C-CMP Design

Our base design is ap-processor CMP with single-threaded cores. Most of our design parameters a

extrapolation of a next-generation CMP chip loosely modeled after IBM’s Power5 [68] and Sun’s Nia

[74], except that our chip only has single-threaded cores. Each processor has a private L1 I-cache an
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vate L1 D-cache. The shared L2 cache is divided intob banks, and cache line addresses are mapped

banks based on the least significant address bits.

We extend the base design to include compression support for both the caches and the interc

Figure 5-1 summarizes our proposed CMP system. For all processor cores, private L1 instruction a

caches store uncompressed lines, eliminating the decompression overhead from the critical L1 hit p

a hit to a compressed L2 line, the line is decompressed before going to the L1 cache. A hit to an u

pressed L2 line bypasses the decompression pipeline. On an L2 miss, the requested line is fetch

main memory or directory and, if compressed, runs through the decompression pipeline on its way

L1. For design simplicity, we assume a single line size for all caches. We use an MSI-based coheren

tocol between the L1’s and the shared L2, and an MOESI-based protocol between L2 caches in a

CMP system (though we only studied systems with a single CMP in this dissertation). The L2 cache

tains strict inclusion and has full knowledge of on-chip L1 sharers via individual bits in its cache tag

Shared L2 Cache (Partially Compressed)

FIGURE 5-1. A Single-Chipp-core CMP with Compression Support

Processor 1

L1 Cache
(Uncompressed)
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caches are write-back caches, and only communicate with memory through the shared L2 cache

inter-chip coherence is maintained. We next describe our support for cache compression.

5.1.2  Support for Cache Compression

In our design, we implement each bank of the shared L2 cache as a decoupled variable-segment c

we described in Chapter 3). We extend our uniprocessor design from previous chapters to target

We evaluated an 8-way set associative L2-cache with a compression tag stored with each address

compression tag indicates the compressed size of the line and whether or not the line is stored i

pressed form. The data area is broken into eight-byte segments, with 32 segments statically alloc

each cache set. Thus, each set can hold no more than four uncompressed 64-byte lines, and com

can at most double the effective capacity. Each line is compressed into between one and eight se

with eight segments being the uncompressed form. We maintain inclusion between the L1 cache c

and the shared L2 cache. We also use the Frequent Pattern Compression scheme (Chapter 3) to c

individual cache lines into multiples of these eight-byte segments. Our decoupled variable-segmen

adds relatively little storage overhead to the cache area, approximately 7% for a 4MB cache (Chap

While compression helps eliminate long-latency L2 misses, it also increases the latency of the mo

quent L2 hits. For benchmarks (or benchmark phases) that have working sets that fit in an uncomp

cache, compression only degrades performance. We therefore use the adaptive cache compressio

(Chapter 4) to dynamically adapt to workload behavior, and compress only when the benefit of com

sion exceeds its cost. However, in our evaluation, none of our benchmarks suffered a significant de

tion due to compression, since their working sets did not fit in our uncompressed cache.

Adaptive compression only considers compression costs from avoiding off-chip misses and compr

costs from penalized hits to compressed lines. It does not take into account other compression b

such as the reduction in on-chip and off-chip bandwidth demand. However, our simple adaptive mod
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not negatively impact performance for our benchmarks since they all adapted to theAlways-Compresspol-

icy. We next describe link compression and its role in reducing off-chip bandwidth demand.

5.2  Link Compression

5.2.1  Technology Trends

While CMP systems can increase commercial workloads’ throughput, a CMP design inherently inc

the amount of off-chip bandwidth required (per-chip) for inter-chip and chip-to-memory communica

compared to a uniprocessor system. Without any optimizations to reduce off-chip bandwidth, adding

processors on a chip will increase the amount of data transferred for communication with main me

(and maintaining memory consistency between chips in a CMP-based multiprocessor system). Thi

lem is exacerbated by hardware-directed prefetching schemes that target increasing the memory-le

allelism and reducing off-chip demand misses [22].

As we discussed in Chapter 1, the 2004 ITRS roadmap [45] predicts that the number of pins availa

chip for high performance processors will increase at a rate of approximately 11% per year till 2009

is a much lower rate than the 26% predicted as the annual rate of increase in the number of transis

chip. These trends imply that the number of processor cores on a single chip could increase at a

faster rate compared to the number of communication pins available. Huh, et al. [62] identified pin

width as a potential limiting factor for CMP performance. Furthermore, Kumar, et al. [76] identified

chip interconnect bandwidth as a first-order CMP design concern.

Overall, the increasing demand on off-chip bandwidth appears to be a problem that will significant

worse for future CMP designs, unless emerging technologies (e.g., optical interconnects) evolve qui

balanced CMP design balances demands for bandwidth against the limited number of pins and wirin

per chip [32]. In order to reduce such bandwidth demand, an obvious solution is to increase the o
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cache size to reduce off-chip misses. Unfortunately, this comes at the expense of reducing on-chip

sor area, thereby reducing potential throughput.

In this dissertation, we propose using cache and link compression to reduce the off-chip band

demand for inter-chip and chip-to-memory communication. Cache compression helps as it reduc

cache miss rate, thus eliminating some off-chip accesses. Link compression helps by compressin

outgoing and incoming communication messages, which also reduces a workload’s bandwidth dem

5.2.2  On-Chip Link Compression

To make use of the reduction in off-chip bandwidth due to compression, the L3/memory controller

on-chip part of the memory controller—must be able to send and receive compressed messages to/f

chip. In addition, the off-chip memory controller must be able to send/receive compressed messag

understand the format required for compressed messages. Off-chip messages should support com

formats, and the memory controller should be equipped to handle compressed lines.

Our design uses a message format that is similar to the segment format of the decoupled variable-s

cache. We also use the same FPC compression algorithm to compress cache lines (if they were not

compressed). Each data message that originally included a complete cache line is transferred in 1

messages (flits), each containing an 8-byte segment. The message header contains a length field in

the number of segments in the line. In our evaluation, we assume that no messages or flits are lost

rupted during transmission. However, this constraint can be easily relaxed by applying standard flow

trol and error detection mechanisms. ECC codes can be maintained on a per-line basis whereby an

a single segment requires the retransmission of all segments of a line.

Assuming compressed memory, the off-chip memory controller combines flits of the same cache lin

stores the combined cache line to physical memory. However, this requires having an additional bit p

to indicate whether the line is compressed, possibly encoded in the line’s error-correcting code [1
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memory is uncompressed, the off-chip memory controller must have the capability to compress lin

their path from main memory to the chip, and decompress compressed data messages sent from th

memory. Using the simple frequent pattern compression scheme greatly reduces the latency overh

to compression and decompression, as exploited by Ekman and Stenstrom [40].

Link compression affects both bandwidth and latency in a CMP. Link compression increases the ef

pin bandwidth, which can significantly improve performance for bandwidth-limited benchmarks. On

other hand, the impact of link compression on latency is not significant, especially when a system

ments cache compression. We summarize the impact of link compression on latency for outgoin

from chip to memory/other chips) and incoming messages as follows:

• For outgoing compressed cache lines transferred off-chip, no additional compression overh

incurred.

• Outgoing uncompressed cache lines are not compressed if compression does not save bandwi

if their compressed size has the same number of segments as an uncompressed line). When su

are compressible, however, a compression penalty is added to the memory writeback latency

has little effect since it is off the critical path.

• Incoming compressed data from memory or other system CMPs can be directly filled into the

pressed L2 cache. When such data is requested by the L1 cache or the processor, a decom

overhead is incurred, which is on the critical path. However, such overhead is relatively small (5 c

in our design) relative to the memory access penalty (typically measured in hundreds of cycles)

5.2.3  Memory Interface

Memory compression has previously been proposed to increase the effective memory capacity and

overall system cost. For example, IBM’s Pinnacle chip [120] implements the IBM Memory Expan

Technology (MXT) [121]. In MXT, memory management hardware dynamically allocates main mem
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storage in small 256-byte sectors in order to support variable-size compressed data with minimal fra

tation. The compressed memory is divided into two logical structures: the Sector Translation Table a

sectored memory. This scheme requires support from the operating system [1].

Since our focus in this dissertation is on cache and link compression rather than memory compress

use a simpler scheme that does specifically target increasing the effective memory capacity. We p

storing our 64-byte cache lines in either uncompressed or compressed form in memory, with a bit en

into the ECC to indicate whether the corresponding line is compressed or uncompressed [10

Figure 5-2, we show a CMP with link compression support that assumes compressed memory. An a

tive scheme to use is the memory compression scheme recently proposed by Ekman and Stenstr

L2 Cache

Memory Controller

Chip Boundary

Memory

ComprDecomp. L3/Memory Controller

FIGURE 5-2. Link Compression on a CMP

Components that store compressed data are shaded (i.e., L2 cache and memory). Cache lines are com
before sending to memory, and L1 fills have to be compressed. This figure assumes compressed mem
memory is not compressed, compression and decompression circuits have to be added to the off-chip me
controller.

L1 Caches
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that also uses the same FPC compression algorithm to store cache lines in memory. Neither sche

the more complex compression algorithms that have higher in-memory compression ratios. Howeve

schemes have the advantage of being transparent to software. Cache and link compression can also

with the MXT scheme with additional overheads and complexity due to the difference in compre

algorithms and granularities between caches and memory.

5.3  Evaluation

We present an evaluation of cache and link compression using an 8-core CMP, where each core is a

threaded dynamically-scheduled out-of-order processor with private L1 caches. We use full-system

lation of commercial workloads and a subset of the SPEComp benchmarks. We next describe our ba

tem configuration and the workloads we use in our evaluation.

5.3.1  Base System Configuration

We evaluate the performance of our compressed cache and link designs on an 8-core CMP with SPA

processors and a 5 GHz clock. We use the Simics full-system simulator [88], extended with GEMS

(a detailed memory system timing and out-of-order processor simulator). Table 5-1 presents our bas

ulation parameters. All parameters are the same as those in Chapter 4 except for CMP-specific par

and the lower, more realistic pin bandwidth. Our base system is modeled as a future generation

inspired by IBM’s Power5 [68] and Sun’s Niagara [74], except that our CMP only has single-thre

cores. Different base system parameters are based on our speculation of future CMP parameters.

this base system to demonstrate the impact of cache and link compression in Section 5.4. However,

study the sensitivity of our results to various parameters in Section 5.5.
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5.3.2  Workloads

To evaluate compression alternatives, we use several multi-threaded commercial workloads from th

consin Commercial Workload Suite [6]. We also use four benchmarks from the SPEComp2001 suite

All workloads run under the Solaris 9 operating system. These workloads are briefly described in Ta

2. Commercial workloads are the same as those in the previous chapters except for multiprocessor

parameters (e.g., the number of users or threads). We selected workloads that cover a wide range

pressibility properties, miss rates, and working set sizes. For each data point in our results, we pres

average and the 95% confidence interval of multiple simulations to account for space variability [8]

runtime results for commercial workloads represent the average number of cycles per transact

request). For SPEComp benchmarks, our runtime results represent the average number of cycles

to complete the main loop.

TABLE 5-1. CMP Simulation Parameters

Processor Cores Eight processors, each a single-threaded core with private L1 caches.

Private L1 Caches
Split I & D, each 64 KB 4-way set associative with LRU replacement, 64-byte

lines, 3-cycle access time, 320 GB/sec. total on-chip bandwidth (from/to L1’s).

Shared L2 Cache

Unified 4 MB, composed of eight 512KB banks, 8-way set associative

(uncompressed) or 4-8 way set associative (compressed) with LRU replace

ment, 64-byte lines, 15 cycle uncompressed hit latency (includes bank acces

latency), 20 cycles compressed hit latency (15 + 5 decompression cycles).

Memory Configuration
4 GB of DRAM, 400 cycles access time with 20 GB/sec. chip-to-memory

bandwidth, each processor can have up to 16 outstanding memory requests.

Processor Model
Each processor is an out-of-order superscalar processor with a 5 GHz cloc

frequency.

Processor Pipeline
4-wide fetch and issue pipeline with 11 stages (or more): fetch (3), decode (4)

schedule (1), execute (1 or more), retire (2).

IW/ROB 64-entry instruction window, 128-entry reorder buffer.

Branch Prediction
4 KB YAGS direct branch predictor [38], a 256-entry cascaded indirect branch

predictor [35], and a 64-entry return address stack predictor [67].
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5.4  Cache and Link Compression Performance

In this section, we compare the relative benefits of cache and link compression. We monitor their se

and combined effects on miss rates, off-chip bandwidth and performance for our base 8-core, 4 M

configuration. We simulated the following configurations: No compression, cache compression onl

TABLE 5-2. Workload Descriptions

Online Transaction Processing (OLTP):DB2 with a TPC-C-like workload. The TPC-C benchmark models

the database activity of a wholesale supplier, with many concurrent users performing transactions. Our O

workload is based on the TPC-C v3.0 benchmark using IBM’s DB2 v7.2 EEE database management system

use a 5 GBdatabase with 25,000 warehouses stored on eight raw disks and an additional dedicated databa

disk. We reduced the number of districts per warehouse, items per warehouse, and customers per dist

allow more concurrency provided by a larger number of warehouses. We simulate 128 users, and warm u

database for 100,000 transactions before taking measurements for 100 transactions.

Java Server Workload: SPECjbb.SPECjbb2000 is a server-side java benchmark that models a 3-tier syste

focusing on the middleware server business logic. We use Sun’s HotSpot 1.4.0 Server JVM. Our experim

use 1.5 threads and 1.5 warehouses per processor (12 for 8 processors), a data size of ~44 MB, a warmup

val of 200,000 transactions and a measurement interval of 2,000 transactions.

Static Web Serving: Apache.We use Apache 2.0.43 for SPARC/Solaris 9, configured to use pthread locks a

minimal logging as the web server. We use SURGE [13] to generate web requests. We use a repository of 2

files (totalling ~500 MB), and disable Apache logging for high performance. We simulate 400 clients per p

cessor (3200 clients for 8 processors), each with 25 ms think time between requests. We warm up for ~2 m

requests before taking measurements for 500 requests.

Static Web Serving: Zeus.Zeus is another static web serving workload driven by SURGE. Zeus uses an eve

driving server model. Each processor of the system is bound by a Zeus process, which is waiting for web se

event (e.g., open socket, read file, send file, close socket, etc.). The rest of the configuration is the sam

Apache (20,000 files of ~500 MB total size, 3200 clients, 25 ms think time, ~2 million requests for warmup, 5

requests for measurements).

SPEComp. We use four benchmarks from the SPEComp2001 benchmark suite [12]: 330.art, 324.a

328.fma3d, and 314.mgrid. We used the ref input set, and fast-forwarded each benchmark till the beginnin

the main loop. We warmed up caches for approximately 2 billion instructions, and measured till the end of

loop iteration. Since these benchmarks are multi-threaded, we use a work-related metric rather than IP

address workload variability [8]. Loop completions seemed the best choice [17], since simulating the wh

benchmark takes a prohibitive period of time.
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compression only, and both cache and link compression. Neither L1 nor L2 prefetching is implement

results in this section. Cache compression implements our adaptive cache compression policy (Ch

which reverts toAlways for all benchmarks.

5.4.1  Workload Compressibility

A compression scheme is successful if it can significantly increase the effective cache size. We uscom-

pression ratios of different benchmarks as indicators of a compression algorithm’s success, as w

cussed in Chapters 1 and 3. As in Chapter 3, we define thecompression ratioof a cache snapshot as th

quotient of the effective cache size divided by the uncompressed size of 4 MB. We computed compr

ratios as an average of compression ratios for periodic snapshots taken every 50 million cycles d

benchmark’s runtime. This method is similar to how we computed compression ratios for uniproc

benchmarks in Chapter 3, except for a shorter sampling interval.

Our eight workloads show a wide range of compression ratios (Table 5-3). Compression ratios for

mercial benchmarks were relatively high, ranging from 1.36 to 1.8. Zeus’s compression ratio is 1.8,

translates into approximately 7.2 MB of effective cache size (compared to the 4 MB base case). Ho

SPEComp benchmarks showed smaller gains, with compression ratios ranging from 1.01 to 1.19. T

be attributed to the fact that the simple compression scheme we chose does not perform as well for

point data, for which lossless compression remains a hard problem even for more complex comp

schemes (as we discussed in Chapter 3).

TABLE 5-3. Compression Ratios for a 4MB cache for commercial and SPEComp
benchmarks

Benchmark apache zeus oltp jbb art apsi fma3d mgrid

Compr. Ratio 1.74 1.80 1.36 1.48 1.15 1.01 1.19 1.02
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5.4.2  Reduction in Cache Misses

Compression increases the effective cache size for most benchmarks. With such increases in cac

commercial benchmarks show a reduction in cache miss rates ranging from 10-22% (Figure 5-3). Fo

Comp benchmarks, the maximum miss rate reduction was 6% due to their lower compression rati

note that mgrid has a 3% higher miss rate with compression due to the decrease in associativity (4-w

8-way) that is not offset by the increase in cache size.

5.4.3  Bandwidth Reduction

We definepin bandwidth demandas a workload’s utilized pin bandwidth on a system with an infinite ava

able pin bandwidth. Without prefetching, our set of commercial workloads is not bandwidth-limited, a

demonstrate in Figure 5-4. The average bandwidth demand ranges from 5.0 GB/sec. for oltp to 8.8 G
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FIGURE 5-3. Cache miss rates normalized to miss rate without compression

Misses per 1000 instructions for the no compression case are shown at the bottom.
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for apache, which are much lower than the available 20 GB/sec. pin bandwidth in our baseline syste

SPEComp benchmarks, however, bandwidth demand is high, ranging from 7.6 GB/sec. for art to 27

sec. for fma3d.

Figure 5-4 presents the bandwidth demand for our benchmarks with no compression, only cache co

sion, only link compression, and both types of compression. Link compression can achieve up to

reduction in off-chip bandwidth (for zeus), a significant reduction for bandwidth-limited configurati

Link compression achieves a 34-41% reduction in off-chip bandwidth for the four commercial be

marks, and 17-23% reduction for three of the four SPEComp benchmarks. Only apsi, whose comp

ratio is 1.01, fails to achieve a significant bandwidth reduction. The combination of cache and link

pression achieves a 35-45% reduction in off-chip bandwidth for commercial benchmarks, and a 7

reduction for SPEComp benchmarks.
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FIGURE 5-4. Pin Bandwidth demand for all benchmarks (in GB/sec.) for
compression alternatives

Pin bandwidth demand is based on a CMP with infinite available bandwidth.
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We note from Figure 5-4 that the impact of cache compression alone on bandwidth reduction is som

smaller than expected given the compression ratios in Table 5-3. This can be attributed to the fa

cache compression affects two terms in the bandwidth equation (assuming a blocking in-order proc

 (5.1)

Cache compression reduces the number ofmisses/instr, which should reduce bandwidth demand. How

ever, such reduction in miss rate also improves the number ofinstructions/cycle, which increases the band

width demand. Both of these effects almost offset for many benchmarks, and so our results show tha

compression has little impact on bandwidth reduction. For our benchmarks, cache compression al

to a decrease of up to 9% in bandwidth demand (for apache), but bandwidth is not significantly reduc

most benchmarks.

Compared to cache compression, link compression reduces thebytes/missterm of the above equation, and

has minor impact on the other terms except for systems with high contention. Therefore, link compr

always leads to a reduction in bandwidth demand for compressible benchmarks, as we show in Figu

5.4.4  Performance

Cache compression achieves a significant reduction in miss rates, especially for commercial benc

(Section 5.4.2). For these benchmarks, cache compression has a significant impact on perfor

Figure 5-5 shows that cache compression alone can speed up performance of our base, 8-core 4

system by 5-18% for our four commercial workloads. However, it doesn’t perform as well for the

compressible SPEComp benchmarks (0-4% speedup). For 20 GB/sec. bandwidth, link compression

impact on performance only for benchmarks with high off-chip bandwidth requirements (up to a

BandwidthDemand bytes sec⁄( ) bytes miss⁄( ) misses instr⁄( )× instructions cycle⁄( ) cycles sec⁄( )××=
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speedup for fma3d). The combined speedup of cache and link compression is slightly higher than

cache compression alone (except for fma3d where link compression shows a significant speedup).

These results show speedups by cache and link compression for a system that does not impleme

ware prefetching. However, many current systems have some sort of hardware prefetching implem

For such systems to consider implementing compression, we need to study the impact of compres

the performance of such systems. We also need to study whether compression complements the

mance benefits due to prefetching and vice-versa. We study the interactions between compress

hardware prefetching in the next chapter.

5.5  Sensitivity Analysis

As with many architectural enhancements, the performance impact of cache and link compres

affected by changes in system configuration parameters. In this section, we investigate how compre

performance is affected by changes in L1 and L2 cache sizes and associativities, memory latency,
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FIGURE 5-5. Normalized runtime for the four compression alternatives
(relative to no compression)
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bandwidth. We vary a single parameter in each of the following subsections while keeping the rem

parameters constant. In the next few subsections, we demonstrate that:

• Increasing L1 cache size or associativity slightly increases the performance benefit due to com

sion.

• Increasing L2 cache size has a mixed effect on the performance benefit due to compression, inc

the benefit for some benchmarks while reducing it for others.

• Increasing L2 cache associativity increases the performance benefit due to cache compression

• Increasing memory latency increases the performance benefit due to cache compression. Dec

memory latency leads to increasing bandwidth demand, therefore increasing the performance

of link compression.

• Increasing available pin bandwidth significantly diminishes the performance gains due to link

pression.

5.5.1  L1 Cache Size and Associativity

The effectiveness of L2 cache compression depends on the overhead incurred by decompressing

L2 hits. Since the L1 filters requests to the L2, the L1 size impacts this overhead (similar to the unip

sor case in the previous chapter). As the L1 cache size (or associativity) increases, some referen

would have missed in the L1 and hit in the L2 will instead hit in the L1. This leads to a lower numb

penalized hits to the compressed L2 cache, thereby reducing the decompression overhead. We i

this trade-off for commercial workloads (Figure 5-6) and for SPEComp benchmarks (Figure 5-7). T

results assume a 4 MB L2 cache and a fixed L1 access latency.

For our set of benchmarks and configuration parameters, increasing L1 size or associativity has a

able effect on the relative benefit of cache compression for zeus, jbb and apsi. For these benchma
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FIGURE 5-6. Sensitivity to L1 cache size and associativity for commercial benchmarks

The number of penalized hits per avoided miss for cache compression is shown at the bottom.
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FIGURE 5-7. Sensitivity to L1 cache size and associativity for SPEComp benchmarks

The number of penalized hits per avoided miss for cache compression is shown at the bottom.
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speedup due to compression increased slightly when the L1 cache size or associativity increased. F

benchmarks the L1 configuration had little impact on the performance of cache compression. F

benchmarks, the performance of link compression was not affected by changes in the L1 cache con

tion.

We also note from Figure 5-7 that apsi shows a performance improvement due to compression des

high ratio of penalized hits per avoided miss. This is caused by our adaptive compression impleme

that adapts to compression only when it helps. For the most part, the ratio is high and our adaptive

pression algorithm adapts toNever. For some short intervals, however,Always is the better policy and

adaptive compression implements it.

5.5.2  L2 Cache Size

Cache compression works best when it can increase the effective L2 size enough to hold a workload

ical working set. For chip multiprocessors, working set sizes of workloads are typically much larger

those for uniprocessors since multiple processors share the L2 cache. We show the relative perform

cache and link compression as the L2 cache size changes for commercial workloads (Figure 5-8) an

Comp benchmarks (Figure 5-9).

For commercial workloads, L2 cache size slightly increases compression’s benefits for apache, and

reduces these benefits for jbb and oltp, due to the different patterns of change for penalized hits per a

miss (explained later in this section). For SPEComp benchmarks, L2 cache size had little impact on t

ative speedup of cache and link compression. We note that for some benchmarks, increasing the ca

did not have much impact on performance after a certain size. For example, increasing the cac

beyond 8 MB did not significantly affect apsi’s performance. On the other hand, many SPEComp b

marks did not show significant performance improvements for small L2 cache sizes, but their run
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FIGURE 5-8. Sensitivity to L2 cache size for commercial benchmarks

The number of penalized hits per avoided miss for cache compression is shown at the bottom.
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FIGURE 5-9. Sensitivity to L2 cache size for SPEComp benchmarks

The number of penalized hits per avoided miss for cache compression is shown at the bottom.
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decreased dramatically once a certain L2 size was reached. For example, art’s absolute performa

shown in the figure) achieved more than a 2x speedup when the cache size doubled from 4 to 8 MB

We also note from both figures that the number of penalized hits per avoided miss follows two di

trends in two sets of benchmarks. For some benchmarks (e.g., apsi and mgrid), the number of pe

hits per avoided miss steadily increases as the L2 cache size increases. For other benchmar

apache), the number of penalized hits per avoided miss decreases at the beginning until it reaches

mum then increases again. The first trend is intuitive, since a bigger cache size tends to increase th

ber of L2 hits, thus increasing the number of penalized L2 hits. A bigger cache also reduces the num

L2 misses, thereby reducing the number of misses avoidable by compression. Both effects, i.e., inc

the numerator and reducing the denominator, lead to a steady increase in the ratio of penalized

avoided miss. The same factors affect the increase in the number of penalized hits per avoided m

medium and large cache sizes in the second trend (i.e., the decrease then increase in the number

ized hits per avoided miss). For small cache sizes, however, the number of misses avoided by comp

is low since the cache size is much smaller than the benchmarks’ working set sizes. This leads to a

ratio of penalized hits per avoided miss, since the numerator dominates that ratio with a smaller den

tor.

5.5.3  L2 Cache Associativity

Cache compression increases the effective L2 associativity compared to an uncompressed cache

experiments, however, we compare against an uncompressed L2 cache that has the same associ

the maximum associativity of a compressed cache. Therefore our results tend to favor uncomp

caches for benchmarks that are not compressible, since such caches have double the effective ass

as a compressed cache. We illustrate the relative speedup of cache and link compression as the L2
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FIGURE 5-10. Sensitivity to L2 cache associativity for commercial benchmarks

The number of penalized hits per avoided miss for cache compression is shown at the bottom.
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FIGURE 5-11. Sensitivity to L2 cache associativity for SPEComp benchmarks

The number of penalized hits per avoided miss for cache compression is shown at the bottom.
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tivity increases for commercial workloads (Figure 5-10) and SPEComp benchmarks (Figure 5-11

assume the same L2 bank access latency for all configurations.

We note from both figures that L2 associativity has little or no impact on the performance of link com

sion. For cache compression, however, the speedup due to compression increases when the L2 cac

ciativity increases. The extreme example in our commercial workloads is jbb, where adaptive

compression has a 12% slowdown for a 4-way cache but achieves a 13% speedup for a 16-way

Fma3d represents the extreme case for SPEComp benchmarks, with more than a 4x slowdown fo

caches, while achieving a 23% speedup for a 16-way cache. The reduction in associativity for comp

caches has a significant impact on performance for lower associativity caches (e.g., 4-way), whil

effect is greatly diminished for caches with medium and high associativities. We also note that the sp

of cache compression significantly increases for 16-way caches, where apache achieves a speedup

compared to an uncompressed cache.

5.5.4  Memory Latency

We analyze the sensitivity of cache compression to higher and lower memory latencies for comm

workloads (Figure 5-12) and SPEComp benchmarks (Figure 5-13). We varied memory latencies be

200 and 800 cycles. As intuitively expected, the relative speedup of cache compression increa

slower memory, since compression avoids more costly misses. Perhaps less intuitive, however,

impact of smaller memory latencies on the relative speedup of link compression. Fma3d, mgrid, a

apache show significantly greater speedups due to link compression when the memory latency de

(e.g., 200 cycles). For example, link compression alone achieves a 26% speedup for fma3d when th

ory latency is 200 cycles, compared to a 3% speedup when latency is 800 cycles. This is caused by

that a lower memory latency significantly increases theinstructions/cycleterm in Eq 5.1 (Section 5.4.3)

without affecting any of the equation’s other terms. This leads to a significant increase in pin band
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FIGURE 5-12. Sensitivity to memory latency for commercial benchmarks
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FIGURE 5-13. Sensitivity to memory latency for SPEComp benchmarks
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demand, causing more benchmarks to be bandwidth-limited. Since link compression helps offs

increase in pin bandwidth demand, its impact on performance increases.

5.5.5  Pin Bandwidth

Link compression’s and (in part) cache compression’s performance gains are caused by their impac

bandwidth demand. Link compression directly decreases pin bandwidth demand, while cache comp

does so indirectly by decreasing off-chip misses (Section 5.4.3). In this section, we analyze the imp

pin bandwidth changes on the relative speedups of cache and link compression for commercial wor

(Figure 5-14) and SPEComp benchmarks (Figure 5-15). We simulated systems with pin bandwidth

ing from 10 GB/sec. to 80 GB/sec.

The speedup of cache compression did not change significantly with pin bandwidth, since cache co

sion affects bandwidth by changing two terms in Eq. 5.1 in opposite directions, as we discuss

Section 5.4.3. Overall, cache compression achieved almost the same speedup regardless of pin ba

As expected, the impact of pin bandwidth on the speedup of link compression is more obvious. For 1

sec., link compression—and therefore the combination of cache and link compression—achieves

cant speedup for many benchmarks, up to a 26% speedup for fma3d, 22% for mgrid, and 11% for a

However, such speedup almost completely disappears for the 40 and 80 GB/sec. configurations. Th

demonstrates that the speedup of link compression is closely correlated to how close the benchma

the pin bandwidth saturation point. When the bandwidth available is much higher than the pin band

demand, the impact of link compression is significantly diminished. However, such significant increa

available pin bandwidth are unlikely to happen for larger chip multiprocessors (as we discuss

Section 5.2.1) unless optical interconnect technologies develop and mature quickly. The implementa

prefetching can also significantly increase bandwidth demand, as we discuss in the next chapter. W
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FIGURE 5-14. Sensitivity to pin bandwidth for commercial benchmarks



115

Pin Bandwidth (GB/sec)

0.0

0.5

1.0

N
or

m
al

iz
ed

 R
un

tim
e

apsi

No Compression
L2 Compression
Link Compression
Both

10 20 40 80

Pin Bandwidth (GB/sec)

0.0

0.5

1.0

N
or

m
al

iz
ed

 R
un

tim
e

art

No Compression
L2 Compression
Link Compression
Both

10 20 40 80

Pin Bandwidth (GB/sec)

0.0

0.5

1.0

N
or

m
al

iz
ed

 R
un

tim
e

fma3d

No Compression
L2 Compression
Link Compression
Both

10 20 40 80

Pin Bandwidth (GB/sec)

0.0

0.5

1.0

N
or

m
al

iz
ed

 R
un

tim
e

mgrid

No Compression
L2 Compression
Link Compression
Both

10 20 40 80

FIGURE 5-15. Sensitivity to pin bandwidth for SPEComp benchmarks
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note that link compression can be a cheaper alternative with lower power consumption compared t

techniques that can increase pin bandwidth.

5.6  Summary

Chip multiprocessor design requires balancing three critical resources: number of processors, o

cache size, and off-chip pin bandwidth. In this chapter, we explored using cache and interconnec

compression to effectively increase cache size and pin bandwidth resources and ultimately overall

throughput. Cache compression increases the effective capacity of the shared cache (by 36-80%

commercial benchmarks), thus reducing off-chip misses and improving performance. Link compre

increases the effective off-chip communication bandwidth for most workloads by 17-41%, reducing p

ble contention. However, link compression did not have a significant impact on performance except f

benchmark (fma3d). We showed that both cache and link compression combine to improve performa

commercial benchmarks, and that link compression can achieve significant speedups for bandwid

ited SPEComp benchmarks.

Many current CMP systems implement hardware prefetching. On the one hand, hardware prefetch

significantly increase pin bandwidth demand, thereby increasing compression’s relative benefits.

other hand, prefetching can also avoid misses that could be avoided by compression, thereby re

compression’s benefits. We study the interactions between compression and hardware stride

prefetching in the next Chapter.



117

Chapter 6
re

essors

sys-

mory

2-74%

work-

width.

ses dra-

-based

mpres-

duct of

e ter-

discuss

ctions

both

CMP

results
Interactions Between Compression and Hardwa
Prefetching

In the previous chapter, we showed that compression is an appealing alternative for Chip Multiproc

that can avoid many off-chip misses and reduce off-chip pin bandwidth demand. Many current CMP

tems implement some form of hardware-directed prefetching to help tolerate increasingly long me

latencies [58, 68]. For uniprocessors, stride-based hardware prefetching improves performance by

for the commercial workloads used in this dissertation. Unfortunately, prefetching also increases a

load’s working set size and memory traffic, therefore increasing demand for caches and pin band

Since processors share both of these critical resources in a CMP, the benefit of prefetching decrea

matically. On a 16-processor CMP with the same uniprocessor cache size and pin bandwidth, stride

prefetching can degrade performance by up to 35% (Section 6.1). In this chapter, we show that co

sion and prefetching interact positively, leading to a combined speedup that is greater than the pro

the speedup of prefetching alone and compression alone.

After motivating how compression can interact positively with prefetching (Section 6.1), we define th

minology we use to study the interactions between any two hardware schemes (Section 6.2). We

our simulation parameters and prefetching implementation (Section 6.3). We study the intera

between compression and L2 prefetching (Section 6.4), L1 prefetching (Section 6.5) and

(Section 6.6). We analyze the sensitivity of these results to available pin bandwidth (Section 6.7) and

configurations (Section 6.8). We then discuss some related work (Section 6.9) and summarize our

(Section 6.10).
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In this chapter, we make the following main contributions:

• We present quantitative evidence that stride-based prefetching improves performance of CMPs

than it does for uniprocessors, even degrading performance for some workload and system con

tions.

• We show that compression and prefetching interact in strongly positive ways, resulting in a com

performance improvement of 10-51% for seven of our eight benchmarks on an 8-processor CM

• We show that the combined improvement from both prefetching and compression signific

exceeds the product of individual improvements for most benchmarks, with positive interactions

22% for half of our benchmarks.

• We analyze different factors that cause positive and negative interactions between compression

prefetching or L2 prefetching.

6.1  Motivation

Compression is an appealing alternative for CMP systems that helps increase the effective on-chip

capacity and effective off-chip pin bandwidth for compressible benchmarks. Cache compression inc

the effective cache capacity, thereby reducing some off-chip misses. Link compression (directly) and

compression (indirectly) increase the effective off-chip bandwidth, potentially reducing contention fo

bandwidth. Both cache and link compression combine to improve performance for most benchmar

small hardware cost. However, decompression overheads increase the L2 cache hit latency, which

some of compression’s performance gains. Overall, we showed in the previous chapter that comp

can improve performance for many commercial and some scientific benchmarks.

Many current systems implement hardware-based prefetching to address the increasing gap betwe

cessor and memory speeds [58, 68, 117]. Many such implementations are variations of hardware-d

stride-based prefetching [26]. Hardware prefetching improves CMP performance by hiding L2 a
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latency (L1 prefetching) and avoiding some off-chip misses or tolerating memory latency (L2 prefetch

Unfortunately, hardware stride-based prefetching can significantly increase demand on cache ban

off-chip pin bandwidth. If hardware prefetching’s accuracy is low, it can increase a workload’s workin

size and therefore increase cache pollution. CMPs exacerbate both problems since more processo

cache and pin bandwidth resources.

For CMP systems that implement prefetching, an important question is whether prefetching achieve

of the benefits of compression, which makes implementing compression less appealing. Alterna

compression and prefetching can help offset each other’s disadvantages, leading to a combined des

outperforms either scheme alone. Figure 6-11 shows that for a uniprocessor, hardware stride-bas

1. We discuss this figure and other benchmarks in more detail in Section 6.8.
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FIGURE 6-1. Performance improvement (%) for two commercial benchmarks
for different uniprocessor and CMP configurations

Performance improvement is shown compared to a base case of no compression or prefetching. The th
bars represent performance improvement due to stride-based prefetching alone, cache and link comp
sion alone, and both prefetching and compression. All configurations have a 4 MB(shared) L2 cache and
a 20 GB/sec. available off-chip bandwidth.
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prefetching achieves 74% and 2% performance improvements for zeus and jbb, respectively. For a

cessor CMP with the same cache size and pin bandwidth, however, stride-based prefetching degra

formance by 8% and 35%, respectively. For both benchmarks, the benefit of stride-based prefe

decreases as the number of processor cores grows, eventually degrading performance.

In this chapter, we show that compression and prefetching interact positively, leading to a com

speedup that equals or exceeds the product of the two individual speedups for most of our benchm

16-processor CMP with both prefetching and compression has a speedup of 28% for zeus, and only

slowdown for jbb (Figure 6-1). This is in contrast with slowdowns of 8% and 35%, respectively,

prefetching alone. Such combined performance reflect positive interactions (i.e., greater than expec

formance improvements) between compression and prefetching of 24% and 26%, respectively. We

terminology to quantify positive and negative interactions in the next section.

6.2  Terminology

In order to understand the interactions between prefetching and compression, we use the following

nology derived from Fields, et al.’s interaction cost definition [44]. For an architectural enhanceme

(e.g., L2 compression), we define its speedup for a certain workload,Speedup(A), as the workload’s runt-

ime on a base system (without A) divided by the workload’s runtime on the same system with enh

ment A. For two architectural enhancements A and B (e.g., link compression and L2 prefetching

define the combined speedup of the base system with both enhancements as:

 (6.1)

WhenInteraction(A,B)is positive, the speedup of the two enhancements together exceeds the prod

individual speedups. We call this case apositive interactionbetween A and B. WhenInteraction(A,B)is

negative, the speedup of the combined system is less than that of the product of individual speedu

Speedup A B,( ) Speedup A( ) Speedup B( ) 1 Interaction A B,( )+( )××=
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we call this case anegative interactionbetween A and B. We use these definitions to quantify the inter

tions between compression and prefetching combinations.

6.3  Evaluation

We evaluated the interactions between compression and prefetching using the same set of benchm

Chapter 5, and using the same base system configuration. We next describe the hardware strid

prefetchers we use to study their interactions with compression.

6.3.1  Strided Prefetching

Hardware-directed stride-based prefetchers make use of repeatable memory access patterns to av

cache misses and tolerate cache miss latency [26, 96]. Current hardware prefetchers [58, 116, 117]

a unit or a fixed stride between two cache misses, then verify the stride using subsequent misses. O

prefetcher reaches a threshold of strided misses, it issues a series of prefetches to the next level in th

ory hierarchy to reduce or eliminate miss latency.

We implemented a strided L1 and L2 prefetching strategy to study the interactions between L2 com

sion and hardware prefetching. We based our prefetching scheme on the IBM Power 4 impleme

[116, 117] with some minor modifications. Each processor has three separate prefetchers for the L1

and L2 caches. Each prefetcher contains three separate 32-entry filter tables, and an 8-entry strea

The three filter tables detect positive unit stride, negative unit stride, and non-unit stride access pa

respectively. Once a filter table entry detects four fixed-stride misses, the prefetcher allocates th

stream to an entry in its 8-entry stream table (i.e., each prefetcher can prefetch lines from up to 8 s

detected using its 96 filter table entries). Upon allocation, the L1I or L1D prefetcher launches 6 con

tive prefetches along the stream to compensate for the L1 to L2 latency, while the L2 prefetcher lau

25 consecutive prefetches to memory to compensate for the memory latency. Each prefetcher
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prefetches for both loads and stores because our target system uses an L1 write-allocate protocol

ing sequential consistency (unlike Power 4) [17]. We also model separate L2 prefetchers per pro

rather than a single shared prefetcher to reduce stream interference [17], and we allow L1 prefet

trigger L2 prefetches. We evaluate hardware-based strided prefetching and its interactions with cac

link compression in the next few sections.

6.3.2  Hardware Stride-Based Prefetching Characteristics

Table 6-1 presents the characteristics of hardware stride-based prefetching for the L1I, L1D a

prefetchers using the following metrics:

 (6.2)

 (6.3)

TABLE 6-1. Prefetching Properties for Different Benchmarks

Benchmark

L1 I Cache L1D Cache L2 Cache

Pf

rate

Cover-

age

Accu-

racy

Pf

rate

Cover-

age

Accu-

racy

Pf

rate

Cover-

age

Accu-

racy

apache 4.9 16.4% 42.0% 6.1 8.8% 55.5% 10.5 37.7% 57.9%

zeus 7.1 14.5% 38.9% 5.5 17.7% 79.2% 8.2 44.4% 56.0%

oltp 13.5 20.9% 44.8% 2.0 6.6% 58.0% 2.4 26.4% 41.5%

jbb 1.8 24.6% 49.6% 4.2 23.1% 60.3% 5.5 34.2% 32.4%

art 0.05 9.4% 24.1% 56.3 30.9% 81.3% 49.7 56.0% 85.0%

apsi 0.04 15.7% 30.7% 8.5 25.5% 96.9% 4.6 95.8% 97.6%

fma3d 0.06 7.5% 14.4% 7.3 27.5% 80.9% 8.8 44.6% 73.5%

mgrid 0.06 15.5% 26.6% 8.4 80.2% 94.2% 6.2 89.9% 81.9%

PrefetchRate Prefetches per thousand instructions
TotalPrefetches 1000×

TotalInstructions
-------------------------------------------------------------= =

Coverage%( ) PrefetchHits
PrefetchHits DemandMisses+
--------------------------------------------------------------------------------- 100%×=
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Where a prefetch hit is defined as the first reference to a prefetched block, excluding partial hits

prefetched blocks are still in flight.

 (6.4)

Table 6-1 shows the different prefetching properties of commercial and SPEComp benchmarks on

processor CMP2. Commercial benchmarks issue many more L1 instruction prefetches (up to 13.5 per

instructions for oltp), while the number of instruction prefetches for SPEComp benchmarks is negli

L1 instructions’ prefetching accuracy is not high since prefetch streams are initialized after recogn

four fixed-stride cache line accesses, typically larger than most basic blocks. On the other hand, th

ber of prefetches and the accuracy of L1 data and L2 prefetching is much higher for SPEComp b

marks, which is expected since their data access patterns are more predictable compared to com

benchmarks.

In the next two sections, we study the interactions between compression and L2 prefetching alone,

interactions with L1 prefetching alone. We separate the effects of both types of prefetching to demo

the different positive and negative interaction factors between compression and prefetching. In Secti

we show the combined effect of both L1 and L2 prefetching and its interactions with compression.

6.4  Interactions Between Compression and L2 Prefetching

In this section, we study the interactions between compression and L2 prefetching. We simulated di

combinations of cache/link compression and L2 prefetching for our eight benchmarks. We present

from configurations that implement L2 prefetching—and not L1 prefetching—to isolate the impact o

2. Uniprocessors have higher L1D and L2 coverage for commercial benchmarks since they have less thread contentio

prefetching properties for commercial benchmarks do not differ significantly from those of Table 6-1. We did not study u

cessor versions of SPEComp benchmarks in this dissertation.

Accuracy%( ) Percent of Accurate Prefetches
PrefetchHits

TotalPrefetches
------------------------------------------ 100%×= =
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prefetching alone. In the next few subsections, we show the following positive and negative intera

between compression and L2 prefetching:

• L2 prefetching significantly increases pin bandwidth demand for most benchmarks. Compre

(mostly link compression) helps alleviate such increase in pin bandwidth demand, a positive in

tion between compression and L2 prefetching.

• L2 prefetching significantly increases many benchmarks’ working set size (or cache footprint). C

compression alleviates this increase by increasing the effective cache size, a positive interactio

• Cache compression and L2 prefetching avoid some of the same L2 misses. These common a

misses cannot be counted towards improving the combined performance of prefetching and co

sion. According to our terminology in Section 6.2, this constitutes a negative interaction between

pression and L2 prefetching.

6.4.1  Bandwidth Demand

Figure 6-2 shows the bandwidth demand of prefetching and compression combinations, normalized

case of no compression or prefetching. L2 prefetching alone increases off-chip bandwidth demand

benchmarks by 17-178%. Combining prefetching with L2 and link compression achieves a significa

chip bandwidth demand reduction across all benchmarks except apsi, apositive interactionbetween the

two techniques. For example, while zeus has an 82% bandwidth demand increase due to L2 prefe

bandwidth demand increases by only 3% when combining it with L2 and link compression (compa

the base case of no compression or prefetching). Apache’s 64% bandwidth demand increase

prefetching turns into a 7% reduction when both compression and prefetching are combined. Comp

in apsi does not achieve a significant reduction in bandwidth over L2 prefetching (only 3%) since its

pression ratio is low (Chapter 5).
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6.4.2  Classification of L2 Misses

Figure 6-3 presents a classification of L2 misses according to whether they are avoidable by L2 prefe

only, L2 compression only, both, or neither. The figure shows six classes of accesses (from the botto

misses that could not be avoided by either L2 prefetching or L2 compression, misses that could be a

by L2 compression and not L2 prefetching, misses that could be avoided by L2 prefetching and n

compression, misses that could be avoided by either L2 compression or L2 prefetching, extra L2 pre

that could not be avoided by L2 compression, and extra L2 prefetches that could be avoided by L2

pression. The 100% line represents the total misses in the case of no compression or prefetching.

ure presents approximate data that we obtained from comparing cache miss profiles across simula

different configurations, and using set theory and the theory of inclusion and exclusion to obtain car

ties of different sets of accesses.
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FIGURE 6-2. Normalized off-chip bandwidth demand for L2 prefetching and
compression combinations

Bandwidth demand is obtained as the bandwidth utilized with an infinite available pin bandwidth. For e
benchmark, bandwidth demand is normalized to the bandwidth demand with no prefetching or compres
shown at the bottom (in GB/sec.).
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Figure 6-3 demonstrates that L2 prefetching succeeds in avoiding many misses in SPEComp benc

while L2 compression is not as successful. For commercial benchmarks, both prefetching and comp

avoid some L2 misses. We also note the following two sources of interaction between compressio

prefetching:

Negative Interaction: Misses avoided by Both.Figure 6-3 shows that there is an intersection between

sets of misses avoided by L2 compression and those that could be avoided by L2 prefetching (i.e.,

that could be avoided by either technique). This intersection is a negative interaction factor betwe

two techniques, since they can be accounted for once when computingSpeedup(Compression, Prefetching

in Eq. 6.4. However, this set only represents a small fraction of the total number of misses (8% for a
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FIGURE 6-3. Breakdown of L2 cache misses and prefetches

The figure shows for each benchmark (from the bottom up): unavoidable misses, misses avoided by com
sion and not prefetching, misses avoided by prefetching and not compression, and misses avoided by
compression and prefetching. The 100% line represent the total misses for no compression or prefetchin
show extra prefetches (both avoided and unavoided by compression) above the 100% line.
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7% for art, and 3% or less for all other benchmarks). We attribute this small intersection to the fact th

compression and L2 prefetching target different sets of misses: While L2 compression mainly targe

flict and capacity misses, L2 strided prefetching targets misses that follow a strided pattern. The two

misses, while partially overlapping, are largely orthogonal.

Positive Interaction: Prefetching Misses Avoided by Compression.Figure 6-3 also shows that compres

sion avoids some prefetches when their data can fit in a compressed cache, removing some of th

tional bandwidth due to prefetching. While this fraction is negligible for SPEComp benchmarks w

prefetching is more accurate, it is significant for commercial workloads. Prefetching, in effect, increa

workload’s working set size (or cache footprint), and compression helps by increasing the effective

size to tolerate that increase in cache footprint.

6.4.3  Performance

Figure 6-4 shows normalized runtimes for our eight benchmarks for different combinations of com

sion and L2 prefetching, relative to the base case of no compression or prefetching. Table 6-1 p

speedups and interaction coefficients between different combinations. L2 prefetching alone speed

benchmarks (except jbb and fma3d) by 1-28%. These speedups are higher for SPEComp benchmar

pared to the commercial benchmarks except for zeus. Zeus shows the highest performance improve

all commercial benchmarks since L2 prefetching avoids a larger percentage of all L2 misses, as we s

in Section 6.4.2.

Jbb suffers from a 16% slowdown because its L2 prefetching accuracy is much lower (at 32.4%, Tab

than all other benchmarks, which leads to many additional misses since prefetches replace useful

the L2 cache. Fma3d with no compression or prefetching is already bandwidth limited for our 20 GB

pin bandwidth base configuration as we showed in Chapter 5, and prefetching increases bandwidth d

leading to a performance slowdown.
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6.4.4  Interaction Between L2 Prefetching and Cache Compression

When combining cache compression and L2 prefetching, we get a multiplicative speedup effect com

to the speedup of either technique alone. Table 6-1 shows the interaction between L2 prefetching an

compression (sixth row). The interaction factor is negligible for most benchmarks as the positive an

ative interactions offset. When the negative interaction factor is higher than the positive interaction f
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FIGURE 6-4. Performance of combinations of L2 Prefetching and compression

Performance is normalized to the case of no prefetching or compression.

TABLE 6-1. Speedups and Interactions between L2 Prefetching and Compression

Benchmark apache zeus oltp jbb art apsi fma3d mgrid

Speedup (L2 PF) 4.4% 27.9% 1.0% -15.5% 6.1% 12.2% -2.8% 20.8%

Speedup (L2 C) 17.6% 6.5% 4.9% 5.1% 2.0% 4.2% -0.6% 0.9%

Speedup (L2 PF, L2 C) 24.5% 39.1% 5.8% -5.4% 4.9% 14.6% -4.2% 15.3

Speedup (L2+Link C) 20.5% 9.7% 5.6% 5.9% 3.1% 4.2% 22.6% 2.9%

Speedup (L2 PF, L2+Link C) 39.5% 52.8% 10.6% 0.2% 7.4% 14.3% 19.6% 42.5

Interaction(L2 PF, L2C) 1.4% 2.2% -0.2% 6.5% -3.1% -2.0% -0.8% -5.4%

Interaction (L2 PF, L2+Link C) 10.9% 8.9% 3.7% 11.9% -1.8% -2.3% 0.3% 14.6%
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the speedup of the combined configuration is less than the product of individual configurations. This

case for SPEComp benchmarks since prefetching is highly accurate, and compression avoids par

same misses avoided by prefetching. On the other hand, most commercial applications show a p

interaction factor. This is because cache compression helps avoid some of the “additional prefe

caused by L2 prefetching (Figure 6-3), as well as reducing off-chip bandwidth demand (Figure 6-2)

of these positive interaction effects lead to a larger benefit from prefetching than if compression w

implemented. In apache, for example, the speedup of L2 prefetching alone is 4.4%, and that of L2

pression alone is 17.6%, and the speedup of the combination of L2 prefetching and L2 compres

24.5% (slightly higher than 1.044*1.176=1.228 or a 22.8% speedup). Eq. 6.4 shows that this is a p

interaction coefficient of 1.4%. This is because the positive interaction (of compression avoiding

additional prefetches and prefetching-induced misses) outweighs the negative interaction of havin

schemes target some of the same misses (Figure 6-3).

6.4.5  Link Compression Impact

In Chapter 5, we showed that link compression alone provided little benefit for all benchmarks e

fma3d. However, link compression increased the speedup of the combination of L2 prefetching a

compression for apache and zeus by more than 14% (compare bars 6 and 4 in Figure 6-4). This is b

link compression helps reduce the increase in off-chip bandwidth demand due to prefetching, thus

ing interconnect contention and increasing prefetching speedup. The combination of L2 prefetchin

cache plus link compression helps achieve a speedup of 11-53% for commercial benchmarks exc

and 7-43% for SPEComp benchmarks.
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6.4.6  Summary

The combination of L2 prefetching and compression achieves a significant speedup (0-53%) for sc

and commercial benchmarks. This combined speedup is affected by positive and negative interacti

tors. Positive interaction factors include: link compression reducing contention because of prefetchin

cache compression avoiding some of the additional prefetches and misses caused by prefetching.

tive interaction factor is that both compression and prefetching can help avoid some of the same m

Combining L2 prefetching and compression achieves speedups that are higher—in all but two b

marks—than the product of their individual speedups.

6.5  Interactions Between Compression and L1 Prefetching

In this section, we study the interaction between compression and L1 prefetching. We simulated di

combinations of cache/link compression and L1 prefetching for our eight benchmarks. We present

from configurations that implement L1 prefetching—and not L2 prefetching—to isolate the impact o

prefetching alone. In the next few subsections, we show the following two positive interactions bet

compression and L1 prefetching:

• L1 prefetching significantly increases pin bandwidth demand for many benchmarks since it can i

ize L2 fill requests from memory. Compression (mostly link compression) helps alleviate

increase in pin bandwidth demand, a positive interaction between compression and L1 prefetch

• L1 prefetching helps tolerate decompression overhead for some L2 hits penalized by cache co

sion, a positive interaction.

6.5.1  L1 Prefetching Bandwidth Demand

When L1 prefetching is implemented without L2 prefetching, L1 prefetches that miss in the L2 cach

tialize L2 fill requests from memory. This leads to an increase in pin bandwidth demand that can be
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icant for many benchmarks. Figure 6-5 shows the off-chip bandwidth demand for different combina

of L1 prefetching and compression. L1 Prefetching alone increases the off-chip bandwidth demand

51% for commercial benchmarks, and by 12-133% for SPEComp benchmarks. This increase in ban

demand is less than that of L2 prefetching (Figure 6-2). When combining L1 prefetching with cach

link compression, however, all benchmarks (except the incompressible apsi) show a significant red

in bandwidth demand compared to L1 prefetching alone. This constitutes apositive interactionbetween

L1 prefetching and compression.

6.5.2  Impact on L2 Hit Latency

Cache compression increases L2 hit latency, since L2 hits to compressed cache lines suffer a dec

sion overhead (five cycles in our evaluation). We expect that L1 prefetching would decrease such ov
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FIGURE 6-5. Off-chip bandwidth demand for L1 prefetching and compression
combinations

Bandwidth demand is obtained as the bandwidth utilized with an infinite available pin bandwidth. For ea
benchmark, bandwidth demand is normalized to the bandwidth demand with no prefetching or compr
sion, shown at the bottom (in GB/sec.).



ompres-

com-

les for

use we

ber of

he L2

(up to
132
due to prefetching compressed lines before they are needed, thereby reducing the impact of the dec

sion overhead. Figure 6-6 shows the average L2 cache hit latency for different combinations of L2

pression and L1 prefetching. L2 compression increases the average L2 hit latency by 1.2-3.7 cyc

compressible benchmarks.

Surprisingly, L1 prefetching does not decrease the L2 hit latency for most benchmarks. This is beca

do not count hits in the L1 due to L1 prefetches as L2 hits, so L1 prefetching reduces the total num

L2 hits while increasing the number of L1 hits. Since L1 prefetching increases the demand on t

cache, this leads to an increased contention for L2 bank ports and a slight increase in L2 hit latency

0.7 cycles).
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FIGURE 6-6. L2 hit latency for combinations of L2 compression and L1
prefetching

Average L2 hit latency is measured in cycles from fill to use. We do not count completed L1
prefetches (that hit in the L1) as L2 hits.

TABLE 6-2. Percentage of penalized hits avoided by L1 prefetching

Benchmark apache zeus oltp jbb apsi art fma3d mgrid

%Penalized Hits 2.4 6.2 0.4 0.9 1.9 0.9 11.4 0.4
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L1 prefetching helps reduce the decompression overhead by prefetching compressed lines to the L1

a positive interaction. We show the percentage of penalized hits that are avoided by L1 prefetchin

Table 6-2. However, this percentage is small for most benchmarks due to the low L1 prefetching ac

and coverage for compressible commercial benchmarks, and the incompressibility of most lines in

Comp benchmarks where L1 prefetching has higher coverage and accuracy (Table 6-1).

6.5.3  Performance

Figure 6-7 shows normalized runtimes for our eight benchmarks for different combinations of com

sion and L1 prefetching, relative to the base case of no compression or prefetching. Table 6-3 sho

speedups and interaction coefficients for these combinations. L1 prefetching alone speeds up all

marks by up to 35%. Fma3d shows the least speedup at 0.2% since it is bandwidth-limited—at 20 G

available bandwidth—even with no prefetching, and prefetches have to compete with demand mis

pin bandwidth (with priority given to demand misses).
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FIGURE 6-7. Performance of combinations of L1 prefetching and compression

Performance is normalized to the case of no prefetching or compression.
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When combining compression and L1 prefetching (last row in Table 6-3), we also get an overall po

interaction coefficient for all benchmarks except apsi. This higher than expected speedup is becaus

positive interactions between compression and prefetching.

6.5.4  Summary

L1 prefetching alone provides speedups across all benchmarks, while compression achieves sp

mostly for commercial benchmarks. The combination of L1 prefetching and compression can ac

speedups higher than the product of individual speedups due to two main positive interaction factors

cache and link compression reduce the increase in pin bandwidth demand due to L1 prefetching th

gers L2 fill requests. Second, L1 prefetching hides decompression overhead caused by hits to com

lines. We showed that the effect of the first factor (reduction in pin bandwidth demand) outweighs th

ond.

6.6  Interactions Between Compression and Both L1 and L2 Prefetching

When combining both L1 and L2 prefetching, the same trends in the two previous sections hold. I

section, we show the combined impact of positive and negative interaction factors between compr

TABLE 6-3. Speedups and Interactions between L1 Prefetching and Compression

Benchmark apache zeus oltp jbb art apsi fma3d mgrid

Speedup (L1 PF) 18.4% 34.2% 6.6% 0.8% 9.7% 13.4% 0.2% 34.6%

Speedup (L2 C) 17.6% 6.5% 4.9% 5.1% 2.0% 4.2% -0.6% 0.9%

Speedup (L1 PF, L2 C) 37.4% 48.5% 11.9% 7.2% 11.9% 14.9% -0.4% 37.4

Speedup (L2+Link C) 20.5% 9.7% 5.6% 5.9% 3.1% 4.2% 22.6% 2.9%

Speedup (L1 PF, L2+Link C) 43.8% 55.4% 16.0% 9.1% 13.6% 13.9% 23.1% 68.0

Interaction(L1 PF, L2C) -1.3% 3.9% 0.1% 1.2% -0.1% -2.8% 0.0% 1.2%

Interaction (L1 PF, L2+Link C) 0.8% 5.5% 3.1% 2.1% 0.4% -3.6% 0.2%21.3%
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and prefetching. Figure 6-8 shows normalized runtimes for different combinations of prefetching and

pression. Table 6-4 shows the speedups and interaction coefficients.
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FIGURE 6-8. Performance of combinations of compression and both L1 and L2
prefetching

Performance is normalized to the case of no prefetching or compression.

TABLE 6-4. Speedups and Interactions between L1 and L2 Prefetching and Compression

Benchmark apache zeus oltp jbb art apsi fma3d mgrid

Speedup (L1+L2 PF) -0.9% 21.3% 0.3% -24.5% 6.4% 13.6% -3.4% 18.9%

Speedup (L2 C) 17.6% 6.5% 4.9% 5.1% 2.0% 4.2% -0.6% 0.9%

Speedup (L1+L2 PF, L2 C) 18.8% 32.1% 5.8% -14.9% 7.9% 14.1% -3.6% 17.4

Speedup (L2+Link C) 20.5% 9.7% 5.6% 5.9% 3.1% 4.2% 22.6% 2.9%

Speedup (L1+L2 PF, L2+Link

C)
37.3% 50.7% 9.9% -6.5% 10.6% 15.5% 18.6% 48.7%

Interaction(L1+L2 PF, L2C) 2.0% 2.3% 0.5% 7.3% -0.6% -3.7% 0.5% -2.1%

Interaction (L1+L2 PF,

L2+Link C)
15.0% 13.2% 3.8% 16.9% 0.9% -2.5% 0.2% 21.5%
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Combining L1 and L2 prefetching achieves a smaller speedup compared to the product of the two in

ual speedups. This is expected since L1 and L2 prefetching can redundantly avoid the same L2 miss

since they combine to increase off-chip bandwidth demand (Figure 6-9). For three of the SPEComp

marks (apsi, fma3d and mgrid), the increase in bandwidth due to prefetching is enough to make

benchmarks bandwidth-limited, leading to smaller performance improvements. Overall, stride-

prefetching alone speeds up some benchmarks by 0-21%, while slowing down others by 1-25%.

other hand, cache and link compression speed up all benchmarks by 3-23%.

When combining both L1 and L2 prefetching with cache and link compression, we achieve speed

10-51% for all benchmarks, except for jbb. The two schemes interact positively for all our benchm

except apsi (last row of Table 6-4). The interaction coefficients can be as high as 22% (mgrid) or

(jbb). We attribute these large positive interaction coefficients the combination of positive interaction
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FIGURE 6-9. Off-chip bandwidth demand for L1&L2 prefetching and compression
combinations

Bandwidth demand is obtained as the bandwidth utilized with an infinite available pin bandwidth. For
benchmark, bandwidth demand is normalized to the bandwidth demand with no prefetching or compre
shown at the bottom (in GB/sec.).
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tors between both prefetching schemes and both compression schemes, as we discussed in more

the previous sections. We next study the sensitivity of these results to changes in pin bandwidth.

6.7  Sensitivity to Pin Bandwidth

In the previous sections, we showed that increasing off-chip bandwidth demand is one of the main ne

effects of prefetching. We also demonstrated that compression interacts positively with prefetching

erating such demand increase. In this section, we analyze the impact of changing pin bandwidth on t

formance of hardware prefetching and its interaction with compression. Our evaluation parameters

the same except for available pin bandwidth. We show how the utilized bandwidth, performance and

action coefficients change when pin bandwidth varies between 10 and 80 GB/sec.

6.7.1  Utilized Bandwidth

At 20 GB/sec. available bandwidth, many of our benchmarks (mainly SPEComp benchmarks) were

width-limited (i.e., utilized bandwidth is close to available pin bandwidth and therefore limits per

mance). In this section, we show the impact of increasing the available bandwidth on pin band

utilization of our benchmarks. We show the utilized bandwidth for commercial workloads (Figure 6

and SPEComp benchmarks (Figure 6-11) as pin bandwidth varies between 10 and 80 GB/sec. We n

the scale is not the same for different benchmarks.

For commercial benchmarks, our scaled-down versions of commercial benchmarks do not have sig

utilized-bandwidth increases as the available pin bandwidth increases. Their bandwidth demand is

15.4 GB/sec., even with prefetching (Figure 6-9). These benchmarks are bandwidth-limited only f

extreme 10 GB/sec. pin bandwidth configuration.

SPEComp benchmarks, on the other hand, show significant increases in bandwidth demand as a

pin bandwidth increases. With stride-based prefetching, apsi’s pin bandwidth demand increases to
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FIGURE 6-10. Pin bandwidth demand of different compression and prefetching
combinations for commercial benchmarks when pin bandwidth varies from 10 to
80 GB/sec.
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FIGURE 6-11. Pin bandwidth demand of different compression and prefetching
combinations for SPEComp benchmarks when pin bandwidth varies from 10 to
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than 55.8 GB/sec. All SPEComp benchmarks are bandwidth-limited for the 10 GB/sec. configuratio

all except art are bandwidth-limited for the 20 GB/sec. configuration. Two of the benchmarks (aps

mgrid) are even bandwidth-limited at 40 GB/sec. available pin bandwidth.

6.7.2  Performance

Since prefetching can significantly increase pin bandwidth demand, its impact on performance is ex

to be negative for bandwidth-limited configurations. Cache and link compression can improve p

mance for systems that implement prefetching since they combine to reduce pin bandwidth dema

show the impact of prefetching and compression on performance for commercial workloads (Figure

and SPEComp benchmarks (Figure 6-13) as pin bandwidth varies between 10 and 80 GB/sec.

For commercial workloads, the bandwidth-limited 10 GB/sec. pin bandwidth configuration shows a

down of 6-42% due to hardware prefetching. On the other hand, prefetching shows speedups fo

benchmarks (except jbb) when bandwidth increases. When combined with cache and link compr

prefetching shows a speedup for all benchmarks (except jbb) for the 10 GB/sec. configuration that i

to the speedups achieved for bandwidth-abundant configurations. This is caused by the positive inte

of compression reducing pin bandwidth demand increase due to prefetching.

For SPEComp benchmarks, the performance improvement due to prefetching increases as availa

bandwidth increases. For example, apsi suffers a 2% slowdown for 10 GB/sec. pin bandwidth, but

speedups of 14%, 75% and 157% for the 20, 40 and 80 GB/sec. configurations, respectively. For

and mgrid, cache and link compression achieve significant speedups for bandwidth-limited configur

when combined with hardware prefetching. However, the impact of cache and link compression in

cases is limited due to the low compression ratios for these benchmarks.
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FIGURE 6-12. Performance of different compression and prefetching
combinations for commercial benchmarks when pin bandwidth varies from 10 to
80 GB/sec.
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FIGURE 6-13. Performance of different compression and prefetching
combinations for SPEComp benchmarks when pin bandwidth varies from 10 to
80 GB/sec.
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6.7.3  Interaction Between Prefetching and Compression

The negative side effects of prefetching are most obvious for systems with limited bandwidth. Since

pression tolerates some of these negative side effects, the positive interaction between compress

prefetching can be higher for bandwidth-limited configurations. Figure 6-14 presents the interaction

between compression and prefetching when the available pin bandwidth changes from 10 to 80 GB

For commercial benchmarks, the interaction term is large (7-29%) for the 10 GB/sec. pin bandwidth

figuration. The interaction is also significant (4-17%) for the 20 GB/sec. configuration. However, the

action drops dramatically for the 40 and 80 GB/sec. configurations since the available band

significantly exceeds demand, even with prefetching (Figure 6-9). Overall, the interaction is po

between compression and prefetching for all configurations.
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FIGURE 6-14. Interaction(%) between prefetching and compression as available
pin bandwidth varies
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For SPEComp benchmarks, the interaction is negative for some configurations since compression

effective for these benchmarks. However, the negative interaction terms are limited to 3% or less.

other hand, some configurations show significant positive interaction terms (as high as 22% for mgri

to the impact of link compression on reducing pin bandwidth demand caused by prefetching. Excep

few configurations, the interaction is mostly positive for SPEComp benchmarks.

6.8  Sensitivity to Number of CMP Cores

Prefetching schemes have been previously shown to be successful for uniprocessor systems. H

implementing prefetching on a CMP introduces contention for shared resources (caches and pin

width) that reduce its performance improvement. In Figure 6-15, we show the performance improve3

due to stride-based prefetching, compression and other alternatives for our commercial benchmark4. Per-

formance improvements are shown relative to a base system with the same parameters as t

Chapter 5, except for the different number of processors. Stride-based prefetching alone improves

cessor performance by 61%, 73%, 11% and 2% for apache, zeus, oltp and jbb, respectively. Howeve

performance improvement decreases as we increase the number of processor cores on a CMP, ev

degrading performance. For a 16-processor CMP, stride-based prefetching shows no improvem

apache, and degrades the performance of zeus, oltp and jbb by 8%, 10% and 35%, respectively.

Cache and link compression with no prefetching achieve modest performance improvements for u

cessors (20%, 7%, 2% and 6% for apache, zeus, oltp and jbb, respectively). However, compress

prefetching interact positively since compression mitigates some of the negative side effects d

3. We use the term “performance improvement” instead of “speedup” in this section to avoid confusion with parallel speed

a uniprocessor configuration. Performance improvement is defined as (S-1)*100%, where S is the speedup in perform

ative to our base system of no prefetching or compression.

4. We did not have the necessary checkpoints for SPEComp benchmarks, except for the 8-processor checkpoints.
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prefetching. This leads to strong positive interactions between the two schemes for all CMP configur

These interactions increase with the number of processor cores. On a 16-processor CMP, for examp

formance improves for a combination of prefetching and compression by 33%, 28% and 7% for ap

zeus, and oltp, respectively. The performance degradation in jbb was limited to 10%.
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FIGURE 6-15. Performance improvement (%) for commercial benchmarks for
different uniprocessor and CMP configurations

Performance improvement is shown relative to a configuration with no compression or prefetching. All c
figurations have a 20 GB/sec. available off-chip bandwidth except for the “PF+2x BW” which has a 40 G
sec. available bandwidth. All configurations have a 4 MB shared L2 cache except for the “PF+2x L2” that
an 8 MB cache.
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The positive interactions between prefetching and compression result from compression mitigati

impact of prefetching on both pin bandwidth and cache size. Therefore, the performance improveme

to compression may exceed that of techniques that address pin bandwidth alone or cache size alon

CMP with hardware prefetching, implementing compression outperforms doubling pin bandwidth f

configurations (except for zeus and jbb on a 16-processor CMP). Furthermore, implementing compr

outperforms doubling the cache size for many configurations (apache on 8- and 16-processors, zeu

8- and 16-processors, and jbb on 16-processors). Compression is attractive since it is less expe

implement than either of these alternatives.

6.9  Related Work

Hardware Prefetching. Hardware-directed prefetching has been proposed and explored by m

researchers [26, 65, 94, 96, 102, 140], and is currently implemented in many existing systems [58, 5

117]. Jouppi [66] introduced stream buffers that trigger successive cache line prefetches on a miss

and Baer proposed variations of stride-based hardware prefetching to reduce the cache-to-memory

[26], and studied its positive and negative impacts on different benchmarks [25]. Dahlgren, et al., pro

an adaptive sequential (unit-stride) prefetching scheme that adapts to the effectiveness of prefetchin

Zhang and Torrellas proposed a scheme that targets irregular access patterns by binding together

ware) and prefetching groups of short data lines that are indicated by the compiler to be strongly r

[140]. Tullsen and Eggers studied the negative side effects of software prefetching on bus utilization,

miss rates and data sharing for a multiprocessor system, and proposed techniques to reduce some

negative effects [123]. Lin, et al., mitigate the negative effects of prefetching on performance by pre

ing only when the memory bus is idle (to reduce contention), and prefetching to lower replacement

ties than demand misses (to reduce cache pollution) [43].
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CMP Prefetching. Prefetching has been proposed or implemented to improve CMP performance. I

Power4 [117] and Power5 [107] both support stride-based hardware prefetching to different levels

cache hierarchy. Beckmann and Wood show that hardware stride-based prefetching can signi

improve performance for commercial and scientific benchmarks on an 8-processor CMP [17]. Huh,

show that L1 prefetching can decrease L1 miss rates and improve performance for a 16-processo

with a NUCA L2 cache [63]. Ganusov and Burtscher propose dedicating one processor core of a C

prefetch data for a thread running on another core [50]. This dissertation differs from previous prop

since it studies some negative effects of prefetching on a CMP, and is the first to study the intera

between prefetching and hardware compression.

Prefetching and Compression.Zhang and Gupta [138] exploit their compressed cache design [139

prefetch partial compressed lines from the next level in the memory hierarchy without increasing me

bandwidth, and with no need for prefetch buffers. They store compressed values in the cache, and

freed up space to prefetch other compressed values (i.e., prefetch partial lines). Their proposal ma

of the positive interaction between compression and prefetching since compression frees up spa

bandwidth that can be used by prefetching. Lee, et al., use a decompression buffer between their ca

els to buffer decompressed lines, which can be viewed as storing “prefetched” uncompressed l

reduce decompression overhead [77, 78, 79]. This dissertation differs from these proposals as it intr

a general unified cache and link compression CMP design that interacts with hardware prefetchin

also explore in more detail different positive and negative interactions between compression and pr

ing.

6.10  Summary

Many CMP designs implement hardware-based prefetching to hide L1 and L2 miss latencies. For su

tems, compression can be less appealing if prefetching achieves most of the benefits due to comp
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However, prefetching schemes can greatly increase off-chip bandwidth demand. In addition, prefe

can increase demand on cache size for many benchmarks due to cache pollution. Since both cache

pin bandwidth are shared resources in a CMP, the benefit of prefetching decreases dramatically.

chapter, we show that hardware stride-based prefetching provides smaller performance improvem

CMPs than for uniprocessors, even hurting performance in some cases. We further show that cac

link compression partially compensate for the increased demand by effectively increasing cache s

pin bandwidth.

In the central result of this chapter, we showed that compression and prefetching have a strong p

interaction, improving performance by 10-51% for seven of our eight benchmarks for an 8-processor

Compression and prefetching interact positively in three ways: link compression reduces prefetching

chip bandwidth demand; L1 prefetching hides part of the decompression penalty due to cache co

sion; and cache compression helps accommodate the increase in working set size due to prefetchi

implies that compression helps reduce the two main negative side effects of prefetching, and prefe

helps mitigate the main negative side effect due to compression. We also show a negative inte

between the two schemes, since a fraction of the misses avoided by compression can also be avo

prefetching. Overall, compression and prefetching interact positively, and their combined speedup

or exceeds the product of the two individual speedups for most benchmarks. Such positive interactio

lead to performance improvements for CMP configurations whose performance would have degrade

hardware stride-based prefetching alone.
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Balanced CMP Design:
Cores, Caches, Communication and Compress

A fundamental question in chip design is how to best utilize the available on-chip transistor area

CMPs, this translates to how to allocate chip area between cores and caches. Given a fixed transis

area) budget, designers must choose an “optimal” breakdown between cores and caches. This choi

obvious, since the 2004 ITRS Roadmap [45] predicts that transistor speed will continue to improve

than DRAM latency and pin bandwidth (21%, 10%, and 11% per year, respectively). Should the d

center on caches, to hide DRAM latency and conserve off-chip bandwidth, or on cores, to max

thread-level parallelism?

Compression further complicates this trade-off. Cache compression increases the effective cache s

given transistor budget, reducing both average memory latency and (possibly) contention for limite

bandwidth. Link compression increases the effective pin bandwidth, potentially supporting more

with smaller caches. Compression in any form adds latency overheads to compress and decompre

possibly outstripping any improvements.

This chapter examines an important aspect of how to design balanced CMP systems. That is, given

core design, how to allocate on-chip transistors to balance the demand on cores, caches, and com

tion. In particular, we study the role that compression plays in shifting this balance. To provide intu

about this trade-off, we develop a simple analytical model that estimates throughput for different

configurations with a fixed area budget (Section 7.1). We extend our model to include cache compr

(Section 7.2) and link compression (Section 7.3). We discuss the many simplifying assumptions tha
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our model’s accuracy (Section 7.4). We use our model to estimate the “optimal” CMP configuratio

terms of the number of cores and cache sizes) for a set of parameters and the impact of compression

optimal configuration (Section 7.5). We also study the sensitivity of CMP throughput to different m

parameters (Section 7.6). We extend our simple model to include prefetching and study its intera

with compression (Section 7.7). We then use full-system simulation and commercial workloads to q

tatively evaluate the “optimal” design point given a fixed area assumption (Section 7.8). We compar

ulation results to those of the analytical model to evaluate its relative error (Section 7.9). Althoug

analytical model makes too many simplifying assumptions to accurately predict absolute throughp

show in Section 7.9 that it can provide insight by capturing the general trends. We discuss some

work (Section 7.10) and conclude (Section 7.11).

In this chapter, we make the following contributions:

• We introduce a simple analytical model that helps build intuition about the trade-off between c

caches, and communication, and the role of compression in CMP design.

• We show, using our analytical model and simulation experiments, that compression can improve

throughput by nearly 30%.

• We use our analytical model to demonstrate that compression can lead to significant throu

improvements across a wide range of CMP system parameters.

• We show that both cache and interconnect compression can slightly shift the optimal CMP d

towards having more cores, leading to more core-centric designs.

• We show that cache compression interacts positively with hardware prefetching across a wide ra

workloads and CMP configurations. Positive interaction coefficients (as high as 33%) lead to thr

put improvements that are significantly higher than the product of throughput improvement for e

scheme alone.



ween

design

munica-

es, we

luate

e next

ple

i-

ate L1

y

151
7.1  Blocking Processor Model

A fundamental question in CMP design is how to best utilize the limited transistor area and split it bet

processor cores and caches. Ultimately, this comes down to a question of balance. A balanced CMP

allocates transistors to processor cores and on-chip caches such that neither cores, caches, nor com

tion is the only bottleneck. In order to gain some insight on the trade-off between cores and cach

develop a simple model for a CMP with a fixed transistor budget. We use this model to roughly eva

what the best CMP design configuration is and how it changes with different system parameters. W

describe an area model and a throughput model for a fixed-area CMP.

7.1.1  Cache Byte Equivalent (CBE) Area Model

Assume we have a CMP with a total fixed areaACMP allocated to cores and caches that is a proper multi

of the area needed for a 1MB L2 cache:

 (7.1)

whereA1MB is the area required for 1 MB of L2 cache, andm is a design constant taking into account sem

conductor process generation, cost objectives, etc. The area of one processor (including its priv

caches) can be written also in terms of 1 MB L2 cache area:

 (7.2)

For a system ofN processors, the area allocated to L2 caches (AL2(N)) is simply the area not consumed b

cores:

 (7.3)

ACMP m A1MB⋅=

Ap kp A1MB⋅=

AL2 N( ) ACMP N Ap⋅– m A1MB N kp A1MB⋅ ⋅–⋅ A1MB m kp N⋅–( )⋅= = =
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7.1.2  Throughput for a Fixed Chip Area

To estimate performance, we assume the cores are simple, in-order blocking processors. For a give

load, we can model the cycles per instruction for a single processor with an L2 cache of sizeSL2 as:

 (7.4)

whereCPIperfectL2is an estimate of the CPI of the processor core (including L1 caches) with a perfec

cache,missrate(SL2) is the miss rate (per instruction) for a cache of sizeSL2, andL2_Miss_Penaltyis the

average number of cycles needed for an L2 miss.

As we increase the number of cores, the area that remains available for cache decreases (Eq. 7.3).

tion, more non-idle cores lead to more threads competing for the L2 cache, therefore increasing L2 m

To address this latter issue, we make the following two simplifying assumptions.

Assumption A (Sharing assumption).A pessimistic assumption is that cores do not actually share c

or data in the L2 cache. In that case, forN processors, the working set isN times as large. We can approxi

mate the effective cache size that each core sees as 1/Nth of the whole cache, orSL2p = SL2(N)/N. While this

might accurately characterize a multi-tasking workload, it is pessimistic for our commercial worklo

which have been shown to heavily share both code and data [17]. Instead, we use the average nu

sharers per block,sharersav(N), to adjust the working set size (essentially eliminating double counting

shared blocks). We note that the average number of sharers per block can vary with the number of

sors. Using this sharing assumption, the size of the L2 cache used by a single processor is:

 (7.5)

CPI 1( ) CPIperfectL2 missrate SL2( ) MissPenaltyL2⋅+=

SL2p

SL2 N( )
N sharersav N( )– 1+
-------------------------------------------------------=
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Assumption B (Square root assumption).To estimate the miss ratio for caches of different sizes, we

the well-known square root rule of thumb [57]. Thus for each core, its L2 miss rate can be compu

terms of a known miss rate for a cache of sizeSL2:

 (7.6)

From the previous two assumptions, the CPI of a single processor in a CMP withN processors sharing an

L2 cache of sizeSL2_N is (from Eq. 7.4):

 (7.7)

And from Eq. 7.6 substituting formissrate(SL2p):

 (7.8)

Substituting assumption A’s sharing rule forSL2p = SL2(N) / (N - sharersav(N) +1):

 (7.9)

Since the areas of caches are proportional to their sizes, we can substitute by the area of Eq. 7.3:

missrate SL2p( ) missrate SL2( )
SL2

SL2p
------------⋅=

CPI N( ) CPIperfectL2 missrate SL2p( ) MissPenaltyL2⋅+=

CPI N( ) CPIperfectL2 MissPenaltyL2 missrate SL2( )
SL2

SL2p
------------⋅⋅+=

CPI N( ) CPIperfectL2 MissPenaltyL2 missrate SL2( )
SL2

SL2 N( ) N sharersav N( ) 1+–( )⁄
----------------------------------------------------------------------------------⋅⋅+=
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 (7.10)

Whereα aggregates all the invariant L2 factors other thanL2_Miss_Latency:

 (7.11)

To estimate aggregate system throughput, we make the further simplifying assumption that there

other interference between threads (i.e., threads do not have to compete for cache or memory band

We can estimate throughput as the aggregate number of instructions per cycle forN processors:

 (7.12)

7.2  CMP Model with Cache Compression

Cache compression can improve CMP performance by increasing the effective density of the shared

To model the impact of cache compression on CMP design, we need to add two parameters to the m

the previous section:

• The cache compression ratioc is a workload property that measures the ratio between the effec

cache size of a compressed cache and the original cache size.SL2(N) should be multiplied byc in our

model.

CPIperfectL2 MissPenaltyL2 α
N sharersav N( ) 1+–( )

m kp N⋅–( )
------------------------------------------------------------⋅ ⋅+=

CPI N( ) CPIperfectL2 MissPenaltyL2 missrate SL2( )
AL2 N sharersav N( ) 1+–( )⋅

A1MB m kp N⋅–( )⋅( )
---------------------------------------------------------------------------⋅⋅+=

α missrate SL2( )
AL2

A1MB
---------------⋅=

IPC N( ) N
CPI N( )
--------------------= N

CPIperfectL2 MissPenaltyL2 α
N sharersav N( ) 1+–( )

m kp N⋅–( )
------------------------------------------------------------⋅ ⋅+

--------------------------------------------------------------------------------------------------------------------------------------------------------------=
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• The decompression penaltydp is the average number of cycles per instruction required to decomp

a block due to L1 misses to compressed L2 blocks. This should be added toCPIperfectL2in our model.

Our final model forIPC(N) now becomes:

 (7.13)

7.3  CMP Model with Cache and Link Compression

The model in the previous sections assumed that there is no queuing delay due to pin bandwidth

tions. To model the effects of interconnect latency, we split the penalty due to an L2 miss into two co

nents, memory latency and link latency:

 (7.14)

 (7.15)

We use mean value analysis (MVA) to compute theLinkLatencyand therefore the actual IPC. We firs

define the interconnect (link) throughputλ (in requests per cycle) as the product of the number of instr

tions per cycle and the number of misses per instruction:

 (7.16)

Using Little’s law, the link utilizationU is defined as:

 (7.17)

IPC N( ) N

CPIperfectL2 dp MissPenaltyL2 α
N sharersav N( ) 1+–( )

c m kp N⋅–( )⋅
------------------------------------------------------------⋅ ⋅+ +

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

MissPenaltyL2 MemoryLatency LinkLatency+=

LinkLatency ResponseTimePerMiss ServiceTimePerMiss QueuingDelayPerMiss+= =

λ IPC N( ) Missrate SL2p( )⋅=

U λ X⋅=
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WhereX is the average service time per miss. We assume that the service time is the physical link l

for data to get to/from memory. Assuming no transmission errors, this service time is deterministic. T

an M/D/1 queue, and its response timeR can be computed from:

 (7.18)

We then use this response time to compute a new value forIPC(N), and iterate until the model converges

Accounting for Memory-level Parallelism. We note that the model we discussed so far assumes a bl

ing memory model that doesn’t handle parallel memory requests. Current systems can handle m

requests in parallel to exploit memory-level parallelism. To include such effect in our simple mode

assume that the average number of memory requests issued in parallel ismlpav. The average memory

latency that is used to computeIPC(N) in this case can be divided bymlpav, since each request on averag

will block the processor for a fraction of the total memory latency [70].

7.4  Model Limitations

The simple analytical model we described in this chapter is useful to qualitatively provide intuition a

CMP throughput. However, our model makes many simplifying assumptions that affect its accuracy.

of these simplifying assumptions are:

• We assume that missrates decrease linearly with the square root of the increase in cache size

such trend has been demonstrated for smaller cache size, there is no evidence to support it h

large caches (1 MB or larger).

• Many of the model assumptions are based on having a blocking in-order processor. For non-bl

and out-of-order processors, the impact of cache miss latency might be lower [70].

R LinkLatency X
U X⋅

2 1 U–( )⋅
-------------------------+= =



ores or

ny off-

equest

nce of

ctions

transac-

traight-

n vary

target

into

hypo-

bench-

apters 4

model

, both
157
• We assume that many model parameters remain fixed even with changes in the number of c

cache size. However, many parameters can vary with a change in CMP configuration (e.g.,dp andc).

• We assume that pin bandwidth demand has a similar behavior to an M/D/1 queue. However, ma

chip requests tend to be clustered together in bursts, which implies that the Poisson incoming r

distribution is not accurate. Furthermore, a deterministic service time is not accurate in the prese

transmission errors that require retransmission.

• IPC is not the best estimate of throughput for workloads that have abundant inter-thread intera

and operating system cooperation. For such benchmarks, a direct throughput measure (e.g.,

tions per second) can be a better estimate. However, obtaining such estimate from IPC is not s

forward, since it requires estimating the number of instructions per transaction. Such number ca

between different CMP configurations due to a change in idle time or spin-lock waiting time.

In order to develop a model that can more accurately predict CMP throughput, future research can

developing a more complex model for CMP throughput that takes some of the above limitations

account.

7.5  Optimal CMP Configurations

In this section, we use our simple analytical model to estimate the optimal CMP configuration for a

thetical benchmark. We show our base model parameters in Table 7-1, including both system and

mark parameters. We chose benchmark parameters that approximate apache’s behavior (from ch

and 5). We assume that hardware prefetching is not implemented in the base system. We show the

results for four configurations (no compression, cache compression only, link compression only

cache and link compression) in Figure 7-1. We make the following observations:
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TABLE 7-1. Model Parameters

Area Assumptions

Total CMP area is equivalent to that of 8 MB of L2 cache area (m = 8). Each

core (plus L1 caches) has the same area as 0.5 MB of L2 cache (kp = 0.5). The

two extreme configurations for the CMP are: 16 cores with no cache, or 8 MB

of cache with no cores

CPIperfectL2 1

Pin Bandwidth
20 GB/sec. pin bandwidth. Average service time per miss

X = 72 bytes_per_miss / 4 bytes_per_second = 18 cycles.

Memory Latency 400 cycles

Missrate (8 MB) 10 misses / 1000 instructions

Compression Properties
Compression ratioc = 1.75, decompression penaltydp = 0.4 cycles per

instruction

sharersav(N) 1.0 sharers/line if N=1, 1.3 sharers/line otherwise
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20 GB/sec. B/W- 400 cycles memory latency - 10 misses/1K inst
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cache compr 
link compr
cache + link compr 

FIGURE 7-1. Analytical model throughput (IPC) for different processor
configurations (x-axis) and different compression configurations
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• All curves show increasing throughput that peaks at 8-9 processors after which throughput dec

IPC increases as more processors are available up to a certain point (8 processors/4 MB L2). B

this point, the impact of memory latency on performance becomes more dominant, thus decr

IPC.

• At 20 GB/sec. pin bandwidth and a base L2 missrate of 10 misses per 1000 instructions, pin ban

is not a critical resource. The impact of link compression on performance is limited (only a 2

throughput increase for the optimal 8 processor configuration).

• Since cache compression increases the effective cache size and reduces off-chip misses, its im

throughput is significant for all configurations. Cache compression alone achieves up to a

improvement in throughput over the no compression case. Moreover, the increase in through

more significant for the optimal processor/cache configurations.

• The combination of cache and link compression improve throughput by up to 29%.

7.6  Sensitivity Analysis

Our analytical model allows us to easily evaluate and gain insight into the impact of different param

on CMP throughput. In this section, we discuss the sensitivity of our results to different model param

In each of the next few subsections, we vary one parameter while leaving the remaining paramete

stant.

7.6.1  Sensitivity to Pin Bandwidth

Both cache and link compression can reduce pin bandwidth utilization and therefore improve throu

for bandwidth-limited systems. As available pin bandwidth increases, the impact of compressio

throughput decreases. Figure 7-2 shows the impact of pin bandwidth on throughput for our hypoth

benchmark. We make the following observations:
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• When pin bandwidth is limited (10 GB/sec.), the peak of the throughput curve moves to the left.

is because pin bandwidth becomes a critical resource, and fewer processors with bigger caches

limited by off-chip bandwidth. The optimal configuration for an uncompressed system with 10

sec. pin bandwidth is at 7 processors, compared to 8 or 9 processors for most other configurati

• Cache and link compression provide a significant increase in throughput across all bandwidth co

rations. The throughput increase is bigger for low pin bandwidth (36% for the 10 GB/sec. system

to the additional impact of link compression, but is still significant for high bandwidths. The throu

put increase is at 26% for the 10 TB/sec. (i.e., 10000 GB/sec.) system.

• Compression tends to slightly shift the optimal configuration towards more cores. The optimal co

uration for all systems (except the 10 GB/sec. system) is at 8 processors with no compression, a

processors with compression. For the 10 GB/sec. system, the optimal configuration is at 7 proc

with no compression, and at 8 processors with compression. This is because cache comp

increases the effective cache size and reduces miss rates.
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10 GB/sec.- no compr 
10 GB/sec.- cache + link compr 
20 GB/sec.- no compr 
20 GB/sec.- cache + link compr 
40 GB/sec.- no compr 
40 GB/sec.- cache + link compr 
80 GB/sec.- no compr 
80 GB/sec.- cache + link compr 
10000 GB/sec.- no compr 
10000 GB/sec.- cache + link compr 

FIGURE 7-2. Analytical model sensitivity to pin bandwidth. Non-compressed
configurations are represented by solid lines, and compressed configurations are
represented by dotted lines
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7.6.2  Sensitivity to Cache Miss Rate

Figure 7-3 shows the impact of the base L2 cache miss rate on throughput for our hypothetical benc

Since our model represents a simple blocking processor, cache miss rates have a significant im

throughput. We make the following observations:
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1 misses/1K inst.- cache + link compr 
5 misses/1K inst.- no compr 
5 misses/1K inst.- cache + link compr 
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10 misses/1K inst.- cache + link compr 
20 misses/1K inst.- no compr 
20 misses/1K inst.- cache + link compr 
40 misses/1K inst.- no compr 
40 misses/1K inst.- cache + link compr 
100 misses/1K inst.- no compr 
100 misses/1K inst.- cache + link compr 

FIGURE 7-3. Analytical model sensitivity to L2 cache miss rates of an 8 MB cache

Since the scale widely varies, we show the low miss rates in the top graph and the high miss rates in the
tom graph. Non-compressed configurations are represented by solid lines, and compressed configuratio
represented by dotted lines.
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• When the miss rate is low (1-5 misses per 1000 instructions), compression has a small impact o

formance for configurations with a small number of processors. Compression even slows down p

mance due to the decompression overhead for some configurations. However, compressio

achieves non-trivial throughput improvements at the optimal design point (e.g., 7.5% for the 1

1000 instructions configuration). Moreover, compression shifts the optimal configuration tow

more cores (e.g., 11 cores vs. 10 for the 1 miss/1000 instructions configuration).

• When the miss rate is high, the impact of compression becomes more significant. Compr

achieves large throughput improvements since it reduces both cache miss rate and pin bandwid

zation. For the 20-100 misses/1000 instruction systems, compression achieves a 33-35% impro

in throughput compared to uncompressed systems. However, the optimal configuration do

change for these systems.

7.6.3  Sensitivity to Memory Latency

Figure 7-4 shows the impact of memory latency on throughput for our hypothetical benchmark. We

the memory latency between 200 and 800 cycles. We make the following observations:

• The impact of compression on throughput is almost the same on both extremes (31% improvem

the 200-cycle system and 30% for the 800-cycle system). Two main factors contribute to the imp

ment in throughput. First, cache compression avoids cache misses, which reduces the impact o

ory latency on throughput. Second, cache and link compression reduce pin bandwidth utilization

reducing link latency and improving IPC. For slower memory access latencies, the first factor is

significant. For faster memory access latencies, the increase in IPC increases pin bandwidth util

so the second factor contributes more to throughput improvement.
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• For all systems, cache and link compression shift the optimal design point from eight to nine proc

cores. This is consistent with the observations in the previous sections.

7.6.4  Sensitivity to Compression Ratio

The success of cache and link compression is greatly dependent on compression ratio (i.e., th

between the compressed and uncompressed effective cache sizes). Figure 7-5 shows the impact

pression ratio on throughput with all other model parameters fixed. We compared an uncompressed

with systems of compression ratios between 1.1 and 2.0. As expected, throughput increases whe

pression ratios are higher. Throughput improvements range from 3% for a 1.1 compression ratio t

for a 2.0 compression ratio. In addition, the optimal design point shifts from eight to nine processo

the compression ratios of 1.5 or higher.
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FIGURE 7-4. Analytical model sensitivity to memory latency. Non-compressed
configurations are represented by solid lines, and compressed configurations are
represented by dotted lines
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7.6.5  Sensitivity to Decompression Penalty

As cache hit rates increase, the compression overhead per instruction due to accessing compres

(i.e., decompression penaltydp in our model) also increases. Therefore, we expect throughput impro

ments due to compression to decrease as decompression penalties increase. Figure 7-6 shows the

the decompression penalty on throughput with all other model parameters fixed. We vary the deco

sion penalty between 0.0 and 2.0. A decompression penalty of 0.0 represents an unrealistic best cas

all decompression overheads are hidden from the L1 cache. A decompression penalty of 2.0 repre

pessimistic worst case where all load and store instructions (approximately 40% of all instructions) m

the L1 cache and hit to compressed lines in the L2 cache, therefore incurring an additional penal

cycles for each load or store (or 5 * 40% = 2 cycles per instruction). We make the following observa
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FIGURE 7-5. Analytical model sensitivity to compression ratio. No compression is
compared to configurations of compression ratios 1.1, 1.25, 1.5, 1.75 and 2.0
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• Small decompression penalties (0.4 cycles per instruction or less) only slightly increase throughp

our hypothetical benchmark. The maximum throughput for a perfect decompression overhead o

cycles per instruction is only 3% higher than that of a system with 0.4 decompression cycle

instruction.

• For the worst case configuration (a decompression penalty of 2.0 cycles per instruction), the max

throughput is reduced by 14% compared to that of a zero-cycle decompression penalty. Howeve

for this unrealistic worst case configuration, the maximum throughput is still 17% higher than th

an uncompressed system.

• As with many other configurations, compression with decompression penalties of 0.2-2.0 sh

optimal design point from eight to nine processor cores per chip.
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FIGURE 7-6. Analytical model sensitivity to decompression penalty. No compression
is compared to compressed configurations of decompression penalties of 0.0, 0.2, 0.4,
0.8 and 2.0 cycles per instruction
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7.6.6  Sensitivity to Perfect CPI

Wider issue queues and wider pipelines can decrease the number of cycles per instruction for a pe

system (CPIperfectL2in our model). On the other hand, less effective L1 caches can increase the perfec

estimate. Figure 7-7 shows how compression improves throughput for differentCPIperfectL2 values

between 0.25 and 3.0. The model does not take into account techniques that decrease the impact

misses on performance (e.g., runahead execution [37]). This figure shows that throughput improv

due to compression slightly increases whenCPIperfectL2decreases. Throughput improves over an unco

pressed system by 26% for aCPIperfectL2 of 3.0, and by 31% for aCPIperfectL2 of 0.25. This follows

directly from the model because the relative impact of avoided cache misses on IPC increases (Eq

In addition, the optimal design point shifts towards more cores for higher values ofCPIperfectL2.
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FIGURE 7-7. Analytical model sensitivity to perfect CPI. Non-compressed
configurations are represented by solid lines, and compressed configurations are
represented by dotted lines
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7.7  CMP Model with Hardware Prefetching

Many current CMP systems implement hardware prefetching schemes to reduce cache misses or h

of the memory latency. In order to model the impact of prefetching on throughput, we need to ad

parameters to our simple model:

• Prefetching rate (pfrate) represents the number of prefetches issued per instruction. This dire

affects the link latency, since it should be added to missrate in Eq. 7.16 to compute the link throug

 (7.19)

• Prefetching avoided miss rate (AvMissratepf(SL2)) represents the difference between the number

misses per instruction when prefetching is implemented and the number of misses per instr

when prefetching is not implemented. This parameter can be positive or negative since prefe

can, in pathological cases, increase the cache miss rate. For simplicity, we assume that this m
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FIGURE 7-8. Analytical model results for four configurations: No compression or
prefetching, compression only, prefetching only, and both

λ IPC N( ) Missrate SL2p( ) pfrate+( )⋅=
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also follows the square root rule of thumb for regular misses. We also ignore the impact of p

prefetch hits. We assume that prefetching does not affect the average number of sharers per ca

(sharersav(N)) or the CPI for a perfect L2 (CPIperfectL2). This parameter should be subtracted fro

missrate(SL2) in Eq. 7.11:

 (7.20)

To analyze the interaction between prefetching and compression, we show throughput (in terms of IP

systems with neither compression or prefetching, compression only, prefetching only, or both compr

and prefetching in Figure 7-8. We assume our hypothetical benchmark has apfrate of 15 prefetches per

1000 instructions and an avoided missrate of 3 per 1000 instructions. We observe from Figure 7

prefetching alone increases the maximum throughput by 34%, and compression alone increases th

mum throughput by 29%. We also observe that the combination of prefetching and compression im

the maximum throughput by 75% with a positive interaction coefficient of 0.4% between prefetching

compression (as defined in Chapter 6). Prefetching alone does not shift the optimal design point.

other hand, compression shifts the optimal point towards more cores compared to an uncompress

tem, regardless of whether prefetching was implemented or not.

7.8  Evaluation for Commercial Workloads

Chip multiprocessor design involves achieving the right balance between cores, caches and comm

tions to achieve the best possible system throughput. Our analytical model provided some qua

insight into this design space. With few cores that cannot support enough threads, cores become a

neck and degrade system throughput. With too many cores and smaller caches, caches and/or p

width become a bottleneck and also degrade system throughput. The optimal CMP design lies som

α missrate SL2( ) AvMissratepf SL2( )–( )
AL2

A1MB
---------------⋅=
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between these two extremes. Our analytical model provides a simple and fast method to evaluat

high-level design choices. However, we use many simplifying assumptions in our model that do no

for real systems. In order to quantitatively evaluate the CMP design space, we use simulation of co

cial workloads.

In this section, we evaluate the performance of different core/cache configurations that have the

equivalent area. We show that compression can have a significant impact on all configurations, a

link compression also has a significant impact on bandwidth-limited configurations. We focus on ou

commercial benchmarks in this section. We next discuss our simulation and workload setup.

7.8.1  Simulation Setup

The objective of our simulation experiments is to obtain more accurate estimates of throughput for

mercial benchmarks compared to our analytical model. We measure throughput for commercial b

marks using the number of transactions completed per billion cycles of runtime. We use the sam

processor configuration of Chapter 6. However, our CMP design is different from that of Chapter 6

we use a fixed-area processor model where each processor core and its associated L1 caches is ar

alent to 0.5 MB of L2 cache area. The total chip area is the same as 8 MB of L2 cache.

Due to the time and space overhead of setting up simulation experiments, we only simulate configu

at two-processor increments. We simulate the following configurations represented as tuples of (num

processor cores, L2 cache size): (2, 7 MB), (4, 6 MB), (6, 5 MB), (8, 4 MB), (10, 3 MB), (12, 2 MB), (

1 MB).

In order to obtain a fair estimate of throughput for commercial workloads, we used the same num

users/threads for each workload across different processor configurations. We used the same com

workloads described in Table 5-2, but we increased the number of users/threads we use for all pro

configurations as follows:



tes of

t on

of the

chieve

fewer

signif-

com-

on or

ow the

cor-

me (all

ose to

arks:

ver the

tively.

e other
170
OLTP. We used 256 total users for all processor configurations.

SPECjbb. We used 24 warehouses for all processor configurations.

Apache and Zeus. We used 6000 threads for all processor configurations.

We simulated our four benchmarks for all seven processor configurations and obtained estima

throughput for each configuration1. Throughput for a real setup of these benchmarks will be dependen

the number of users/threads. However, we anticipate that the qualitative analysis (e.g., the shape

throughput graphs) will remain the same.

7.8.2  Balanced CMP Design with Compression and Prefetching

With unlimited bandwidth, a CMP design has to divide the chip area between caches and cores to a

the best throughput. As we showed in our analytical model, configurations with very few cores have

threads to run, while configurations with too many cores have higher miss rates. Both extremes can

icantly limit throughput. In Figure 7-9, we show the impact of cores and caches on the throughput of

mercial benchmarks for different compression and prefetching configurations (no compressi

prefetching, prefetching only, compression only, and both compression and prefetching). We also sh

impact on utilized bandwidth in Figure 7-10. The left most point in each line is an artificial point that

responds to no cores and the whole chip composed of caches. We did not simulate the other extre

cores, no caches) because of the prohibitive simulation time, but its throughput would be very cl

zero. We make the following observations:

• With no compression, adding more cores improves throughput up to a certain point for all benchm

10p for zeus and oltp, and 12p for apache and jbb. Speedups for these optimal configurations o

2-processor configurations were 4.3x, 3.7x, 1.8x, and 3.2x for apache, zeus, oltp and jbb, respec

1. We do not show results for apache on 10 processors since it showed some abnormal behavior that is not similar to th

configurations.
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FIGURE 7-9. Commercial workload throughout for different compression and
prefetching configurations. All Processor/cache configurations have a 20 GB/sec. pin
bandwidth
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FIGURE 7-10. Utilized bandwidth for different compression and prefetching
configurations of commercial workloads. All Processor/cache configurations have a 20
GB/sec. available pin bandwidth
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• Compression alone helps all workloads and configurations achieve up to 13% improveme

throughput. This is mostly due to the impact of cache compression. At 20 GB/sec. pin bandwidth

compression does not provide any significant impact on throughput except for the extreme con

tion of 14 processors /1 MB L2 cache. Speedups for the optimal compression configurations ov

2-processor baseline with no compression or prefetching were 4.8x, 4.1x, 1.95x, and 3.5x for a

zeus, oltp and jbb, respectively.

• Prefetching alone helps many workloads and configurations achieve up to 33% throughput im

ment. However, for some benchmarks where prefetching is not effective (e.g., jbb), prefet

reduces throughput by up to 35%. In addition, prefetching reduces throughput for configurations

small cache sizes by up to 28% due to the increase in pin bandwidth demand. Speedups for the

compression configurations over the 2-processor baseline were 4.2x, 4.2x, 1.7x, and 2.5x for a

zeus, oltp and jbb, respectively.

• Prefetching alone increases utilized pin bandwidth for all configurations by up to 44% (Figure 7

For some configurations with small cache sizes, the increase in pin bandwidth demand due to pr

ing utilizes more than 90% of the available pin bandwidth. Compression alone decreases pin

width utilization by up to 40%. When both compression and prefetching are implemented, utilize

bandwidth is almost the same as the utilized pin bandwidth when neither is implemented.

• The combination of prefetching and compression provides significant throughput improvements

pared to the two base cases (no compression or prefetching, and prefetching alone). Thro

improvement can be up to 49% compared to the base case of no compression or prefetching, an

27% compared to the base case of prefetching alone. Speedups for the optimal compression co

tions over the 2-processor baseline with no compression or prefetching were 5.5x, 5.3x, 2.0x, an

for apache, zeus, oltp and jbb, respectively.



sion is

ura-

many

coef-

an be

t nega-

effi-

mmuni-

cores
174
• The optimal design point for each benchmark does not shift towards more cores when compres

implemented. We attribute this to the fact that we are simulating throughput for different config

tions at 2-processor increments, whereas our analytical model showed smaller differences. In

cases, compression only shifted the optimal design point by one processor.

• Prefetching and compression interact positivity for most configurations. We show the interaction

ficient of all benchmarks and configurations in Figure 7-11. The positive interaction coefficients c

up to 28% due to many of the same factors discussed in Chapter 6. The two schemes interac

tively only for a few configurations (2p zeus, 2p and 4p oltp). However, all negative interaction co

cients are less than 4%.

7.8.3  Impact of Limited Bandwidth

For bandwidth-limited systems, a CMP design has to balance the three C’s—cores, caches, and co

cation—such that none is the sole bottleneck. For such a bandwidth-limited system, adding more
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FIGURE 7-11. Interaction between compression and prefetching for all benchmarks
and processor configurations
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FIGURE 7-12. Commercial workload throughout for different compression schemes
and processor configurations. All configurations have a 10 GB/sec. pin bandwidth
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also improves throughput until bandwidth becomes a critical resource. For our four commercial b

marks, the bandwidth demand increases with more cores and fewer caches.

Figure 7-12 demonstrates the trade-off between cores, caches, and communication for our com

benchmarks assuming a 10 GB/sec. pin bandwidth. We make the following observations:

• When the utilized bandwidth is low, the lines follow the same trends of Figure 7-9. However, a

bandwidth becomes a bottleneck, many uncompressed configurations (with or without prefet

suffer from degraded performance as the number of cores increases and cache sizes decrease

• Compression alone improves performance for all configurations by up to 25% compared to confi

tions without compression or prefetching that have the same number of cores. For this bandwidt

ited system, the optimal design point is also shifted towards more cores for jbb. When combined

prefetching, the two schemes interact positively. Such positive interaction is mostly caused by

width savings due to compression that alleviate some of prefetching’s extra bandwidth deman

optimal configuration of both compression and prefetching has up to a 37% higher throughput

pared to the optimal configuration of prefetching alone (since jbb has a slowdown due to prefetch

• The optimal configuration with no compression or prefetching is at 10 cores for zeus, oltp and jbb

12 for apache cores. The optimal design point shifts towards more cores for some benchmark

compression alone (e.g., jbb where it shifts to 12 processors). When compared with the base

only prefetching, compression shifts the optimal design point towards more cores for all benchm

• Prefetching and compression interact positivity for most configurations. We show the interaction

ficient of all benchmarks and configurations in Figure 7-13. The positive interaction coefficients c

up to 33%, and are higher for most configurations than the coefficients for 20 GB/sec. bandwidth

two schemes interact negatively only for 2p and 4p oltp, with negative interaction coefficients b

3%.
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• We note from Figure 7-13 that the interaction coefficients decrease for the 14-processor configu

for all benchmarks. Since such configuration has a small cache (1 MB), miss rates are high and

width is constrained even in the absence of prefetching. With prefetching, link compression c

reduce bandwidth demand to the point where demand is no longer a bottleneck. This decrea

positive interaction coefficients between compression and prefetching.

7.9  Model Validation

We used our simulation experiments in the previous section to validate results from our analytical m

We extracted model parameters from our simulation experiments. We used the model to estimate th

ber of transactions per billion cycles for each of our benchmarks using the model’s IPC:

 (7.21)
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FIGURE 7-13. Interaction between compression and prefetching for 10 GB/sec. pin
bandwidth

TransactionsPerBillionCycles
IPC 10

9×
InstructionsPerTransaction
---------------------------------------------------------------------------=
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FIGURE 7-14. Comparing throughput estimates from analytical model and
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Throughput is shown in transactions per 1 billion cycles for all benchmarks.
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We estimated performance for our four commercial benchmarks for the base case and for when ca

link compression are implemented. We compare model and simulation results in Figure 7-14. This

demonstrates the following:

• The analytical model can successfully predict the general trend in throughput improvements fo

workloads. The general shape of the throughput curve is similar for the analytical model and si

tion.

• The relative error in the model’s throughput estimates compared to simulation is quite high, as m

43%, 29%, 46%, and 30% for apache, zeus, oltp, and jbb, respectively.

• The figure shows that except for apache, the model has errors in a single direction by over-esti

throughput. For apache, the model under-estimated throughput for some configurations as well.

caused by the model’s many simplifying assumptions (Section 7.4).

• The model successfully predicted the optimal configuration for zeus with and without compress

also predicted the optimal configuration for apache and jbb with compression. For other bench

and configurations, we note that the model’s predicted optimal configuration differs by 2-proce

from simulation results. We note, however, that there is only a small difference in throughput (as

sured by simulations) between the model’s optimal and the simulation’s optimal configuration.

In summary, our simple analytical model provided some qualitative estimates that can be used for

exploration and to gain intuition into CMP design trade-offs. However, a more accurate model shou

developed to predict throughput with more accuracy.

7.10  Related Work

There has been some work on chip design space that is related to our study. Farrens, et al., explored

utilize a large number of transistors (by 1994 standards) and allocate them to processors, instruction

and data caches. Using trace-based simulation, they found that a balance needs to be achieved
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instruction and data caches, and that more processors can be placed on-chip to improve performan

They defined the equivalent cache transistor (ECT) metric as a relative area metric between process

and caches.

Huh, et al., explored the CMP design space and tried to answer several questions: How many core

CMPs will have, whether cores will be in-order or out-of-order, and how much cache area will there

future CMPs [62]. They also pointed out pin bandwidth as being a potential limiting factor for CMP

formance. They pointed out that the number of transistors per pin is increasing at an exponentia

which they projected would force designers to increase the area allocated to on-chip caches at the

of processor cores. In our design, this is not necessarily the case since compression shifts the balan

by increasing the effective cache size without significantly increasing its area.

Davis, et al., studied the throughput of area-equivalent multi-threaded chip multiprocessors (CMT)

simulation of throughput-oriented commercial applications [33]. They demonstrated that “mediocre”

(i.e., small, simple cores with small caches and low performance) maximize the total number of

cores and outperform CMTs built from larger, higher performance cores. They also showed that thr

put increases with the number of threads till it reaches a maximum and then degrades due to pipelin

ration or bandwidth saturation. Such behavior is similar to our throughput curves.

Li, et al., used uniprocessor traces of SPEC2000 benchmarks to estimate CMP throughput [85]

assert that thermal constraints dominate other physical constraints in CMP design such as pin-ban

and power delivery. However, their work did not consider multi-threaded or commercial benchmarks

7.11  Summary

In this chapter, we examined how to design CMP systems that balance cores, caches and commu

resources. We discussed the role that compression plays in shifting this balance. We developed a

analytical model that measures throughput for different CMP configurations with a fixed area budge
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used this model and simulation experiments to qualitatively and quantitatively show that compressio

significantly improve CMP throughput (by 25% or more for some configurations). We showed that

pression improves CMP throughput over a wide range of system parameters. We demonstrated th

pression interacts positively with hardware prefetching, leading to improvements in throughput th

significantly higher than expected from the product of throughput improvements of either scheme

We show that compression can sometimes shift the optimal design point towards more processo

potentially leading to more core-centric CMP designs.
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Summary

In this chapter, we summarize the conclusions of this dissertation, and discuss some possible a

future research.

8.1  Conclusions

Chip multiprocessors (CMPs) combine multiple processors on a single die. The increasing number

cessor cores on a single chip increases the demand on the shared L2 cache capacity and the off-

bandwidth. Demand on these critical resources can be further exacerbated by latency-hiding tech

such as hardware prefetching. In this dissertation, we explored using compression to effectively in

cache and pin bandwidth resources and ultimately CMP performance.

Cache compression stores compressed lines in the cache, potentially increasing the effective cac

reducing off-chip misses, and improving performance. On the downside, decompression overhe

slow down cache hit latencies, possibly degrading performance. Link compression compresses com

cation messages before sending to or receiving from off-chip system components, thereby increas

effective off-chip pin bandwidth, reducing contention and improving performance for bandwidth-lim

configurations. While compression can have a positive impact on CMP performance, practical impl

tations of compression raise a few concerns (e.g., compression’s overhead and its interaction with pr

ing).

In this dissertation, we made several contributions that address concerns about different aspects o

menting compression. We proposed a compressed L2 cache design based on a simple compression
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with a low decompression overhead. Such design can double the effective cache size for many

marks. We developed an adaptive compression algorithm that dynamically adapts to the costs and

of cache compression, and uses compression only when it helps performance.

We showed that cache and link compression both combine to improve CMP performance for comm

and scientific workloads by 3-20%. We demonstrated that compression interacts in a strong positiv

with hardware prefetching, whereby a system that implements both compression and hardware pref

outperforms systems that implement one scheme and not the other. Furthermore, the speedup due

compression and prefetching (10-51% for all but one of our benchmarks) can be significantly highe

the product of the speedups of either scheme alone. We presented a simple analytical model that he

vide qualitative intuition into the trade-off between cores, caches, communication, and compressio

we used full-system simulation to quantify this trade-off for a set of commercial workloads.

8.2  Future Work

Opportunities for future research exist in cache and link compression, since this dissertation h

exhausted either of these areas. We next outline a few possible areas of future research.

Power.We did not study the full impact of cache and link compression on CMP power. On the one h

we anticipate that compression can significantly reduce power by avoiding misses and reducing com

cation bandwidth. On the other hand, it can have an adverse effect on core power consumption due

pression and decompression of cache lines, as well as cache set repacking. We predict that com

can have a significant impact on power reduction, but such prediction merits further investigation.

Compression in multi-CMP systems.In this dissertation, we only studied the impact of compression o

single CMP. In a multi-CMP system, compression and decompression overheads will be added to

chip communication. Our adaptive compression scheme predicts whether compression is benefic

single chip, and is therefore not optimized for inter-chip communication. While we anticipate that
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“optimal” predictors will not significantly change on-chip predictions regarding compression, such

tions need to be studied further.

Use of extra tags. In our decoupled variable-segment cache design, we support having more tags per

set than existing lines. We use these extra tags to save information about compressed lines. We a

these tags to classify cache accesses and use this information to update our compression predicto

ever, these extra tags can be used for many additional purposes. For example, they can be used to

ment and improve cache replacement algorithms, classify useful and harmful prefetches, and

requests in speculative coherence protocols. Previous work has explored uses of additional tags,

interactions of such uses with compression has not been studied.

Analytical CMP models. In this dissertation, we showed that a simple analytical model can provide i

ition into CMP design. However, the many approximations we made in our model make it unsuitab

accurately predict throughput. Future research can explore analytical models with different levels o

plexity to more accurately predict CMP throughput, a speed vs. accuracy trade-off.

The above areas do not present an exhaustive list of future related research. We hope that our w

enhance and motivate research in these and other areas.
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