
Emulating Goliath Storage
Systems with David

Nitin Agrawal, NEC Labs

 Leo Arulraj,

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

ADSL Lab, UW Madison

1

The Storage Researchers’ Dilemma

Innovate
Create the future of storage

Measure
Quantify improvement obtained

Dilemma
How to measure future of storage with

devices from present?

David: A Storage Emulator

Large, fast, multiple disks using
small, slow, single device

Huge Disks

~1TB disk using 80 GB disk

Multiple Disks

RAID of multiple disks using RAM

Key Idea behind David

Store metadata, throw away data

(and generate fake data)

Why is this OK ?

Benchmarks measure performance

Many benchmarks don’t care about file content

Some expect valid but not exact content

Outline

Intro

 Overview

 Design

 Results

 Conclusion

Benchmark

Filesystem

Backing Store

Storage
Model

Userspace

Kernelspace

DAVID
(Pseudo Block Device Driver)

Overview of how David works

Illustrative Benchmark

Create a File

Write a block of data

Close the File

Open file in read mode

Read back the data

Close the File

Benchmark

Filesystem

F = fopen(“a.txt”,”w”);

Allocate
Inode in

block 100

Storage Model Backing Store

How does David handle metadata write?

Benchmark

Filesystem

100
Inode block

 LBA : 100

Storage Model Backing Store

How does David handle metadata write?

Benchmark

Filesystem

100 100

Storage Model Backing Store

How does David handle metadata write?

Benchmark

Filesystem

100

1

Model calculates
response time for
write to LBA 100

Metadata block at
LBA 100 is remapped

to LBA 1

Storage Model Backing Store

Remap Table

100 1

How does David handle metadata write?

Benchmark

Filesystem

100

1

Response to FS after 6 ms

Storage Model Backing Store

Remap Table

100 1

How does David handle metadata write?

Benchmark

Filesystem

fwrite(buffer, 4096,1,F);

800
Data block
 LBA : 800

Storage Model

1

Backing Store

Remap Table

100 1

How does David handle data write?

Benchmark

Filesystem

800 800

Storage Model

1

Backing Store

Remap Table

100 1

How does David handle data write?

Model calculates
response time for
write to LBA 800

Data block at LBA 800
is THROWN AWAY

800

Benchmark

Filesystem

Storage Model Backing Store

1 Remap Table

100 1

How does David handle data write?

Response to FS after 8 ms

800

Space Savings

50%

Benchmark

Filesystem

Storage Model Backing Store

1 Remap Table

100 1

How does David handle data write?

Benchmark

Filesystem

F = fclose(F);
F = fopen(“a.txt”,”r”);

Storage Model Backing Store

1 Remap Table

100 1

How does David handle metadata read?

Benchmark

Filesystem

100
Inode block

 LBA : 100

Storage Model Backing Store

1 Remap Table

100 1

How does David handle metadata read?

Benchmark

Filesystem

100 100

Storage Model Backing Store

1 Remap Table

100 1

How does David handle metadata read?

1

Model calculates
response time for
read to LBA 100

Block at LBA 1 is read
and returned.

100
1

Benchmark

Filesystem

Storage Model Backing Store

Remap Table

100 1

How does David handle metadata read?

Benchmark

Filesystem

100

1

Response to FS after 3 ms

100

1

Storage Model Backing Store

Remap Table

100 1

How does David handle metadata read?

Benchmark

Filesystem

fread(buffer, 4096,1,F);

800
Data block
 LBA : 800

Storage Model

1

Backing Store

Remap Table

100 1

How does David handle data read?

Benchmark

Filesystem

800 800

Storage Model Backing Store

1 Remap Table

100 1

How does David handle data read?

Model calculates
response time for
read to LBA 800

Data block at LBA 800
is filled with fake

content

800 800

Benchmark

Filesystem

Storage Model Backing Store

1 Remap Table

100 1

How does David handle data read?

Benchmark

Filesystem

Response to FS after 8 ms

800

Storage Model Backing Store

1 Remap Table

100 1

How does David handle data read?

Outline

Intro

 Overview

 Design

 Results

 Conclusion

Design Goals for David

Accurate

 Emulated disk should perform similar to real disk

Scalable

 Should be able to emulate large disks

Lightweight

 Emulation overhead should not affect accuracy

Flexible

 Should be able to emulate variety of storage disks

Adoptable

 Easy to install and use for benchmarking

Components within David

Storage
Model

Block Classifier

Metadata
Remapper

Data
Squasher

Data
Generator

Backing
Store

Block Classification
Data or Metadata?

Distinguish data blocks from metadata blocks
to throw away data blocks

Why difficult?

David is a block-level emulator

Two Approaches

Implicit Block
Classification

(David automatically
infers block

classification)

Explicit Block
Classification

(Operating System
passes down block

classification)

Implicit Block Classification

Parse metadata writes using filesystem knowledge to
infer data blocks

Implementation for ext3

• Identify inode blocks using ext3 block layout

• Parse inode blocks to infer direct/indirect blocks

• Parse direct/indirect blocks to infer data blocks

Problem

Delay in classification

Ext3 Ordered Journaling Mode
(without David)

Journal Disk

M

D

Ext3 Ordered Journaling Mode
(with David)

Journal Disk

Unclassified
Block Store

Memory Pressure in
Unclassified Block Store

Too many unclassified blocks exhaust memory

Technique: Journal Snooping

Parse metadata writes to journal to infer
classification much earlier than usual

Effect of Journal Snooping

0

500

1000

1500

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
e

m
o

ry
 U

se
d

(M

B
)

Time
(seconds)

Without Journal Snooping With Journal Snooping

Out of Memory

Block Classification
Data or Metadata?

Distinguish data blocks from metadata blocks
to throw away data blocks

Why difficult?
David is a block-level emulator

Two Approaches

Implicit Block
Classification

(David automatically
infers block

classification)

Explicit Block
Classification

(Operating System
passes down block

classification)

Capture page pointers to data blocks in the write system call
and pass classification information to David

Benchmark
Application

FileSystem

Data Blocks

Metadata Blocks

To David

Explicit Block Classification

Block Classification Summary

Implicit Block
Classification

Explicit Block
Classification

No change to
filesystem, benchmark

or operating system

Minimal change to
operating system

Requires filesystem
knowledge

Works for all
filesystems

Results with ext3 Results with btrfs

Components within David

Storage
Model

Block Classifier

Metadata
Remapper

Data
Squasher

Data
Generator

Backing
Store

David’s Storage Model

Filesystem

Actual System Emulated System

Storage
 Model

I/O request
queue

Benchmark

Disk

Filesystem

David

Benchmark

I/O Queue Model

Merge sequential I/O requests
• To improve performance

When I/O queue is empty
• Wait for 3 ms anticipating merges

When I/O queue is full
• Process is made to sleep and wait
• Process is woken up once empty slots open up
• Process is given a bonus for the wait period

 I/O queue modeling critical for accuracy

Disk Model

Simple in-kernel disk model
• Based on Ruemmler and Wilkes disk model

• Current models: 80GB and 1 TB Hitachi deskstar

• Focus of our work is not disk modeling

 (more accurate models are possible)

Disk model parameters
• Disk properties

 Rotational speed, head seek profile, etc.

• Current disk state

 Head position, on-disk cache state, etc.

David’s Storage Model Accuracy

Reasonable accuracy across many workloads
 Many more results in paper

Components within David

Storage
Model

Block Classifier

Metadata
Remapper

Data
Squasher

Data
Generator

Backing
Store

Backing Store

Any physical storage can be used
• Must be large enough to hold all metadata blocks

• Must be fast enough to match emulated disk

Two implementations
• Memory as backing store

• Compressed disk as backing store

Storage space for metadata blocks

Metadata Remapper

Remaps metadata blocks into compressed form

Inode Data Inode Data Inode Data

Inode Inode Inode

Emulated Disk

Compressed Disk
(better performance)

Components within David

Storage
Model

Block Classifier

Metadata
Remapper

Data
Squasher

Data
Generator

Backing
Store

Data Squasher and Generator

Data Squasher

Throws away writes to data blocks

Data Generator

Generate content for the reads to data blocks

(currently generates random content)

Outline

Intro

 Overview

 Design

 Results

 Conclusion

Experiments

Emulation accuracy
Test emulation accuracy across benchmarks

Emulation scalability
Test space savings for large device emulation

Multiple disk emulation
Test accuracy of multiple device emulation

Emulation Accuracy Experiment

Experimental details

Emulated ~1 TB disk with 80 GB disk

Ran a variety of benchmarks
Validated by using a real 1 TB disk

Emulation Accuracy Results
(Ext3 with Implicit Block Classification)

0

50

100

150

200

250

300

350

400

Real

Emulated

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Emulation Accuracy Results
(Btrfs with Explicit Block Classification)

0

50

100

150

200

250

300

350

Real

Emulated

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Emulation Scale Experiment

Experimental details

Emulated ~1 TB disk using a 80 GB disk

Created filesystem images using Impressions
Validated by using a real disk

Emulation Scale: Accuracy

Emulation Scale: Space Savings

Multiple Disks Experiment

Experimental details

Emulated multiple disks using RAM

Measured micro-benchmark performance on RAID-1
Validated our results against real disks

Simple RAID-1 Emulation

0

50

100

150

200

250

300

R/3 W/3 R/2 W/2 R/1 W/1

R
u

n
ti

m
e

 (
se

co
n

d
s)

Original

David

Random Read or Write Performance

Outline

Intro

 Overview

 Design

 Results

 Conclusion

Conclusion
David:

Emulate large devices with limited means

Key idea:

Throw away data

Results:

Accurate emulation of large and multiple disks

Future:

Emulating storage cluster with few machines

Thank You
www.cs.wisc.edu/adsl

Questions?

Measuring Innovation

Thorough measurement
is Hard and Costly

Time, Money, Effort needed
to measure performance on a variety

of storage devices

Tiny benchmarks are easy to run

Implicit Block Classification

Unclassified block store
• Unclassifiable blocks are temporarily stored in

Unclassified Block Store which is in RAM

• Journal checkpoint frequency determines the
delay in classification

• Upon classification, data blocks are squashed and
metadata blocks are persisted

