
Atoll: A Scalable Low-Latency Serverless Platform
Arjun Singhvi

University of Wisconsin-Madison
Arjun Balasubramanian∗

Amazon Web Services
Kevin Houck∗

Amazon Web Services

Mohammed Danish
Shaikh∗
Google

Shivaram Venkataraman
University of Wisconsin-Madison

Aditya Akella
University of Texas-Austin

and Google

Abstract
With user-facing apps adopting serverless computing, good
latency performance of serverless platforms has become a
strong fundamental requirement. However, it is di�cult to
achieve this on platforms today due to the design of their
underlying control and data planes that are particularly ill-
suited to short-lived functions with unpredictable arrival pat-
terns.We present Atoll, a serverless platform, that overcomes
the challenges via a ground-up redesign of the control and
data planes. In Atoll, each app is associated with a latency
deadline. Atoll achieves its per-app request latency goals
by: (a) partitioning the cluster into (semi-global scheduler,
worker pool) pairs, (b) performing deadline-aware schedul-
ing and proactive sandbox allocation, and (c) using a load
balancing layer to do sandbox-aware routing, and automati-
cally scale the semi-global schedulers per app. Our results
show that Atoll reduces missed deadlines by ⇠66⇥ and tail
latencies by ⇠3⇥ compared to state-of-the-art alternatives.

CCS Concepts
• Distributed architectures! Cloud computing.

Keywords
Serverless Computing, Low-Latency, Scalable

ACM Reference Format:
Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mohammed
Danish Shaikh, Shivaram Venkataraman, and Aditya Akella. 2021.
Atoll: A Scalable Low-Latency Serverless Platform. In ACM Sympo-
sium on Cloud Computing (SoCC ’21), November 1–4, 2021, Seattle,

∗Work done while at University of Wisconsin-Madison

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8638-8/21/11. . . $15.00
https://doi.org/10.1145/3472883.3486981

WA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3472883.3486981

1 Introduction
Recent trends in cloud computing point towards increased
adoption of micro-services to design and deploy online ap-
plications [34]. Each micro-service can be independently
deployed and managed, and collectively the microservices
implement what used to be realized as large monolithic soft-
ware. To meet this demand imposed by independently scal-
able micro-services, simplify programming, and relieve pro-
grammers from provisioning and elastic scaling responsibili-
ties, cloud providers now o�er Function-as-a-Service (FaaS)
or serverless computing [3, 4, 8].

While serverless platforms simplify deploying such work-
loads in the cloud, they are unable to provide good latency
performance, which is particularly important for user-facing
applications [18, 29, 40, 43, 47]. Our analysis of serverless
workloads indicate that that the platform needs to handle
functions that are very short lived, have unpredictable ar-
rival patterns, and require potentially expensive setup of
sandboxes in which functions are executed [55] (§2). The
platform’s underlying control and data plane designs are a
poor �t for these attributes, making it di�cult to ensure that
serverless request latencies are within the bounds expected
by the user.

In a serverless platform, the control plane consists of load
balancing and scheduling layers that are responsible for rout-
ing incoming requests to the underlying machines, and the
data plane corresponds to the sandboxes in which functions
are actually executed. To meet latency expectations, vari-
ous aspects of the control and data planes need to be re-
designed, bringing to fore fundamental challenges and trade-
o�s. Firstly, with data plane/sandbox management, there is
an intrinsic trade-o� between reducing the number of re-
quests that experience sandbox setup overhead and the mem-
ory consumed in keeping sandboxes provisioned (possibly
ahead of time). Secondly, the control plane must be scalable
yet capable of making optimal scheduling decisions as fail-
ing to do so leads to additional setup overheads (e.g., when
the control plane fails to �nd machines that have sandboxes
available for reuse) [35]. Finally, existing platforms [3, 4, 8]

138

https://doi.org/10.1145/3472883.3486981
https://doi.org/10.1145/3472883.3486981
https://doi.org/10.1145/3472883.3486981

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA A. Singhvi et al.

do not take into account the native execution time of func-
tions and nor does their function upload work�ow allow
users to specify request priorities. Thus, it is unclear if or
how platforms today prioritize requests to ensure that they
are serviced within the expected bounds.
We present Atoll, a serverless platform, designed from

the ground-up, that carefully navigates the control and data
plane design trade-o�s and challenges, and strives to max-
imize the number of requests that meet their deadline, i.e.,
�nish within the user-speci�ed bounds. The following design
choices form the basis of Atoll: (i) a hierarchical control plane,
in which the di�erent layers are co-designed, giving the abil-
ity to (ii) gradually scale apps across the cluster along with
the introduction of (iii) soft state in the form of proactively
allocated sandboxes and being (iv) aware of app deadlines.
Our overall design is scalable at individual component

level and performance-awareness permeates the entire archi-
tecture. First, Atoll partitions the given cluster into a number
of smaller worker pools. Each worker pool is managed by
a semi-global scheduler (SGS); with appropriate sizing of
the worker pool, we can ensure that each SGS imposes low
scheduling overheads for request execution. To achieve opti-
mal placement and ensure that most incoming requests are
served by a ready sandbox, each SGS also tracks the number
of requests for every app it is serving, and proactively allo-
cates sandboxes to minimize the overheads in critical path
of function execution. Crucially, we create these sandboxes
as soft state where they only use memory resources from a
�xed sized pool and can be evicted without a�ecting correct-
ness. While recent e�orts [17, 20, 51] proposee techniques
to reduce sandbox allocation overheads, they typically come
at the cost of isolation and/or code compatibility which pre-
cludes their widespread adoption [16] (§8). Atoll’s approach
of reducing the sandboxes setup in the critical path ensures
that the overall request latency is not a�ected despite any
overheads necessary for isolation and/or code compatibility.

Second, Atoll uses a scheduling algorithm within an SGS
that is aware of the app latency requirements. This enables us
to compute a running slack, or the time-to-deadline remain-
ing for a given request, and use a variant of the shortest-
remaining-time-�rst algorithm to minimize the deadlines
missed. Here, we leverage that apps running in a cluster
have di�erent slacks, and low-slack apps’ resource needs can
be met by reallocating resources from high-slack ones.
While partitioning a cluster can help lower scheduling

overheads, we must determine how requests are routed to
each SGS in a cluster. Thus, the third idea in Atoll is to co-
design the load balancing layer with the scheduling layer.
This enables the load balancer layer to use a sandbox-aware
load balancing policy that can route requests while being
aware of the number of sandboxes of di�erent apps proac-
tively allocated in every SGS. In order to simplify the load

balancing layer and make it scalable, every app is assigned
to a single SGS to begin with and based on the number of
requests, the load balancer can scale out (or in) the SGSs
assigned to this app. Using an approach that is also aware
of sandbox allocation ensures that app performance is mini-
mally a�ected when scaling across the cluster.
We build Atoll in Go and evaluate our prototype against

state-of-the-art alternatives by replaying workloads from
a serverless trace published by Microsoft [55] as well as
using a collection of apps derived from our analysis of the
serverless repository maintained by AWS [7]. Our results
show that Atoll reduces the number of deadlines missed by
up to ⇠66⇥ and tail latencies by ⇠3⇥ over state-of-the-art
alternatives while occupying upto 22% additional memory
due to worst case load proactive sandbox allocation. We �nd
that the bene�ts provided by Atoll hold under a spectrum
of allocation overheads that re�ect various state-of-the-art
techniques (§7.4).

2 Background and Motivation
We start with a primer on serverless computing and char-
acterize popular apps in the AWS serverless repository [9].
Based on our analysis, we state our requirements along with
why current platforms fall short.
2.1 Serverless Computing Background
In serverless computing, the user writes a function, uploads
it to the serverless platform and registers for an event (e.g.,
HTTP request) to trigger function execution. Henceforth,
we use event and request interchangeably. When a request
arrives, it may lead to a sandbox being setup (known as
“cold start” which involves launching a new container, set-
ting up the runtime environment, and deploying the func-
tion by downloading code from the datastore) on the cluster
machines and then running the function; alternatively, the
request may be sent to an existing “warmed up” sandbox
as platforms typically do not immediately decommission a
sandbox after execution enabling reuse for future executions
of the same function [1].
2.2 Characterizing Real World Serverless Apps
We characterize serverless apps by studying the top 50 de-
ployed functions in the AWS Serverless Application Repos-
itory (SAR) [9]. SAR consists of diverse functions that run
on AWS Lambda [8]. This repository is widely used by the
serverless community which is evident from the fact that the
top app has been deployed 94K times. Out of the 50 functions
studied, 23 are in NodeJS, 26 in Python, and 1 in Java.
Benchmarking Methodology. We upload functions and
initiate their execution in the us-east-1 region via the AWS
CLI from a VM. We collect the : (1) function code size; (2)
sandbox setup overhead - time taken to setup the function
sandbox; (3) execution time - time taken to execute the core

139

Atoll: A Scalable Low-Latency Serverless Platform SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

(a) (b) (c) (d) (e)

Figure 1: Distribution of (a) execution time, (b) SNE - sandbox setup overhead normalized by execution time, (c) code size, (d) memory provi-
sioned across the 50 functions and (e) unused memory across functions that provision greater than 128 MB memory.

(a) (b)
Figure 2: Distribution of (a) execution time and (b) SNE across the
foreground and background functions.

function logic (without including sandbox setup overhead);
(4) provisionedmemory - memory available to function as con-
�gured by the user; and (5) runtime memory - actual memory
consumed during execution. We also classify functions as
foreground or background based on what they are intended
for. We now discuss the key takeaways from our analysis -
[T1] Functions have a wide range of execution times.
We �nd that 57% functions have an execution time <100ms
(see Fig. 1a). These typically correspond to user-facing func-
tions. Also, ⇠10% functions have an execution time >1s. Re-
cent academic works have shown that serverless platforms
are attractive for tasks with even longer durations [33, 56].
Fig. 2a shows that the majority (⇠65%) of the foreground
functions have execution times <100mswhereas background
ones run longer with <⇠5% having execution times <100ms.
[T2] Sandbox setup overheads dominate function exe-
cution times. We measure the ratio of the sandbox setup
overhead to the execution time to investigate the impact of
overheads on the end-to-end latencies. We refer to this ratio
as SNE (sandbox setup overhead normalized by execution
time). Fig. 1b indicates that sandbox setup overheads domi-
nate for >88% functions with the overhead being >100⇥ in
37% of them. Our observations are consistent with prior work
[50, 51, 63]. Fig. 2b shows that high sandbox setup overheads
impact foreground functions much more severely. These
numbers represent the overhead while using microVMs in-
ternally used by AWS Lambda [16]. Recently, lighter-weight
alternatives have been proposed. However, they o�er weak
isolation and/or sacri�ce code compatibility and thus are not
widely adopted [16] (§8).
[T3] Functions have a wide range of code sizes. Setting
up sandboxes also involves downloading code from the data-
store and loading the runtime, which contribute to the above
reported setup overheads. We notice (Fig. 1c) that code sizes

can be as large as 34MB. Prior works have shown that these
steps can take a signi�cant time (upto 10s of seconds) de-
pending on the code [51].
[T4] Functions typically have smallmemory footprints.
Fig. 1d shows the maximum memory provisioned by the
functions. 78% of them require only 128MB. Fig. 1e further
shows that most functions requesting more than 128MB of
provisioned memory typically leave a signi�cant fraction of
provisioned memory unused.
2.3 Serverless Platform Requirements
Based on the above takeaways, the requirements of an ideal
serverless platform are as follows:
[R1]Minimize the impact of sandbox setup overheads
on end-to-end request latencies. Given that these over-
heads dominate execution times (T2, T3), we need to elimi-
nate or minimize their impact on the incoming requests.
[R2] Minimize the impact of control plane overheads
on end-to-end request latencies. Given that functions
with low execution times are the common case (T1), we
require the load balancing and scheduling layers to make
decisions in sub-millisecond at scale.
[R3] Have a scalable control plane. Given that the plat-
formwill service several apps and their request load can grow
arbitrarily, we require scalable load balancing and scheduling
where neither can become a bottleneck.
Overall Goal. Given that many apps will run simultane-
ously on the platform, our high-level goal is to support tight
performance bounds for the requests. Speci�cally, per app,
we want to maximize the number of requests whose end-to-
end latencies are close to the native app execution time. We
allow developers to de�ne how close to native execution they
wish to be, by allowing them to specify a deadline. Develop-
ers can estimate the app execution time using a few canary
requests and specify the deadline based on the requirements
of the app (user-facing vs. background).
2.4 Serverless: CurrentData +Control PlaneChoices
Given the overall goal, we now restate the fundamental trade-
o�s and challenges that arise when redesigning data and
control planes, and discuss shortcomings of state-of-the-art.
Sandbox Management. To reduce the impact of sandbox
setup overheads, platforms do not immediately decommis-
sion sandboxes once setup, enabling reuse for future requests

140

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA A. Singhvi et al.

of the same function. However, platforms today [3–5, 8] only
reactively setup sandboxes [55], i.e., the scheduler waits for a
request to arrive and only then sets up a sandbox (if existing
ones are busy) leading to requests experiencing a cold start -
additional latency due to sandbox setup. Additionally, while
sandbox reuse amortizes the overhead across numerous re-
quests, platforms today enable reuse by adopting a static
and workload-unaware policy - a sandbox is kept loaded in
memory for a �xed time after a function execution. While
this policy is simple to implement, it does not take into ac-
count workload characteristics and can thus lead to wasteful
memory consumption (e.g., when sandboxes are loaded even
when the workload does not require them), or additional
overheads (e.g, too few sandboxes available and workload
increases). There have been recent e�orts [17, 20, 51] that re-
duce sandbox setup overheads. However, such improvements
typically come at the cost of isolation and/or code compati-
bility which precludes their widespread adoption [16].
Scheduling Architectures. While cloud providers do not
reveal the architecture adopted by their serverless o�erings,
we explore the design choices of scheduler architectures and
�nd existing alternatives unsuitable for serverless platforms
given the workload requirements. State-of-the-art central-
ized schedulers [11, 30, 60] can make optimal scheduling
decisions but cannot scale to handle the low latency and high
requests-per-second throughput requirements, nor are they
designed to o�er good performance under rapidly-changing
request arrival patterns. On the other hand, state-of-the-art
decentralized approaches (e.g., Sparrow [52] or Ray [49]),
where multiple schedulers without a global view carry out
scheduling (e.g., by randomly probing machines) are more
scalable, but in many cases do not �nd machines that have a
sandbox available for reuse leading to additional overheads
from setup [35]. We further discuss additional scheduler ar-
chitectures and their shortcomings in §8.
Scheduling and Load Balancing Policies. Existing plat-
forms today [3, 4, 8] do not take into account execution times
of functions and nor do their function upload work�ow al-
lows users to specify request priorities. Thus it’s unclear
if/how they prioritize requests to ensure that the latencies
are within the expected bounds. Moreover, recent charac-
terizations of popular serverless platforms reveal that their
schedulers adopt a simple �rst-in-�rst-out policy [58]. The
key challenge here is to design scheduling and load balanc-
ing policies in concert such that they are light-weight and
ensure requests are executed within their latency bounds.

3 Atoll Key Ideas and Request Control Flow
We now describe the key ideas that form the basis of Atoll, a
serverless platform designed to meet speci�ed deadlines for
latency-sensitive apps running on a �xed-size cluster.

1. Data plane management via decoupling sandbox al-
location from request scheduling: Atoll reduces the cold
starts by removing sandbox allocation overhead (§2) from
the critical path of request execution by proactively allocating
sandboxes ahead of time based on the expected future load for
a function. This approach is viable since functions typically
have small memory footprints (T4 in §2.2). Crucially, Atoll
allows the platform admin to bound the amount of memory
that can be used for proactive allocation, and has appropriate
allocation and eviction mechanisms in place to act within
that bound. Speci�cally, Atoll uses a novel even placement
approach to spread sandboxes across the cluster so as to
maximize the probability of future requests bene�ting from
these provisioned sandboxes and lazily evicts sandboxes to
deal with temporary load �uctuations (§4.3). This approach
of reducing cold starts is orthogonal to the recent e�orts that
reduce the sandbox allocation overheads (§8).
2. Autonomous schedulers and deadline-aware sched-
uling: To scale scheduling, we introduce semi-global sched-
ulers (SGSs) in the control plane. Each SGS is responsible
for exclusively managing a partition of the cluster machines
known as its worker pool. This ensures that a scheduler does
not become a scalability bottleneck and makes optimal deci-
sions within the worker pool. We also use a deadline-aware
scheduling strategy (§4.2) that leverages the �exibility of
the di�erent slack requirements amongst requests and mul-
tiplexes among apps’ requests to minimize the deadlines
missed (§2).
3. Co-designing the load balancing and scheduling lay-
ers: Partitioning the cluster introduces the challenge of de-
termining which apps are assigned to which and how many
SGSs. To address this challenge, we adopt a hierarchical con-
trol plane design but unlike prior works [64], we co-design
the load balancing layer with the scheduling layer so that it
has the required visibility to (a) do sandbox-aware request
routing, i.e., take into account proactively allocated available
sandboxes, so that maximum future requests bene�t from the
allocation and (b) prevent an SGS from becoming hotspots
by developing a per-app low-overhead gradual scaling mech-
anism that uses queuing delay as the scaling indicator and
allows logically scaling out/in the schedulers associated with
an app (§5.2) without unduly impacting request processing.
We now present an end-to-end example that highlights

the various features of Atoll.
Initial App Upload. The user develops the function and
uploads it to our platform. During the initial upload, as done
today, the user also speci�es the resource requirements as
well as the dependencies between functions of the app via a
directed acyclic graph (similar to AWS Step Functions [6]).
Crucially, we also require the user to specify the app deadline.
This can be derived from the 99p latency that is acceptable

141

Atoll: A Scalable Low-Latency Serverless Platform SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

Load
Balancer 1

.Load
Balancer 2

Load
Balancer n

Semi-Global
Scheduler 1

Semi-Global
Scheduler 2

Semi-Global
Scheduler n

.SS
LB

S

Worker Pool Worker Pool Worker Pool

Figure 3: Atoll Architecture. Core services include load balancing
service and a scheduling service consisting of semi-global sched-
ulers that manage their own worker pool.

for the app. Using the deadline, Atoll determines the avail-
able slack for the requests it services and uses this to ensure
minimum deadlines are missed. To prevent developers from
always specifying deadlines such that there is zero slack,
serverless providers can o�er di�erent pricing tiers corre-
sponding to each slack level so as to incentivize developers
to specify deadlines that actually re�ect app requirements.
Request Control Flow (see Fig. 3).When a request arrives
at our platform, it gets routed to one of the many load bal-
ancers (LB) that form the load balancing service (LBS). The
LB routes it to one of the many SGSs that form the schedul-
ing service (SS) based on its routing policy. At the SGS, the
request is enqueued for scheduling. Requests are prioritized
by the SGS in a deadline-aware fashion and run on workers
available in its worker pool in a work-conserving fashion.

In the background we perform two main actions: �rst, the
SS monitors the incoming tra�c to adjust the sandbox allo-
cations and places sandboxes so as to maximize the bene�t
of proactive allocation. Second, the LBS monitors the load
on each SGS and adjusts the routing policy accordingly. We
discuss the details of the services in subsequent sections.

4 Scheduling Service (SS)
SS is responsible for managing sandboxes and scheduling
incoming app requests. We describe its scalable architecture
(§4.1) and then discuss its deadline-aware scheduling strategy
(§4.2). Finally, we explain the approach used to proactively
allocate sandboxes to reduce cold starts (§4.3).
4.1 Semi-Global Schedulers (SGS)
To cater to the low latency requirements and make optimal
scheduling decisions at scale, Atoll divides the cluster into
a number of worker pools, where each worker pool consists
of a subset of machines and is managed exclusively by a
semi-global scheduler. The SGSs make up the scheduling
service. Each SGS handles a subset of apps. The app to SGSs
assignment can change at a coarse-time granularity and is
managed by the load balancing service.
Sizing Worker Pools. While deploying Atoll, the platform
admin is responsible for determining the worker pool size.
The trade-o� here is that using too large a worker pool would
lead to increased scheduling delays (§2). On the other hand

using too small a worker pool could result in load imbalance
across various SGS and necessitate frequent load balancing
(§7.7). As an extreme, if we choose a worker pool with just a
single machine then the load balancer would need to perform
scheduling. A simple approach is to organize each rack as a
worker pool with one of the machines running the SGS.
4.2 Deadline Aware Scheduling
We now present the scheduling strategy used by an SGS
beginning with single function app requests and then gen-
eralize it to apps with multiple functions. Given our goal of
meeting latency deadlines, we would like to use a policy that
minimizes the missed deadlines. Also, given the short execu-
tions times, we assume that functions cannot be preempted.

Following classic scheduling approaches to minimize the
execution time [28, 53], we propose using the shortest re-
maining slack �rst (SRSF) algorithm. Whenever a CPU core
becomes available, the SGS �lters requests to only consider
ones whose resource requirements are met by the current
available resources and then calculates a remaining slack (RS)
for the �ltered requests. RS here is de�ned as the remaining
time a request can be queued without violating its deadline.
The SGS prioritizes and schedules the request that has

the least remaining slack. In case of ties, the SGS picks the
request that has the least remaining work. Doing so ensures
that we quickly get another opportunity to schedule, which
further minimizes deadlines missed. Also, scheduling based
on remaining slack avoids starvation for large slack requests.
Multi-Function App. Apps can also consist of multiple
functions expressed via a directed acyclic graph (DAG) [33,
56]. We now extend our scheduling strategy to handle such
apps. Atoll handles DAGs by calculating the remaining slack
for the outstanding functions in the followingmanner - when
a function �nishes execution (say the root function), Atoll
calculates the slack for the now schedulable functions (func-
tions in the DAG whose dependencies are met) by subtract-
ing the remaining critical path execution time of the app
from the time to the app’s deadline and places them in the
scheduling queue.
4.3 Proactive Sandbox Allocation
Given that serverless workloads have their execution time
in the same order of magnitude as that of setting up sand-
boxes (§2.2) [55], we need to ensure that requests are not
exposed to this overhead. To achieve this, Atoll reduces cold
starts by decoupling sandbox allocation from scheduling
of incoming requests. This allows each SGS to proactively
setup sandboxes based on the future expected load which is
in contrast to today’s platforms [55] that are not workload-
aware and reactively setup sandboxes when a request arrives.
This ensures that the overhead cost paid for isolation and
code compatibility does not get in the way of performance.
In contrast, recent proposals to reduce overheads trade-o�

142

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA A. Singhvi et al.

SLA = 99%

, T

= Avg. Request Rate , T = Poisson Time Interval

99%

Requests

Scaled by
execution time

#
Sandboxes

Figure 4: Estimating number of sandboxes to proactively allocate

isolation and/or code compatibility (§8). By decoupling al-
location from scheduling, Atoll also enables pipelining of
allocation with scheduling, resulting in reduced impacts of
cold starts.
Proactively allocated sandboxes occupy memory and do

not consume any other resources. With high-memory ma-
chines becoming the norm and serverless functions having
small memory footprints (§2) [55], we believe it is viable to
trade o� the memory consumed by the proactively allocated
sandboxes to ensure that users are not exposed to sandbox
setup overheads. To limit the amount of memory used, the
platform admin can con�gure the amount of memory on each
machine that can be used to proactively setup sandboxes. We
refer to this memory as the proactive memory pool from here
on. Our evaluations show that Atoll o�ers bene�ts over state-
of-the-art approaches even under proactive memory pool
pressure (§7.5). Finally, we note that proactively allocated
sandboxes are a form of soft state [25] that can potentially
improve performance without a�ecting correctness.
Each SGS is responsible for proactively setting up sand-

boxes of functions for which it is receiving requests (as de-
cided by the LBS). In order to do so, the SGS must answer the
following questions: (1) how many sandboxes of each func-
tion must be setup proactively? (2) how should these sand-
boxes be placed on its worker pool? (3) when/how should
these sandboxes be evicted from the proactive memory pool?
4.3.1 Sandbox Demand Estimation
For each function (part of one or more apps) that is being
handled by the SGS, we need to determine the minimum
number of sandboxes that need to be allocated to reduce
cold starts. To do so, the SGS requires an estimate of the
function arrival rate and its request arrival pattern. Atoll’s
programmable SGS estimator allows the platform admin to
use its own logic speci�cally tailored to its workload (trig-
gered periodically).
Currently, in our prototype we estimate the arrival rate

by recording the arrival rate of a function (over a 100ms in-
terval) and using an exponentially weighted moving average
over the current interval’s measured rate and the previous
estimate to get the new estimate. Using this estimated arrival
rate, we model request arrivals to follow a Poisson distribu-
tion (mimics cloud workloads [36, 48]) and determine the
number of requests expected in the Poisson time interval
T. Speci�cally, we use the inverse distribution function to

�nd the maximum number of requests that can arrive in T
(Fig. 4). However, given that function execution time can be
longer than T, we scale up the maximum number of requests
to account for requests that over�ow from the current time
interval to the next one. In our evaluation (§7), we observe
that this simple estimator o�ers reasonable performance in
the face of a variety of realistic workload arrival patterns.
4.3.2 Sandbox Placement
Now, given the number of sandboxes that need to be setup
for a function, the SGS needs to decide how to place these
sandboxes across the various workers in its worker pool.
Ideally, we would want to place the sandboxes to maximize
the future requests that will use them.
Given recent e�orts [51] towards reducing the memory

footprint of proactively setting up sandboxes, a tempting
approach would be to pack as many sandboxes of the same
function on the same worker. While this reduces the mem-
ory overhead, it does not increase the probability of future
requests bene�ting from proactive allocation. For example,
consider a scenario where there are two worker machines
and the demand estimation of two functions is 2 sandboxes
each. Using the above approach, the sandboxes belonging to
the same function are setup on the same worker (see Fig. 5b).
In such a case, when a core becomes available on worker
one and the outstanding request for the second function is
to be scheduled, it experiences the overhead of setting up a
sandbox as no compatible sandbox is available on the worker.
Instead, in Atoll, for a given function, we evenly spread

its sandboxes across the various workers (lines 7-19 in Pseu-
docode 1). Speci�cally, given the number of sandboxes re-
quired, for each sandbox that needs to be setup, the following
2-step process is taken (via the allocator sub-module, Fig. 5a):
(1) determine the worker that has the minimum number of
sandboxes of this function, and (2) setup sandbox on the
worker. This approach improves statistical multiplexing, i.e.,
makes it easier for future requests to �nd a proactive sand-
box. In Fig. 5b, the request does not incur setting up overhead
as a compatible sandbox is already available.
While currently Atoll does sandbox placement on a per-

function basis, we leave additional optimizations such as
taking DAG dependencies into account as future work.
4.3.3 Sandbox Eviction
The previous section described how an SGS proactively al-
locates containers based on estimations. However, when the
estimators deem that not all the sandboxes previously allo-
cated are required, we need to decide what should be done
with these excess sandboxes. A natural approach would be
to evict these containers from the underlying worker pool as
they consume memory. However, in Atoll we lazily evict con-
tainers from the worker pool to avoid unnecessary sandbox
allocation overheads.

143

Atoll: A Scalable Low-Latency Serverless Platform SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

Execute

DAG

Record

Occurence

Priority queue

ordered by

Remaining Slack

Periodic estimate

per DAG

Allocation / Eviction

decisions

WORKER POOL

Resource

Available Event

Schedule

Function

Allocate Sandbox

Evict Sandbox

ESTIMATOR SANDBOX MANAGER

(a)

Sandbox of
Function 1

Sandbox of
Function 2

PACKED ALLOCATION

EVEN ALLOCATION

CPU core

Warm start

Cold start

Function 2
request

Function 2
request

(b)

Start Active

Soft

Evicted

Hard

Evicting
Evicted

Time to setup

sandbox

Time to

teardown

sandbox

Overhead incurred in

transition

No overhead incurred

in transition

(c)
Figure 5: (a) SGS zoomed-in view - a priority queue, an estimator, and a sandbox manager (b) Comparison of multiplexing in packed and even
allocation policies. With packed allocation, the execution of function 2 incurs a cold start (marked in dashes) due to the unavailability of a
proactively allocated sandbox on that machine. With even allocation, the execution of function 2 does not incur a cold start (marked in solid)
since a proactively allocated sandbox is available (c) Sandbox lifecycle in Atoll along with overheads incurred during state transitions.

Pseudocode 1 Atoll Sandbox Management
1: . Given a Function F, either allocate or evict sandboxes
2: procedure S������M���������(Function F)
3: if F.newDemand > F.oldDemand then
4: A�������S��������(�, F.���D����� � F.���D�����)
5: else if F.newDemand < F.oldDemand then
6: S���E����S��������(�, F.���D����� � F.���D�����)

7: . Given a function F and its demand, allocate sandboxes
8: procedure A�������S��������(Function F, Int allocDemand)
9: for _ in range(allocDemand) do
10: minW = ���W�����W���M��S��������(F.��)
11: sandboxFound, sandbox = minW.getSoftEvictedContainer(F.id)
12: if sandboxFound then
13: minW.SoftAllocate(sandbox) . Allocate a soft evicted sandbox
14: continue
15: if minW.hasEnoughPoolMem(F) then
16: minW.Allocate(F) . Allocate a new sandbox
17: else
18: minW.HardEvict(F) . Hard evict sandboxes to free memory
19: minW.Allocate(F)

20: . Given function F, evict enough sandboxes to launch a sandbox of F
21: procedure H���E����(Function F)
22: while w.freePoolMem < F.memNeeded do
23: victimF = w.getVictimF() . Get function based on fairness metric
24: w.Evict(victimF) . w.freePoolMem increases due to eviction

In Atoll, a sandbox goes through two eviction stages - soft
eviction and hard eviction (Fig. 5c). When the estimates fall
below the previous estimate, the SGS marks the excess sand-
boxes as soft evicted, i.e., they will not be considered while
scheduling requests. Given the excess number of sandboxes
of a function that need to be soft evicted, the SGS needs to de-
cide which sandboxes across the various workers need to be
soft evicted. For this, the SGS follows a process similar to the
placement approach, with the only di�erence being that it se-
lects the worker(s) that have the maximum sandboxes of this
type, and soft evicts a sandbox from it. This process repeats
until the required number of sandboxes are soft evicted (lines
5-6 Pseudocode 1). This approach balances the sandboxes
across workers to the extent possible which improves sta-
tistical multiplexing. Having soft evicted sandboxes enables
Atoll to deal with temporary load �uctuations. In such sce-
narios, sandboxes are soft evicted when the load decreases.
When the load increases back, soft evicted containers just
need to be unmarked and this incurs no overheads.

Finally, a sandbox is hard evicted only when the proactive
memory pool on a worker is saturated and a new sandbox
needs to be setup (lines 20-24 in Pseudocode 1). The SGS hard
evicts the sandbox of a function whose current allocation
is closest to its estimation. This prevents functions whose
allocations are far from their estimation being negatively im-
pacted. The SGS prefers to hard evict a soft evicted sandbox
before evicting ones that may be reused for scheduling.

5 Load Balancing Service (LBS)
The LBS is responsible for routing requests to the underly-
ing SGSs. We discuss its responsibilities (§5.1) and how it
performs the tasks at hand (§5.2).
5.1 Service Responsibilities
The LBS has two key responsibilities : (1) balance load across
SGSs: given that the underlying SGSs partitions the cluster,
the LBS should ensure that the load is spread across the vari-
ous SGSs and a single SGS does not become a bottleneck; (2)
perform sandbox-aware routing: given that the SGSs proac-
tively allocates sandboxes, the LBS should route requests
appropriately with the objective of maximizing the number
of requests that bene�t from the proactive allocation.
5.2 Scaling SGSs used per App
Given that the cluster is partitioned and is managed by vari-
ous SGSs, a key question that needs to be answered is among
how many SGSs should the requests of an app be spread
across? A possible solution would be to use all the SGSs and
spread the requests evenly. This would avoid hotspots but
naively applying such an approach would lead to degraded
performance as more requests would experience the sandbox
allocation overhead as each SGS triggers allocations only
when it starts receiving requests.

At the other extreme is the option of routing all requests of
the app to a single SGS. While this approach does not su�er
from the same limitations, a single SGS may not have enough
capacity to handle the incoming workload. Thus, we choose
a middle ground and dynamically associate the right number
of SGSs that are needed to handle an app. However, to ensure
that this dynamic approach is e�ective and performant, the
following questions need to be answered - (1) what should

144

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA A. Singhvi et al.

Scale
out?LB

4

1

SGS1 SGS2

Enqueue

2

Response
[#Sandboxes,

Queuing Delay]

3

Add
new
SGS

5

Request

Yes

Figure 6: Interaction of load balancer with SGSs during a scale out

be used as the indicator to scale SGSs in and out? (2) what is
our scaling mechanism? and (3) how do we ensure that the
request latencies do not su�er when we scale out/in?
5.2.1 What is the scaling indicator?
There are numerous situations under which the current SGSs
associated with an app could be too few, requiring scale out.
First, when the incoming workload of an app cannot be
handled by the current SGSs due to resource unavailability.
This can happen either due to the incoming load being too
high or due to contention with other apps that are handled
by the same SGSs. Second, we also need to scale out when
there is severe pressure on the cumulative proactive memory
pool which can lead to users experiencing sandbox allocation
overheads.
Rather than relying on multiple metrics to indicate the

above situations, we leverage queuing delay experienced
by requests (of the corresponding app) at the SGS as the
universal metric. Queuing delay covers the above situations
and is easily observable. Each SGS measures the delays per
app using EWMA (similar to how it estimates the per app
RPS) over a window. The SGS piggybacks this measured
queuing delay with each outgoing response to the LBS. The
LBS further uses this information to decide if we need to
scale out/in.
5.2.2 What is the scaling mechanism?
Initial SGS Selection. When a request for an app arrives
for the �rst time at the LBS, we use consistent hashing [38] to
determine which SGS to route requests to. The LBSmaintains
a consistent hash ring - with all the underlying SGSs hashed
to the ring (by using their ID). When the �rst request arrives,
the LBS hashes the app ID to the ring to determine the initial
SGS. Using consistent hashing ensures that no single SGS is
overwhelmed by being responsible for a large share of apps
and enables easy maintenance of the underlying SGSs (an
SGS under maintenance is removed from the hash ring and
its load is redistributed).
Scale Out (see Fig 6). The LBS receives the queuing delay
observed by the requests of this app at the various SGSs. It
then computes a scaling metric which is a function of the
reported per-SGS queuing delays normalized by the deadline
(described below). If the metric is above a scale-out threshold,
then the LBS scales by associating another SGS (the next
one in the ring) with this app (lines 6-7 in Pseudocode 2).

Pseudocode 2 Atoll Per App SGS Scaling
1: procedure S������(App A)
2: �!

N . per associated SGS sandbox count for App A
3: �������!

qDela� . per associated SGS observed queuing delay for App A

4: weightedQDelay =
Õ
i

�!
Ni ⇤

��������!
qDela�iÕ
i
�!
Ni

5: scalingMetric = wei�htedDela�
A.slack

6: if scalingMetric > ScaleOutThreshold then
7: S����O��(A)
8: else if scalingMetric < ScaleInThreshold then
9: S����I�(A)

Upon scaling, the LBS noti�es each of the SGSs associated
with this app to reset the queuing delay windows so that it
can observe the impact of its decision. The LBS makes the
next scaling decision once the windows are �lled to avoid
reacting to transient changes.
Scale In. The LBS follows a similar process as above to
decide if we need to dissociate an SGS from the app, with
the di�erence being that we scale in if the scaling metric
falls below the scale-in threshold (lines 8-9 in Pseudocode 2).
We remove the SGS that was added last from the pool. To
avoid oscillations in the scaling process, we keep the scale-in
threshold well below the scale-out threshold.
Scaling Metric (lines 4-5 in Pseudocode 2). Given the
per-SGS queuing delay, to calculate the scaling metric, we
�rst compute a weighted sum of queuing delays where we
scale per-SGS queuing delay based on the number of proac-
tively allocated sandboxes that exist at the SGS. Next, we
normalize this weighted sum by the available slack for the
app. Weighing the queuing delays proportional to the num-
ber of sandboxes ensures that we give more (less) importance
to the SGS that handles more (less) requests of this app as the
sandboxes indicate what quantity of requests are handled
by an SGS. Normalizing by the available slack makes the
scaling deadline-aware as it scales-out more aggressively for
latency-sensitive jobs compared to background jobs as the
former has less slack and queuing delays can lead to more
missed deadlines.
5.2.3 How to do transparent scaling?
When the LBS scales the SGSs associated with an app, we
also need to ensure that this does not have a negative im-
pact on the requests. Atoll achieves this by scaling gradually
rather than instantly.

When scaling out, we associate an additional SGS with the
app. However, instantly sending requests to the new SGS will
lead to these requests experiencing sandbox setup overheads.
The LBS overcomes this issue by gradually ramping up the
new SGS by - (1) using lottery scheduling to do sandbox-
aware routing among the various SGSs where the number of
tickets for each SGS correspond to the number of proactive
sandboxes it has setup for this app and (2) notifying the new
SGS to proactively allocate the average number of sandboxes

145

Atoll: A Scalable Low-Latency Serverless Platform SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

Modes Description

GFR

Represents state-of-the-art serverless platforms [3, 5, 8].
SGSs have global view (G), schedule requests in FIFOmanner
(F) [58], allocate sandboxes reactively (R); kept in memory
for a �xed 15 mins inactivity timeout [12, 13, 55, 59].

GDR Replace the FIFO scheduler with deadline-aware scheduler
(D) in GFR. Shows the impact of being deadline-aware.

GDPI
Replace reactive allocation with proactive allocation (P) and
instant eviction when not required (I) in GDR. Shows the
impact of proactive allocation.

Atoll Replace instant eviction with soft eviction in GDPI. Shows
the impact of soft eviction.

D-
Atoll

Decentralized version of Atoll. SGS does not have complete
view over its worker pool and schedules the incoming re-
quest among the two randomly picked workers [52]. Shows
the impact of not having a global view.

Table 1: Description of various incremental baselines and Atoll

present across the active SGSs (calculated including the new
SGS). We initialize the tickets for the new SGS with a small
value (say 1) so that requests go to it and this gets updated
as and when sandboxes are setup. Recall that the LBS knows
about the number of sandboxes allocated as they are piggy
backed on the responses. The system reaches steady-state
once the required number of sandboxes have been allocated.
Similarly, we need to scale in gradually as doing so in-

stantly can result in overwhelming the reduced SGSs subset.
We do so by maintaining two SGSs lists for an app - an active
list and a removed list. While scaling in, we shift the SGS from
the active list to the removed list. During lottery scheduling,
we still consider SGSs in the removed list but scale down
their lottery tickets by a discount factor. This ensures gradual
scale in and the reduced subset is not overwhelmed.

6 Implementation
We built our prototype in Go (⇠15K LOC). All services are
implemented as multi-threaded processes. Our LBS has a
HTTP front end to receive events that trigger the app execu-
tion. The SGS consists of the three loosely coupled modules
- scheduler, estimator and sandbox manager. All workers
have an execution manager running as a daemon process.
This daemon receives scheduling requests from an SGS and
places them in the corresponding core queues, and also han-
dles sandbox allocation/eviction requests. Currently, the pro-
totype supports docker containers as well as Go routines
as sandbox environments. All communication between the
di�erent components happen via protocol bu�ers [14]. For
increased resilience to failure, one may replicate the SGSs
and LBS using Apache ZooKeeper [31].

7 Evaluation
7.1 Experimental Setup
Cluster. We evaluate Atoll on a 74 node cluster on Cloud-
Lab [23]. All nodes have 256GB memory and 10Gbps NIC.
We partition the cluster to have 8 SGSs, each of which has a
worker pool of 8 machines, 1 load balancer (uses the logic

Class Exec. Time (ms) Slack (ms)
C1 [10-20] [30-40]
C2 [300-500] [200-300]
C3 [100-200] [800-1000]
C4 [100-1500] [900-4000]

Table 2: [Workloads 1-2] Class-wise execution times and slack

described in §5; unless speci�ed otherwise) and 1 workload
generator. We set the scale out threshold SOT= 0.3 (§7.7).
Baselines.We compare Atoll against several baselines (Ta-
ble 1) with GFR (Global view, FIFO scheduling and Reactive
sandbox allocation) representing the existing state-of-the-art
serverless platforms [3, 5, 8]. We also include incremental
baselines that enable us to see the bene�ts of each aspect of
Atoll. To do a fair quantitative comparison, we implement
and evaluate various baselines in the same prototype and
cluster setup described above. This ensures that all baselines
run in the same setting (e.g., using the same network and
number of physical machines) and have the same entities
in the request serving path. On the other hand, directly us-
ing public serverless platforms (e.g., AWS Lambda) leads
to challenges in determining the exact number of physical
machines used and in breaking down end-to-end latencies
(load balancing vs. scheduling vs. other unknown intermedi-
ate component overheads). Further, open source serverless
frameworks like OpenWhisk [5] involve additional entities
(e.g., Kafka [2] and CouchDB [15]) in the critical path making
it challenging to perform a fair comparison.
Workloads. We evaluate Atoll using a publicly available
trace-driven workload fromMicrosoft [55] and two synthetic
workloads that keep the cluster CPU load between work-
loads ⇠70% to 110%. For the two synthetic workloads, we
consider four di�erent classes of apps (derived from our AWS
SAR study): (i) C1 consists of single function apps that have
very short execution times and tight deadlines. These apps
represent user-facing functions. (ii) C2 consists of apps that
have medium execution times and relatively strict deadlines
compared to their execution times. These apps represent
more expensive user-facing functions. (iii) C3 consists of
apps that have short execution times, and less strict deadlines.
These apps represent non-critical user-facing functions (such
as updating a metrics dashboard). (iv) C4 consists of multi-
function diamond structured apps (similar to [33]) along with
single-function apps, high execution times and loose dead-
lines. These apps represent background jobs. We randomly
sample execution times and slack from the ranges in Table 2.

In workload 1, for each app we model several request ar-
rival patterns randomly picked from a class of representative
serverless arrival patterns such as on/o� (on/o� duration
picked from Poisson distributions), constant and sine pat-
terns [55] (Table 3). In workload 2, apart from the patterns
present in workload 1 we also introduce Poisson arrivals as
they represent human generated events [55] (Table 3). Apart

146

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA A. Singhvi et al.

Class 1 Class 2 Class 3 Class 4
DAG class

%
 d

ea
dl

in
es

 m
is

se
d GFR

GDR
GDPI
Atoll

D-Atoll

(a)

Class 1 Class 2 Class 3 Class 4
DAG class

Ta
il

La
te

nc
y

(m
s) GFR

GDR
GDPI
Atoll

D-Atoll

(b)

Class 1 Class 2 Class 3 Class 4
DAG class

%
 d

ea
dl

in
es

 m
is

se
d GFR

GDR
GDPI
Atoll

D-Atoll

(c)

Class 1 Class 2 Class 3 Class 4
DAG class

Ta
il

La
te

nc
y

(m
s) GFR

GDR
GDPI
Atoll

D-Atoll

(d)
Figure 7: Atoll vs. Baselines. Workload 1 - (a) Deadlines Missed, (b) Tail Latencies; Workload 2 - (c) Deadlines Missed, (d) Tail Latencies (99.9p)

from these two workloads, forworkload 3we use a publicly
available trace of serverless workloads [55]. We pick a couple
of popular functions for each of the ten event types and scale
the arrival patterns according to our testbed. The function
execution times are in the range of 18-124 ms and we set the
slack to be 15-25% of execution time as platforms today do
not have a notion of deadlines. Given that the trace does not
report the allocation overheads, we assign the functions ran-
domly sampled allocation overhead of the latency-sensitive
functions (class C1) from our AWS SAR study. For all our
experiments, Atoll does not assume that the arrival patterns
and rates are known apriori.
Metrics. We use the following metrics to evaluate Atoll -
(i) %deadlines missed - %requests that do not complete
within their deadline; (ii) number of cold starts - number
of requests that experience sandbox allocation overhead and
(iii) end-to-end latencies - turn around of a request.
7.2 Macrobenchmarks
Fig. 7a-7b show the deadlines missed and tail latencies for
the various baselines and Atoll for workload 1. GFR has
the most deadlines missed (66⇥) and has overall the highest
latency (3⇥) over Atoll as it is deadline-unaware and sets up
sandboxes reactively.
Using a deadline-aware scheduler (GDR) vs FIFO leads

to 2.73⇥ less missed deadlines. This is due to the scheduler
prioritizing latency sensitive requests. However, there is only
a slight reduction in cold starts (1.03⇥) as sandboxes are still
being set up reactively. On switching to GDPI, we see that it
further leads to 2.99⇥ fewer missed deadlines over GDR due
to proactive sandbox allocation which leads to 6.82⇥ fewer
cold starts (also 1.45⇥ better tail latencies) over GDR.

Finally, we replace instant evictionwith soft evictionwhich
represents Atoll. This leads to a signi�cant reduction in
missed deadlines by 8.14⇥ due to 1.29⇥ lesser cold starts over
GDPI. The bene�ts observed are due to Atoll not reacting to
transient load changes and as doing so leads to setup over-
heads once the transient passes. We observe that the var-
ious aspects of Atoll contribute to its signi�cant ben-
e�ts (< 1% missed deadlines) over the state-of-the-art
with 9⇥ fewer cold starts, 3⇥ better tail latencies and
66⇥ fewer deadlines missed. Additionally, we also com-
pare Atoll with a decentralized version of itself - we see that

Pattern Parameters
Poisson RPS=[300-1000]
On-O� Requests=[200-800], Period=[5-20]s
Constant RPS=[100-200]

Sinusoidal Avg. RPS=[300-1000], Amplitude=[100-500], Period=[10-
30]s

Table 3: [Workloads 1-2] Arrival pattern parameters. We randomly
sample multiple patterns for each class
decentralized scheduling leads to more cold starts which
results in 1.26⇥ increase in tail latencies and thus 2.14⇥ in-
crease in deadlines missed due to not having a global view.
We observe similar trends (< 1% missed deadlines) for

workload 2 (Fig. 7c-7d) - Atoll leads to 10.17⇥ fewer
cold starts, 4.18⇥ better tail latencies and 26.39⇥ fewer
missed deadlines over GFR.
Proactive SandboxAllocationAnalysis.We observe that
across both the workloads, the estimator in Atoll is able
to closely estimate the ideal number of sandboxes that
need to be set up for the diverse arrival patterns. Speci�-
cally, we observe that in the worst case Atoll allocates ⇠22%
and ⇠18% more sandboxes for workload 1 and 2 respectively.
This is because the SGS provisions for the worst case load to
ensure requests do not incur cold starts (§4.3.1). Also, there
are times when an SGS allocates sandboxes anticipating fu-
ture requests, but then the app scales out to another SGS
due to contention at the prior one. However, this is not a
concern since Atoll uses an isolated memory pool for proac-
tive sandboxes along with a workload-aware eviction policy.
Moreover, over-provisioning to this extent is acceptable as it
in line with what providers tolerate today [55]. We further
evaluate Atoll’s performance under memory pressure in §7.5.

Lastly, in the context of the baselines that reactively allo-
cate sandboxes, we see that classes C1-C3 that have relatively
less slack tend to miss more deadlines. Our analysis reveal
that this is due allocation being coupled to scheduling, i.e.,
sandboxes can be allocated only when a request is scheduled,
which leads to incoming requests to be queued. Atoll miti-
gates this by proactively allocating sandboxes o� the critical
path which enables pipelining of allocation and scheduling.
This leads to ⇠13.7⇥ better latencies for such classes.
Workload 3 (Fig. 11a-11b). We see that Atoll o�ers signif-
icant bene�ts with real world low-latency functions with
tight deadlines. Over GFR, we observe that Atoll leads to

147

Atoll: A Scalable Low-Latency Serverless Platform SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

Figure 8: Sandbox Placement - Even Vs.
Packing

Figure 9: A app with lower slack scales-
outmore than a app with higher slack

Figure 10: Contention from a bursty app
(App1) causes App2 to scale-out

GFR GDR GDPI Atoll D-Atoll

%
 d

ea
dl

in
es

 m
is

se
d

(a) Deadlines Missed
GFR GDR GDPI Atoll D-Atoll

Ta
il

La
te

nc
y

(m
s)

(b) Tail Latencies (99.9p)
Figure 11: Workload 3 - Atoll vs. Baselines

13.26⇥ fewer cold starts, 2.5⇥ better tail latencies and
49.91⇥ fewermissed deadlines due to its various design
decisions. We observe that moving to (a) GDR from GFR
leads to 1.97⇥ fewer deadlines missed due to deadline-aware
scheduling, (b) GDPI from GDR leads to 5.94⇥ fewer cold
starts due to proactive sandbox allocation and (c) soft evic-
tion from instant eviction leads to 5.91⇥ fewer deadlines
being missed.

In summary, we notice that the various design choices in
Atoll help in reducing the deadlines missed and improving
tail latencies, with proactive sandbox allocation and soft
evicition resulting in the most gains.
7.3 Microbenchmarks
To delve deeper into bene�ts of Atoll, we also run small-scale
microbenchmarks with 1 LB, one or more SGSs having 10
workers each using simple synthetic workload arrivals to
ease explanation of behavior. We �nd that the behavior holds
true for other arrivals as well.
7.3.1 SGS Sandbox Management
We study the e�ectiveness of the sandbox placement and
eviction against alternative strategies using one SGS.
Evenly spreading sandboxes.We compare our approach
to when the SGS packs sandboxes on the same worker (to
the extent possible) using a single app sinusoidal workload
with 1200 avg. RPS, 600 RPS amplitude and 20s period. Both
the approaches allocate the same number of sandboxes as
they use the same workload. However, we observe (Fig. 8)
that packing leads to ⇠70% deadlines missed during intervals
of increased load (3-4, 8-9). This is due to sandboxes being
available on a smaller fraction of workers, and at increased
load, requests get scheduled on workers that do not have
sandboxes available. In contrast, even placement o�ers better
statistical multiplexing resulting in better handling of bursts.

Workload-aware hard eviction.We compare our fair evic-
tion approach with LRU (§4.3.3) using a workload that has
two apps: one that has a constant 200 RPS, and another that
has an on/o� pattern with 100 RPS. The proactive pool is
con�gured low so that it causes hard eviction. We observe
that tail latency using LRU is 4.62⇥ worse than fair eviction.
This is due to LRU optimizing for the short-term without
taking into account future demand, which Atoll does. We
observe that during the o�-period, it causes all of its sand-
boxes to be hard evicted leading to overheads during the
next on-period.
7.3.2 LBS Scaling Strategy
We now evaluate various aspects of the LBS scaling strategy
using 5 SGSs.
Gradual Per-App Scaling.We compare our gradual scale-
out approach using lottery scheduling (§5.2.3) with an instant
scale-out alternative in which the LBS routes requests in a
round-robin manner among the SGSs. Using a single-app
sinusoidal workload with 800 avg. RPS, 600 RPS amplitude
and 100s period (elongated period to capture snapshot of
gradual scaling bene�ts), we observe instant scale-out having
1.5⇥ higher tail latencies over Atoll. This is due to the LBS
immediately routing requests to the newly added SGS of an
app without taking into account # of available sandboxes.
Deadline-aware Per-App Scaling. To study the impact of
Atoll’s scaling metric being deadline aware, we consider a
two app workload in which both follow the same sinusoidal
workload (see Fig. 9) and have 100ms execution time but
di�er in their slacks - one has 50ms while the other has
200ms. We observe (Fig 9) that the smaller slack app scales
to more SGSs relative to the other app (e.g., in the 20-30s
interval, smaller slack app scales to 4 while the other one
scales to 3). This shows the bene�ts of being deadline aware
- the LBS scales up latency sensitive apps more aggressively
over background apps that can tolerate delayed responses.
Contention-aware Per-App Scaling. Given that multiple
apps are handled by an SGS, we need to ensure that an app
does not su�er due to the increased load of another app. To
evaluate this, we consider a two app workload - one that has
a bursty sinusoidal distribution and the other one having a
low, constant rate. The request rate of the second app is set
such that it requires only one SGS if it were the only app (see
Fig 10). We observe that the LBS is able to scale out the low

148

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA A. Singhvi et al.

1 10 50 100
Overhead

%
 d

ea
dl

in
es

 m
is

se
d GFR

GDR
GDPI

Atoll
D-Atoll

(a) Deadlines Missed

1 10 50 100
Overhead

Ta
il

La
te

nc
y

(m
s) GFR

GDR
GDPI
Atoll
D-Atoll

(b) Tail Latencies (99.9p)
Figure 12: SandboxAllocation Overhead Impact - Atoll vs. Baselines

rate app to another SGS (e.g., at ⇠ 5s) due to contention at
the initial SGS and then it scales in once contention reduces
(e.g., at ⇠ 17s). Atoll is able to act in this manner due to the
codesigning of LBS and SS which gives the former visibility
into contention at each SGS and scale appropriately.
7.4 Sandbox Allocation Overhead Impact
Given the e�orts [17, 20, 22, 51] to reduce allocation over-
heads, we now evaluate Atoll’s performance under di�erent
overheads - 100ms, 50ms, 10ms and 1ms (emulated using go-
routines). Expectedly, we observe (Fig. 12a) that the missed
deadlines relative to the GFR reduces from 56.62⇥ to 9.64⇥
to 6.20⇥ to 2.70⇥ as the overhead changes from 100ms to
eventually 1ms. This is because lesser overheads leads to
more requests in the workload being tolerable to allocation
in the critical path as their slack is more than the overhead.
However, workloads with tight slacks (e.g., [42]) would

still bene�t from Atoll’s approach of removing allocation
from the critical path. Under allocation overheads of 50ms
and 100ms, we observe (Fig. 12b) similar trends as before
(§7.2) for tail latencies. However, at the lower end of the
spectrum, the latencies remain more or less the same across
modes. On further analysis, we observe that this is due to
queuing delay at the SGS being the major contributing factor
(due to cluster oversubscriptions) to tail latencies and not
allocation overheads. These results show thatAtoll’s design
decisions have an impact across the entire spectrumof
sandbox overheads.
7.5 Atoll Under Proactive Memory Pool Pressure
We now evaluate the performance of Atoll when the proac-
tive memory pool cannot hold adequate sandboxes for all
functions during peak load. To do so, we evaluate using
workload 1, Atoll’s performance under di�erent extents of
memory pressure by con�guring the proactive pool to be
20%, 40%, 60% and 80% of the peak memory requirement.

We observe (Fig. 13a) that the missed deadlines increases
as the extent of under-provisioning increases due to more
requests experiencing cold starts. Crucially, even when se-
verely underprovisioned by 80% (unlikely in practice), Atoll
misses 1.8⇥ fewer deadlines than GFR. We observe (Fig. 13b)
a similar trend for tail latencies as more requests experience
cold starts. Interestingly, we observe that class C4, which

Class 1 Class 2 Class 3 Class 4
DAG class

%
 d

ea
dl

in
es

 m
is

se
d GFR

Atoll(-80%)
Atoll(-60%)
Atoll(-40%)
Atoll(-20%)
Atoll

(a) Deadlines Missed

Class 1 Class 2 Class 3 Class 4
DAG class

La
te

nc
y

(m
s)

GFR
Atoll(-80%)

Atoll(-60%)
Atoll(-40%)

Atoll(-20%)
Atoll

(b) Tail Latencies (99.9p)
Figure 13: Atoll under Proactive Memory Pool Pressure. The ‘Atoll(-
X%)” label represents that the cluster was con�gured with X% lesser
proactive memory pool than the incoming workload demand.

0.2 0.4 0.6 0.8 1.0
Scale Out Threshold

0

50

100

150

200

of

 C
ol

d
St

ar
ts

Cold Starts

0

200

400

600

E2
E

La
te

nc
y

(m
s)

Tail Latency

(a)
Cluster Setup

0

200

400

600

800

1000

E2
E

La
te

nc
y

(m
s)

1sgs,20w 5sgs,4w 10sgs,2w 20sgs,1w

Cluster Setup
0

100

200

300

400

500

600

C

ol
d

St
ar

ts

(b)
Figure 14: (a) Scale Out Threshold Vs. Cold Starts and Latencies; and
(b) SGS Sizing Vs. Cold Starts and Latencies

consists of apps having loose deadlines, has higher tail laten-
cies than GFR under memory pressure. Our analysis reveals
that this is because Atoll’s deadline-aware scheduling leads
to requests belonging to class C4 altruistically yielding to
latency sensitive requests belonging to classes C1-C3, while
minimizing the number of deadlines missed for class C4.
7.6 System Overheads
We notice that LBS request routing takes 100µs (121µs) and
SGS scheduling adds another 241µs (280µs) at the median
(99%-ile). We also measure time taken to make a scaling deci-
sion at the LBS and estimation at the SGS (these happen o�
the critical path). Scaling and estimation take 128µs (197µs)
and 879µs (1352µs) at the median (99%-ile).
7.7 Sensitivity Analysis
Scale Out Threshold (SOT) (Fig 14a). We observe that
there is a trade-o� between managing queuing delays and
cold starts while choosing the appropriate scale out threshold
value.

Setting values either too low or too high has negative
impact on tail latencies - (i) at lower values the LBS scales out
more frequently leading to higher cold starts and negatively
impacting tail latencies; and (ii) at higher values the LBS
passively scales out leading to higher queuing delays at the
SGS. Based on our observed values, we set the scale out
threshold to 0.3 for our experiments.
SGS Size (Fig. 14b). To study the sizing impact we consider
4 ways in which 20 workers can be partitioned - (i) 20 SGSs,
1 worker each; (ii) 10 SGSs, 2 workers each; (iii) 5 SGSs, 4
workers each and (iv) 1 SGS, 20 workers each. We use a
single app sinusoidal workload with 600 avg. RPS, 400 RPS
amplitude and 20s period.

149

Atoll: A Scalable Low-Latency Serverless Platform SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

We observe that �ne-grained partitioning leads to ⇠4⇥
higher tail latencies as the LBS scales-out more often leading
to higher cold starts. However, too many workers (beyond
64 workers in our testbed) under SGS can lead to schedul-
ing overhead becoming a signi�cant contributor to queuing
delay and this would lead to LBS unnecessarily scaling out
even when workers under initial SGS are underutilized.

8 Other Related Work
Serverless Characterization. Many previous papers re-
verse engineer aspects of serverless o�erings by observ-
ing the visible metrics [24, 39, 44, 46, 57, 58, 63, 65]. Tariq
et al. investigate the QoS o�ered by public serverless plat-
forms [58]. Shahrad et al. characterize workloads from Azure
Functions [55]. Complimentary to, these e�orts, we look at
popular apps found in AWS SAR [9].
SandboxOverhead Reduction. SAND [17] and SOCK [51]
leverage process-fork based techniques to reduce overheads.
Alto [41] and Chromium [10] aim to use a process per trust
domain. Boucher et al. advocate for language-based isola-
tion instead of traditional virtualization [18]. SEUSS [20]
and LightVM [45] propose using unikernels to reduce over-
heads. REAP [59] proactively fetches the pages correspond-
ing to a function’s working set from disk to further reduce
overheads of function snapshotting proposals [22]. Night-
core [32] reduces overheads by trading o� isolation as it
proposes running multiple invocations of the same function
in the same container and optimizes inter-function IO. Our
work on reducing the number of cold starts is orthogonal to
these improvements. Moreover, it remains to be seen if these
e�orts see practical adoption as they typically trade-o� isola-
tion and/or compatibility for performance [16]. Shahrad et al.
make similar observations about today’s sandbox manage-
ment and proposes setting keep-alivewindows in aworkload-
aware manner [55]. Likewise, inspired by traditional caching
literature, FaasCache [26] comes up with a workload-aware
keep-alive policy that takes into account additional function
characteristics such as function size and initialization costs.
In contrast, Atoll addresses the issue by proactively launch-
ing sandboxes based on the workload and can handle tran-
sient load changes better through soft eviction. FaasNet [62]
quanti�es the overheads involved in pulling sandbox images
from the backend datastore and focuses on reducing the over-
heads involved through a on-demand decentralized fetch-
ing mechanism, and is complimentary to Atoll. Ignite [21]
reduces overheads due to executing unoptimized code in
serverless functions through sharing runtime compiler JIT
optimizations across active function sandboxes in the cluster
and can be used in concert with Atoll.
Scheduling Architectures. Swayam’s [27] architecture is
similar to the distributed schedulers that we discussed ear-
lier [52] and thus experiences overheads due to not having

complete visibility. Borg [61] uses random sampling while
calculating scores and thus trades o� scheduling optimality
for scalability. Omega [54] uses multiple parallel schedulers
but trades o� on scheduling predictability for scalability due
to the overheads involved in resolving con�icts which would
happen often in our setting due to resources being held for
short durations.
While Apollo [19] tries to reduce the frequency of con-

�icts by collecting cluster load periodically and feeding this
to individual job schedulers, it does not allow for diverse
applications to share the cluster as it makes the assumption
that there are either latency sensitive tasks with guarantees
or opportunistic tasks with no guarantees. In Atoll, we can
accommodate various kinds of tasks and minimize deadlines
missed. Mercury [37] is a hybrid scheduler that makes high-
quality assignment for long tasks but the short tasks are
scheduled in a distributed manner and can be preempted
anytime leading to their sub-optimal placement. Pigeon [64]
is a two-layer scheduler that partitions workers to handle
short and long tasks but the tasks are distributed across the
schedulers without taking into account their current state
which leads to increased overhead (e.g., when sandbox not
available). In Atoll, we avoid such overheads by performing
sandbox-aware routing.

Ka�es et al. make similar observations as to why existing
scheduling architectures fall short [35]. Their design pro-
poses a core-granular scheduler to improve function place-
ment/isolation but does not address cold start overheads.

9 Conclusion
We consider the problem of ensuring low latency function
execution in serverless settings, an important problem that
has not received attention. Our system, Atoll, meets this
goal using a combination of simple but e�ective, scalable
techniques - (a) partitioning the cluster into (semi-global
scheduler, worker pool) pairs, (b) performing deadline-aware
scheduling and proactive sandbox allocation, and (c) sandbox-
aware routing with automatic scaling. Our evaluation shows
that Atoll reduces the number of deadlines missed by upto
⇠66⇥ and tail latencies by ⇠3⇥ of realistic workloads com-
pared to state-of-the-art alternatives.

Acknowledgments
We would like to thank our shepherd, Margo Seltzer, the
anonymous reviewers of SoCC’21 and the members of WISR
Lab for their insightful comments and suggestions. This re-
search was supported by NSF Grants CNS-1565277, CNS-
1719336, CNS-1763810, CNS-1838733, by gifts from Google
and VMware, a Facebook faculty research award, and by
the O�ce of the Vice Chancellor for Research and Graduate
Education at University of Wisconsin-Madison with funding
from the Wisconsin Alumni Research Foundation.

150

SoCC ’21, November 1–4, 2021, Sea�le, WA, USA A. Singhvi et al.

References
[1] 2014. Tim Wagner. Understanding Container Reuse in AWS Lambda.

https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/.
[2] 2017. Apache Kafka. https://kafka.apache.org/.
[3] 2017. Azure Functions. https://functions.azure.com.
[4] 2017. Google Cloud Functions. https://cloud.google.com/functions.
[5] 2017. IBM Bluemix Openwhisk. https://www.ibm.com/cloud-

computing/bluemix/openwhisk.
[6] 2018. AWS Step Functions. https://aws.amazon.com/step-functions/.
[7] 2019. Amazon Web Services. https://aws.amazon.com/.
[8] 2019. AWS Lambda. https://aws.amazon.com/lambda/.
[9] 2019. AWS Serverless Application Repository. https://aws.amazon.

com/serverless/serverlessrepo/.
[10] 2019. Chromium Projects. https://www.chromium.org/developers/

design-documents/site-isolation.
[11] 2019. Google Container Engine. http://kubernetes.io.
[12] 2019. Mikhail Shilkov. AWS Lambda Cold Starts. https://mikhail.io/

serverless/coldstarts/aws/.
[13] 2019. Mikhail Shilkov. Azure Functions Cold Start. https://mikhail.io/

serverless/coldstarts/azure/.
[14] 2019. Protocol Bu�ers. https://bit.ly/1mISy49.
[15] 2021. Apache CouchDB. https://couchdb.apache.org/.
[16] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In
17th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 20). 419–434.

[17] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. {SAND}:
Towards High-Performance Serverless Computing. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18). 923–935.

[18] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky.
2018. Putting the" Micro" back in microservice. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18). 645–650.

[19] Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zheng-
ping Qian, Ming Wu, and Lidong Zhou. 2014. Apollo: Scalable and
coordinated scheduling for cloud-scale computing. In OSDI.

[20] James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: skip redundant paths to make
serverless fast. In Proceedings of the Fifteenth European Conference on
Computer Systems. 1–15.

[21] Joao Carreira, Sumer Kohli, Rodrigo Bruno, and Pedro Fonseca. 2021.
From Warm to Hot Starts: Leveraging Runtimes for the Serverless Era.
In Proceedings of the Workshop on Hot Topics in Operating Systems (Ann
Arbor, Michigan) (HotOS ’21). Association for Computing Machinery,
New York, NY, USA, 58–64. https://doi.org/10.1145/3458336.3465305

[22] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-millisecond
Startup for Serverless Computing with Initialization-less Booting. In
Proceedings of the Twenty-Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems. 467–
481.

[23] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Opera-
tion of CloudLab. In Proceedings of the USENIX Annual Technical Confer-
ence (ATC). 1–14. https://www.�ux.utah.edu/paper/duplyakin-atc19

[24] Kamil Figiela, Adam Gajek, Adam Zima, Beata Obrok, and Maciej
Malawski. 2018. Performance Evaluation of Heterogeneous Cloud

Functions. Concurrency and Computation: Practice and Experience 30,
23 (2018), e4792.

[25] Armando Fox, Steven D Gribble, Yatin Chawathe, Eric A Brewer, and
Paul Gauthier. 1997. Cluster-based scalable network services. In ACM
SIGOPS operating systems review, Vol. 31. ACM, 78–91.

[26] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping
Serverless Computing Alive with Greedy-Dual Caching. In Proceed-
ings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (Virtual, USA) (AS-
PLOS 2021). Association for Computing Machinery, New York, NY,
USA, 386–400. https://doi.org/10.1145/3445814.3446757

[27] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S McKinley, and
Björn B Brandenburg. 2017. Swayam: distributed autoscaling to meet
SLAs of machine learning inference services with resource e�ciency.
In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference.
109–120.

[28] Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal, and Mukesh
Agrawal. 2003. Size-based scheduling to improve web performance.
ACM Trans. Comput. Syst. 21 (2003), 207–233.

[29] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-
Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018.
Serverless computing: One step forward, two steps back. arXiv preprint
arXiv:1812.03651 (2018).

[30] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R. Katz,
S. Shenker, and I. Stoica. 2011. Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center. In NSDI.

[31] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.
2010. ZooKeeper: Wait-Free Coordination for Internet-Scale Systems.
In Proceedings of the 2010 USENIX Conference on USENIX Annual Tech-
nical Conference (Boston, MA) (USENIXATC’10). USENIX Association,
USA, 11.

[32] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: E�cient and Scal-
able Serverless Computing for Latency-Sensitive, Interactive Microser-
vices. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(Virtual, USA) (ASPLOS 2021). Association for Computing Machinery,
New York, NY, USA, 152–166. https://doi.org/10.1145/3445814.3446701

[33] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoice, and Ben-
jamin Recht. 2017. Occupy the Cloud: Distributed Computing for the
99%. In SOCC.

[34] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion
Stoica, and David A. Patterson. 2019. Cloud Programming Simpli�ed:
A Berkeley View on Serverless Computing. arXiv:1902.03383 [cs.OS]

[35] Kostis Ka�es, Neeraja J Yadwadkar, and Christos Kozyrakis. 2019.
Centralized Core-granular Scheduling for Serverless Functions. In
Proceedings of the ACM Symposium on Cloud Computing. 158–164.

[36] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob
Ahn, Jason Mars, and Lingjia Tang. 2019. Grandslam: Guaranteeing
slas for jobs in microservices execution frameworks. In Proceedings of
the Fourteenth EuroSys Conference 2019. 1–16.

[37] Konstantinos Karanasos, Sriram Rao, Carlo Curino, Chris Douglas,
Kishore Chaliparambil, Giovanni Fumarola, SolomHeddaya, Raghu Ra-
makrishnan, and Sarvesh Sakalanaga. 2015. Mercury: Hybrid Central-
ized and Distributed Scheduling in Large Shared Clusters. In USENIX
ATC.

[38] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. 1997. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the World
Wide Web. In Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing.

151

https://aws.amazon.com/blogs/compute/container-reuse-in-lambda/
https://kafka.apache.org/
https://functions.azure.com
https://cloud.google.com/functions
https://www.ibm.com/cloud-computing/bluemix/openwhisk
https://www.ibm.com/cloud-computing/bluemix/openwhisk
https://aws.amazon.com/step-functions/
https://aws.amazon.com/
https://aws.amazon.com/lambda/
https://aws.amazon.com/serverless/serverlessrepo/
https://aws.amazon.com/serverless/serverlessrepo/
https://www.chromium.org/developers/design-documents/site-isolation
https://www.chromium.org/developers/design-documents/site-isolation
http://kubernetes.io
https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/azure/
https://mikhail.io/serverless/coldstarts/azure/
https://bit.ly/1mISy49
https://couchdb.apache.org/
https://doi.org/10.1145/3458336.3465305
https://www.flux.utah.edu/paper/duplyakin-atc19
https://doi.org/10.1145/3445814.3446757
https://doi.org/10.1145/3445814.3446701
https://arxiv.org/abs/1902.03383

Atoll: A Scalable Low-Latency Serverless Platform SoCC ’21, November 1–4, 2021, Sea�le, WA, USA

[39] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas
Pfe�erle, and Animesh Trivedi. 2018. Understanding ephemeral stor-
age for serverless analytics. In 2018 {USENIX} Annual Technical Con-
ference ({USENIX}{ATC} 18). 789–794.

[40] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfe�erle, and Christos Kozyrakis. 2018. Pocket: Elastic ephemeral stor-
age for serverless analytics. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18). 427–444.

[41] James Larisch, James Mickens, and Eddie Kohler. 2018. Alto: light-
weight vms using virtualization-aware managed runtimes. In Proceed-
ings of the 15th International Conference on Managed Languages &
Runtimes. 1–7.

[42] Collin Lee and John Ousterhout. 2019. Granular Computing. In Pro-
ceedings of the Workshop on Hot Topics in Operating Systems. 149–154.

[43] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-E�cientMicroservices on SmartNIC-
Accelerated Servers. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). USENIX Association, Renton, WA, 363–378. https:
//www.usenix.org/conference/atc19/presentation/liu-ming

[44] Wes Lloyd, Shruti Ramesh, Swetha Chinthalapati, Lan Ly, and Shrideep
Pallickara. 2018. Serverless computing: An investigation of factors
in�uencing microservice performance. In 2018 IEEE International Con-
ference on Cloud Engineering (IC2E). IEEE, 159–169.

[45] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter (and Safer) than your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles. 218–233.

[46] Garrett McGrath and Paul R Brenner. 2017. Serverless computing: De-
sign, implementation, and performance. In 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW).
IEEE, 405–410.

[47] Garrett McGrath, Jared Short, Stephen Ennis, Brenden Judson, and Paul
Brenner. 2016. Cloud event programming paradigms: Applications and
Analysis. In 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD). IEEE, 400–406.

[48] David Meisner and Thomas F Wenisch. 2012. DreamWeaver: archi-
tectural support for deep sleep. ACM SIGPLAN Notices 47, 4 (2012),
313–324.

[49] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,
Richard Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul,
Michael I. Jordan, and Ion Stoica. 2018. Ray: A Distributed Framework
for Emerging AI Applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 561–577. https://www.usenix.org/conference/osdi18/
presentation/moritz

[50] Edward Oakes, Leon Yang, Kevin Houck, Tyler Harter, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2017. Pipsqueak: Lean
lambdas with large libraries. In 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW). IEEE,
395–400.

[51] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioningwith Serverless-Optimized Containers. InATC
18.

[52] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013.
Sparrow: Distributed, low latency scheduling. In SOSP.

[53] Linus Schrage. 1968. A Proof of the Optimality of the Shortest Re-
maining Processing Time Discipline. Operations Research 16, 3 (1968),
687–690.

[54] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John
Wilkes. 2013. Omega: Flexible, scalable schedulers for large compute
clusters. In EuroSys.

[55] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association.

[56] Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Benjamin
Recht, Ion Stoica, Jonathan Ragan-Kelley, Eric Jonas, and Shivaram
Venkataraman. 2020. Serverless Linear Algebra. In Proceedings of the
11th ACM Symposium on Cloud Computing. 281–295.

[57] Arjun Singhvi, Sujata Banerjee, Yotam Harchol, Aditya Akella, Mark
Peek, and Pontus Rydin. 2017. Granular computing and network
intensive applications: Friends or foes?. In Proceedings of the 16th ACM
Workshop on Hot Topics in Networks. ACM, 157–163.

[58] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth
Lanka. 2020. Sequoia: Enabling quality-of-service in serverless com-
puting. In Proceedings of the 11th ACM Symposium on Cloud Computing.
311–327.

[59] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. 2021. Benchmarking, Analysis, and Optimization
of Serverless Function Snapshots. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS 2021). As-
sociation for Computing Machinery, New York, NY, USA, 559–572.
https://doi.org/10.1145/3445814.3446714

[60] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley,
Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. 2013. Apache
Hadoop YARN: Yet Another Resource Negotiator. In SoCC.

[61] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster manage-
ment at Google with Borg. In EuroSys.

[62] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang,
Huiba Li, Rui Du, and Yue Cheng. 2021. FaaSNet: Scalable and Fast
Provisioning of Custom Serverless Container Runtimes at Alibaba
Cloud Function Compute. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21). USENIX Association, 443–457. https://www.usenix.
org/conference/atc21/presentation/wang-ao

[63] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In ATC 18.

[64] ZhijunWang, Huiyang Li, Zhongwei Li, Xiaocui Sun, Jia Rao, Hao Che,
and Hong Jiang. 2019. Pigeon: an E�ective Distributed, Hierarchical
Datacenter Job Scheduler. In Proceedings of the ACM Symposium on
Cloud Computing. 246–258.

[65] Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
Serverless Platforms with Serverlessbench. In Proceedings of the 11th
ACM Symposium on Cloud Computing (Virtual Event, USA) (SoCC ’20).
Association for Computing Machinery, New York, NY, USA, 30–44.
https://doi.org/10.1145/3419111.3421280

152

https://www.usenix.org/conference/atc19/presentation/liu-ming
https://www.usenix.org/conference/atc19/presentation/liu-ming
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://doi.org/10.1145/3445814.3446714
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://www.usenix.org/conference/atc21/presentation/wang-ao
https://doi.org/10.1145/3419111.3421280

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Serverless Computing Background
	2.2 Characterizing Real World Serverless Apps
	2.3 Serverless Platform Requirements
	2.4 Serverless: Current Data + Control Plane Choices

	3 Atoll Key Ideas and Request Control Flow
	4 Scheduling Service (SS)
	4.1 Semi-Global Schedulers (SGS)
	4.2 Deadline Aware Scheduling
	4.3 Proactive Sandbox Allocation

	5 Load Balancing Service (LBS)
	5.1 Service Responsibilities
	5.2 Scaling SGSs used per App

	6 Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Macrobenchmarks
	7.3 Microbenchmarks
	7.4 Sandbox Allocation Overhead Impact
	7.5 Atoll Under Proactive Memory Pool Pressure
	7.6 System Overheads
	7.7 Sensitivity Analysis

	8 Other Related Work
	9 Conclusion
	References

