
Static Single-Assignment Form
and

Dataflow Analysis

1



Roadmap

Last time:
– Optimization overview
• Soundness and completeness

– Simple optimizations
• Peephole
• LICM

This time:
– Data structures (and data) used to determine when it is 

safe (i.e., sound) to perform an optimizing transformation
• Dominators
• SSA form
• Dataflow analysis

2



3

DOMINATOR REVIEW



4

Dominator terms

Domination (A dominates B):
– to reach block B, you must have gone through block A

Strict Domination (A strictly dominates B)
– A dominates B and A is not B

Immediate Domination (A immediately 
dominates B)
– A immediately dominates B if A dominates B and has 

no intervening dominators



5

A

B C

D

E

Dominator Example



6

Dominance Frontier

Definition: For a block X, 
the set of nodes Y such 
that X dominates an 
immediate predecessor of 
Y but does not strictly 
dominate Y



7

STATIC SINGLE ASSIGNMENT FORM
(SSA FORM)



8

Goal of SSA Form

Build an intermediate representation of the 
program in which each variable is assigned a 
value in at most 1 program point:

x = 1
x = 2
y = 3

x = 1
z = 2
y = 3

i = 0;
while( i < 10){

k = i + 1;
}  

x = y
z = y
w = z

Statically: There is at most one assignment statement 
that assigns to k
Dynamically: k can be assigned to multiple times



9

Conversion

We make new variables to carry over the effect 
of the original program

x = 1
x = x
y = x

x1 = 1
x2 = x1
y1 = x2



10

Benefits of SSA Form

There are some obvious advantages to this format for 
program analysis
– Easy to see the live range of a given variable x assigned to in 

statement s
• The region from “x = …;” until the last use(s) of x before x is redefined
• In SSA form, from “xi = …;” to all uses of xi, e.g., “… = f(…, xi, …);” 

– Easy to see when an assignment is useless
• We have “xi = …;” and there are no uses of xi in any expression or 

assignment RHS
• “‘xi = …;’ is a useless assignment”
• “‘xi = …;’ is dead code”

In other words, some useful information is pre-computed, or at 
least easily recoverable from SSA form

Warning 1: Dead code = useless assignments + unreachable code



11

Optimizations Where SSA Helps
Dead-Code Elimination

int a = 9;
int b = 2;

if (g < 12){
a = 1;

} else {
if (b < 4){
a = 2;

} else {
a = 3;

} 
}
b = a;
return 2;

int a1 = 9;
int b1 = 2;

if (g1 < 12){
a2 = 1;

} else {
if (b1 < 4){
a3 = 2;

} else {
a4 = 3;

}
a5 = 𝜙(a3, a4); 

}
a6 = 𝜙(a2, a5);
b2 = a6;
return 2;

At “if (b < 4)”, b is only reached by “b = 2;”
Therefore, the else branch is unreachable
(dead), and can be removed



12

Optimizations Where SSA Helps

Constant-propagation/constant-folding

int a = 30;
int b = 9 - (a / 5);
int c;
c = b * 4;
if (c > 10) {

c = c - 10;
}
return c * (60 / a);

6

2

int a = 30;
int b = 3;
int c;
c = b * 4;
if (c > 10) {

c = c - 10;
}
return c * 2;

12true

2

int a = 30;
int b = 3;
int c;
c = 12;
if (c > 10) {

c = c - 10;
}
return c * 2;

int a = 30;
int b = 3;
int c;
c = 12;
if (true) {

c = 2;
}
return c * 2; 4return 4;

int a = 30;
int b = 3;
int c;
c = 12;
if (true) {

c = 2;
}
return 4;



13

x1 = 5
x2 = x1 – 1

x2 < 3

y1 = x2 * 2 
w1 = y1

w2 = y - x
z = x + y

y2 = x2 - 3

x = 5
x = x – 1

x < 3

y = x * 2 
w = y

w = x - y
z = x + y

y = x - 3

Which y to use?

What About Conditionals?



14

x1 = 5
x2 = x1 – 1

x2 < 3

y1 = x2 * 2 
w1 = y1

w2 = y - x
z = x + y

y2 = x2 - 3

Phi Functions (𝜙)

• We introduce a special 
symbol Φ at such points of 
confluence

• Φ’s arguments are all the 
instances of variable y that 
might be the most 
recently assigned variant 
of y

• Returns the “correct” one
• Do we need a Φ for x?

‒ No!

y3 = Φ(y1,y2)
w2 = y3 – x2
z1 = x2 + y3



15

x1 = 5
x2 = x1 – 1

x2 < 3

y1 = x2 * 2 
w1 = y1

w2 = y – x2
z1 = x2 + y3

y2 = x2 - 3

Computing Phi-Function Placement

Intuitively, we want to 
figure out cases where 
there are multiple 
assignments that can 
reach a node
To be safe, we can place a 
Φ function for each 
assignment at every node 
in the dominance frontier

y3
y3 = Φ(y1,y2)



16

Pruned Phi Functions

This criterion causes a bunch of useless Φ
functions to be inserted
– Cases where the result is never used “downstream” 

(useless)

Pruned SSA is a version where useless Φ nodes 
are suppressed



Other Advantages of SSA Form

Flow dependences
4×4 edges

17

x = … x = … x = … x = …

v = 3*x w = x y = 7*x z = w*x



Other Benefits of SSA Form

Multiplicative representation → Additive representation
4×4 edges → 4 + 4 edges

18

x1 = … x2 = … x3 = … x4 = …

v = 3*x5 w = x5 y = 7*x5 z = w*x5

x5 = 𝜙(x1, x2, x3, x4)



19

DATAFLOW ANALYSIS



20

Dataflow-Analysis Example 1

Reaching definitions

p1: x = 1;

. . .

p2: x = 2;

. . .

p3: y = x;

Before p1: ∅
After p1: {<p1, x>}

Before p2: {<p1, x>, …}
After p2: {<p2, x>, …}

Before p3: {<p2, x>, …}
After p3: {<p2, x>, <p3, y>, …}

Note: for expository purposes, it is convenient to assume we have a
statement-level CFG rather than a basic-block-level CFG.

Data: sets of <program-point, variable> pairs

Transfer function:
𝜆𝑆. (𝑆 − < 𝑝! , 𝑥 > ) ∪ {< 𝑝2, 𝑥 >}



21

Dataflow-Analysis Example 1

Reaching definitions

p1: x = 1;

. . .

p2: x = 2;

. . .

p3: y = x;

Before p1: ∅
After p1: {<p1, x>}

Before p2: {<p1, x>, …}
After p2: {<p2, x>, …}

Before p3: {<p2, x>, <p4,x>, …}
After p3: {<p2, x>, <p3, y>, <p4,x>,…}

Note: for expository purposes, it is convenient to assume we have a
statement-level CFG rather than a basic-block-level CFG.

p4: x = 7;
Before p4: ∅
After p4:   {<p4, x>}

Meet operation: Union of sets (of <program-
point, variable> pairs)



22

Dataflow-Analysis Example 1
Reaching definitions: Why is it useful?
Answers the question “Where could this variable have 
been defined?”

p1: x = 1;

. . .

p2: x = 2;

. . .

p3: y = x;

Before p1: ∅
After p1: {<p1, x>}

Before p2: {<p1, x>, …}
After p2: {<p2, x>, …}

Before p3: {<p2, x>, <p4,x>, …}
After p3: {<p2, x>, <p3, y>, <p4,x>,…}

p4: x = 7;
Before p4: ∅
After p4:   {<p4, x>}



23

Dataflow-Analysis Example 2

Live Variables
p1: x = 1;

if (…) {
p2: y = 0;

p3: z = x + y;
}

p4: x = 2;

p5: z = 3;

p6: cout << x;

Before p1:     ∅
After p1:    {x}

Before p2:    {x}
After p2: {x,y}

Before p3: {x,y}
After p3:      ∅

Before p4:      ∅
After p4:    {x}

Before p5:    {x}
After p5:    {x}

Before p6:    {x}
After p6:      ∅

Data: sets of variables

Transfer function:
𝜆𝑆. (𝑆 − 𝑧 ) ∪ {𝑥, 𝑦}

z is not live after p5, and 
thus p5 is a useless 
assignment (= dead code)


