Optimizing Quantum Circuits, Fast and Slow
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Abstract

Optimizing quantum circuits is critical: the number of quan-
tum operations needs to be minimized for a successful eval-
uation of a circuit on a quantum processor. In this paper we
unify two disparate ideas for optimizing quantum circuits,
rewrite rules, which are fast standard optimizer passes, and
unitary synthesis, which is slow, requiring a search through
the space of circuits. We present a clean, unifying framework
for thinking of rewriting and resynthesis as abstract circuit
transformations. We then present a radically simple algo-
rithm, GuoQ, for optimizing quantum circuits that exploits
the synergies of rewriting and resynthesis. Our extensive
evaluation demonstrates the ability of cuogQ to strongly out-
perform existing optimizers on a wide range of benchmarks.

1 Introduction

Quantum computing enables efficient simulation of quan-
tum mechanical phenomena, promising to catalyze advances
in quantum physics, chemistry, materials science, and be-
yond. Near-term quantum computers with more than a thou-
sand qubits operating in a noisy environment without error
correction have already been deployed, marking the cur-
rent era of Noisy Intermediate Scale Quantum (N1SQ) com-
puting [48]. Recent groundbreaking experiments have im-
plemented error-corrected logical qubits and demonstrated
potential for reducing logical error [7, 12]. Although many
challenges remain, fault-tolerant quantum computing (FTQC)
is on the horizon.

In both N1sQ and FTQC, reducing errors is a critical obstacle
to overcome. Every quantum operation has a probability of
failure causing a quantum execution to quickly devolve into
random noise. The N1sQ paradigm aims to mitigate these
errors in the absence of error correction primarily by reduc-
ing the number of operations. However, error correction in
FTQC is not a panacea and introduces its own unique bottle-
necks [9, 58], which can render the error correction scheme
useless if left untamed. Especially in the near term, FTQc
architectures may face challenges in handling large circuit
depths due to physical imperfections such as two-level sys-
tem (TLS) drift, qubit leakage, high-energy particle strikes,
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Figure 1. Summary of GuoQ compared to state-of-the-art
on 2-qubit-gate reduction for the 1BMQ20 gate set. GuoQ and
BQSKit are allowed to approximate the circuit up to e = 1078,
*Quarl requires an NVIDIA A100 (40GB) GPU to run.

and crosstalk [1, 7, 38]. Therefore, it is of utmost importance
to reduce the number of operations for FTQc as well.

Current approaches tackling quantum circuit optimiza-
tion primarily apply peephole optimization using a fixed
set of rewrite rules. Some tools use a small set of hand-
crafted rules [20, 29, 40], while others automatically syn-
thesize rules [66, 67]. The idea is to apply rewrite rules in
a schedule, transforming subcircuits to semantically equiv-
alent ones with fewer operations. Rewrite rules are fast to
apply—match a pattern and rewrite it—but inherently only
perform local optimizations.

An orthogonal line of work has been studying the problem
of unitary synthesis. A unitary matrix precisely represents the
semantics of a quantum program. Some quantum algorithms
are simple to state in the form of a unitary but nontrivial
to decompose into elementary operations that can be ex-
ecuted on hardware [15, 18]. Thus, a large body of work
has focused on synthesizing quantum circuits that imple-
ment a given unitary matrix [4, 13, 26, 43, 50, 51, 59, 62, 68].
Recent works [44, 65] have applied these algorithms to op-
timize quantum circuits by partitioning large circuits into
manageably-sized subcircuits consisting of a few qubits at
most and then resynthesizing each subcircuit to produce a
new subcircuit whose unitary is equivalent, or close enough,



Rewrite rules Resynthesis

Fast v X
Limited by # gates 4 X
Limited by # qubits X v
Approximate X v

Table 1. Characteristics of rewrite rules and resynthesis.

to the original subcircuit’s unitary. Unitary synthesis is slow:
usually a combinatorial search problem through the space
of circuits, but can apply to deep subcircuits.

Rewrite rules and resynthesis have their own strengths
and weaknesses—see Table 1. Individual rewrite rules are
fast to apply but are limited to small patterns with few gates.
On the other hand, resynthesis is slow but can support cir-
cuits with an arbitrary number of gates because the primary
limiting factor is the number of qubits. Critically, resynthe-
sis has the power to optimize deep subcircuits and it can
approximate the solution to some degree. Rewrite rules are
too small and rigid to find meaningful approximations. Ap-
proximations can unlock new circuit optimizations but must
be applied carefully to avoid introducing too much error.

Inspired by how humans combine fast and slow modes of
thinking [25], Systems 1 and 2, we ask the following question:

Can we design an optimization approach that can
synergistically combine the powers of optimizing quantum
circuits fast, via rewrite rules, and slow, via resynthesis?

We answer this question affirmatively: we demonstrate that
we can unify rewriting and resynthesis and propose a sim-
ple optimization algorithm that significantly outperforms
existing approaches in the literature.

Our approach. We propose a framework to unify rewrite
rules and resynthesis for optimizing quantum circuits (see
Fig. 2). The key insight is that we can abstract both opti-
mizations into a closed-box circuit transformation with a
degree of approximation €. Our flexible and generic frame-
work allows arbitrary transformations, which can be applied
freely. We prove a simple additive upper bound on the final
approximation after applying a sequence of transformations.

We can instantiate our framework using a set of circuit
transformations. The key challenge is deciding in what order
to apply these transformations—this is the phase ordering
problem that has plagued optimizing compilers for decades!
We discover that, perhaps surprisingly, a simple and light-
weight simulated annealing-like algorithm is the most ef-
fective solution, outperforming more clever heuristics or
algorithms. The lack of structure in our problem lends itself
to an approach that randomly and quickly alternates between
fast and slow optimization, as opposed to sophisticated ap-
proaches guided by hand-crafted heuristics or reinforcement
learning. Let this serve as another bitter lesson [61] that
simple methods often prevail.
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Figure 2. Overview of our approach

We implement our algorithm, GuogQ (Good Unified Opti-
mizations for Quantum), and provide an extensive evaluation
against state-of-the-art optimizers and superoptimizers using
a benchmark suite with 247 diverse quantum circuits im-
plementing near- and long-term algorithms. Our evaluation
demonstrates the following: (1) GuogQ significantly outper-
forms state-of-the-art tools (see Fig. 1 for a summary), (2)
GuoQ’s randomized search approach is critical for efficiently
combining rewriting and resynthesis, and (3) GuoQ can flexi-
bly perform well in the N1sQ and FTQc regimes. For instance,
GuoQ outperforms the recent superoptimizer, Quarl [32], in
terms of 2-qubit-gate reduction on 80% of the benchmarks.
This is despite the fact that Quarl uses a specialized deep
reinforcement learning technique for quantum-circuit op-
timization, requires more computational resources (GPUs),
and has been trained on portions of the benchmark suite.

Contributions. We make the following contributions:

e A framework that abstracts the inner workings of
rewriting and resynthesis into closed-box circuit trans-
formations with approximate semantic guarantees.

o A lightweight algorithm, Guog, inspired by simulated
annealing, that searches the space of transformations.

e An implementation of Guog and thorough evaluation
considering both N1sQ and FrQc that demonstrates its
effectiveness compared to state-of-the-art optimizers.
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Figure 3. Examples of rewrite rules. Observe how the rules with RY use symbolic 0 angles.
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Figure 4. Example of applying the rule from Fig. 3¢ followed
by the rule from Fig. 3d.

2 Background and Overview

In this section, we provide the high-level background re-
quired for understanding our approach and use examples to
highlight the differences between rewrite rules and resyn-
thesis. We also describe an overview of our approach along
with some concrete examples showing how rewrite rules
and resynthesis can work together.

2.1 Quantum Circuits Background

Quantum circuits. Quantum circuits are composed of
combinations of quantum operations (or gates) applied to
qubits. Some operations, like the Hadamard gate (H), are
only applied to a single qubit, whereas operations like the
controlled-NOT gate (CX) apply to an ordered pair of qubits.
Another common class of quantum gates includes rotational
gates parameterized on input angles, such as the Rf gate.

Consider the example circuit on the left sides of Figs. 4
and 5, where each horizontal wire corresponds to a qubit—
e.g., the H gate is the first gate applied to qubit ¢;.

Rewrite rules. A rewrite rule is a pair of semantically
equivalent circuits. Although rewrite rules are in principle
bidirectional, we will refer to the left-hand side as the pat-
tern and the right-hand side as the replacement for simplicity.
Fig. 3 shows examples of some commonly used rewrite rules.
Applying rewrite rules to a circuit is simple. Begin by search-
ing for a match for the pattern and if one exists, substitute it
with the replacement. For example, in Fig. 4, there is a match
for the pattern of the rule in Fig. 3¢, shown by the highlighted
subcircuit. Rewriting the match to the replacement allows
the rule in Fig. 3d to apply and reduces the gate count by one.
This general idea of composing rewrite rules is the heart of
how we optimize quantum circuits using rewrite rules.
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Figure 5. Example of resynthesizing the initial Fig. 4 circuit.
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Figure 6. Comparing rewrite rules and resynthesis.

Resynthesis. Circuit resynthesis takes advantage of the
vast line of work done in unitary synthesis to resynthesize
circuits according to some optimization objective. A circuit
can be represented as a unitary matrix. Given a circuit’s uni-
tary matrix, unitary synthesis constructs a new circuit, with
fewer gates, whose unitary is within € of the original unitary
according to some distance metric. Note that the original cir-
cuit’s structure is lost by converting it into a unitary and the
synthesis algorithm needs to search for a new circuit struc-
ture from scratch. This is inherently a slow search through
the space of circuits, e.g., the BQSKit compiler [69] performs
a bottom-up search using two-qubit subcircuits.

Fig. 5 illustrates circuit resynthesis using the same initial
circuit as Fig. 4 and no approximation by setting ¢ = 0.
Observe how the final circuit is equivalent to the result from
applying rewrite rules because we can apply the rule in
Fig. 3c to push the R} gate across the control of the CX.

2.2 Comparing Rewriting and Resynthesis

Recall that resynthesis is limited by the number of qubits in
the circuit, because the size of the unitary is exponential in



the number of qubits. Fig. 6a is an example of a circuit where
it is better to apply rewrite rules. The structure closely resem-
bles the circuit for the quantum Fourier transform (QFT) [11],
a critical subroutine in many quantum algorithms. This cir-
cuit involves too many qubits for unitary synthesis to suc-
ceed in a reasonable amount of time. However, it only takes
a few applications of two rewrite rules (Figs. 3a and 3b) to
quickly get to the right-hand side. Even if we partition this
circuit into more tractable 3-qubit subcircuits to resynthe-
size, we would not be guaranteed to reach the right-hand
side. In fact, it would require a series of lucky coincidences
over multiple rounds of partitioning the circuit.

Resynthesis involving fewer qubits though can compen-
sate for the limited-sized patterns in rewrite rules. Fig. 6b is
an example of a deep circuit where resynthesis can accelerate
the search. Although we can achieve the optimized circuit
using rewrite rules, it requires a long sequence of several
of the rules from Fig. 3 in a very specific order. Resynthesis
can discover the circuit on the right-hand side all at once
because the circuit only involves 3 qubits.

As we saw in the above examples, there are complemen-
tary qualities between rewrite rules and resynthesis.

2.3 Our Approach

Unifying rewrite rules and resynthesis. Our framework
to unify rewrite rules and resynthesis introduces an abstrac-
tion for transforming circuits. We specify a function called
a circuit transformation, denoted z., that returns a circuit
that is semantically equivalent to the original up to the ap-
proximation €. Beyond this guarantee, transformations are
closed-box. Given a set of rewrite rules and resynthesis algo-
rithms, we can instantiate a set of transformations. Crucially,
our framework allows us to apply circuit transformations
in any order, and we prove an upper bound on the final ap-
proximation degree when applying an arbitrary sequence of
transformations.

Optimization objectives. Optimizing quantum circuits
requires diverse optimization objectives depending on the ap-
plication. In N1sQ, two-qubit gates are the dominant source of
noise whereas in FTQc, T gates are the most costly to perform
in an error-corrected fashion, followed by two-qubit gates.
We view these gate-minimizing optimization objectives as
soft constraints in our search. Our hard constraint when
resynthesizing subcircuits is staying within the specified
global error threshold e7. Allowing more error can allow the
synthesis algorithm to find a solution with fewer gates, so it
is critical to find a balance between these two competing opti-
mization objectives. For example, an objective for N1sQ might
be the following: argmin,, 2Q-coUNT(C’) s.t. ecr < €.

The cuog algorithm. The vast and discrete landscape
for optimizing quantum circuits provides sparse navigation
for traversing it. GuoQ is our simple algorithm inspired by
simulated annealing [28] that rapidly and randomly searches
the space of transformations. We find that an approach like
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Figure 7. An example showing the two-qubit gate count of
the current best solution for barenco_tof_10 and qft_20
over an hour of search using 1) only rewrite rules, 2) only
resynthesis, and 3) rewrite rules and resynthesis combined.

GuoQ is well-suited for solving our problem because it has
minimal memory requirements, is easy to implement, and ex-
plores the solution space much faster than other approaches.
At a high level, the algorithm maintains a single candidate
and applies randomly chosen transformations to randomly
chosen subcircuits. Transformations with € = 0 can be ap-
plied an unlimited number of times while transformations
with € > 0 are limited based on the target error threshold. If
a transformation preserves or reduces gates related to the
optimization objective, it is always accepted. Otherwise, it is
only accepted with a small probability.

A concrete example. As a primer, we provide an example
demonstrating the benefits of combining rewrite rules and
resynthesis on the barenco_tof_10 benchmark, which is an
implementation of a multi-control Toffoli gate [5], and the
qft_20 benchmark, which implements the quantum Fourier
transform (QFT) [11]. These benchmarks are critical building
blocks for the famous Shor’s algorithm [56]. Fig. 7 shows
the two-qubit gate count of the best solution over an hour of
search for cuoQ using 1) rewrite rules only, 2) resynthesis
only, and 3) rewrite rules and resynthesis combined.

As we can see, rewrite rules on their own quickly get stuck
in a local minimum for almost the entire search, whereas
resynthesis on its own is able to gradually make progress but
is too slow. Combining rewrite rules and resynthesis allows
resynthesis to progress the search when rewrite rules get
stuck by mutating the circuit and “teleporting” the candidate
solution to a different area of the optimization landscape.
Working in tandem, rewrite rules and resynthesis can go
beyond the capabilities of either alone.

3 Quantum Circuits and Approximations

We now formalize the necessary background for understand-
ing quantum circuits and their semantics. The notion of
approximate semantics and subcircuits will be critical for
our framework.

Semantics. A quantum gate is a linear transformation
of the state vector. A gate g acting on m qubits can be rep-
resented by a 2™ X 2™ unitary matrix U;. Composing the



gates in a circuit with n qubits using matrix multiplication
results in a 2" X 2" unitary matrix exactly representing the
semantics of the circuit.

Example 3.1. The semantics of the T and CX gates are the
following unitary matrices:

1000

1 0 0100
UT'_[O e/t UexX =10 0 0 1
00 10

Consider the circuit C := T q;; CX qo q1;- The unitary Uc
representing the semantics of C is precisely Ucx (I ® Ur),
where the tensor product (I ® Ur) with the identity matrix
denotes that the T gate is applied to the second qubit.

Circuit equivalence. Circuits are semantically equiva-
lent if their unitaries are exactly equal. Additionally, some
circuits may be equivalent up to global phase because two
quantum states |i/;) and |¢)») = e'® |i);) are observationally
indistinguishable [42] for any angle ¢ € R. Two circuits
C and C’ are semantically equivalent modulo global phase,
denoted C = C’, if and only if Ue = €U for some angle 6.

Approximating circuits. We can approximate the se-
mantics of a circuit C arbitrarily by defining a notion of dis-
tance, which is a function of the original and approximated
circuits’ unitaries. The Hilbert—Schmidt distance (A) is a con-
venient distance function used in prior work [43, 44] due to
its ability to handle equivalence modulo global phase and
ease of computation. The Hilbert-Schmidt distance between
two unitary matrices is formally defined in Def. 3.2. Using
this definition, we can define approximate circuit equiva-
lence as shown in Def. 3.3.

Definition 3.2 (Hilbert-Schmidt distance). Let U and U’ be

two N X N unitary matrices. A(U,U’) = /1 — vaﬂ

Definition 3.3 (Approximate circuit equivalence). Two cir-
cuits C and C” are e-equivalent, denoted C = C’, if and only
if A(Uc,Ue) < e

Subcircuits. To define a subcircuit, it is best to consider
a DAG representation of a circuit, where the nodes are gates
and the wires between gates are directed from left to right.
Then a subcircuit is precisely a convex subgraph of this DAG.
As defined in prior work [67], a convex subgraph is a sub-
graph that contains every path that exists between its nodes
in the original graph. Intuitively, this requirement enforces
continuous qubit wires in the subcircuit. For example, Fig. 2
(top) shows two highlighted subcircuits.

4 A Unified Optimization Framework

We are ready to formally describe our framework unifying
rewrite rules and resynthesis. Our framework introduces
abstract transformations with an associated error tolerance e.
We show how to represent rewrite rules and resynthesis in

this unifying framework and prove an upper bound on the
error when composing these transformations in arbitrary
sequences. This underlies the design of cuog, which applies
transformations in arbitrary orders.

4.1 Circuit Transformations

The following definition presents an abstraction of a cir-
cuit transformation as a function that takes a circuit C and
produces an e-equivalent C’.

Definition 4.1 (Transformation). Let C represent a circuit
type. A transformation 7. : C — C accepts a circuit C and
returns a circuit C’ such that C =, C’.

Rewrite rules and resynthesis can be represented in this
framework as transformations over subcircuits. Consider a
rewrite rule C; — C,. The transformation

— C2 1fC = C]
0(C) = {C otherwise

captures the rewrite rule by transforming circuits that are
syntactically equivalent to C; (up to qubit renaming) and
acting as the identity function otherwise. Observe how this
transformation carries an € = 0 because rewrite rules pre-
serve exact semantic equivalence.

Similarly, we can define a transformation representing
resynthesis. Assume there exists a circuit resynthesis func-
tion RESYNTH : (C X R) — C that given a circuit C and
error tolerance ¢, returns a circuit C’ such that C =, C’. The
transformation is simply 7. (C) := RESYNTH(C, €). An exam-
ple of such a circuit resynthesis function is a thin wrapper
around a unitary synthesis function that computes the input
circuit’s unitary before invoking unitary synthesis.

4.2 Composing Transformations

Composing transformations is not as straightforward as com-
posing rewrite rules because transformations are allowed to
approximate the circuit. Prior work [44] shows how to upper
bound the error when approximating disjoint partitions of
a circuit. We present a flexible and generic framework that
allows us to apply transformations in an arbitrary fashion. In
particular, we can apply a transformation to a subcircuit that
only partially contains a previously transformed subcircuit.

Formalized in Thm. 4.2, we prove that the upper bound on
the error when composing a finite sequence of transforma-
tions is the sum of all the errors from each transformation.
Without loss of generality, we can assume all transformations
have the same error.

Theorem 4.2. Suppose we are given a set of transformations
1'61, ..., T2 Let Cy, . .., Cy be a sequence of circuits such that C;

is the result of applying transformation 7’ to a subcircuit of
Ci—1 forall1 < i < n. Then, Cy =p¢ Cp.



5 GUOQ: A Stochastic Algorithm

In this section, we begin by formally stating the quantum-
circuit optimization problem. Optimizing quantum circuits
is hard because of the large search space and the difficulty of
simulating quantum circuits. Next we describe our algorithm
GuoQ for solving this problem given an instantiation of our
framework. Guogq is fast, flexible, and easy to implement. It
applies a given set of transformations in a randomized fash-
ion inspired by simulated annealing, a classic algorithm for
solving discrete optimization problems. Finally, we discuss
implementation details for optimizing our algorithm.

5.1 Optimization objectives for quantum circuits

Different quantum computing hardwares and paradigms will
require unique optimization objectives. For example, on N1sQ
hardware it is critical to reduce two-qubit gate count. Other
optimization objectives include T count and circuit depth,
rather than gate count. Our approach is flexible and we can
define any cost function, cosT : C — R, to minimize, where
C is the set of all circuits.

Example 5.1 (Multiple optimization objectives). Consider
the FTQc setting where we want to reduce primarily T gates,
followed by CX gates. We can model this optimization ob-
jective by defining cosT as 2 - #1(C) + #cx (C), where #7(C)
and #cx (C) are the T and CX gate counts, respectively.

Transformations in our framework can be approximate,
so it is natural to accept as input an error tolerance that the
result should not exceed. Using this error tolerance as a hard
constraint and cosT as a soft constraint we can formulate
the problem as a succinct constrained optimization problem.

Definition 5.2 (Quantum-Circuit Optimization Problem).
Given a circuit C and an error tolerance €r 20, the quantum-
circuit optimization problem is the following constrained
optimization problem:

argmin cosT(C”)
C/

st A(C,C') < ef

5.2 The GUOQ Algorithm

We propose an algorithm inspired by simulated annealing.
Simulated annealing is a general algorithm for solving op-
timization problems with large search spaces. It has many
nice properties such as being fast, memory-efficient, easy
to implement, and interruptible at any time to obtain a par-
tial solution. These properties, inherited in our algorithm,
unlock an effective approach for solving a problem that is
incredibly difficult to craft or learn predictive heuristics for.

Alg. 1 shows the pseudocode for our algorithm. The inputs
to the algorithm are the inputs to the quantum-circuit opti-
mization problem and a set of transformations 7. Given a set
of rewrite rules and resynthesis methods, we can instantiate
T as discussed in § 4. The “moves” we are allowed to make
to modify the current solution are precisely the transfor-
mations in 7. The heart of the algorithm simply randomly

Algorithm 1 The GUOQ Algorithm

1: procedure GuoQ(circuit C, error €, transformations 7)
2 initialize Cpes; and Ceyyr to C
3 initialize errorp,s and error,,, to 0
4 while within time limit do
5: Randomly select transformation 7. in 7~
6 if errorcy,, + € > €r then
7 continue
8 Randomly select subcircuit C; in Cqypr
9: CrL, < result of replacing Cs with 7. (Cs) in Ceypr
10: if cost(C},,,) < cosT(Ceyrr) then
11: Ceurr — Clypr
12: €ITOr ¢y — E€ITOL ¢y + €
13: else with probability exp ( (e
14: Ceurr — CL,r
15: €ITOr ¢y — €ITOr ¢y + €
16: if cosT(Ceyrr) < COST(Cpest) then
17: Chest — Ceurr
18: €ITOr pesr ¢— €ITOT cyypy
19: return Cpeg

samples a transformation and randomly samples a subcircuit
of the current solution circuit to apply the transformation to.
This move is always accepted if it improves or preserves the
quality of the solution with respect to cost. Otherwise, it is
accepted with some small probability that can be tuned using
the temperature hyperparameter . We adapt the standard
acceptance probability for simulated annealing [28], which
approaches 0 as the candidate solution cost increases.

The remainder of the algorithm ensures the upper bound
on the error in the final solution does not exceed the specified
tolerance €7. Using Thm. 4.2, we can simply keep track of
the sum of all the errors across all transformations applied.
If applying a transformation would exceed the error bound,
then we abstain and skip to the next iteration where we have
the opportunity to sample a rewrite rule transformation with
€ = 0. Thm. 5.3 states the correctness of GuoQ.

Theorem 5.3 (Correctness of guoQ). Let C’ be the result of
cuoQ(C, Efs T") for any circuit C, error tolerance €r 20, and
set of transformations 7. Then, C =, C’.

5.3 How to implement GUOQ efficiently

We now discuss key implementation ideas that improve the
performance of GuoQ in practice.

Weighing fast & slow. Applying a transformation to
a circuit is decomposed into selecting a transformation to
apply and a location in the circuit to apply it to. In practice,
we limit the probability of choosing resynthesis to 1.5% of
the time, since it is expensive. In the remaining 98.5% of the
time, we uniformly sample one of the rewrite rules.



Gate set Gates Architecture Tool Superoptimize Approach
IBMQ20 [2] U19,U2010: y391.02.0s cx Supercond. Qiskit [2] X fixed sequence of passes
IBM-EAGLE [2] Rf, SX,X,CX Supercond. TKET [57] X fixed sequence of passes
1oNg [60] Rz,Rz, RZG’Rgx Ton Trap voQC [20] X ﬁxe<.i sequence ofpas.ses

0 BQSK:it [69] v partition + resynthesize
Na'm [40] R, ?’ X, ?X None QUESO [66] v beam search + rewrite rules
Clifford + T [17] T,T',S,S",H,X,CX Fault Tolerant Quartz [67] v/ beam search + rewrite rules

Table 2. Summary of gate sets. Quarl [32] v reinf. learning + rewrite rules

Randomly selecting subcircuits. We choose a random
subcircuit to apply the transformation to by picking a node
uniformly at random in the circuit DAG to begin constructing
a subcircuit from. For rewrite rules transformations, com-
pletely random subcircuits will likely not be transformed
nontrivially. We optimize this step by starting at a random
node and performing a full pass through the circuit, replacing
every disjoint match of the left-hand side with the right-hand
side of the rule. For resynthesis transformations, we start at a
random node and grow a subcircuit greedily until we cannot
add more nodes without exceeding the qubit limit. We only
apply resynthesis to a single subcircuit per iteration.

Applying resynthesis asynchronously. Invoking a uni-
tary synthesis subroutine, even for a circuit with only 3
qubits, is slow and takes on the order of seconds or min-
utes to return a solution. To make better use of our time, we
choose to make these calls asynchronously so we can apply
rewrite rules concurrently. If the result of resynthesis is ac-
cepted, we effectively discard all modifications from rewrite
rules made in the interim.

6 Implementation and Evaluation

We implemented GuoQ in Java. Guoq interfaces with existing
resynthesis tools [43, 69] and can be instantiated with arbi-
trary rewrite rules and gate sets. We designed our evaluation
of GuogQ to answer the following research questions:

Q1 How does GuogQ compare to state-of-the-art tools?

Q2 What’s the effect of unifying rewriting & resynthesis?
Q3 What’s the best way to apply rewriting & resynthesis?
Q4 Does guoQ extend to fault-tolerant computing (FTQc)?

We focus on N1sQ in the first three questions using the diverse
gate sets and tools available and then explore FTQc in Q4.

Gate sets. Our approach is flexible and can handle ar-
bitrary gate sets. We evaluate on a variety of gate sets for
promising quantum architectures, summarized in Table 2.
The Nam gate set is not realized directly on hardware but is
studied extensively in prior work due to its resemblance to
the Clifford + T gate set.

Benchmarks. We consider all the benchmarks used in
prior optimization work [32, 66] as well as benchmarks used
in approximate optimization [44]. Prior optimization work
primarily focuses on circuits with fewer than 2,000 gates.
We expand the suite to larger application circuits considered

Table 3. State-of-the-art optimizers.

in prior mapping-and-routing work [72], and circuits im-
plementing standard algorithms. Experimenting with larger
circuits is key because total gate count is the primary met-
ric that affects the scalability of optimizers for circuits with
more than a few qubits. Our benchmark suite of 247 circuits
includes important quantum algorithms in the near and long
term such as QAOA [14], VQE [46], QPE [30], QFT [11],
Grover’s [18], and Shor’s [56]. To ensure a fair comparison
between each tool’s optimization phase, the input circuit
throughout this evaluation is always already decomposed
into the target gate set. Fig. 15 in Appendix B summarizes
the total gate counts of all the input circuits. The benchmark
circuits act on 4 to 36 qubits.

Metrics. For N1sQ, we focus on two-qubit gate reduction
because two-qubit gates have orders of magnitude higher

error rates compared to single-qubit gates. Gate reduction is

optimized count . .
computed as 1 — 222ZC UL We also compute the circuit
original count

fidelity, or success probability, to emphasize that two-qubit
gates are the dominant source of error. The fidelity of a gate
is 1— its error rate and the fidelity of a circuit is the product
of its gate fidelities. For 1BMQ20 and 1BM-EAGLE, we use the
calibration data for the IBM Washington device available in
Qiskit; for the Ion gate set, we use data for the IonQ Forte
device [22]. In Q4, we consider different metrics for FrQc.

In our plots, each point corresponds to a benchmark. For each
benchmark circuit and tool, we compute the mean metric for a
number of runs of the tool (10 trials for GuoQ) and a 95% confi-
dence interval. For readability, we present the benchmarks in
increasing order sorted based on GuoQ. A point where GuogQ
lies above the respective point for the other tool implies
that cuoq outperforms the other tool. The bar plot below
each scatter plot summarizes the number of benchmarks
GUOQ on average outperforms, matches, and underperforms,
respectively, the tool in the title.

Q1: Comparison with state-of-the-art optimizers

State of the art. We compared GuoQ to 7 state-of-the-art
optimizers listed in Table 3. Our goal is to compare the opti-
mization phase of various tools so we do not invoke mapping
and routing and tools are allowed to change the input cir-
cuit’s connectivity if they support this feature. We exclude
PyZX [29] from this research question because its primary
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Figure 9. GuoQ vs state-of-the-art on the 10NQ gate set.

optimization objective is to reduce T gate count and often
either increases or preserves the two-qubit gate count. We
compare against PyZX in Q4 where we explore T reduction.

Instantiation of GuogQ. GUOQ uses rewrite rules gener-
ated by QUEso [66] and does not consider any size-increasing
rewrite rules. To reduce two-qubit gate count, GuoQ uses
BQSK:it [69] for resynthesis and the optimization objective
is to maximize fidelity. We limit random subcircuits to have

at most 3 qubits. The temperature hyperparameter ¢ is set
to 10, corresponding to a very small probability of accept-
ing a worse solution. We chose this value empirically by
performing a sweep of values from 0 (always accept) to 10.

Experimental setup. Unless otherwise indicated, we al-
located each tool 1 hour, 32GB of RAM, and 1 CPU core on
an AMD EPYC 7763 64-Core Processor. Quarl was run on
a cluster of machines and was allocated 64GB of RAM, 1
NVIDIA A100-SXM4-40GB or 80GB GPU, and 1 CPU core.
We only evaluate a tool on its supported gate sets. For ap-
proximate tools, we enforce an error upper bound of 1078,
which is (1) many orders of magnitude smaller than the error
rate of a single two-qubit gate in N1sQ (1073 [27]) and (2)
on-par with the logical error rate of a single error correc-
tion cycle for FTQc (1076 to 1077 [41]) or an arbitrary-angle
approximation.

We run Quarl for 3 trials with rotation merging, following
their paper’s experimental setup. For Qiskit and BQSKit, we
use the most powerful optimization levels, which are 3 and
4, respectively. We report the best solution found within
the time and memory limits for all tools. That is, we use
the partial solutions that GuoQ, QUEso, Quartz, and Quarl
provide and use the original circuit for the other tools.

Results. The results for the 1BMQ20, IBM-EAGLE, and Nam
gate sets are all similar, so we only show the plots for the
IBM-EAGLE gate set. Fig. 8 shows the comparison between
GUOQ and state-of-the-art with respect to two-qubit gate
reduction and fidelity on the IBM-EAGLE gate set. Recall that
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benchmarks where the orange point lies above the blue point
are ones where GuoQ outperforms the tool in the title. For
example, consider the left-most column where GuogQ out-
performs Qiskit with respect to two-qubit gate reduction
on 233/247 of the benchmarks, matches on 5, and underper-
forms on 9. We observe a very similar story in the fidelity
graph on the bottom. This result holds in general against all
other tools and cuoQ outperforms state-of-the-art on at least
80% and 74% of the benchmarks with respect to two-qubit
gate reduction and fidelity, respectively. Recall that Quarl
requires a GPU to run its specialized reinforcement learning
and trains on a subset of the benchmark suite. GuogQ reduces
two-qubit gate count by 28% on average while the next best
tool, Quarl, has an average reduction of 18% and the best
industrial toolkit, TKET, achieves 7% average reduction.

The results in Fig. 9 on the 10NQ gate set depict a similar
story. As we can see in the comparison against QUEso0, a tool
which synthesizes rewrite rules, the 10NQ gate set is challeng-
ing for QUEsSO because rewrite rules are limited to patterns
with a maximum of 3 gates to limit the combinatorial ex-
plosion of rules. GuoQ performs well because resynthesis
can compensate for the limited rewrite rules. We will see
in Q4 an example of the opposite effect. This demonstrates
how the effectiveness of rewrite rules and resynthesis varies
across different gate sets. Thus, unifying them provides a
generic approach for optimizing diverse circuits.

Q1 summary. Guog significantly outperforms state-
of-the-art across all gate sets. In the worst case, GuoQ
outperforms other tools on 69% and 74% of the bench-
marks with respect to two-qubit gate reduction and
fidelity, respectively. In particular, GuoQ achieves an
average of 28% two-qubit gate reduction on the 1BMm-
EAGLE gate set while the state-of-the-art superopti-
mizer (requires GPU) and industrial toolkit achieve
average reductions of 18% and 7%, respectively.

Q2: Effect of combining rewriting and resynthesis

We explored this question by fixing the 1BMQ20 gate set and
running cuoQ with three different sets of transformations.
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Figure 11. Comparing GuoQ against other search algorithms

GUOQ-REWRITE only uses rewrite rules synthesized by QUEso,
GUOQ-RESYNTH only uses resynthesis, and cuog uses both.

Results. Fig. 10 shows that removing either rewrite rules
or resynthesis is overall detrimental to the performance of
GUOQ. Similar to Fig. 8, the title of each plot is the baseline
and points below the curve are benchmarks where cuogQ
outperforms the baseline. Observe how most of reduction
comes from using resynthesis because it is a powerful opti-
mization on its own. Interleaving with rewrite rules, which
can take care of simple optimizations quickly, pushes the
reduction even further.

Q2 summary. We can exploit the synergy between
rewrite rules and resynthesis to achieve well beyond
the capabilities of either alone.

Q3: How to combine rewriting and resynthesis?

To answer this question, we fixed the 1BMQ20 gate set and set
of rewrite rule and resynthesis transformations while vary-
ing the search algorithm. We compare GuoQ against three
alternate search algorithms for combining rewrite rules and
resynthesis: (1) GUOQ-SEQ-REWRITE-RESYNTH, which spends
the first half of the allotted time running GuogQ with rewrite
rules only, then switches to running with resynthesis only,
(2) GUOQ-SEQ-RESYNTH-REWRITE does the opposite, and (3)
GUOQ-BEAM uses the MaxBeam algorithm of QUEso [66] to
instantiate our framework.

Results. Fig. 11 shows the results. GuogQ outperforms the
coarse interleaving GUOQ-SEQ-RESYNTH-REWRITE and GUOQ-
SEQ-REWRITE-RESYNTH use on a majority of the benchmarks.
This implies that tightly interleaving these different transfor-
mations is preferable to choosing a fixed ordering. We also
see that relative to each other: GUOQ-SEQ-RESYNTH-REWRITE
and GUOQ-SEQ-REWRITE-RESYNTH result in different solu-
tions, which is further evidence that the ordering matters.

We now turn our attention to GUoQ-BEAM, which allows
arbitrary orderings of rewrite rules and resynthesis but does
not randomly sample transformations like GuoQ. Instead,
GUOQ-BEAM maintains a large bounded priority queue of
candidates and attempts to apply every transformation in
each iteration. Doing so generates many candidates in each
iteration (one for each transformation successfully applied),
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Figure 12. Comparison against state-of-the-art optimizers on the Clifford + T gate set.

which saturates the queue quickly with solutions of the same
cost. In fact, the solutions are generally a few local trans-
formations away from one another so the search makes
much slower progress compared to guoQ. The influx of can-
didates to the bounded queue also causes many solutions
to be pruned, effectively wasting the time spent generating
those candidates. Especially for larger circuits, the sizable
queue is memory intensive, causing further slowdowns. In
summary, the benefit of beam search considering many can-
didates to avoid local minima is lost in this problem setting.

Q3 summary. GuUoQ achieves the best results by
tightly interleaving rewrite rules and resynthesis
using a simple, lightweight randomized algorithm.

Q4: Does GguoQ extend to FrQc?

In this research question, we shift our focus to the fault-
tolerant Clifford + T gate set, where the desired optimization
objective is an amalgamation of two NP-hard optimization
problems [64]. We want to primarily reduce T gates [9] and
reducing two-qubit gates is secondary, but still critical. Error
correction is not perfect and the longer a quantum compu-
tation runs, the higher the risk of accruing uncorrectable
logical error. Two-qubit gates, specifically CX in the Clif-
ford + T gate set, increase the circuit runtime disproportion-
ately because they inherently require more time compared to
single-qubit Clifford gates [34] and architectural constraints
can limit parallel execution [6, 21]. Furthermore, we antici-
pate that the problem of CX congestion will be exacerbated
in compact FTQC architectures [33] with less routing space.
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Lastly, recent work [16] has significantly reduced the space-
time cost of preparing a T magic state, indicating that the
focus on solely reducing T gates may soon need to be recali-
brated.

We instantiate GuoQ with Synthetiq [43], a state-of-the-art
unitary synthesis algorithm for finite gate sets, and rewrite
rules generated by QUEso [66]. We consider two additional
tools in this comparison: (1) PyZX [29], a state-of-the-art
optimizer for reducing T count using the rewrite-rule-based
ZX-calculus and (2) our implementation of a BQSKit-style
partitioning optimizer [44] that uses Synthetiq.

Results. The top and bottom rows of Fig. 12 show the
comparison against other tools with respect to T and CX gate
reduction respectively. GuoQ outperforms all tools except
PyZX with respect to T reduction and outperforms all tools
with respect to CX gate reduction. Observe how reducing
T gates is hard and a general-purpose tool, like Qiskit, only
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reduces the number of T gates on 5% of the benchmarks.
PyZX is a domain-specific optimizer that uses a powerful
graph-based theory, the ZX-calculus, which is specialized
for reducing phase gates, but does not reduce CX gates at
all.

Digging deeper, we find that cuoqQ is unable to surpass
PyZXin T gate reduction because unitary synthesis for finite
gate sets is much harder than for continuous gate sets. Fig. 13
shows the results from the same ablation as in Q2 and we
find that rewrite rules contribute more than resynthesis.

To get a sense for how “good” PyZX’s solution is, we ran
GuoQ on the output of PyZX for the 243 benchmarks it pro-
vided a solution for within the time and memory limits. We
discovered that cuog can drastically reduce the CX gate
count without increasing T gate count! Fig. 14 shows this
result, which is exciting because PyZX on its own does not re-
duce CX gate count. Extending PyZX with cuog pushes the
boundaries for the multifaceted FTQc optimization objective.

Q4 summary. GuoQ outperforms all tools with re-
spect to T gate reduction except PyZX, which it only
outperforms or matches on 45% of the benchmarks.
However, GuoQ vastly outperforms PyZX (and other
tools) with respect to CX gate reduction on at least
81% of the benchmarks, which is also critical in FrQc.
Additionally, when run on the output of PyZX, cuog
can reduce CX gate count on average by 32% without
increasing T gate count.

7 Related Work

Quantum optimizers. Traditional quantum-circuit opti-
mizers primarily use a fixed set of hand-crafted optimizations
[2,3, 8, 20, 40, 45, 57] applied in a fixed sequence. PyZX [29]
takes a variant of this approach: representing a circuit as a
ZX-diagram and applying the graphical rewrite rules of the
ZX-calculus. guoQ instead performs a fine-grained search
over arbitrary optimizations.

(Quantum) superoptimizers. The idea of superoptimiz-
ing classical programs has been around for decades [37, 63].
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This vast line of work [10, 23, 36, 39, 47, 53, 54] stems from
the idea of finding the optimal solution for small programs
that can later be applied in peephole optimizers. Approaches
like STOKE [54] use MCMC [19] to superoptimize x86 as-
sembly by randomly mutating the program. The ergodic
theory behind MCMC lends itself to applications where test-
ing correctness is easy. However, quantum circuits cannot
be efficiently simulated on classical hardware [42].

Rewrite rules and unitary synthesis have both been used
as the basis of quantum-circuit superoptimizers. Quartz [67]
and QUESO [66] synthesize rewrite rules for a given gate set
and use beam search to explore the space of rule applica-
tion schedules. Quarl [32] applies reinforcement learning to
schedule the application of rules generated by Quartz. None
of these apply approximate circuit transformations. On the
other hand, resynthesis-based superoptimizers [44, 69] op-
timize circuits by performing a single pass of partitioning
into subcircuits, followed by applying unitary synthesis to
each subcircuit. This approach circumvents the qubit count
limitations of unitary synthesis, but is rigid and misses po-
tential optimization opportunities that straddle the boundary
between two adjacent partitions. In contrast, GuogQ is not
limited to resynthesizing disjoint subcircuits of the original
circuit. cuoQ can freely choose subcircuits to resynthesize
by using Thm. 4.2 to bound the error when composing ap-
plications of resynthesis.

In a similar spirit to Quarl, other recent approaches have
applied reinforcement learning to superoptimize quantum
circuits. MQTPredictor [49] predicts the optimal passes and
device with respect to an optimization objective but cur-
rently only considers a subset of Qiskit and TKET passes.
AlphaTensor-Quantum [52] is a closed-source approach that
uses reinforcement learning for tensor decomposition to
optimize T count.

Domain-specific optimizers. Other work targets spe-
cific applications like Hamiltonian simulation [31, 35] or
variational algorithms [24]. Some tools operate at a lower
level of abstraction than we do by considering gate pulses
[55] or a higher level by starting from a program written
in a high-level quantum programming language [70, 71]. In
contrast, GuoQ is designed to be flexible for diverse quantum
assembly circuits and architectures.

Unitary synthesis. Extensive prior work has considered
the unitary synthesis problem for both finite and parameter-
ized gate sets. For finite gate sets, some approaches [4, 62]
provide theoretical guarantees of optimality in terms of cir-
cuit size, whereas others [26, 43] sacrifice optimality for
improved runtime. For parameterized gate sets, several tech-
niques [13, 50, 51, 59, 68] use numerical optimization to in-
stantiate template circuits. However, all of these algorithms
can only be applied to circuits with a handful of qubits.



8 Conclusions

We have described a generic and flexible framework for uni-
fying rewriting and resynthesis for quantum-circuit opti-
mization along with a simple and effective algorithm param-
eterized on an instantiation of this framework. Our approach,
GUoQ, outperforms state-of-the-art optimizers in both near
(N15Q) and long (FTQC) term quantum computing paradigms.
For future work, we are interested in developing symbolic
unitary synthesis so we can learn general transformations on
the fly—as opposed to ones with highly specific angles—that
will be more likely to apply later in the search.

A Proofs

Thm. 4.2. By induction on n. Base case: Trivially, Cy = Cy.
Induction case: Assume Cy = Ci for k > 0 as our inductive
hypothesis. We will show Cy =(x+1)e Ciks1. We have Cy =,
Ck+1 by the proof of [44, §3.8] for disjoint partitions. Let
U:=Ug, U =Ug,U" =Ug,, €1 = ke, and €; = €. Now
it suffices to show A(U,U”") < €1 + €3 = (k + 1)e.
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By definition of =, Cy =(k+1)e Ck41, as desired. O
Thm. 5.3. Follows directly from Thm. 4.2 and Alg. 1, line 6.
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