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Abstract. We present a novel interpolation algorithm for effectively
propositional logic (epr), a decidable fragment of first-order logic that
enjoys a small-model property. epr is a powerful fragment of quanti-
fied formulas that has been used to model and verify a range of pro-
grams, including heap-manipulating programs and distributed protocols.
Our interpolation technique samples finite models from two sides of the
interpolation problem and generalizes them to learn a quantified in-
terpolant. Our results demonstrate our technique’s ability to compute
universally-quantified, existentially-quantified, as well as alternation-free
interpolants and inductive invariants, thus improving the state of the art.

1 Introduction

Craig interpolation techniques have played an important role in the advance-
ment of automated analysis and verification: from hardware verification [18],
to software verification [19, 12], to error diagnosis [10], and even to modeling
of cyber-physical systems [4]. By representing program executions as first-order
formulas, interpolants can be used to concisely conjecture why the program is
correct. Expanding the scope of interpolation-based verification requires investi-
gating and developing interpolation techniques for different logical theories that
enable modeling of various program features.

In this paper, we investigate the problem of computing Craig interpolants
for effectively propositional logic (epr), also known as the Bernays-Schönfinkel-
Ramsey fragment of first-order logic. epr is the class of formulas of the form
∃∗∀∗ϕ, where the quantifier-free formula ϕ has no function symbols. Two in-
teresting aspects motivate our study of this fragment: (i) decidability of its
satisfiability and (ii) its surprising applicability to modeling a range of complex
program features. For instance, epr has been used to model programs manipu-
lating linked-list data structures and arrays [14, 13, 15, 17, 26], software-defined
networking programs [5], eventually consistent data stores [29], parameterized
distributed protocols [22], amongst others [25, 23, 24]. Indeed, the power of epr
lies primarily in its ability to model unbounded structures. Thus, progress in
interpolation can open the door to verification in a large spectrum of domains.

We propose a sampling-based technique for computing an interpolant I for
two inconsistent epr formulas, A and B. A key insight in our approach is that
we can use an epr satisfiability procedure as an oracle to systematically sam-
ple finite models of A and B and generalize them to monotonically grow an
interpolant. A finite model of an epr formula can be viewed as a relational
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structure—a hypergraph—over a finite set of nodes. Our algorithm thus samples
hypergraphs from A and B and generalizes them into infinite sets of structurally
similar hypergraphs.

Our presented technique ensures that computed interpolants do not con-
tain quantifier alternation—that is, they are of the form ∃∗ϕ, ∀∗ϕ, or Boolean
combinations of those. This pragmatic constraint is motivated by the fact that
computed interpolants are typically used in verification engines, and thus form
inductive invariant conjectures. To check if an interpolant I(x) is an inductive
invariant with respect to a transition relation T (x,x′), one needs to check satis-
fiability of I(x) ∧ T (x,x′) ∧ ¬I(x′). If I has quantifier alternation, we leave the
decidable confines of the epr fragment—due to the negation of I, which makes
it of the form ∀∗∃∗ϕ. Thus, by finding alternation-free interpolants, we maintain
decidability of inductiveness checking.
Contributions To our knowledge, this paper is the first comprehensive inves-
tigation of epr interpolation. We summarize our key contributions as follows:

– We first present an interpolation algorithm that can construct an existentially-
quantified interpolant, of the form ∃∗ϕ, or detect its non-existence. The al-
gorithm monotonically grows an interpolant by sampling finite models and
generalizing them using the model-theoretic notion of diagrams [9].

– We present an interesting proof of soundness and completeness of our algo-
rithm and identify epr fragments and conditions for which it is complete.

– We show that, by solving the dual interpolation problem, our algorithm can
also be used to construct universally-quantified interpolants, of the form ∀∗ϕ.

– We then show how, by systematically decomposing the interpolation prob-
lem, we can leverage this procedure to construct alternation-free interpolants
with Boolean combinations of universal and existential quantifiers.

– We validate our interpolation algorithm by implementing it alongside a sim-
ple interpolation-based verifier. We show that the verifier (i) is competitive
with recent pdr-based algorithms [15, 17] for computing universal invariants,
and (ii) is able to compute alternation-free invariants, a fragment that is out
of scope for existing techniques.

2 Illustrative example

In this section, we illustrate our technique with simple examples.
Existential interpolants Consider the following formulas in epr:

A , ∃a.∀b. (p(a) ∨ q(a)) ∧ r(b) B , ∃c.∀d.¬p(d) ∧ ¬q(d) ∧ s(c)

where p, q, r, s are unary relations. A ∧ B is unsatisfiable, and we would like to
find an interpolant I such that (i) A ⇒ I, (ii) I ⇒ ¬B, and (iii) I is over the
shared vocabulary of A and B: the relations p and q, only.
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We iteratively sample and general-
ize models until generalizations sub-
sume A—resulting in an interpolant.

A B

We start by sampling a model of A
and generalizing it to a set of models
that does not overlap with B.

A B A B

(a) (b) (c)

model

generalization

If the strongest generalization of some
model overlaps with B, then we know
that no interpolant exists.

Fig. 1. High-level illustration of unidirectional interpolation.

We will search for an interpolant in epr that is restricted to existential quan-
tifiers, i.e., contains no universal quantifiers. To do so, we will use an algorithm
we call unidirectional interpolation (uitp), illustrated at a high-level in Figure 1.
uitp grows an interpolant by sampling models of A only (hence, unidirectional)
and generalizing them. epr satisfiability is decidable and epr formulas have fi-
nite models, which we can find using a reduction to sat (or using, e.g., the Z3
smt solver [20]). The problem is that models in this fragment correspond to a
universe of anonymous elements that satisfy the formula. The question is: how
can we generalize such a model to a set of models and represent it as a formula?

Let us begin by sampling the following model (structure) m from A: the
singleton universe of elements {u1}, where p(u1) and r(u1) hold, but q(u1) does
not. Observe that this model satisfies A, denotedm |= A. Now, we can generalize
this model to a set of models using the model-theoretic notion of diagrams [9,
17], restricted to the shared vocabulary of A and B.

A diagram is analogous to a cube in the propositional setting, in that it is
a conjunction of the facts the model satisfies. However, since our model is a
collection of anonymous elements, we need to abstract them using quantified
variables as follows:

diag(m) , ∃xu1
. p(xu1

) ∧ ¬q(xu1
)

There are three important aspects to observe:

(i) m |= diag(m), and the diagram generalized m to a set of infinitely many
models that have at least one element satisfying p but not q;

(ii) the relation r does not appear in the diagram, since it is not in the shared
vocabulary of A and B; and

(iii) diag(m) ∧B is unsatisfiable.

At a high-level, a model defines a relational structure between a set of
elements—perhaps a graph, linked list, or tree. Generically, models represent
hypergraphs. A diagram then abstracts a model into a formula defining an infi-
nite set of structurally similar hypergraphs, as illustrated in Figure 2.

Our goal is to sample enough models such that the disjunction of their di-
agrams covers (subsumes) A and is unsatisfiable with B. In this example, A is
not subsumed by diag(m), and therefore we sample a model of A that is not a
model of diag(m). Suppose we get the model m′ with the universe {u2}, where
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. . .

model m
diag(m)

A model m can be viewed as a hy-
pergraph, with nodes representing
the universe of m and edges repre-
senting relations. The formula diag(m)
is an infinite set of hypergraphs that
are structurally similar to m.

Fig. 2. Illustration of diagrams as sets of models

q(u2) and r(u2) hold, but p(u2) does not. From m′, we construct the following:

diag(m′) , ∃xu2 .¬p(xu2) ∧ q(xu2)

The formula diag(m′) is unsatisfiable with B, but together with diag(m)
does not yet subsume A. We sample a third model of A that is neither a
model of diag(m) nor diag(m′). Suppose we get the model m′′ with the universe
{u3}, where p(u3), q(u3), and r(u3) hold. From m′′, we construct the following:
diag(m′′) , ∃xu3

. p(xu3
)∧ q(xu3

). The formula diag(m′′) is unsatisfiable with B
and, together with diag(m) and diag(m′), subsumes A. Therefore,

diag(m) ∨ diag(m′) ∨ diag(m′′)

is an interpolant of (A,B). In practice, we weaken the interpolant further, and
hasten convergence, by dropping unnecessary conjuncts appearing in the dia-
grams; we do so using unsat cores, as described in Section 4.1.
Detecting that no interpolant exists Not all epr formulas have existentially-
quantified interpolants. Consider the following example [7]:

A , ∀x. p(y, x) B , ∀x.¬p(x, z)

An interpolant for A and B has to have a quantifier alternation, for in-
stance, ∃y.∀x. p(y, x). If we run uitp on the pair (A,B), we can detect that
no existentially-quantified interpolant exists. Suppose that we sample the model
m with universe {u} where p(u, u) holds. Then, diag(m) is ∃xu. p(xu, xu). This
diagram is satisfiable with B (see Figure 1(c)). A diagram of m is the strongest
possible existentially-quantified formula in the shared vocabulary of (A,B) for
which m is a model; therefore, we can conclude that there is no existentially-
quantified interpolant for (A,B).
Universal interpolants Suppose that a pair of formulas (A,B) only has
a universally-quantified interpolant. By definition of an interpolant, this means
that the dual interpolation problem over (B,A) has an existentially-quantified in-
terpolant. Therefore, to compute a universally-quantified interpolant for (A,B),
we can simply use uitp to compute an interpolant for (B,A) and negate it, as
negation flips the existential quantifier into a universal one (see Section 4.1).
Alternation-free interpolants Let us now consider an example that requires
a Boolean combination of ∃∗ϕ and ∀∗ϕ formulas—i.e., an alternation-free epr
formula. The uitp algorithm described above is insufficient in this case, as it
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A B

diag(m)
diag(m) ^ B

model m

diag(m) ^ B
is sat

The generalization of m is satisfi-
able with B. We attempt to find
a universal formula that strength-
ens this generalization. We do so
by computing an interpolant for

(diag(m) ^ B, diag(m) ^ A)

and negating it.

diag(m) ^ A

Fig. 3. High-level illustration of one recursive step of bidirectional interpolation.

cannot compute interpolants with Boolean combinations of existential and uni-
versal quantifiers. To construct such an interpolant, we will use uitp as a sub-
procedure, but we will decompose the interpolation problem and invoke uitp
on a dual problem when requiring universal quantifiers. We call this approach
bidirectional interpolation, bitp, as it alternates sampling between the A and B
sides of the interpolation problem.

Consider the following interpolation problem:

A , ∃x, z.∀y.¬r(x, z) ∧ p(y, y) B , ∃y∀x, z.¬r(x, z) ∧ ¬p(y, y)

We begin by invoking uitp on the above, and it will immediately discover a model
m of A whose diagram overlaps with B. Suppose uitp discovers the following
diagram for some model m:

diag(m) , ∃x.¬r(x, x) ∧ p(x, x)

It happens that diag(m) overlaps with B. Intuitively, the region of overlap,
diag(m) ∧ B, cannot be isolated by the interpolant using only existential quan-
tifiers. Therefore, we need to strengthen the diagram using a universal formula.
To do so, we attempt to find a universal interpolant between diag(m) ∧ A and
diag(m) ∧B. Specifically, we invoke uitp on the interpolation problem

(diag(m) ∧B, diag(m) ∧A)

and negate the result—this produces a universally-quantified formula with which
we can strengthen diag(m). Notice that B now appears on the left side of the
interpolation problem; thus, sampling now proceeds from the region in B that
overlaps with diag(m) (see Figure 3 for an illustration).

Once we get a universal interpolant, we use it to strengthen diag(m). In this
example, after more sampling, we finally arrive at the following interpolant:

(∃x, z.¬r(x, z)) ∧ (∀y. p(y, y))

We have demonstrated how bitp uses uitp as a base procedure to com-
pute alternation-free interpolants. In a nutshell, the algorithm proceeds as if
an existential interpolant exists, and when it finds out that is not the case, it
switches direction to find the universal subformulas required to strengthen the
interpolant. We describe this process in detail in Section 4.3.
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3 Preliminaries

In this section, we formalize definitions needed for the rest of the paper.
Effectively propositional logic We shall use L to denote the class of all epr
formulas. An epr formula ψ is a first-order formula that, when written in prenex
normal form, is of the form

∃x1, . . . , xn.∀y1, . . . , ym. ϕ,

where xi and yi are quantified variables, and ϕ is a quantifier-free formula over
quantified variables, free variables, and relations. Note that ϕ has no function
symbols. (We elide constants for clarity of presentation.) Throughout the paper,
we shall refer to epr formulas as if they are written in prenex normal form.
We shall use vocab(ψ) to denote the set of free variables and relation symbols
appearing in ψ. We shall also refer to the following epr subfragments:

– L∀: the class of formulas that only contain universal quantifiers,
– L∃: the class of formulas that only contain existential quantifiers, and
– Laf: the class of formulas that do not contain quantifier alternation.

Observe that (L∃ ∪ L∀) ⊂ Laf ⊂ L.
Finite models Given a L formula ψ with a set V of free variables and a set R
of relation symbols, a finite model m of ψ, denoted m |= ψ, is a tuple (U,A, T ),
where

– U is a finite set of elements, called the universe of m;
– A is an assignment function mapping free variables V and existentially-

quantified variables of ψ to elements of U ; and
– T is an interpretation function that maps each relation r ∈ R to a set of

tuples over U such that, for r with arity n, (u1, ..., un) ∈ Un is in the relation
r if and only if (u1, ..., un) ∈ T (r).

As is standard, given a model m of ψ, if ψ is instantiated with A and T , it
evaluates to true under the universe U . The cardinality of m is the size of its
universe. Despite the fact that L formulas may have infinite models, we will
always use model to refer to finite models.

It is important to note that formulas in L have a small-model property, mean-
ing that a formula is satisfiable iff it has a model whose universe is smaller than
or equal to the sum of the number of free and existentially-quantified variables
(see Theorem 3 below).
Diagrams We now define the model-theoretic notion of a diagram, which allows
us to abstract a model m into a set of models.

Given a model m = (U,A, T ), a set of variables V , and a set of relations R,
we construct the diagram of m with respect to V and R, denoted diag(m,V,R)
(or diag(m), when V and R are clear from context) as follows:

– For each element ui ∈ U , introduce a fresh variable xui
.
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– Let ϕelem be the conjunction of the following terms:
For each distinct ui, uj ∈ U , the term xui 6= xuj .
For each x ∈ V , the term x = xu, where A(x) = u.

– Let ϕrel be the conjunction of terms described as follows:
For each r ∈ R and (u1, . . . , un) ∈ T (r), the term r(xu1

, . . . , xun
).

For each r ∈ R and (u1, . . . , un) 6∈ T (r), the term ¬r(xu1
, . . . , xun

).
– Finally, diag(m,V,R) = ∃xu1

, . . . , xu|U| . ϕelem ∧ ϕrel

Observe that m |= diag(m,V,R). The diagram abstracts the anonymous
elements of the universe of a model as existential variables. As a result the
diagram of m is the set of all models that have a substructure isomorphic to m
(see definition of substructure below, and recall Figure 2 for a visualization).

Example 1. Let ψ , P (x) ∧ ∀y. (¬P (y) ∨ ¬Q(y)). A possible model m |= ψ is:

– U = {u1, u2}
– A = {x 7→ u2}
– T = {P 7→ {(u2)}, Q 7→ ∅}

The diagram of the model m with respect to V = {x} and R = {P} is:

∃xu1 , xu2 . xu2 6= xu1 ∧ x = xu2 ∧ P (xu2) ∧ ¬P (xu1)

If we had considered instead a model m′ with a single element in its universe,
we would have obtained that diag(m′, V,R) is ∃xu. x = xu ∧ P (xu). �

Substructure We briefly define the model-theoretic substructure relation. Given
a model m = (U,A, T ), a substructure of m is a model m′ = (U ′, A′, T ′) such
that U ′ ⊂ U and A′ and T ′ are restrictions of A and T to U ′. We will use
m′ � m to denote that m′ is isomorphic to a substructure of m. The notion of
a substructure admits many desirable properties:

Theorem 1. If m1 � m2 and ϕ ∈ L∃, then m1 |= ϕ⇒ m2 |= ϕ.

Corollary 1. m1 � m2 if and only if m2 |= diag(m1).

Proof. The forward direction is a consequence of Theorem 1. For the reverse, if
m2 |= diag(m1), then, by construction of diag, there is a subset of m2 that is
isomorphic to m1, so m1 � m2. �

Theorem 2. If m1 � m2 and ϕ ∈ L∀, then m2 |= ϕ⇒ m1 |= ϕ.

Corollary 2. Given ϕ ∈ Laf, written as a Boolean combination of L∀ and L∃
subformulas, if m1 � m2 and each L∃ subformula ψ of ϕ has the property that
m2 |= ψ ⇒ m1 |= ψ, then m2 |= ϕ⇒ m1 |= ϕ.

Proof. From the given and from Theorem 2, we know that m1 satisfies at least
as many subformulas of ϕ as m2 does, and thus m1 |= ϕ. �
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Small models Additionally, given an arbitrary model m |= ϕ for ϕ ∈ L, there
exists a small model m′ � m such that m′ |= ϕ.

Theorem 3. If ϕ is a satisfiable epr formula written in prenex normal form

A , ∃x1, . . . , xn∀y1, . . . , yk. ϕ(x1, . . . , xn, y1, . . . , yk, c1, . . . , c`)

where c1, . . . , c` are free variables, then there exists a model of ϕ with size |U | 6
n+ `.

Proof. Let m be a model of ϕ. Consider m′ = (U ′, A, T ′) where

– U ′ is the restriction of U to ϕ, i.e. the elements to which existentially-
quantified variables x1, . . . , xn and free variables c1, . . . , c` are mapped.

– T ′ is the restriction of T to U ′.

Then, it follows immediately that m′ is also a model of ϕ with U ′ 6 n+ `. �

Interpolants Given a pair of L formulas, (A,B), where A∧B is unsatisfiable,
an interpolant I for the interpolation problem (A,B) is a formula such that

– A⇒ I is valid,
– I ⇒ ¬B is valid, and
– vocab(I) ⊆ vocab(A) ∩ vocab(B).

Given an interpolation problem (A,B), we call (B,A) the dual interpolation
problem. For the purposes of this paper, we will restrict interpolants to formulas
in the alternation-free subfragment of epr, namely, Laf.

4 Effectively propositional interpolation

In this section, we describe our algorithms for computing interpolants for epr
formulas. We first present a unidirectional interpolation algorithm, which can
compute interpolants in L∃ and L∀ by sampling from one side (i.e., formula)
of the interpolation problem. We then discuss bidirectional interpolation, which
alternates its sampling between the two sides to construct an interpolant in Laf.

4.1 Unidirectional interpolation

Algorithm description The unidirectional interpolation algorithm, uitp, is
used to find an interpolant in L∃ for a pair of formulas (A,B) or to detect
that no such interpolant exists. The high-level idea is to grow an interpolant—
starting from false—by sampling models of A. Of course, A likely has infinitely
many models; the algorithm thus generalizes sampled models using diagrams
until they subsume all of A or until a model’s diagram overlaps with B, in which
case we know there does not exist an existentially-quantified interpolant.

uitp is presented in Algorithm 1 as a set of guarded rules that update a set of
samples S, which contains diagrams of models of A. Initially, the set S is empty;
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the rule sample finds a model of A that is not a model of one of the diagrams
in S and adds its diagram to S. The diagrams are taken with respect to the set
of variables V and relations R in the shared vocabulary, vocab(A) ∩ vocab(B).

Observe that S is a set of existentially-quantified formulas of the form

∃X. a1 ∧ . . . ∧ an,

where ai is an atomic predicate. At any point the candidate interpolant is
∨
S,

i.e., the disjunction of all diagrams in S. Thus, the candidate interpolant begins
as being false, and every time the rule sample is applied, the candidate inter-
polant is weakened. Note that all formulas in L∃ can be written as disjunctions
of existentially-quantified conjunctions of atoms.

The algorithm succeeds in finding an interpolant when the rule itp applies—
that is, when A ⇒ ∨

S and
∨
S ⇒ ¬B are valid. Observe that all of these

satisfiability checks lie within epr, and are therefore decidable.
If the algorithm detects a diagram in S that is satisfiable with B, using rule

fail, it concludes that no interpolant in L∃ exists for (A,B). The intuition here
is as follows: Given a model m |= A, diag(m) is the strongest formula in L∃ for
which m is a model. Therefore, if diag(m) overlaps with B, we cannot find an
interpolant in L∃ that includes the model m. (See Theorem 5.)

Finally, the rule abstract attempts to weaken a diagram up to B—that is,
it takes a diagram in S and removes some of its conjuncts such that the result
is still unsatisfiable with B. In practice, this is performed using unsat cores,
when checking whether the diagram is satisfiable with B. Whereas this rule is
not needed for soundness or completeness, it is of crucial importance in practice,
as otherwise diagrams are overly specific (this is further discussed below).
Computing L∀ interpolants uitp can also be used to compute universally-
quantified interpolants in L∀. This can be easily done as follows: Suppose that
(A,B) has an interpolant I∀ in L∀. By definition of an interpolant, we know that

(i) B ⇒ ¬I∀ is valid and
(ii) ¬I∀ ⇒ ¬A is valid

In other words, ¬I∀ is an interpolant for the dual interpolation problem, (B,A).
Observe that ¬I∀ is in L∃, since the negation turns the universal quantifier into
an existential one. Therefore, to find a universal interpolant for (A,B), we can
simply use uitp to find an existential interpolant for (B,A) and take its negation.
Viewed differently, by solving the dual interpolation problem, we are essentially
modifying uitp to sample from the B side of the interpolation problem instead
of the A side, and this allows us to compute universally-quantified interpolants.
Interpolant strength For any two formulas, there is typically a spectrum of
interpolants. Depending on the order in which the uitp rules are applied, we
may arrive at different interpolants.

On one extreme, if we avoid using the abstract rule, we ensure that what-
ever interpolant we find is the strongest possible one. This is because, for every
sampled model m of A, uitp will add the strongest possible formula in L∃ that
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init
S ← ∅

m |= A ∧
∧
s∈S

¬s
sample

S ← S ∪ {diag(m,V,R)}

s ∈ S s , ∃X.
∧

D s′ , ∃X.
∧

D′ D′ ⊂ D s′ ∧B is unsat
abstract

S ← (S \ {s}) ∪ {s′}

s ∈ S s ∧B is sat
fail

no L∃ interpolant exists for (A,B)

A ∧
∧
s∈S

¬s is unsat B ∧
∨

S is unsat

itp∨
S is an L∃ interpolant for (A,B)

Algorithm 1: Unidirectional interpolation

containsm (its diagram) to the set of samples S. Any interpolant that is stronger
will thus have to exclude one of the models of A.

On the other extreme, if at every step abstract is applied exhaustively—
i.e., until it is no longer applicable to any s ∈ S—then we arrive at a maximal
interpolant. (This is equivalent to taking a minimal unsat core of each diagram
with respect to B, which can result in sampling exponentially fewer models.)
A maximal interpolant I is one that cannot be weakened while remaining an
interpolant—i.e., there does not exist an interpolant I ′ such that I ⇒ I ′ and
I 6≡ I ′. Note that there maybe a number of incomparable maximal interpolants.

The following theorem states that different applications of the rules can result
in all interpolants, from the weakest to the strongest.

Theorem 4. For every interpolant I ∈ L∃ of (A,B), there exists a run of uitp
that will compute it.

4.2 Theoretical properties of uitp

We now investigate soundness and completeness of uitp.
Soundness The following theorem states that uitp is sound.

Theorem 5 (Soundness). If uitp, invoked on (A,B), returns a formula I ∈
L∃, then I is an interpolant of (A,B). If the fail rule applies, then there is no
interpolant in L∃ for (A,B).

Proof. The first statement follows from the fact that (i) the candidate inter-
polant

∨
S is in L∃; (ii) following the rule sample, the candidate interpolant is

over the shared vocabulary of A and B; and (iii) the rule itp ensures that the
returned formula I is such that A⇒ I and I ⇒ ¬B.
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We prove the latter statement by contradiction. Suppose I ∈ L∃ is an in-
terpolant for (A,B), but the fail rule applies. Then, there is a model m |= A
such that diag(m)∧B is satisfiable. I can be written as

∨
i ψi, where ψi is an L∃

formula of the form ∃∗ϕi, where ϕi is a conjunction of atoms. If m |= A, then,
since I subsumes A, m |= I. In particular, for some i, m |= ∃∗ϕi. By construc-
tion, diag(m) is at least as strong as ∃∗ϕi, so since diag(m)∧B is satisfiable, so
is I ∧B—but this contradicts the definition of an interpolant. �

Completeness We now consider completeness of uitp: meaning that it is
always able to find an interpolant if one exists or detect its non-existence in a
finite number of steps. The key insight in our proof is the observation that every
epr formula A has a finite set of small models that characterize an L∃ formula
that subsumes A. The following lemma formalizes this observation, which we
prove using epr’s small-model property.

Lemma 1 (L∃ basis). Given A ∈ L, let M = {m | m is a small model of A}.
Then M is a finite set, called an L∃ basis, such that

A⇒
( ∨
m∈M

diag(m)

)
is valid. (1)

Proof. For any model m |= A, there is a small model m′ |= A such that m′ � m,
and therefore diag(m) ⇒ diag(m′). It follows that every model of A is a model
of
∨
m∈M diag(m), and since the small models have an upper bound on their

cardinality, there are finitely many of them. Therefore, Formula 1 is well-formed
and holds. �

Using Lemma 1, we are now ready to state completeness of uitp. The fol-
lowing theorem assumes a fair application of uitp rules.

Theorem 6 (Completeness of uitp). Let c be the maximum of the small-
model cardinality bounds of A and B. If uitp is invoked under the additional
constraint that each sampled model has cardinality at most c, then eventually one
of the rules itp or fail applies.

Proof. First, consider the case that an interpolant exists. By Lemma 1, A has
an L∃ basis M ′ where each model has size at most c. So, if an interpolant exists
in L∃, we eventually find it by enumerating the finitely many models (up to
isomorphism) of size at most c.

Second, consider the case where no interpolant exists. The algorithm will
eventually find a model m |= A such that diag(m)∧B is satisfiable. This follows
from Lemma 1, as if no such model is found, the existence of an L∃ basis would
induce an interpolant. �

Complete theories The above completeness theorem assumes that sampling
produces models of bounded cardinality. This can be enforced by adding the
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constraint card(c) to the formula:

card(c) , ∃x1, . . . , xc.∀y.
∨

16i6c

y = xi (2)

card(c) restricts sampling to models of size at most c. In practice, however,
we are typically operating on formulas from a specific domain, which might
have desirable properties that allow us to elide the potentially costly cardinality
restriction for completeness.

Consider, for example, epr formulas representing linear orders [14, 21], which
can be used to model linked and doubly-linked lists. Linear orders restrict re-
lations to be at most of binary arity and to be reflexive, transitive, and anti-
symmetric. We shall call this subset of formulas Llo. As very recently discovered
by Padon et al. [21], this epr theory forces a well-quasi-order on models. This
ensures that there is no infinite sequence of models that are incomparable ac-
cording to the substructure relation. Using this result, we can show that uitp is
complete for Llo, without the model cardinality restrictions from Theorem 6.

Theorem 7 (Completeness under linear ordering). Given A,B ∈ Llo, if
uitp is invoked on (A,B), it eventually terminates.

Proof. We prove this by contradiction. Suppose that uitp does not terminate
on some (A,B). Then, there are infinitely many calls to sample, and therefore
an infinite sequence of computed models m1,m2, . . . of A. By Padon et al. [21,
Theorem 6.2], we know that this sequence of models forms a well-quasi-order
that is equivalent to the substructure relation: there exist models mi and mj ,
with i < j, such that mi � mj . This means that mj |= diag(mi), which cannot
happen by definition of sample: once we have considered mi, we only obtain
model mj if mj 6|= diag(mi). �

The proof of the above theorem only exploits the fact that models of Llo
form a well-quasi-order under the v∀∗ ordering of Padon et al. [21, Theorem
6.2]. Thus, as a direct corollary, we can show completeness of uitp for any
theory with such property—and not only linear orders.

4.3 Bidirectional interpolation

Algorithm description We now switch attention to computing alternation-
free interpolants in Laf, i.e., with Boolean combinations of formulas in L∃ and
L∀. Recall that, by solving the dual interpolation problem, we can compute uni-
versal interpolants using uitp. Bidirectional interpolation exploits this property
to compute interpolants in Laf. Specifically, bitp proceeds as if an L∃ interpolant
exists, and when it discovers that it is not the case, it recursively switches to
solving a dual interpolation problem in order to find the required subformulas
needed to strengthen the interpolant.

bitp is described in Algorithm 2. bitp uses the rules of uitp to construct
an interpolant, and, like uitp, maintains the set of diagrams S and a candidate
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Require: A ∧B is unsat
1: function bitp(A,B)
2: apply init
3: while itp does not apply do
4: if ∃s ∈ S. s ∧B is sat then
5: I ← bitp(s ∧B, s ∧A)
6: s← s ∧ ¬I
7: end if
8: apply sample
9: end while
10: return

∨
S is an interpolant

11: end function

Algorithm 2: Bidirectional interpolation

interpolant
∨
S. The algorithm begins by applying init and iteratively samples

models, using sample, until an interpolant is found. When an L∃ interpolant
exists, bitp behaves as a determinization of uitp’s rules. The difference from
uitp, however, is when a diagram s ∈ S overlaps with B.

Recall that sampling adds L∃ formulas to S. If one s ∈ S overlaps with B,
we attempt to strengthen it with a universally-quantified formula by recursively
calling bitp on (s ∧ B, s ∧ A) and negating the result (see lines 5 and 6). In
other words, we focus on the region in B that overlaps with s, and we attempt
to strengthen s in order to excise that region from the candidate interpolant.

4.4 Theoretical properties of bitp

We now discuss soundness and completeness of bitp. Observe that calling bitp
in line 5 may require further recursive calls if no L∃ interpolant exists for (s ∧
B, s∧A)—i.e., the interpolant for (s∧B, s∧A) is still in Laf. If these recursive
calls never terminate by finding an L∃ interpolant at some depth, then the
algorithm produces an infinite sequence of models (at least one per recursive
call). We can show that the existence of such an infinite sequence is the exact
criterion to determine that no Laf interpolant exists for (A,B). Accordingly, we
prove the relative completeness of bitp—that when an Laf interpolant exists,
the algorithm terminates with such an interpolant.

The following lemma states the conditions required to show that the no Laf
interpolant exists for a pair of formulas (A,B).

Lemma 2 (Non-existence of Laf interpolants). Let A,B ∈ L, and suppose
there is an infinite alternating chain of models of A and B: mA

1 ,m
B
2 ,m

A
3 ,m

B
4 , . . .

with the three properties

– mA
i |= A and mB

j |= B, for all odd i and even j
– diag(mA

1 )⇐ diag(mB
2 )⇐ diag(mA

3 )⇐ . . .
– |mA

1 | < |mB
2 | < |mA

3 | < . . .

Then, there is no Laf interpolant for (A,B).
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Proof. We will prove this lemma by showing that for every formula ϕ ∈ Laf s.t.
A⇒ ϕ, we have that ϕ∧B is sat, thus implying that no Laf interpolant exists
for (A,B). The proof relies on Theorem 1 and Corollary 2.

First, define num(ϕ) = n + m + c, where ϕ ∈ L is a prenex normal form
formula ∃x1, . . . , xn.∀y1, . . . ym. φ and c is the number of free variables in ϕ. We
shall use |m| to denote the number of elements in the universe of a model m.

Let Φ = {ϕ ∈ Laf | ∀i.mA
i |= ϕ}. That is, the set Φ is that of all Laf

formulas whose models contain {mA
i }; thus the set of possible Laf interpolants

for (A,B) is contained in Φ. Assume each ϕi is written as a Boolean combination
of universal and existential subformulas. Now, pick some ϕ ∈ Φ and some model
mA
i such that |mA

i | > num(ϕ).
By definition of Φ, we know that mA

i |= ϕ and mA
i+2 |= ϕ. We now show that

this entails that mB
i+1 |= ϕ:

– Since the number of existentially quantified variables in ϕ is less than |mA
i |,

we know that mA
i and mA

i+2 satisfy the same existential subformulas of ϕ.
– Since mA

i � mB
i+1, by Theorem 1, mB

i+1 also satisfies all existential subfor-
mulas of ϕ.

– Since mB
i+1 � mA

i+2, by Corollary 2, we know that mB
i+1 |= ϕ.

Therefore there is no Laf interpolant for (A,B), since any Laf formula I ∈ Φ,
where A⇒ I, is such that I ∧B is sat. �

We are now ready to state bitp’s soundness and relative completeness.

Theorem 8 (Soundness and relative completeness of bitp). Given two
formulas A,B ∈ L, where A ∧B is unsat,

1. if bitp(A,B) returns a formula, then it is an interpolant of (A,B);
2. if A and B have an Laf interpolant, then bitp(A,B) returns a formula and

terminates.

Proof. If bitp returns an interpolant, then it is correct by construction.
We will prove relative completeness (point 2 in theorem statement) by the

contrapositive: If bitp(A,B) does not terminate, then there is no Laf interpolant
for (A,B). For the purposes of the proof, let us assume that the algorithm always
samples a model of the smallest cardinality possible. Now, suppose that the
algorithm does not terminate. This could happen in two places:

1. the loop (line 3) in some recursion depth d executes indefinitely, or
2. there is an infinite chain of recursive calls to bitp.

Case 1 : We first show that case 1 is impossible. Suppose that at recursive
depth d the algorithm is called on (A′, B′). Suppose the loop does not terminate.
Since models are sampled in increasing cardinality, at some point the variable I
is of the form

I ≡
∨

m|=A′ and |m|6num(A′)

diag(m) ∧ ¬bitp(diag(m) ∧B′, diag(m) ∧A′)



Effectively Propositional Interpolants 15

mA
1 mB

2 mA
3 mB

4

� � � � An arrow from nodes c1
to c2 indicates that p(c1, c2);
lack of an arrow indicates
that ¬p(c1, c2).

c1 c1 c2

. . .

Fig. 4. Illustration of an infinite, alternating sequence of models satisfying conditions
of Lemma 2, where A , ∀x. p(y, x) and B , ∀x.¬p(x, z)

In other words, at some point during the assumed infinite execution of the loop,
the variable I will contain all diagrams of models of size 6 num(A′) (and any
required strengthening). Since the loop keeps executing beyond this point, this
means there is a model m s.t. m |= A′ and m 6|= I. But since |m| > num(A′),
this means that there is a substructure m′ � m, where m′ |= A, |m′| 6 num(A),
and diag(m) ⇒ diag(m′). But since m′ |= I, it is also true that m |= I. By
contradiction, the loop terminates.

Case 2 : Now, consider case 2. Suppose there is an infinite chain of recursive
calls. By definition of bitp, there is an infinite sequence of models (samples) mA

1 ,
mB

2 , mA
3 , mB

4 , . . . such that

diag(mA
1 )⇐ diag(mB

2 )⇐ diag(mA
3 )⇐ . . . (3)

|mA
1 | < |mB

2 | < |mA
3 | < . . . (4)

for all mX
i , diag(m

X
i ) ∧A is sat and diag(mX

i ) ∧B is sat (5)

This happens by construction due to the alternation of bitp: in the first recur-
sive call, it conjoins diag(mA

1 ) to A and B; then, in the second recursive call,
diag(mB

2 ) is conjoined to A and B, where mB
2 |= diag(mA

1 ), etc. As a result, we
get constraint 3. Constraint 4 is implied by the fact that A ∧ B is unsat. (If
there is i such that |mA

i | = |mB
i+1| or |mB

i | = |mA
i+1| this means that A and B

have the same model.) Constraint 5 is implied by the fact that the sequence is
infinite.

Following Lemma 2, non-termination means there is no Laf interpolant. �

4.5 bitp examples

The following example illustrates a successful run of bitp.

Example 2. Consider the following formulas, and suppose we call bitp on (A,B).

A , ∃x. ∀y. x = y ∧ p(x) B , ∃x, y. p(x) ∧ p(y) ∧ y 6= x

Initially, S = ∅ and the candidate interpolant
∨
S ≡ false. So, we start by

sampling (line 8) the model m with the following diagram, sm , ∃xu. p(xu). In
the next iteration around the loop, we will notice that sm ∧ B is sat (line 4);
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therefore, we call uitp on (sm ∧ B, sm ∧ A). The result we get is the following:
I ≡ ∃x, y. p(x)∧p(y)∧x 6= y. As shown in line 6, we now strengthen sm by setting
it to sm ∧ ¬I. At this point, sm is an interpolant, and therefore the algorithm
terminates. �

We now demonstrate bitp on an example with no Laf interpolant.

Example 3. We use the same example as in Section 2:

A , ∀x. p(y, x) B , ∀x.¬p(x, z)

bitp might begin by sampling the modelmA
1 of A with diag(mA

1 ) , ∃c1. p(c1, c1).
Model mA

1 is shown pictorially on the left side of Figure 4. bitp now recursively
looks for an interpolant of (B ∧ diag(mA

1 ), A ∧ diag(mA
1 ))

At this point, bitp samples from B ∧ diag(mA
1 ) the model mB

2 of cardinality
2 with the diagram:

diag(mB
2 ) , ∃c1, c2. c1 6= c2 ∧ p(c1, c1) ∧ ¬p(c1, c2) ∧ ¬p(c2, c2) ∧ p(c2, c1)

Note that diag(mB
2 ) ∧ (A ∧ diag(mA

1 )) is still satisfiable, so bitp will make yet
another recursive call to (A ∧ diag(mA

1 ) ∧ diag(mB
2 ), B ∧ diag(mA

1 ) ∧ diag(mB
2 )).

We will notice that the cardinality of sampled models keeps increasing as bitp
continues to run, and in fact, bitp will never terminate, since there is no Laf
interpolant for (A,B).

Specifically, bitp will end up constructing an infinite alternating sequence of
models mA

1 ,m
B
2 ,m

A
3 ,m

B
4 , . . .. A possible infinite alternating sequence of models

of A and B is illustrated in Figure 4. Observe that this sequence satisfies the
conditions of Lemma 2 for non-existence of an Laf interpolant. �

5 Implementation and evaluation

Implementation We have implemented prototypes of uitp and bitp using the
Z3 smt solver [20] as a black box. To evaluate the performance and utility of our
algorithms, we built a simple interpolation-based verifier, itpv, for transition
systems in epr. itpv expects a transition system TS = (init, trans, bad). itpv
unrolls the transition relation and uses our interpolation algorithms to compute
interpolants and discover a safe inductive invariant for TS.
Evaluation We applied itpv on singly- and doubly-linked-list benchmarks [15,
17]. We compared the performance of itpv against two tools: (i) pdrα [15],
a predicate-abstraction-based verifier based on property-directed reachability
(pdr), and (ii) pdr∀ [17], a pdr-based verifier that uses diagrams for generaliz-
ing counterexamples. To our knowledge, these are the only two other techniques
for automated verification of programs encoded in epr. Note, however, that both
pdrα and pdr∀ can only compute universally-quantified invariants (in L∀). We
considered a set of benchmarks that require L∀ invariants, and another a set
that require Laf invariants, as detailed below.
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itpv pdrα pdr∀
Benchmarks Time D Time D Time D

singly-linked
concat 0.22 3 7α 0.61 3
create 0.07 0 2.37 3 0.68 3
delete-at 0.11 2 14.14 4 0.96 3
deleteAll 0.11 2 2.82 5 0.39 3
insert-at 0.51 3 8.25 4 1.3 4
insert 0.19 3 2.66 3 1.1 3
merge 4.68 4 7α 5.2 6
split 39.96 6 25.49 6 4.86 6
reverse 0.24 3 3.35 5 1.74 6
sorted-insert 0.22 3 36.65 4 1.24 3
bubble-sort 0.19 0 2.11 4 1.35 5
nested-split 2.14 4 8.37 2 4.2 4
shared-delete 15.78 5 7t 33.38 5
ladder 18.89 5 12.3 4 7.37 6
filter 74.64 7 6.6 4 0.73 3

doubly-linked
create 0.32 3 71.5 3 2.39 4
delete 0.38 3 344.5 6 1.07 3
insert-at 0.8 3 242.4 3 1.99 3

itpv pdrα pdr∀
Benchmark Time D Time Time
shared-tail 3.56 5 7α 7α
shared-tailc 3.46 5 7α 7α
concat 0.37 3 7α 7α
create 0.86 3 7α 7α
deleteAll 0.25 2 7α 7α
insert 0.47 3 7α 7α
ladder 66.16 4 7α 7α

(a) (b)

Table 1. Experimental results: (a) L∀ benchmarks and (b) Laf benchmarks

Universal proofs Table 1(a) shows the results of applying itpv, pdrα, and
pdr∀ to proving memory safety of a set of list-manipulating benchmarks drawn
from [17, 15].1 All of these benchmarks require inductive invariants in L∀. The
symbol 7t indicates that the tool did not return a solution within a 10 minute
time limit, and 7α indicates that the predicate abstract domain of pdrα is not
precise enough to compute a safe inductive invariant. Column D indicates the
depth of the unrolling (pdr frames or transition relation unrollings) an algorithm
required to compute a safe inductive invariant.

Our results primarily indicate that our interpolation technique (i) is a vi-
able means for verifying non-trivial epr transition relations and (ii) results in
a verification tool that is comparable to the state-of-the-art in epr verifica-
tion. Digging deeper into the results, we see that itpv is almost consistently
superior to pdrα. Compared to pdr∀, we witness comparable performance. On
benchmarks 8 and 15, however, we observe that itpv is slower than pdr∀. We
discovered that this occurs when one needs to interpolate over a deep unrolling of
the transition relation in order to find an inductive invariant (on these examples,
D is 6 and 7). This is an artifact of two factors: (i) the satisfiability algorithm in
Z3 and (ii) the algorithmic differences between interpolation-based verification
and property-directed reachability. pdr techniques do not explicitly unroll the
transition relation, and therefore tend to make more but smaller sat queries.
Interpolation techniques unroll the transition relation, resulting in large sat

1 Time measurements for all tools do not contain Z3 expression manipulation time,
due to the avoidable substantial overhead incurred by the Python api.
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queries. The performance of the epr satisfiability procedure in Z3 suffers when
we give it large formulas, leading to slower verification when deep unrollings are
needed. We thus hope that the benchmarks generated through this work would
influence the design of more efficient epr satisfiability procedures; for instance,
linear orders [14, 17, 21] can benefit from specialized quantifier instantiation that
exploits their transitivity and antisymmetry [6].

Alternating proofs Table 1(b) shows a set of benchmarks requiring inductive
invariants in Laf. The first two benchmarks are from [17], where it is shown
that pdr∀ declares that no universally-quantified invariant exists. The rest of
the benchmarks are modifications of the ones appearing in Table 1(a), where
we manually modified the program to require existential as well as universal
quantifiers in the proof. To our knowledge, itpv is the first tool to be able to
automatically compute inductive invariants over the rich class of Laf formulas.

6 Related work

Interpolation and EPR Our algorithm is inspired by the recent model-based
interpolation techniques that rely on sampling models of A and B to construct a
simple interpolant [28, 2]. Thus far these techniques have been limited to linear
arithmetic. Whereas our work here also constructs an interpolant by generalizing
from models, the underlying methodology is very different.

The line of work by Itzhaky et al. [14, 13, 15] and Karbyshev et al [17] showed
us how to encode linear data structures in epr. The model generalization tech-
nique our algorithm uses is similar to the notion of diagrams used in the recent
property-directed reachability [8] algorithm for epr [17]. Our interpolation tech-
nique enables construction of both universal, existential, and mixed quantifier
interpolants—and therefore invariants. This is in contrast to existing verification
techniques that only compute universal invariants. Additionally, the notion of
interpolants is general and of independent interest outside of safety checking.

Another close work to ours is that of Bjørner et al. [7]: in a short paper, the
authors sketch out a model-based epr interpolation algorithm. However, unlike
our work, it does not guarantee that the interpolants are alternation-free. There
are also a number of works on interpolation techniques for arrays and heap-
manipulating programs [1, 31, 16, 3]. Our work differs in that it targets the epr
fragment of first-order logic, which none of those works apply to.

Symbolic abstraction Our work has connections with symbolic abstraction [27],
in which a formula in a rich logic is abstracted into one that subsumes it in a
weaker logic. The approach of Reps et al. [27] performs this abstraction by sam-
pling models and growing the abstraction starting from bottom. Thakur defined
the notion of abstract interpolants [30], which are interpolants in a restricted
logic, and showed how to use symbolic abstraction to compute them. Our tech-
niques can be viewed through this lens, as we restrict interpolants to a sub-
fragment of epr and iteratively grow interpolants. Another work in the same
vein is that on learning quantified data automata [11] for verifying linear data
structures. The similarity between our works is that both use a black box teacher
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to learn quantified invariants. Our technique, however, can compute invariants
with combinations of quantifiers, and operates in the setting of epr.
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