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Abstract. The world is uncertain. Programs can be wrong. We address
the problem of repairing a program under uncertainty, where program
inputs are drawn from a probability distribution. The goal of the repair
is to construct a new program that satisfies a probabilistic Boolean ex-
pression. Our work focuses on loop-free decision-making programs, e.g.,
classifiers, that return a Boolean- or finite-valued result. Specifically, we
propose distribution-guided inductive synthesis, a novel program repair
technique that iteratively (i) samples a finite set of inputs from a prob-
ability distribution defining the precondition, (ii) synthesizes a minimal
repair to the program over the sampled inputs using an smt-based en-
coding, and (iii) verifies that the resulting program is correct and is
semantically close to the original program. We formalize our algorithm
and prove its correctness by rooting it in computational learning theory.
For evaluation, we focus on repairing machine learning classifiers with the
goal of making them unbiased (fair). Our implementation and evaluation
demonstrate our approach’s ability to repair a range of programs.

1 Introduction

Program repair is the problem of modifying a program P to produce a new pro-
gram P ′ that satisfies some desirable property. A majority of the investigations
in automatic program repair target deterministic programs and Boolean proper-
ties, e.g., assertion violations [20, 22, 10, 27, 17]. The world, however, is uncertain,
and program correctness is not always a Boolean, black-or-white property.

In this paper, we address the problem of automating program repair in the
presence of uncertainty. By uncertainty, we mean that the inputs to the program
are drawn from some probability distribution D. Thus, we have a probabilistic
precondition—for instance, the input x to a program P (x) may follow a Laplacian
distribution. The correctness property of interest is a probabilistic postcondition,
which we define as an expression over probabilities of program outcomes. For
instance, we might be interested in ensuring that P (r > 0) > 0.9—the program
returns a positive value at least 90 percent of the time—or that P (r1 > 0) >
P (r2 > 0)—it is more likely that the return value r1 is positive than that r2 is
positive. We restrict our attention to loop-free programs that return Boolean-
valued (or finite-valued) results, e.g., machine learning classifiers that map inputs
to a finite set of classes, and repairs that consist of altering real-valued constants
in the program.
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Fig. 1. Abstract, high-level view of distribution-guided inductive synthesis

Technique: Distribution-guided inductive synthesis To address the pro-
gram repair problem in the presence of uncertainty, we propose a novel program
synthesis technique that we call distribution-guided inductive synthesis (digits).
The overall flow of digits is illustrated in Figure 1. Suppose we have a program
P such that {pre}P{post} does not hold. The goal of digits is to construct a new
program P ′ that is correct with respect to pre and post and that is semantically
close to P . To do so, digits tightly integrates three phases:

Sampling Since the precondition pre is a probability distribution, digits be-
gins by sampling a finite set S of program inputs from pre—we call S the
set of samples. The set S is used to sidestep having to deal with arbitrary
distributions directly in the synthesis process.

Synthesis The second step is a synthesis phase, where digits searches for
a set of candidate programs {P ′1, . . . , P ′n}—following a given repair model—
where each P ′i classifies the set of samples S differently. Given that there are
exponentially many ways to partition the set S, digits employs a novel trie-
like data structure with conflict-driven pruning to avoid considering redundant
partitions.

Quantitative verification Every generated candidate program P ′ is checked
for correctness and for close semantic distance with P . Specifically, digits em-
ploys an automated probabilistic inference technique.

Theory: Computational learning We formalize digits by posing it as a
learning algorithm, and rooting it in computational learning theory [18]. Us-
ing the concept of the Vapnik–Chervonenkis (VC) dimension [7] of the repair
model, we show that the algorithm converges to the optimal program with a high
probability when operating over postconditions that satisfy a benign property
and over repair models with a finite VC dimension, which holds for many repair
scenarios, e.g., sketching-like approaches [26].

Application: Repairing biased programs Our primary motivation for this
work is repairing bias in decision-making programs, e.g., programs that decide
whether to hire a person, to give them a loan, or other sensitive or potentially
impactful decisions like prison sentencing [5]. These programs can be generated
automatically as classifiers using machine learning or can be written by hand us-
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ing expert insight. The problem of algorithmic bias has received considerable at-
tention recently, due to the increasing deployment of automated decision-making
in sensitive domains [12, 13, 16, 14, 23, 19].

Existing notions of bias in the literature neatly correspond to probabilistic
postconditions. For instance, group fairness [12, 13, 11, 14] stipulates that the
probability that a minority job applicant is hired is almost the same as that of a
majority applicant being hired. We view the underlying population of applicants
as a probabilistic precondition and pose the problem of repairing biased programs
within our framework: the problem is to find a new, semantically close program
that is unbiased. We implemented our approach, digits, and applied it to unbias
a range of classification programs that were generated automatically. Our results
demonstrate (i) our technique’s ability to repair a range of programs and (ii) the
importance of our algorithmic contributions.

Contributions We summarize our contributions as follows:

– We formalize the probabilistic program repair problem as an optimization
problem whose solution is a repaired program that satisfies some probabilistic
pre-/post-conditions.

– We present distribution-guided inductive synthesis, digits, a novel synthesis
methodology for automatically repairing loop-free programs under uncertain
inputs and probabilistic postconditions.

– We formalize correctness of our algorithm and prove its convergence using
the concept of VC dimension that is standard in computational learning
theory and machine learning.

– We present an implementation of our technique, digits. We apply digits
to the increasingly important problem of ensuring that decision-making pro-
grams are not biased, for a given particular notion of bias. Our thorough
evaluation demonstrates the utility of our approach and the importance of
our design decisions.

2 Illustrative Example

In this section, we illustrate the operation of digits on a very simple example
inspired by algorithmic bias problems [4].

Example program Consider the following program, hire:

fun hire(min,urank)
dec = 1 <= urank <= 10
return dec

hire is an extremely simplified automatic hiring program: it takes an applicant’s
information and decides whether to hire them or not, as indicated by the Boolean
return variable dec. Specifically, hire takes as input the Boolean variable min,
which indicates whether an applicant belongs to an underrepresented minority,
and urank, which is a real-valued number indicating the rank of the university
they attended. hire only hires applicants who attended top-10 universities.
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Probabilistic precondition Let us now consider a probabilistic precondition
for the program, which is a joint probability distribution over the variables min
and urank. Intuitively, the precondition paints a picture of the relation between
minority status and the university rank in the population of potential applicants.
Consider the following precondition pre:

min ∼ Bernoulli(0.1)

urank ∼ Gaussian(10, 10) + 5 ∗ 1(min)

Intuitively, 10% of the possible applicants are minorities, and the university rank
of an applicant is drawn from a Gaussian distribution centered at 10 (with std.
10), if the applicant is not a minority. Otherwise, if the applicant is a minority,
their university rank is a Gaussian centered around 15—as shown using the
indicator function, 1(min), which returns 1 when min is true and 0 otherwise.

Probabilistic postcondition The following postcondition formula asserts that
the probability of hiring minority applicants is at least 0.8 of the probability of
hiring majority applicants:

post ,
P(dec | min)

P(dec | ¬min)
> 0.8

This is one of the many properties proposed to formalize notions of fairness in
automated decision-making. This property is known as group fairness [13], and
it is inspired by employment guidelines in the United States [3].

The postcondition does not hold for hire: Even though hire does not access
the variable min, it only accepts applicants from top-10 universities, and, as per
pre, minority applicants are less likely to attend top-10 universities; in fact, the
value of the left hand side of post is ∼ 0.6.

Repair model We would like to automatically repair hire in order to make
it satisfy the postcondition. Additionally, we would like to avoid obvious re-
pairs that result in undesirable programs. For instance, the program that hires
everyone (return true) obviously satisfies the postcondition. To avoid such pro-
grams, we look for a repair that minimizes the semantic distance between the
new program and the original program.

For our example, we will restrict the space of possible repairs as a sketch of
the original program—we call this the repair model :

fun hireRep(min,urank)
dec =  1 <= urank <=  2

return dec

The repair model is a parametric program with two holes to fill,  1 and  2,
which we can replace with constants to produce a program that satisfies the
postcondition. Note that our approach is more general and not only restricted
to filling holes with constants.
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fun hireRep1(min,urank)
dec = 10 <= urank <= 15
return dec

(a) distance ≈ 0.5

fun hireRep2(min,urank)
dec = 5 <= urank <= 17
return dec

(b) distance ≈ 0.4

fun hireRep3(min,urank)
dec = 0 <= urank <= 15
return dec

(c) distance ≈ 0.2

Fig. 2. Repairs synthesized by digits

Distribution-guided inductive synthesis Now that we have set up the prob-
lem, we are ready to illustrate our approach. We are looking for a new function
hireRep that satisfies post and that minimizes the semantic distance P(hire 6=
hireRep), which denotes the probability that hire and hireRep return different
outputs for the same input, which is distributed according to pre.

To find such a repair, we present distribution-guided inductive synthesis (digits).
digits begins by sampling a finite set of inputs S = {s1, . . . , sn} from the pre-
condition pre. The set of samples are used to guide the synthesis process with
concrete examples from the distribution. digits considers every possible par-
tition of the samples into positive and negative samples, (S+, S−). For every
such partition, it attempts to find a repair that returns true for all inputs in S+

and false for all inputs in S−. To perform the synthesis, we encode the search
problem as a quantifier-free first-order formula and ask an smt solver to find a
solution that corresponds to a filling of the holes. For each synthesized program,
digits uses probabilistic program verification techniques to check if the program
satisfies the postcondition and to quantify the semantic distance from hire.

There are two obvious issues here: (i) The number of partitions of a given set
S is exponential in |S|. (ii) The search finds an arbitrary repair at every step; how
do we ensure that we eventually find a repair that satisfies the postcondition?

First, while the number of partitions of S is exponential, digits employs
an efficient binary trie data structure to guide and prune the search space. For
instance, if there is no repair for a partition (S+, S−), digits utilizes unsat
cores to remember an unsatisfiable subset of the samples and ensure that sim-
ilar partitions are not considered, thus pruning away a large family of possible
partitions.

Second, we theoretically demonstrate elegant properties of digits that ensure
it converges to an optimal solution. The formalization is rooted in classic ideas
from computational learning theory, namely, VC dimension of our repair model.

Finding repairs digits iteratively increases the size of the sample set S by
drawing more samples from pre. The more samples it considers, the more likely
it synthesizes programs that are close to an optimal solution. Let us consider
a possible trajectory of digits. Figure 2 shows three programs that can be
produced by digits in the course of sampling and synthesis. While all programs
satisfy the postcondition, the best repair is hireRep3, as it has the smallest
distance from the original program hire. Specifically, hireRep hires all applicants
from the top-15 universities, making it the semantically closest one to hire.
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3 The Probabilistic Repair Problem

In this section, we formally define the probabilistic repair problem.

Program Model We consider a simple program model where a program is
written in a loop-free language whose syntax is defined below:

P := V ← E | if B then P else P | P P | return V

P is a program, V is the set of variables used in P , E is the set of linear
arithmetic expressions over V , and B is the set of Boolean expressions over V .
V ← E denotes assigning an expression to a variable. We assume that there is
a vector of variables vI in V that are inputs to the program and never appear
on the left-hand side of an assignment. We also assume there is a single Boolean
variable vr ∈ V that is returned by the program. All variables are real-valued
or Boolean. We always assume that programs are well-typed. Given a vector of
constant values c, where |c| = |vI |, we use P (c) to denote the result of executing
P on the input c.

Probabilistic preconditions Given a program P with variables V , we define a
probabilistic precondition pre as a joint probability distribution over the variables
vI . That is, we assume that the values of the inputs are initially drawn from the
probability distribution pre.

Formally, we think of the distribution pre as a probability space (Ω,F ,P):
Ω is the set of possible assignments to vI , F ⊆ 2Ω is a set of events, and
P : F → [0, 1] denotes the probability of an event.

We will be interested in two kinds of events:

1. Given a Boolean expression B over vI and vr, overloading notation, a prob-
ability expression P(B) denotes

P({c ∈ Ω | ∃r. P (c) = r ∧B[vI/c, vr/r] = true})

where the notation B[x/y] denotes B with all occurrences of x replaced by y.
That is, P(B) is the probability of drawing a sample c from the precondition
such that the program P returns a result satisfying B.

2. Suppose we are given two programs P and P ′ such that vI and v′I are of
the same length and type. We will use P(P 6= P ′) to denote:

P({c ∈ Ω | P (c) 6= P ′(c)})

That is, P(P 6= P ′), which we call the semantic distance, is the probability
that the two programs return different results on the same input.

Probabilistic postconditions Given a program P and a precondition pre,
we would like to refer to the probability of the program to return a specific
set of values. To that end, we define a probabilistic postcondition, post, as an
inequality over terms of the form P(B), where B is a Boolean expression over
vI and vr. Specifically, a probabilistic postcondition is of the form e > c, where
c ∈ R and e is an arithmetic expression over terms of the form P(B), e.g.,
P(B1)/P(B2) > 0.75.
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1 Procedure digits(P, pre, post, R, n)
Input : Repair problem s.t. {pre}P{post} does not hold, and a number n
Output: Program P ′ ∈ R such that {pre}P{post} holds or ⊥

2 S ← ∅
3 for n times do
4 s ∼ pre
5 S ← S ∪ {s}
6 repairs ← ∅
7 foreach sets S+, S− that partition S do
8 P ′ ← repair(S+, S−)

9 if P ′ 6= ⊥ and {pre}P ′{post} then
10 repairs ← repairs ∪ {P ′}
11 if repairs 6= ∅ then
12 return P ′ ∈ repairs with minimal P(P 6= P ′)
13 else
14 return ⊥

Algorithm 1: Distribution-Guided Inductive Synthesis

Program correctness Given a triple (P, pre, post), we say that P is correct
with respect to pre and post, denoted {pre}P{post}, iff post is true.

Repair problem The probabilistic repair problem is a tuple (P, pre, post, R),
where (P, pre, post) are as defined above, and R is a set of programs called the
repair model, i.e., the set of possible repairs. A solution to a repair problem is
a program P ′ ∈ R such that {pre}P ′{post} holds, and the semantic distance
P(P 6= P ′) is minimal.

The semantic distance condition is present to try to preserve as much of the
original program behavior as possible.

4 Distribution-Guided Inductive Synthesis

In this section, we describe the distribution-guided inductive synthesis algorithm
(digits) for finding approximate solutions to the probabilistic repair problem.

digits, shown in Algorithm 1, takes as input a repair problem and a number
n that bounds the search depth. digits first builds a set S of n samples from pre,
and then, for every possible way to split S into positive and negative examples
S+ and S−, it finds a candidate repair P ′ ∈ R consistent with S+ and S−. digits
finally outputs the candidate repair semantically closest to P . Intuitively, digits
tries to inductively learn the correct repair from a finite set of samples.

Example 1. Recall the example from Section 2. Suppose we are given two sam-
ples s1 = 12 and s2 = 17, where we only consider the variable urank in the
sample, as min is not used by the program. Suppose S+ = {12, 17} and S− = ∅.
Then, the program hireRep2 in Figure 2 correctly classifies S+ and S−. Alterna-
tively, suppose we consider the sets S+ = {12} and S− = {17}. Then, a potential
repair is hireRep3. If we were to add a new sample s3 = 15, there would not be
a repair for the sets S+ = {12, 17} and S− = {15}.

To implement digits, one needs to provide two components: a) the proce-
dure repair that produces programs consistent with labeled examples and b)
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a (sound) probabilistic inference algorithm to (i) check whether the synthesized
program satisfies post, and (ii) compute the probability P(P 6= P ′). In the fol-
lowing we assume that such components are given. The digits algorithm is
relatively simple, but we show that it enjoys interesting convergence properties.

4.1 Convergence of digits

In this section, we use classic concepts from computational learning theory to
show that, under certain assumptions, the digits algorithm quickly converges
to good repaired programs when increasing the size n of the sample set.

Throughout this section we assume we are given a program P , a repair model
R, a precondition pre, and a postcondition post, such that there exists an optimal
solution P ∗ ∈ R to the corresponding probabilistic program repair problem. The
relationship between P , R, the programs which satisfy post, and P ∗ is visualized
in Figure 3(a). Given two programs P ′ and P ′′, we write Er(P ′, P ′′) = P(P ′ 6=
P ′′) to denote the distance (error) between the two programs; we introduce this
additional notation to make the connections to computational learning theory
more explicit.

To state our main theorem, we need to recall the concept of Vapnik–
Chervonenkis (VC) dimension from computational learning theory [18]. Intu-
itively, the VC dimension captures the expressiveness of a certain concept class;
in our setting, the concept class is the repair model R. Given a set of examples
S, we say that the repair model R shatters S iff, for every two sets S+ and S−

that partition S, there exists a program P1 ∈ R such that (i) for every s ∈ S+,
P1(s) = true, and (ii) for every s ∈ S−, P1(s) = false. The VC dimension of the
repair model R is the largest integer k such that there exists a set of examples
S with cardinality k that is shattered by R.

Example 2. Consider the class of linear separators in R2. For any collection and
classification of three non-colinear points in R2, it is possible to construct a linear
separator that is consistent with that classification; therefore, linear separators
shatter any set of size 3. However, no linear separator can shatter any set of
four points—for example, the points {(0, 0), (1, 1)} cannot be separated from
{(1, 0), (0, 1)}; Thus, the VC dimension of linear separators is 3.

We define the function VCcost(ε, δ, k) = 1
ε (4 log2( 2

δ ) + 8k log2( 13
ε )) [7], which

we will use in the following theorems.

Lemma 1 (Error Bound of digits). If the repair model R has finite VC
dimension k, then, for every program P ′ ∈ R, function repair, bounds ε > 0
and δ > 0, and set of samples S drawn from pre of size n ≥ VCcost(ε, δ, k),
there exist sets S+ and S− that partition S such that, with probability ≥ 1− δ,
we have that Er(P ′,repair(S+, S−)) ≤ ε.

Lemma 1 extends the classic notion of learnability of concept classes with finite
VC dimension [7] to probabilistic program repair. Intuitively, if a repair model
R has finite VC dimension, any function that correctly synthesizes from finitely
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P ∗
P

P ∗ P̂
Bα(P̂ )

P ′
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Fig. 3. Visualization of aspects of digits: (a) Programs that satisfy post are a subset of
R. (b) Samples split R into 16 regions, each with a candidate program. If P̂ is α-robust,
with high probability digits finds P ′ close to P̂ ; if P̂ is close to P ∗, so is P ′.

many samples in pre will get arbitrarily close to a target solution—including
P ∗—with polynomially many samples. Lemma 1, however, does not guarantee
that the synthesis algorithm will find a program consistent with the postcondi-
tion.

Intuitively, we need to ensure that there are enough programs close to P ∗

that satisfy post; to do so, we reason about how the error on the repair problem
propagates to the error on the postcondition. Specifically, for a program P̂ and
α > 0, we define the set Bα(P̂ ) = {P ′ ∈ R | Er(P̂ , P ′) ≤ α}; in other words,
Bα(P̂ ) exactly characterizes a ball of programs in the repair model that are close
to P̂ . Now, we define a notion of robustness of the postcondition with respect to
a program P̂ : we say that the pair (P̂ , post) (or just P̂ when post is clear from
context) is α-robust iff

∀P ′ ∈ Bα(P̂ ). {pre}P ′{post}

Figure 3(b) visualizes how the convergence of digits follows from α-robustness:
if P̂ is α-robust, then digits invoked on a sufficiently large set of samples S will,
with high probability, encounter a split S+, S− where every program consistent
with that split is contained in Bα(P̂ ). Thus if P ′ is the result of repair(S+, S−),
then Er(P̂ , P ′) ≤ α and P ′ satisfies post. We can now give our main theorem,
which formalizes this property.

Theorem 1 (Convergence of digits). Assume that there exist an α > 0 and
program P̂ such that (P̂ ,post) is α-robust. Let k be the VC dimension of repair
model R. For all bounds 0 < ε ≤ α and δ > 0, for every function repair and
n ≥ VCcost(ε, δ, k), with probability ≥ 1 − δ we have that digits enumerates
a program P ′ with Er(P̂ , P ′) ≤ ε and {pre}P ′{post}.

Corollary 1 (Convergence to P ∗). In particular, if P ∗ is α-robust, and ε, δ,
and n are constrained as above, and digits(P,pre,post, R, n) = P ′, then with
probability ≥ 1− δ we have that P ′ 6= ⊥, Er(P ∗, P ′) ≤ ε, and {pre}P ′{post}.
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Theorem 1 and Corollary 1 represent the heart of the convergence result.
However, there are two major technicalities.

First, P ∗ usually is not α-robust; in particular, if there exists P ′ ∈ Bα(P ∗)
with Er(P, P ′) = Er(P, P ∗)−α, then P ∗ is not actually optimal. In other words,
We can expect P ∗ to lie on the boundary of the set of correct programs, as in
Figure 3(a). However, Theorem 1 still guarantees that with high probability,
digits will find a solution arbitrarily close to any α-robust program P̂ ∈ R;
if there exist α-robust programs that are close to the optimal solution, digits
still converges to the optimal solution. We refine this notion in the following
Corollary.

Corollary 2 (Weak convergence to P ∗). For α > 0, let A ⊆ R be the set of
programs P̂ where (P̂ ,post) is α-robust. Let ∆ = minP̂∈A{Er(P ∗, P̂ )}. If ε, δ,
and n are constrained as above, and digits(P,pre,post, R, n) = P ′, then with
probability ≥ 1−δ we have that P ′ 6= ⊥, Er(P ∗, P ′) ≤ ∆+ε, and {pre}P ′{post}.

Extensions of Corollary 2 still provide strong results on the convergence of dig-
its: for example, if P ∗ is not α-robust, but there exists an α-robust P̂ with
P ∗ ∈ Bα(P̂ ), then one can show limα→∞∆ = 0; in this case, running digits for
sufficiently large n preserves the desired convergence result from Corollary 1.

Second, an optimal P ∗ that satisfies post may not actually exist. Suppose,
for example, that for some event E, post is the expression P(E) > 0.5, and
when evaluated on the input program P , PP (E) = 0.4. Then for every repaired
program P ′ with PP ′(E) = 0.5 + ε, there may exist P ′′ that satisfies post with
PP ′′(E) = 0.5 + ε

2 and Er(P, P ′′) = Er(P, P ′) − ε
2 ; the limit of this process

could give us P ∗ with PP∗(E) = 0.5, but now P ∗ no longer satisfies post. To
resolve this, we take P ∗ to be the infimum with respect to Er(P, ·) of the set
{P ′ ∈ R | {pre}P ′{post}}. Since this P ∗ does not satisfy post, it is trivially not
α-robust, and we rely on the result of Corollary 2.

The convergence of digits relies on the existence of α-robust programs.
Theorem 1—which follows directly from α-robustness—gives us a way to check,
with high probability, whether any α-robust programs exist: we can run the
algorithm for the number of iterations given by Theorem 1 for arbitrarily small
δ and just see whether any solution for the program repair problem is found. If
not, we can infer that with probability 1 − δ no α-robust programs exist. The
success of digits in our evaluation (Section 6) suggests, as we might expect,
that this would be a pathological case.

4.2 Efficient search strategy and data structure

The digits algorithm is fairly abstract and opens many doors to optimizations.
In this section, we present a concrete data structure for implementing digits
and show how it can be used to run the repair algorithm on smaller inputs
than with a näıve implementation.

We propose to use a binary trie of height n to describe all the possible ways
to partition the set of samples S = {s1, . . . , sn} into two sets S+ and S−. In the
trie, each node at depth i corresponds to splitting on the sample si; a 0-labeled
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edge (resp. 1-labeled edge) from depth i to depth i+1 denotes that, in this path,
si ∈ S− (resp. si ∈ S+).

We use {0, 1}≤n to denote the set of strings of length at most n over the
alphabet {0, 1}. A binary trie for a set of samples S = {s1, . . . , sn} is a function
f : {0, 1}≤n 7→ R ∪ {⊥} that maps strings to repaired programs. Given a string
b = b1 . . . bk ∈ {0, 1}≤n, let S+

b (resp. S−b ) be the set of all si ∈ S such that
bi = true (resp. bi = false). We define f(b1 . . . bk) as repair(S+

b , S
−
b ).

0 1

0 1 0 1

s1

s2

P0

P0

P0

P1

P1P2 P4

Fig. 4. Trie ex.

One of the many advantages of using this trie represen-
tation is that it allows us to dynamically increase the sam-
ple set size n without restarting the algorithm: whenever
all strings of length at most n have been exhausted, simply
sample an additional point and compute f for all strings of
length n+ 1. Thus, instead of fixing the sample size a priori,
the algorithm can run continuously, adding more samples as
needed, until meeting some stopping criteria.

Example 3. Figure 4 shows a trie of height 2 for Example 1. Here only consider
the samples s1 and s2. Each layer in the trie corresponds to a sample, and each
node is assigned a candidate program consistent with the samples. For example,
f(0, 1) = P1 is a program consistent with S+ = {17} and S− = {12}. Note that
P1 is also consistent with S+ = {} and S− = {12}, thus f(0) can also be P1.

Solution propagation Our first optimization builds on the idea illustrated at
the end of Ex. 3 and propagates solutions down the trie, therefore reducing the
number of times we call the function repair and the average number of samples
on which the function is called.

In the following we assume that the function repair has the following prop-
erty (this assumption simplifies our presentation, but does not affect convergence
of our algorithm): given two sets of samples S+, S− and a new sample s, (i) if
repair(S+, S−) = P ′ and P ′(s) = true, then repair(S+ ∪ {s}, S−) = P ′, and
(ii) if repair(S+, S−) = P ′ and P ′(s) = false, then repair(S+, S−∪{s}) = P ′.

To compute the binary trie of height n, we also need to compute repairs for
nodes b1 . . . bk such that k < n, and therefore it would seem we have to call
the function repair 2n+1 − 1 times instead of the 2n required by the digits
algorithm. The following theorem allows us to avoid this problem.

Theorem 2 (Solution propagation). Given a string b1 . . . bk ∈ {0, 1}≤n of
length k < n, if f(b1 . . . bk) = P ′ and P ′(sk+1) = b, then f(b1 . . . bkb) = P ′.

Informally, the above theorem states that the program corresponding to a certain
node has to be already consistent with one of the two labeling of the following
examples. Therefore, even though there are 2n+1 − 1 nodes in the binary trie,
we only need to call the function repair for half of the 2i nodes at depth i, or
2n nodes total.

Additionally, the calls to repair have fewer constraints: while the digits al-
gorithm as presented in Algorithm 1 always calls the function repair on exactly
n samples, when using the trie structure with solution propagation, repair is
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called only on i samples at depth i. One can show that the average number of
samples used by repair asymptotically approaches n− 1.

Conflict-driven pruning While solution propagation is a good strategy for
reusing successful solutions, we can also learn from the instances in which repair
returns ⊥. In particular, let’s say that for some string b = b1 . . . bk ∈ {0, 1}≤n, we
have that f(b1 . . . bk) = ⊥. Trivially, we know that for every b1 . . . bkbk+1 . . . bk+j ∈
{0, 1}≤n f(b1 . . . bkbk+1 . . . bk+j) = ⊥. Using this idea, we can prune the search
and avoid calling the function repair on partitions that are trivially going to fail.
More generally, when a failure occurs, we can identify a subset of the labelings
that caused the failure and use it to reduce the set of explored nodes.

Theorem 3 (Conflict-driven pruning). Let b = b1, . . . , bk. Let b′ be a sub-
sequence of b, e.g., b2b10b11b20. If repair(S+

b′ , S
−
b′) = ⊥, then f(b1 . . . bk) = ⊥.

While detecting what subsets of the samples caused the failure can be hard, this
theorem can be used to vastly reduce the number of times the function repair
is called. In our implementation, we will use the unsatisfiable cores produced by
the smt solver to compute the subsets of the samples that induce failures.

5 Implementation

We implemented an instantiation of the digits algorithm in Python. The digits
algorithm is abstract and modular. Therefore, to implement it we need to provide
a number of components: a repair model R, the procedure repair that produces
programs consistent with labeled examples, and a probabilistic inference algo-
rithm to (i) check whether the synthesized program respects the postcondition,
(ii) compute the semantic difference between the synthesized program P ′ and
the original program P . In this section, we describe the concrete choices of these
components for our implementation.

Repair model Since we are mostly interested in repairing machine learning
classifiers, a natural repair model R is only allowing modifications to real-valued
constants appearing in the program. These constants are essentially the weights
of the classifier.

Formally, let P be the program we are trying to repair, and let c1, . . . , cn
be all of the constants appearing in P . For simplicity, assume all constants
are different. Given constants d1, . . . , dk, we write P [c1/d1, . . . , cn/dn] to denote
the program in which each constant ci has been replaced with the constant di.
Finally, the set of allowed repairs is defined as

R = {P [c1/d1, . . . , cn/dn] | d1, . . . , dn ∈ R}.

We only consider programs containing linear real arithmetic expressions. As
such, our repair model can be viewed as a set of unions of polytopes with a
bounded number of faces (bounded by the size of the program). It can be shown
such polytopes have finite VC dimension [25], and therefore, so does our repair
model.
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repair implementation The implementation of repair(S+, S−) follows a
sketch-like approach [26], where we encode the program and the samples as
a formula whose solution is a filling of the holes defined by the repair model R.

Let P be the program we are trying to repair, and let c1, . . . , cn be all of
the constants appearing in P , as discussed above. We will first create a new
program PR = P [c1/h1, . . . , cn/hn], where h1, . . . , hn are fresh variables that do
not appear in P . We call hi holes. We now encode the program PR as a formula
as follows, using the function enc. To simplify the encoding, and without loss
of generality, we assume that PR is in static single assignment (ssa) form.

enc(v ← E) , v = JEK enc(P1 P2) , enc(P1) ∧ enc(P2)

enc(if B then P1 else P2) , (JBK⇒ enc(P1)) ∧ (¬JBK⇒ enc(P2))

where JBK is the denotation of an expression, which, in our setting, is a direct
translation to a logical statement. For example, Jx + y > 0K , x+ y > 0.

Once we have encoded the program PR as a formula ϕ, for each sample
si ∈ S+, we will construct the formula

ϕi , ∃V. ϕ[vI/si] ∧ vr = true

where V is the set of variables of P , which do not include the introduced holes
h1, . . . , hn. Similarly, for each sample si ∈ S−, we will construct the formula

ϕi , ∃V. ϕ[vI/si] ∧ vr = false

Finally, a model to the formula
∧
i ϕi is an assignment to the holes h1, . . . , hn

that corresponds to a program in the repair model R that correctly labels the
positive and negative examples. Specifically, repair(S+, S−) finds a model m |=∧
i ϕi and returns the program PR[h1/m(h1), . . . , hn/m(hn)], where m(hi) is the

value of hi in the model m. If
∧
i ϕi is unsatisfiable, then repair returns ⊥.

Theorem 4 (Soundness and completeness of repair). Suppose we are
given a program P and the repair model R defined above, along with two sets of
samples S+ and S−. Then, if repair(S+, S−) returns a program P ′, P ′ must
appear in R and correctly classifies S+ and S−. Otherwise, there is no program
P ′ ∈ R that correctly classifies S+ and S−.

Probabilistic inference In our implementation, this component can be in-
stantiated with any probabilistic inference tool—e.g., psi [15]. We use the tool
FairSquare [4], which is also written in Python and has already been used to
verify fairness properties of decision-making programs. Moreover, unlike several
other tools, the inference algorithm used in FairSquare is sound and complete
and therefore meets the criteria of the digits algorithm.

To speed up the search, we use sampling to approximate the probabilistic
inference and quickly process obvious queries. At the end of the algorithm we
use FairSquare to verify the output of digits.
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6 Evaluation

In this section, we evaluate the effectiveness of our algorithm on benchmarks
obtained by training machine learning models on an online dataset [1]. First, we
show that our algorithm can produce good repairs on many of the benchmarks.
Second, we illustrate the efficacy of the optimizations discussed in Section 4.2.

Benchmarks We used an online dataset [1] comprised of 14 demographic fea-
tures for over 30,000 individuals to generate a number of classifiers and a prob-
abilistic precondition. The precondition uses a graph structure represented as a
probabilistic program: at each node, there is an inferred Gaussian distribution
for a variable, and the edges of the graph induce correlations between variables.

We generated support vector machines with linear kernels (svms) and deci-
sion trees (dts) to classify high- versus low-income individuals using the weka
data mining software [2] until we obtained 3 svms and 3 dts that did not satisfy
a probabilistic postcondition describing group fairness. In particular, we used
the following postcondition:

P(high income | female)

P(high income | male)
≥ 0.85

The learned models are small and employ at most three features. Most of the
generated models violated the postcondition because they were strongly influ-
enced by a particular feature, capital gain, which was highly correlated with
gender in the dataset.

The combined size of the precondition and decision-making program ranges
from 20 to 100 lines of code. Though this is a much smaller scale than industrial
applications of machine learning, the repair problems are highly non-trivial.

Effectiveness of algorithm Table 1 details the performance of digits on our
suite of benchmarks that were given 600 seconds to perform repair. For example,
on the dt labeled dt16, the table shows that in 584 seconds, digits was able to
enumerate all possible labelings for a set of 50 samples (the depth of the trie),
and found a solution satisfying the postcondition that differs from the original
program with probability 0.098. Despite the fact that there are 250 ≈ 1015 such
labelings, digits needed only to check 53,255 of these possibilities (nodes in the
trie): among these possibilities, digits calls repair for just 1,903 of the labelings
that have a consistent solution, avoiding 26,627 (93%) potential calls to repair
using solution propagation—each of these also avoids a call to the verification
oracle. Additionally, digits calls repair for just 1,064 of the labelings that are
inconsistent and return ⊥, avoiding 23,661 (95%) potential calls to repair that
would also return ⊥ using conflict-driven pruning.

It is visibly apparent that solution propagation and conflict-driven pruning
save many synthesis and verification queries. However, savings from conflict-
driven pruning are only possible once the depth of the search (the number of
constraints) is large enough that many labelings are inconsistent—when the
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Name Holes
Result of digits Trie Details

Sam- Time Sem.
Nodes

Cons- Soln.
Incon.

Unsat
ples (s) Diff. istent Prop. Pruned

dt16 5 50 584 0.098 53,255 1,903 26,627 1,064 23,661
dt44 3 91 553 0.03 68,051 1,741 34,025 418 31,867
dt4 2 79 594 0.14 94,733 1,746 47,366 707 44,914

svm3

4 16 561 0.067 7,015 1,000 3,507 338 2,170
3 23 587 0.0615 17,977 1,600 8,988 388 7,001
2 91 582 0.0455 123,935 1,980 61,967 247 59,741
1 661 599 0.0595 437,583 662 218,791 1,305 216,825

svm4

5 10 470 0.197 1,523 508 761 100 154
4 13 507 0.204 4,599 1,018 2,299 205 1,077
3 22 559 0.195 14,885 1,424 7,442 406 5,613
2 83 598 0.04 92,495 1,674 46,247 217 44,357
1 628 600 0.044 395,013 629 197,506 1,228 195,650

svm5

6 8 410 0.1305 507 240 253 11 3
5 10 568 0.122 1,693 632 846 64 151
4 13 559 0.1025 4,587 1,018 2,293 194 1,082
3 23 575 0.096 15,361 1,348 7,680 332 6,001
2 88 583 0.056 103,649 1,736 51,824 224 49,865
1 598 599 0.067 358,203 599 179,101 1,176 177,327

Table 1. Results of running digits on benchmarks with a 600 second best-effort period.
Solution propagation, conflict-driven pruning, and cost minimization are used for all.

number of constraints exceeds the VC dimension of the repair model. Therefore,
we expect the instances with a more expressive repair model to perform worse.

Accordingly, Table 1 includes multiple results for each of the svms, where the
number of holes is varied: the svms compare an expression c0 + c1x1 + c2x2 + . . .
to 0, where each ci is replaced with a hole. The variants with fewer holes are
generated by removing the holes for coefficients of xi in increasing order of
the mutual information between xi and gender, as per the precondition. The
last remaining hole allows only for the constant offset c0 to be changed. The
table illustrates the trade-off between expressivity and performance: though the
instances with more holes have a strictly larger repair model and thus have the
potential to contain solutions with better semantic difference, the search is slow,
and the trie cannot enumerate as large a set of samples: the synthesis queries
are over more variables and are more complex; more solutions are satisfiable, so
conflict-driven pruning does not provide the same advantages. In general, as the
number of holes decreases, the best solution has improving semantic difference
because the trie is explored deeper. This trend continues until the only hole that
remains is the constant offset, when the repair model is no longer expressive
enough to capture solutions with such a minimal difference.
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Fig. 5. (Left) efficiency of solution propagation; (Right) efficacy of cost heuristic and
convergence of variance.

Optimizations Running digits as a trie allows solution propagation to avoid a
synthesis query for half of all explored nodes; additionally, when the queries are
performed, they are over smaller sets of constraints. Figure 5 (Left) illustrates
for the benchmark dt44 the time saved by using the trie structure instead of
explicitly enumerating the 2n possible labelings for a sample set of size n: each
point on the red line (labeled without solution propagation) indicates the amount
of time necessary to explicitly compute the 2n possibilities, while the blue line
(labeled with solution propagation) denotes the total time of exploring the trie
up to depth n. The plot illustrates that a run of digits using the trie structure’s
solution propagation provides exponential savings in the size of the sample sets.

Syntactic cost minimization Recall that our repair model consists of mod-
ifying the value of any real-valued constants in the program. As a heuristic to
quickly guide the search to better solutions, we introduce a notion of the syn-
tactic cost of a candidate repaired program. Specifically, if the original values of

holes h1, . . . , hn are the values c1, . . . , cn, then we compute the cost as
∑
i

∣∣∣hi−ci
ci

∣∣∣;
whenever we submit an smt query for a set of constraints, we require that it
approximately minimizes this cost function. The intuition is that since the be-
haviors of these programs are entirely determined by their constants’ values, the
amount that these values are changed is correlated with the semantic difference.
Syntactic cost minimization is utilized in all our prior results.

Figure 5 (Right) contains the results of running digits on dt44 for 20 dif-
ferent random seeds using cost minimization, and the same 20 different random
seeds without using cost minimization. The solid lines denote the median value
for the best semantic difference across the 20 runs as a function of the depth
reached by the trie structure; the transparent region denotes the 90% confidence
interval of the best semantic difference across all runs. It illustrates two concepts:
first, that the use of the cost minimization heuristic allows for digits to converge
to better solutions faster. Second, it shows that while the variance between the
best solutions across the different runs is high for a small number of samples,
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this variance decreases as the number of samples increases, suggesting digits is
robust with respect to the exact values of the sampled points.

7 Related Work

Program repair and synthesis Automated repair has been studied in the
non-probabilistic setting [20, 22, 10, 27, 17]. Closest to our work is the tool Qlose,
which attempts to repair a program to match a set of test cases while attempting
to minimize a mixture of syntactic and semantic distances between the original
and repaired versions [10]. The approach in Qlose itself cannot be directly lifted
to probabilistic programs and postconditions because it relies on a finite set of
input-output examples—it finds candidates for repairs by making calls to an smt
solver with the hard constraint that the examples should be classified correctly.
In our setting, the output of the optimal repair on the samples is not known a
priori and our goal is to ultimately find a program that satisfies a probabilistic
postcondition over an infinite set of inputs. Several of Qlose’s general principles
do carry over: namely, using a sketch-based approach [26] to fix portions of the
code and minimizing semantic changes.

In probabilistic model checking, a number of works have addressed the model
repair problem, e.g., [6, 9]. In this work, the idea is to modify transition probabil-
ities in finite-state Markov Decision Processes to satisfy a probabilistic temporal
property. Our setting is quite different, in that we are modifying a program
manipulating real-valued variables to satisfy a probabilistic postcondition.

Our problem of repairing probabilistic programs is closely related to the
synthesis of probabilistic programs. The technique of smoothed proof search [8]
approximates a combination of functional correctness and maximization of an
expected value as a smooth, continuous function. It then uses numerical meth-
ods to find a local optimum of this function, which translates to a synthesized
program that is likely to be correct and locally maximal. Unlike our approach,
smoothed proof search lacks formal convergence guarantees.

Stochastic satisfiability Our problem is closely related to, and subsumes, the
problem of e-majsat [21], a special case of stochastic satisfiability (ssat) [24]
and a means for formalizing probabilistic planning problems. e-majsat is of
nppp complexity. In e-majsat, a formula has two sets of propositional variables,
a deterministic and a probabilistic set. The goal is to find an assignment of de-
terministic variables such that the probability that the formula is satisfied is
above a given threshold. Our setting is similar, but we operate over formulas
in linear real arithmetic and have an additional optimization objective stipulat-
ing semantic closeness. The deterministic variables in our setting are the holes
defining the repair; the probabilistic variables are program inputs.

Algorithmic fairness Concerns of algorithmic fairness are recent, and there
are many competing fairness definitions [12, 14, 16, 13, 11]. Approaches to enforc-
ing fairness in machine-learned classifiers include altering the data to remove
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correlations with protected attributes [13] and imposing a fairness definition as
a requirement of the learning algorithm [16]. However, the general problem pre-
sented in this paper of modifying an existing program (be it learned or manually
constructed) to meet a quantitative probabilistic property is novel.
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A Proofs

Proof of Lemma 1 We cite the seminal result from [7] that if a well-behaved1

concept class C has VC dimension k, then for any 0 < ε, δ < 1 and sample
size at least max{ 4ε log2

2
δ ,

8k
ε log2

13
ε } drawn from probability distribution D

and labeled by their classification by the target concept c∗ ∈ C, any concept
c ∈ C consistent with those samples has errorD(c) ≤ ε with probability at least
1− δ. Here, errorD(c) is the probability that a sample drawn from D is classified
differently by c∗ versus c.

Our program model satisfies the benign measure-theoretic restriction of well-
behavior since it is equivalent to arbitrary collections of polytopes; therefore, for
any P ′ ∈ R, some labeling of the ≥ 4

ε log2
2
δ + 8k

ε log2
13
ε samples is consistent

with P ′, and therefore the theorem from [7] applies.

1 See [7] Appendix 1 for a discussion of well-behaved concept classes.
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Proof of Theorem 1 By Lemma 1, we know that with probability ≥ 1 − δ,
one of the results P ′ = repair(S+, S−) will have Er(P̂ , P ′) ≤ ε. Since (P̂ , post)
is α-robust and ε ≤ α, then P ′ ∈ Bα(P̂ ), and so {pre}P ′{post} holds.

Proof of Corollary 1 This follows immediately from Theorem 1 by letting
P̂ = P ∗.

Proof of Corollary 2 Observe that the Er function respects the triangle
inequality, i.e. Er(P1, P2) ≤ Er(P1, P3) + Er(P3, P2).

Er(P1, P2) = P(P1 6= P2)

= P(P1 6= P2 ∧ P1 6= P3) + P(P1 6= P2 ∧ P3 = P1)

= P(P1 6= P2 ∧ P1 6= P3) + P(P1 6= P2 ∧ P3 6= P2)

≤ P(P1 6= P3) + P(P3 6= P2)

= Er(P1, P3) + Er(P3, P2)

Thus if P̂ is α-robust and Er(P ∗, P̂ ) = ∆, we know P ′ has Er(P̂ , P ′) ≤ ε by
Theorem 1, and the triangle inequality gives us that Er(P ∗, P ′) ≤ ∆+ ε.

Proof of Theorem 2 P ′ is consistent with the first k + 1 labeled samples if
and only if it is consistent with the k+1-th sample as well as the first k samples.

Proof of Theorem 3 Assume towards a contradiction that f(b1 . . . bk) 6= ⊥,
but a subsequence b′ has repair(S+

b′ , S
−
b′) = ⊥. Then adding constraints, which

reduces the set of solutions, introduced a new solution.


