Fairness-Aware Programming

Aws Albarghouthi
University of Wisconsin—Madison
aws@cs.wisc.edu

ABSTRACT

Increasingly, programming tasks involve automating and deploy-
ing sensitive decision-making processes that may have adverse
impacts on individuals or groups of people. The issue of fairness
in automated decision-making has thus become a major problem,
attracting interdisciplinary attention. In this work, we aim to make
fairness a first-class concern in programming. Specifically, we pro-
pose fairness-aware programming, where programmers can state
fairness expectations natively in their code, and have a runtime
system monitor decision-making and report violations of fairness.

We present a rich and general specification language that allows
a programmer to specify a range of fairness definitions from the
literature, as well as others. As the decision-making program exe-
cutes, the runtime maintains statistics on the decisions made and
incrementally checks whether the fairness definitions have been
violated, reporting such violations to the developer. The advantages
of this approach are two fold: (i) Enabling declarative mathematical
specifications of fairness in the programming language simplifies
the process of checking fairness, as the programmer does not have
to write ad hoc code for maintaining statistics. (ij) Compared to ex-
isting techniques for checking and ensuring fairness, our approach
monitors a decision-making program in the wild, which may be
running on a distribution that is unlike the dataset on which a
classifier was trained and tested.

We describe an implementation of our proposed methodology
as a library in the Python programming language and illustrate its
use on case studies from the algorithmic fairness literature.

CCS CONCEPTS

« Theory of computation — Program specifications; « Soft-
ware and its engineering — Specification languages;

KEYWORDS

Probabilistic specifications; Fairness; Assertion languages; Runtime
monitoring; Runtime verification

ACM Reference Format:

Aws Albarghouthi and Samuel Vinitsky. 2019. Fairness-Aware Program-
ming. In FAT* °19: Conference on Fairness, Accountability, and Transparency,
January 29-31, 2019, Atlanta, GA, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3287560.3287588

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

FAT* °19, January 29-31, 2019, Atlanta, GA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6125-5/19/01...$15.00
https://doi.org/10.1145/3287560.3287588

Samuel Vinitsky
University of Wisconsin—Madison
vinitskys@cs.wisc.edu

1 INTRODUCTION

With algorithmic decision-making becoming the norm, the issue
of algorithmic fairness has been identified as a key problem of
interdisciplinary dimensions. Across the vast computer science
community, the past few years have delivered a range of practical
techniques aimed at addressing the fairness question.

In this work, we aim to make fairness a first-class concern in
programming. Specifically, we propose fairness-aware programming,
where developers can state fairness expectations natively in their
code, and have a runtime system monitor decision-making and
report violations of fairness. This programming-language-based
approach to fairness yields two advantages:

e The developer can declaratively state their fairness expecta-
tions natively in their code and have them checked. As such,
the developer need not write ad hoc code for collecting statis-
tics and checking whether fairness definitions are violated—
they simply state the fairness definitions that they expect to
hold. We argue that embedding notions of fairness directly
within the programming language reduces the barrier to in-
vestigating fairness of algorithmic decision-making.

The past few years have witnessed numerous techniques for
constructing fair classifiers [1, 4, 11, 13, 25], as well as for
testing and auditing fairness of existing decision-making pro-
cedures [2, 8, 12, 23]. Generally, these techniques assume a
provided dataset or distribution that is representative of the
population subject to decision-making. Unfortunately, the data
may be itself biased—e.g., due to historical discrimination—or
it may simply be unrepresentative of the actual population.
By monitoring actual algorithmic decisions as they are made,
we can check whether fairness is violated in the wild, which,
for instance, may exhibit different population characteristics
than the data used for training and validation in a machine
learning setting.

Fairness Specifications Consider a software developer who con-
structed a decision-making procedure following the best practices
for ensuring certain notions of fairness relevant to their task. Once
they have deployed their decision-making procedure, they want to
ensure that their fairness assumptions still hold. To enable them
to do so, we propose treating fairness definitions as first-class con-
structs of a programming language. Thus, the developer can specify,
in their code, that a given procedure f (perhaps a learned classifier)
satisfies some notion of fairness ¢. As the procedure makes the
decisions, the runtime system monitors the decisions, potentially
inferring that ¢ is violated, therefore alerting the developer.

The approach we propose is analogous to the notion of asser-
tions, which are ubiquitous in modern programming languages. For
instance, the developer might assert that x > 0, indicating that
they expect the value of x to be positive at a certain point in the

https://doi.org/10.1145/3287560.3287588
https://doi.org/10.1145/3287560.3287588

FAT™ ’19, January 29-31, 2019, Atlanta, GA, USA

program. If this expectation ends up being violated by some exe-
cution of the program, the program crashes and the developer is
alerted that their assertion has been violated. We propose doing
the same for fairness definitions. The difficulty, however, is that
fairness definitions are typically probabilistic, and therefore detect-
ing their violation cannot be done through a single execution as
in traditional assertions. Instead, we have to monitor the decisions
made by the procedure, and then, using statistical tools, infer that
a fairness property does not hold with reasonably high confidence.

To enable this idea, we propose a rather general and rich lan-
guage of specifications that can capture a range of fairness defi-
nitions from the literature, as well as others. As an example, our
specification language can capture notions of group fairness, for
example, that of Feldman et al. [11]:

@spec(pr(r|s) / pr(r|—s) > 0.8)
def f(x,s):

In this example, the developer has specified (using the annotation
@spec) that the hiring procedure f (whose return variable is r) has
a selection rate for minorities (denoted by s) that is at least 0.8 that
of non-minorities.

Generally, our specification language allows arbitrary condi-
tional expectation expressions over events concerning the input
and return arguments of some procedure. Further, we extend the
language to be able to specify hyperproperties [5], which refer to
two different executions of a procedure. This allows us to specify,
for example, properties like individual fairness, where we have to
compare between pairs of inputs to a procedure that are similar.
Section 2 provides concrete examples.

Runtime Analysis To determine that a procedure f satisfies a
fairness specification ¢, we need to maintain statistics over the in-
puts and outputs of f as it is being applied. Specifically, we compile
the specification ¢ into runtime monitoring code that executes ev-
ery time f is applied, storing aggregate results of every probability
event appearing in ¢. For instance, in the example above, the mon-
itoring code would maintain the number of times the procedure
returned true for a minority applicant. Every time f is applied, the
count is updated if needed. In the case of hyperproperties, like indi-
vidual fairness, the runtime system has to remember all decisions
made explicitly, so as to compare new decisions with past ones.
Assuming that inputs to the decision-making procedure are
drawn from an unknown distribution of the underlying population,
we can employ concentration of measure inequalities to estimate
the probability of each event in ¢ and therefore whether ¢ is vio-
lated, with some prespecified probability of failure. If the runtime
code detects a violation, we may ask it to completely halt applica-
tions of the decision-making program until further investigation.

Python Implementation We have implemented a prototype of
our proposed ideas in the Python programming language. Fair-
ness specifications are defined as Python decorators, which are
annotations that wrap Python functions and therefore affect their
behavior. In our setting, we use them to intercept calls to decision-
making functions and monitor the decisions made. To illustrate our
approach, we consider two case studies drawn from the fairness

Albarghouthi & Vinitsky

literature and demonstrate how our approach may flag violations
of fairness.

Contributions We summarize our contributions as follows:

e Fairness-aware programming: We propose a programming-
language approach to fairness specification, where the devel-
oper declaratively states fairness requirements for sensitive
decision-making procedures in their code.

technique that incrementally checks the provided fairness
specifications every time a decision is made. The decision-
making procedure is flagged when a fairness specification is
falsified with high confidence—after witnessing enough deci-
sions.

o Implementation & case studies: We describe an implemen-
tation of our proposed methodology as a library in the Python
programming language—using Python decorators—and illus-
trate its use on case studies from the algorithmic fairness
literature.

2 OVERVIEW & EXAMPLES

In this section, we provide a general overview of our fairness-
aware programming approach and provide a set of examples to
demonstrate its versatility.

We consider a programming language where the developer can
annotate a procedure f with a specification ¢, which is a proba-
bilistic statement over the behavior of f. Here, f is assumed to
be a procedure making a potentially sensitive decision, and ¢ is a
fairness definition that we expect f to adhere to.

While our approach is generic, we adopt Python-like syntax
in our examples, due to the popularity of the language for data-
analysis tasks and the fact that we implemented our approach as a
Python library. Given a Python procedure f, the fairness definition
will be provided using a decorator of the form @spec(¢) that di-
rectly precedes f. Note that f may be a machine-learned classifier
or manually written code. Throughout, we assume that the return
value of f is stored in a local variable r.

Example A: Group Fairness Consider the scenario where a de-
veloper has trained a classifier f for deciding which job applicants
to invite for a job interview. Following existing fairness techniques
and data available to them, the developer ensured that f satisfies a
form of group fairness where the selection rate from the minority
group is very close to that of the majority group—assuming, for
illustration, that we divide the population into minority and ma-
jority. The developer is aware that the fairness definition may not
hold once the classifier is deployed, perhaps because the data used
for training may exhibit historical biases or may be old and not
representative of the current population distribution. As such, the
developer annotates the procedure f as follows:

@spec(pr(r|s) / pr(r|—s) > 0.8 A
pr(r|s) / pr(r|—-s) < 1.2)
def f(x1,...,xn,s):

Incremental runtime analysis: We propose a runtime-checking

Fairness-Aware Programming

Here, f takes a set of attributes of the job applicant, x1, ...,xn,
along with a Boolean (sensitive) attribute s indicating whether the
applicant is a minority. The fairness specification indicates that the
selection rate of the minority applicants should be at most different
from that of the majority applicants by a factor of 0.2.

Now, when f is deployed and is making interview decisions,
the programming language incrementally improves an estimate
for every probability expression pr(...) in the specification. This
is performed automatically in the background using concentra-
tion inequalities, assuming job applications are independently and
identically distributed following an unknown distribution D. The
more decisions made by f, the more confident the runtime is about
whether the specification holds. The developer can choose the level
of confidence at which a violation of fairness is reported. For in-
stance, the developer might configure the runtime to only report
violations if the probability that the specification is violated is > 0.9.

To further ground our example in practice, the procedure f may
be a wrapper for a saved PyTorch model [21], and f may be applied
in real time to a stream of applications that are processed using, e.g.,
the filter operator in Apache Spark’s [24] Python interface, which
removes applications that do not return true on f. By annotating
f with @spec, we ensure that it is monitored as it is being applied
to the stream of job applications.

Example B: Robustness (individual fairness) The previous ex-
ample considered selection rates amongst groups. Another impor-
tant, albeit less studied, class of fairness definitions is individual
fairness [9], where the goal is to ensure that similar individuals are
treated similarly. Individual fairness can also be seen as a measure
of robustness of a decision-maker: small changes to an individual’s
record should not change the decision. The following definition is
an adaptation of the definition put forth by Bastani et al. [3], which
was proposed for robustness of neural networks:

def sim(i,j): . # Boolean function
@spec(pr(r® irb|sim(x“,xb)) < 0.1)
def f(x):

Continuing our hiring scenario, the procedure f takes as input
an application x and returns a Boolean decision. Notice that this
specification here is slightly different from what we have considered
thus far: it talks about two inputs and outputs of f, identified by a
superscript. For a partial illustration, the expression

pr{sim(x%,xb))

is interpreted as the probability that two applications drawn from
the distribution are similar, as defined by the user-defined Boolean
function sim. The full specification above says that the probability
of making different decisions on two applicants x* and x? should be
bounded by 0.1 (under the condition that the applicants are similar).

Notice that, in this setting, every time a decision is made, check-
ing the specification involves comparing the decision to all previ-
ously made decisions and updating the statistics. This is because
the specification is a so-called hyperproperty [5], since it compares
multiple program executions.

FAT* *19, January 29-31, 2019, Atlanta, GA, USA

Example C: Proxy Consider an algorithmic pricing scenario,
where an e-commerce website presents custom prices depending
on the user. Suppose that the algorithm uses browser type (e.g.,
Chrome, Firefox, etc.) as an attribute when deciding the price to
present to a given user. And suppose that the developers of this
algorithm, by examining their data, determined that it is safe to use
browser type as it cannot be used as a proxy for minority status,
ensuring that minorities receive fair pricing. To make sure that
this is indeed true in practice, the developers can use the e-proxy
definition proposed by Datta et al. [6, 7]. This definition ensures
that the normalized mutual information between the browser type
and the sensitive attribute is bounded above by a small number e.

@spec(l - (en(b|s) + en(s|b))/en(b,s) < 0.05)
def f(x1,...,xn,b,s):

The pricing procedure f takes the browser type b and minority
status s. The function en is (conditional) entropy; the expression
on the left side of the inequality measures how strong a proxy is
browser type for minority status. Note that we use en for brevity:
it can be translated into an arithmetic expression over probabilities
(pr).

Example D: Recommendation For our final example, consider
a movie recommendation system, where user data has been used
to train a recommender that, given a user profile, recommends
a single movie, for simplicity. A key problem with recommender
systems is isolation of similar users from certain types of recom-
mendations (e.g., left-leaning social media users tend to see only
articles from left-leaning websites, and vice versa). Suppose that
the recommender was constructed with the goal of ensuring that
male users are not isolated from movies with a strong female lead.
Then, the developer may add the following specification to their
recommender code.

@spec(pr(femaleLead(r)|s = male) > 0.2)
def f(x1,...,xn,s):

The above specification ensures that for male users, the procedure
recommends a movie with a female lead at least 20% of the time.

Combining Fairness Definitions In the aforedescribed exam-
ples, we considered a single fairness definition at a time. Our tech-
nique is not limited to that: A developer can simply combine two
different fairness definitions, e.g., ¢1 and ¢z, by conjoining them,
ie., using

@spec (@1 A @2)
Analogously, the developer may want to specify that at least one
of the two definition of fairness is not violated, in which case they

can disjoin the two definitions using

@spec(p1V ¢2)

FAT™ ’19, January 29-31, 2019, Atlanta, GA, USA

3 A FAIRNESS-AWARE LANGUAGE

In this section, we formalize a simple abstract programming lan-
guage that includes a fairness specification language. Concretely,
for the purpose of our discussion, we will limit programs in our lan-
guage to a pair (f, @), denoting a single decision-making procedure
f and an associated fairness specification ¢.

Decision-Making Procedures We define a decision-making pro-
cedure as a function
f:X - [ed]

from elements of some type X to real values in the non-empty range
[c,d] c R.! The procedure f is implemented using standard imper-
ative programming constructs—assignments, conditionals, loops,
etc. The details of how f is implemented are not important for our
exposition, and we therefore omit them. The only assumption we
make is that f is a pure function—i.e., its results are not dependent
on global variables.?

We shall assume that elements of the type X are vectors, and use
the variable x to denote the input arguments of procedure f(x).
When needed, we will expand f(x) as f(x1,...,xp).

Fairness Specification Language The language of specifications
¢ is presented as a grammar in Figure 1. Intuitively, a specification
¢ is a Boolean combination of inequalities of the form ETerm > c,
where ¢ € R and ETerm is an arithmetic expression over expecta-
tions.

An expectation IE[-] has one of two forms: IE[E] or E[H]. An
expression E is a numerical expression over the input variable x and
a special variable r which denotes the value of f(x).

Example 3.1. The expectation
E[r > 0]

denotes the probability that f returns a positive value. The expec-
tation

Efx1 + x2]
denotes the expected value of the sum of the first two arguments

of f(x1,...,xn).

Note that conditional probabilities and expectations can be en-
coded in our grammar. For instance, a conditional probability IP[E; |
E;] can be written as IE[E; A Ez]/IE[E3].

The hyperexpression H is non-standard: it is a numerical expres-
sion over two annotated copies of program variables, {x%,r%} and
{xb R rb }. We assume that the expression is symmetric, meaning that
if we swap the a and the b variables, we still get the same result. As
an example, consider the following expectation:

B[r # rP)
which denotes the probability that two runs of the function result in
different answers. Notice that the expression r® # r? is symmetric,
since it is always equal to r? # r¢ for any values of r? and rb.

Another example of a hyperexpression appears in our robustness
example from Section 2:

E[x? ~ x?]
!We model Boolean procedures by returning {0, 1} C IR values.

20ur technique can easily handle randomized functions, but we assume deterministic
functions for conciseness.

Albarghouthi & Vinitsky

¢ € Spec = ETerm > ¢
| Spec A Spec
| Spec V Spec

ETerm := IE[E]
| E[H]
lceR
| ETerm {+,—,+,x} ETerm

Figure 1: Grammar of a specification ¢. Spec and ETerm are non-
terminals. The expressions E and H are defined in the text.

where the operator ~ is some symmetric Boolean function indi-
cating whether the two inputs x¢ and x? are similar. Thus, this
denotes the probability that two inputs to f are similar.

Semantics of Specifications We have thus far only provided an
intuition for what it means for a specification to be satisfied or
violated. We will now formalize this notion.

We assume that there is a probability distribution D over the
domain X of the decision-making procedure f. This distribution
characterizes the population from which inputs to f are drawn—
e.g., population of job or loan applicants. Now, each expectation
EE[E] is interpreted such that x ~ D and r = f(x).

In the case of an expectation over a hyperexpression, I5[H], we
consider two identical and independent copies of x, called x¢ and
x?. Each expectation IE[H] is interpreted such that x* ~ D and
x? ~ D, and where r% = f(x%) and rb = f(xb),

Now that we have defined interpretations of expectations, we
say that a specification ¢ is satisfied by procedure f if it evaluates
to true after plugging in the numerical values of the expectations.
Otherwise, we say ¢ is violated by f.

Example 3.2. To give a simple illustrative example, let the dis-
tribution D be the normal distribution centered at 0 with scale 1.
Now consider the identity function f(x) = x and the specification

02 E[r*>0nrl>0]>05
As described above, we evaluate this specification over two variables
drawn from D:
x*~D
x*~D

¢ states that E[f(x%) > 0 A f(xb) > 0] > 0.5. This is not true,
since f is the identity function and drawing two positive values
has probability 0.25. Therefore, we say that ¢ is violated by f.

4 RUNTIME FAIRNESS ANALYSIS

In this section, we describe a program transformation that instru-
ments the decision-making procedure f with additional functional-
ity so as to detect a violation of a fairness property ¢.

The setting we work in is one where f is being continuously ap-
plied to inputs x1,x2, . . ., which are viewed as independent random
variables following an unknown distribution D. At every step i—i.e.,

Fairness-Aware Programming

after making the ith decision—we want to check if the property ¢
is violated using the empirical observations we have made thus far.
To achieve this, we summarize the instrumentation as follows:

e Empirical expectations: For every expectation [E[E], we main-
tain the sum of observed values of E, which we shall denote
E®. Thus, at any point i in the process, we can compute the
empirical estimate of IE[E], namely, E° /i. Note that at every
step, we simply update E° by adding the new observation.
Thus, we do not need to remember past observations—just
their aggregate. With hyperexpressions, however, we need to
remember past observations, as every new observation has to
be compared to past observations.

e Concentration inequalities: Once we have updated our es-
timates for every expectation, we can bound the estimates
using a concentration of measure inequality, e.g., Hoeffding’s
inequality, which gives us an (¢, §)-guarantee on the empirical
expectations. The more observations we make, the tighter the
bounds get. It is important to note, though, since we are work-
ing in an online setting, where we are continuously making
statistical tests, we need to ensure that we handle the multiple
comparisons problem.

e Checking violations: Finally, to check violations of ¢, we
plug in the empirical estimates of expectations into ¢ and
evaluate it using the uncertain (¢,5) values we computed.
Specifically, we evaluate ¢ by appropriately propagating errors
across its operators (e.g., +, X, A, etc.). If we deduce that ¢ is
violated with a probability greater than some threshold «, then
we halt the program and report a violation.

Program Instrumentation and Transformation We now pre-
cisely describe how we perform a transformation of a procedure f
to monitor violations of ¢. We shall denote the new, transformed
procedure f,. We begin by demonstrating the case where there are
no hyperexpressions in ¢.

Algorithm 1 shows the instrumented procedure f,,. The new
procedure begins by calling f(x) and storing the result in a local
variable r. Then, it proceeds to increment a global variable n indicat-
ing the number of decisions made thus far. The loop considers every
expression E in ¢ and updates a corresponding global variable E®
that holds the sum of all values of E witnessed so far—the notation
E(x,r) is E evaluated on given values of x and r.

The function bound is treated as a black-box for now, as one
can employ different well-known statistical techniques. bound pro-
vides an (e,) estimate for the expected value of E, which we de-
note as E(e, 5)- Specifically, E is the value E® /n, and the two values
€,6 € R0 denote an additive error and a probability of failure,
respectively, such that:

PlE-E[E]| > €] <6

In other words, our estimate E is within an e from E[E] with a
probability of 1 — 6.

Evaluation over Uncertain Quantities After computing a value
E(e’ 5) for every E € ¢, we plug those values into ¢ and check if it
is violated and with what probability. This is implemented using
the function uEval, which evaluates ¢ by propagating the additive
errors and failure probabilities across arithmetic/Boolean operators.

FAT* *19, January 29-31, 2019, Atlanta, GA, USA

Algorithm 1 Instrumenting f for monitoring ¢ violations

1: procedure f,(x)
2: r— f(x) > invoke f
3 nen+l > update count
4 for E € ¢ do
5 ES « E® + E(x,r) > increment sum of E
6 E(e’(g) « bound(E*,n) > estimate [5[E]

7: Y « ¢ with every IE[E] replaced by E(e’(g)
if uEval(y) = falses, and 1 — 8’ > k then
Abort with ¢-violation

10: return r

— —, _ -,
E(e,5) O E(er,6n) = (EO E)(ey,5+5)

where €p = maxgeg, |(E @E’) —s| and

So={E@e)oE @ €)@, €+~

Figure 2: Evaluation of uncertain interval arithmetic data type,
where ©® € {+,—,%x,+}. For ®© = +,if 0 € [f, - e’,F + €’], then
uEval is assumed to immediately return T, denoting unknown.

falses E+e<c
Ee,5)>c=19 trues E-e>c
T otherwise

Vs ANYs = (AP)srs
Vs Vg = VY)srs

Figure 3: Evaluation of uncertain Boolean combinations of inequal-
ities data type

We now discuss the implementation of uEval in detail: it takes a
formula /, which is ¢ but with all expectations replaced by their
uncertain E(e’ 5) values. It then proceeds to evaluate ¥ in two steps:

(1) simplifying arithmetic terms and appropriately propagating

error (€) and probability (6) values, and

(2) simplifying Boolean connectives by checking inequalities

and propagating probability values.

The result of uEval(y) is one of the following: trues:, falses:, or
unknown (T). If the result is falses, and 1 — 6" > k, then we know
that ¢ is violated with a probability of at least the set threshold «.

Figure 2 defines how uEval simplifies arithmetic expressions.
Effectively, uEval implements arithmetic over intervals of the form
[E - €,E + €]. For instance, consider the rule for addition. If we are
given E(e’(g) and EEG/’(;/), this implies that the value of E+E’ is E+E,
within an e; = e+¢’ additive error and with a 1—(5+6”) probability
(following the union bound). Intuitively, as we perform arithmetic
on uncertain values, the intervals and failure probabilities both
increase.

After simplifying all arithmetic expressions, we proceed to sim-
plify inequalities and Boolean connectives, as shown in the rules in
Figure 3. The first rule shows how to check if an inequality of the
form E(e,a) > ¢ holds. If the full interval [E — ¢,E + €] is < ¢, then

FAT™ ’19, January 29-31, 2019, Atlanta, GA, USA

we know that the inequality is false with a failure probability of .
Similarly, if [E — €,E + €] is > ¢, then we know that the inequality
is true with a failure probability of §. Otherwise, we cannot make a
conclusive statement based on the data we have, and we therefore
propagate the special Boolean value T, which stands for unknown
and has a failure probability of 0. Technically, since T can take any
Boolean value, we have T A ¢ = falseand T V ¢ = ¢.

After applying the simplification rules to exhaustion, we arrive
at a value of the form /5, where ¢ € {true, false, T}. If = false
and 1 — § > k, then we know that the specification ¢ is violated
with a probability at least that of the threshold «.

Example 4.1. Consider the following ¢:
E[E]
E[E]
Suppose we have the following estimates of the two expectations:

10(4,0.1) for B[E] and 20(4 ¢ 1) for IE[E’]. Then, applying the rules
for division, we get

> 0.1

10(4,0.1)

200.0.) =0.5(0.375,0.2)
The value 0.5 is the result of dividing the two empirical expectations:
10/20. The failure probability 0.2 is the result of taking the union
bound of the two failure probabilities, 0.1 + 0.1. The error 0.375 is
the largest deviation from 0.5 possible, which occurs by dividing
(10 + 4)/(20 — 4).

Now using the rule for evaluating inequalities, we know that the
inequality above holds with probability at least 1 — 0.2 = 0.8, since
the lower bound 0.5 — 0.375 is > 0.1.

Instrumentation for Hyperexpressions Thus far, we have not
discussed how to monitor hyperexpressions. Algorithm 2 shows
an extension of Algorithm 1 that additionally tracks the empirical
mean of hyperexpressions, as shown in the second for loop. For
every hyperrexpression H, the variable H® contains the aggregate.
Recall, however, that hyperexpressions are over two copies of the
variables. Therefore, unlike expressions, every time we invoke f(x)
and receive a value r, we need to update H® with all valuations of H®
on (x,r) together with every previously seen pair of values (x’,r’),
which we maintain in a list called hist. Since H is symmetric, we only
evaluate it in one direction—i.e., H(x’,r’,x,r) and not H(x,r,x’,r’).
The empirical mean of H is:

6]

since every two decisions made are compared to each other once.

ﬁ:

Defining bound with Concentration Inequalities At this point,
we have shown how to maintain all the required statistics in f;.
All that is left to do is apply a concentration of measure inequality
to determine (e,) values for the empirical means. There are two
issues here: (i) we need a concentration inequality that handles
hyperexpressions and (ii) the multiple comparisons problem.

To handle hyperexpressions, we can apply Hoeftding’s inequality
for U-statistics [14], which applies to cases where we are computing
the mean of an k-ary symmetric function over a sequence of ran-
dom variables. In our case, hyperexpressions are 2-ary symmetric

Albarghouthi & Vinitsky

Algorithm 2 Instrumenting f for monitoring ¢ violations includ-
ing hyperexpressions

1: procedure f,(x)
2: r « f(x)
3 nen+l
4 for E € ¢ do
5 ES « ES + E(x,r)
6 E(e’g) « bound(E*,n)
7: for H € ¢ do
: H® « H® + Y% ryehist H(X .1, x,7)
9: ITI(e’a) < bound(H?*,n)
10: Append (x,r) to list hist
11 Y < ¢ with every E[Y] replaced by ?(6’5)
12: if uEval(y) = falses, and 1 — 8’ > k then
13: Abort with ¢-violation

14: return r

functions. We therefore use the following instantiation:
P[|H-E[H]| > €] <6

where § = 2¢70-5"€", The same inequality applies to expressions
(although we can technically get tighter bounds there).

To deal with the multiple comparisons problem, we apply the
standard trick of union bounding the probability §; that is, we take
the failure probability to be 3.7, 2¢70-5n€" This has a closed form
by setting € appropriately as a function of n.

Practical Choice of § Values In practice, since we are given the
threshold « that we want to achieve, we can conservatively pick
values for § across expressions such that if uEval(y)) returns trueg,
then we know that 1 -6’ > «.

Example 4.2. For example, suppose we have ¢ of the form
E[E1]
E[E;]
and a threshold of k¥ = 0.9. We can divide the failure probability of
0.1 on the two expectations. If we bound IE[E;] with §; = 0.05 and
E[E;] with 8 = 0.05, then, using the structure of ¢, we know that
the simplification rules will result in a value of the form .1, and
therefore 1 — 0.1 > 0.9.

5 CASE STUDIES

In this section, we describe a prototype implementation of fairness-
aware programming and two case studies designed to exhibit the
various features and nuances of our approach.

Implementation We have implemented a prototype of our ap-
proach as a library of decorators in the Python programming lan-
guage. Decorators in Python can be seen as function annotations
that wrap the function and can modify its behavior when running.
In our case, a decorator contains a fairness specification ¢, which,
every time f is invoked, remembers the decisions it makes and
performs some statistical reasoning to check whether ¢ is violated.

Our implementation optimizes the estimates for conditional prob-
abilities. The naive approach is to transform a conditional expec-
tation IE[A | B] into IE[A A B]/IE[B]. However, the (e,5) bounds

Fairness-Aware Programming

FAT* *19, January 29-31, 2019, Atlanta, GA, USA

2.00 2.00 2.00
1.75 —— Upper bound 1.75 —— Upper bound 1.75 —— Upper bound
—— Lower bound —— Lower bound —— Lower bound
g 1.50 —— Empirical mean EE“, 1.50 —— Empirical mean g 1.50 —— Empirical mean
)) =
=125 =125 - 125 \
S S S
= 1.00 =1.00 = 1.00
Il o o
= S S
® 0.75 e ® 0.75 I\ ®0.75
5 0.50 7 0.50 | | H050 o
0.25 0.25 0.25
0.00 0.00 0.00
0 2000 4000 6000 8000 0 1000 3000 0 2000 4000

Number of decisions

(a) Group fairness

Number of decisions

(b) Group fairness with modified classifier

Number of decisions

(c) Individual fairness

Figure 4: Simulations from our case studies

on the estimates of the two expectations compound after applying
the division operation—as formalized in Figure 2. To work around
this loss of precision, we employ the standard approach of rejection
“sampling”, where we discard invocations of f that do not satisfy B
when computing IE[A], thus resulting in a finer bound on IE[A | B]
This improves precision and therefore the number of observations
needed to discover a violation of ¢.3

Case Study A: Group Fairness For our case studies, we consider
classifiers trained and used in the FairSquare tool [2].4 These clas-
sifiers were trained on the Adult income dataset,” which has been
a popular benchmark for fairness techniques. The task there is to
predict someone’s income as high (true) or low (false). Unfairness
can therefore be exhibited in scenarios where this is used to, for
instance, assign salaries automatically.

FairSquare provides the classifiers as Python functions, which
we annotate with fairness definitions. Additionally, FairSquare pro-
vides a generative probabilistic population model, which we used
to simulate a stream of inputs to the classifier.

For our first case study, we consider a group fairness property
of the following form

@spec(pr(r|sex=f A q) / pr(r|sex=m A q) > 0.9)

This property specifies that the rate at which qualified females re-
ceive a high salary is at least 0.9 that of qualified males. The Boolean
qualification attribute (q) is used to limit the fairness constraint to
a subset of the population, e.g., those that meet some minimum
requirement for consideration for high salaries.

We annotated one of the FairSquare classifiers® with this prop-
erty and simulated it using the provided probability distribution. We
fixed a threshold x of 0.85, meaning that violations should only be
reported with confidence > 0.85. We automatically fix the probabil-
ity § for each expectation, so that only the error € varies, decreasing
as a function of the number of observations made (see Appendix
for more details). Figure 4a shows the value of the term pr(r|
sex=f A q) / pr(r|sex=m A q) as a function of the number
of observations. The figure shows the empirical mean, as well as

3This optimization is only applied to conditional probabilities over expressions, but
not hyperexpressions, as rejection sampling does not easily translate to that setting.
4 Available at https://github.com/sedrews/fairsquare (commit bd27437)
Shttps://archive.ics.uci.edu/ml/datasets/Adult/

°M BN _F SVM V6 Q.fr

its upper and lower bounds (i.e., empirical mean +/- €). As shown,
the empirical mean converges to about 0.7, and after about 8000
observations, we conclude a violation of the fairness property, since
the upper bound (red) goes below 0.9, indicating that the selection
rate for qualified females is less than 0.9 that of qualified males,
with a probability > 0.85.

To further illustrate, we manually modified the classifier to favor
males, reducing the ratio pr(r|sex=f A q) / pr(r|sex=m A
q) to about 0.6. The simulation results are shown in Figure 4b,
where about 3800 observations are made before deducing that the
fairness definition is violated. Notice that for the modified classifier
we required a smaller number of observations to declare a violation;
this is because the selection ratio (0.6) is much lower in than 0.9,
and so a larger error e suffices to show a violation with the same
probability of > 0.85.

One observation we can make here is the number of decisions
we needed to establish a fairness violation is 3800-8000.7 One may
argue that these numbers are too large. However, consider the
case of algorithmic decisions being made at the scale of a large
corporation, which may receive thousands of job applications per
day, or algorithmic decisions made during crowdsourcing, where
a huge number of decisions of who to pay and how much to pay
can be made in an instant. In those scenarios, a few thousand
decisions is a small number. At a more technical level, we could
imagine a deployment where the developer can see in real-time the
graphs in Figure 4. As such, the developer may decide to investigate
unfairness as soon as the empirical mean has stabilized, before
the lower/upper bounds are tight enough to conclusively establish
a violation. Further, in our implementation, we have employed
a vanilla concentration of measure inequality (Hoeffding’s), but
there is room for improvement, e.g., by modifying the parameters
of the inequality or investigating other inequalities. We leave the
investigation of the merits of different statistical tests for future
work.

Case Study B: Individual Fairness For our next case study, we
consider the same classifier from case study A but with a different
fairness specification involving hyperexpressions. The following
definition specifies that the probability that two individuals who
are similar (sim) receive different outcomes is less than 0.05.

"While Figure 4 shows single simulations; these are representative of the average
number of observations needed to discover a violation.

https://github.com/sedrews/fairsquare
https://archive.ics.uci.edu/ml/datasets/Adult/

FAT™ ’19, January 29-31, 2019, Atlanta, GA, USA

@spec(pr(r® £rf|sim(x4,x%)) < 0.05)

X is the input to the classifier, and similarity is a function of the
education level—two individuals are similar if their education levels
differ by at most 2.

Figure 4c shows the estimated value of the term pr(r¢ #rb |sim
(x%,x%)). The empirical estimate (gray line) converges to about
0.45, the probability that a pair of similar individuals are given
different salaries. After about 5000 observations, we deduce that
pr(ré #rb | sim(x? ,xb)) is greater than 0.05, as indicated by the
lower bound (blue), which goes above 0.05.

Recall that estimating an expectation IE[H] is more involved due
to the fact that, after every decision, we update the sum H® with
Y (x',r)ehist H(x',r’,x,1), which compares the current observation
(x,r) with all previous observations as recorded in the list hist.
Therefore, the time it takes to update H® increases linearly in the
number of observations. In our case study, we have found that time
taken to compute the sum is not prohibitive. For instance, if we
keep the simulation running past the point it discovers a violation,
we observe that the time it takes to compute® the sum is ~ 0.015s
when |hist| = 10* and ~ 0.6 when |hist| = 10°. Of course, the time
taken is also a function of the complexity of evaluating H, which
in our case is simple. Our prototype implementation in Python is
not optimal, as Python is an interpreted language. We envision a
number of optimizations if | hist| grows very large or H is complex:
For instance, compiling f;, into low-level code, or parallelizing the
evaluation of the sum using reducers.

6 DISCUSSION

Fairness Definitions Our foremost design goal for the specifi-
cation language is to provide a flexible set of operators that can
capture most existing definitions from the literature. However, there
are definitions that we cannot immediately capture in the language
and instrumentation in its current form.

Consider, for instance, the work of Datta et al. [6, 7], where they
consider influence of a proxy. To demonstrate that a proxy is in-
fluential on the decision, they intervene on the distribution D by
varying the values of variables under test independently of the oth-
ers. This cannot be currently defined in our specification language,
as we cannot consider hypothetical inputs to the procedure f, only
the ones we have witnessed in the course of execution. To handle
such property, we have to modify the specification language to be
able to invoke the procedure f. We made the decision to restrict
the language to be only a monitor of decisions and not a tester that
intervenes. The same problem holds for other causal definitions of
fairness [12, 16, 17].

Another prominent property that we cannot capture is individ-
ual fairness, as formalized by Dwork et al. [9]. There, one considers
randomized classifiers and measures that distance between output
distributions for two similar inputs. Just like with the property
discussed above, to be able to measure distance between distribu-
tions for two distinct inputs, the monitoring code has to be able to
repeatedly invoke a randomized f to get an accurate picture of its
output distribution for each input.

81.3 GHz Intel Core i5; 8 GB RAM; Mac OS X 10.12.6

Albarghouthi & Vinitsky

Population Distribution Like many other works in the algorith-
mic fairness space, we make the assumption that the underlying
population distribution D of the decision-making procedure f is
fixed and inputs are i.i.d. This, however, may not be always true. For
instance, the decisions made may affect the population (e.g., in a
setting like giving loans), a problem that has been recently explored
by Liu et al. [20]. In most cases, impacts of decision-making are
delayed, and therefore our work can potentially catch unfairness
over a small time-scale where the population distribution is con-
stant. Even when the underlying distribution is constantly shifting,
one could imagine incorporating that fact into the runtime, e.g.,
by maintaining a sliding window where older, less-representative
observations are discarded.

7 RELATED WORK

The algorithmic fairness literature has been rapidly expanding in
breadth and depth. In this section, we focus on the most related
works from the fairness literature and relevant works from software
engineering and verification.

Enforcing and Checking Fairness We focus on two types of
work on algorithmic fairness: (i) works on enforcing fairness and
(i1) works developing techniques for checking fairness.

We have shown that our language-based approach can capture
a range of properties from the literature. These include forms of
group fairness, which have appeared in a various forms in the
literature, e.g., [9, 11, 15]. Some notions of fairness, like equalized
odds [13], work exclusively in the context of supervised learning,
where we are ensuring fairness with respect to some labeled data.
In this work, we consider the setting in which we are observing
decisions as they are being made, on unseen data, and therefore
we are not targeting notions of fairness tied to supervised learning.
In Section 6, we discussed some of the notions of fairness that our
language cannot capture.

In the context of enforcing fairness, much of the work in the
machine-learning community has been focused on modifying the
learning algorithm to take fairness into account, e.g., by incorporat-
ing fairness into the objective function [10], eliminating proxies to
sensitive attributes by preprocessing the data [11, 25], or applying a
post-processing step to make a classifier fair [13]. Works in security
and verification have studied approaches that syntactically modify
unfair programs to make them fair [1, 7].

In the context of checking fairness, a number of systems have
been proposed. For example, the work on Themis [12] uses a notion
of causal fairness and generates tests to check fairness of a given
decision-making procedure. The work on FairTest [23] provides a
comprehensive framework for investigating fairness in data-driven
pipelines.

Runtime & Statistical Verification Our work is reminiscent
of statistical verification techniques. Most closely related is the
work of Sampson et al. [22], where probabilistic assertions are
added to approximate (noisy) programs to check that they return
answers within reasonable bounds. There are numerous differences
between our techniques: First, we consider an online checking of
assertions, as opposed to an offline testing phase by sampling from
a known distribution. Second, we consider a much richer class of

Fairness-Aware Programming

properties, where we have arithmetic and Boolean operations over
expectations, as opposed to a single event of interest.

There is a rich body of work on various forms of runtime ver-
ification, which involves monitoring properties at runtime. Little
work in that area, however, has targeted probabilistic properties.
Lee et al. [18, 19] proposed applying statistical hypothesis testing at
runtime to detect violations of a certain form of temporal properties
in real-time systems. Like the work of Sampson et al. [22], they are
restricted to a single probability expression and do not consider
hyperexpressions. Our work is also distinguished by embedding the
probabilistic properties to be checked into the language, as opposed
to an external specification mechanism.

8 CONCLUSION

We proposed fairness-aware programming, where fairness defini-
tions can be declaratively specified in decision-making code and
checked at runtime. We argued that embedding notions of fairness
directly within the programming language reduces the barrier to
investigating fairness of algorithmic decision-making. We demon-
strated our approach by implementing it in Python and applying it
to example classifiers from the literature.

Acknowledgements We thank Philip Thomas and Yuriy Brun for
insightful discussions about this work. We would also like to thank
the FAT” reviewers for their feedback. This work is supported by
NSF grant #1704117.

REFERENCES

[1] Aws Albarghouthi, Loris D’Antoni, and Samuel Drews. 2017. Repairing decision-
making programs under uncertainty. In International Conference on Computer
Aided Verification. Springer, 181-200.

[2] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V Nori. 2017.
FairSquare: probabilistic verification of program fairness. Proceedings of the ACM
on Programming Languages 1, OOPSLA (2017), 80.

[3] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya Nori, and Antonio Criminisi. 2016. Measuring neural net robustness with
constraints. In Advances in neural information processing systems. 2613-2621.

[4] Toon Calders and Sicco Verwer. 2010. Three naive Bayes approaches for
discrimination-free classification. Data Mining and Knowledge Discovery 21,
2 (2010), 277-292.

[5] Michael R Clarkson and Fred B Schneider. 2010. Hyperproperties. Journal of
Computer Security 18, 6 (2010), 1157-1210.

[6] Anupam Datta, Matt Fredrikson, Gihyuk Ko, Piotr Mardziel, and Shayak Sen. 2017.
Proxy non-discrimination in data-driven systems. arXiv preprint arXiv:1707.08120
(2017).

[7] Anupam Datta, Matthew Fredrikson, Gihyuk Ko, Piotr Mardziel, and Shayak Sen.
2017. Use privacy in data-driven systems: Theory and experiments with machine
learnt programs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 1193-1210.

FAT* *19, January 29-31, 2019, Atlanta, GA, USA

Anupam Datta, Shayak Sen, and Yair Zick. 2016. Algorithmic Transparency via
Quantitative Input Influence. In Proceedings of 37th IEEE Symposium on Security
and Privacy.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S.
Zemel. 2012. Fairness through awareness. In Innovations in Theoretical Computer
Science 2012, Cambridge, MA, USA, January 8-10, 2012. 214-226. https://doi.org/
10.1145/2090236.2090255

Cynthia Dwork, Nicole Immorlica, Adam Tauman Kalai, and Mark DM Leiserson.
2018. Decoupled classifiers for group-fair and efficient machine learning. In
Conference on Fairness, Accountability and Transparency. 119-133.

Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and
Suresh Venkatasubramanian. 2015. Certifying and Removing Disparate Impact.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Sydney, NSW, Australia, August 10-13, 2015. 259-268.
https://doi.org/10.1145/2783258.2783311

Sainyam Galhotra, Yuriy Brun, and Alexandra Meliou. 2017. Fairness testing:
testing software for discrimination. In Proceedings of the 2017 11th Joint Meeting

on Foundations ofS%ftware En‘%\lineering ACM, 498-510.
Moritz Hardt, Eric Price, and Nathan Srebro. 2016. Equality of Opportunity in

Supervised Learning. CoRR abs/1610.02413 (2016). http://arxiv.org/abs/1610.
02413

Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random
variables. Journal of the American statistical association 58, 301 (1963), 13-30.
Faisal Kamiran and Toon Calders. 2009. Classifying without discriminating. In
Computer, Control and Communication, 2009. IC4 2009. 2nd International Confer-
ence on. IEEE, 1-6.

Niki Kilbertus, Mateo Rojas Carulla, Giambattista Parascandolo, Moritz Hardt,
Dominik Janzing, and Bernhard Schélkopf. 2017. Avoiding discrimination through
causal reasoning. In Advances in Neural Information Processing Systems. 656-666.
Matt] Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfac-
tual fairness. In Advances in Neural Information Processing Systems. 4066—4076.
Insup Lee, Oleg Sokolsky, et al. 2005. RT-MaC: Runtime monitoring and checking
of quantitative and probabilistic properties. Departmental Papers (CIS) (2005),
179.

Insup Lee, Oleg Sokolsky, John Regehr, et al. 2007. Statistical runtime checking
of probabilistic properties. In International Workshop on Runtime Verification.
Springer, 164-175.

Lydia T. Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. 2018.
Delayed Impact of Fair Machine Learning. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, [CML 2018, Stockholmsmdssan, Stockholm,
Sweden, July 10-15, 2018.3156-3164. http://proceedings.mlr.press/v80/liul8c.html
Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

Adrian Sampson, Pavel Panchekha, Todd Mytkowicz, Kathryn S McKinley, Dan
Grossman, and Luis Ceze. 2014. Expressing and verifying probabilistic assertions.
In ACM SIGPLAN Notices, Vol. 49. ACM, 112-122.

F. TramAlr, V. Atlidakis, R. Geambasu, D. Hsu, J. Hubaux, M. Humbert, A. Juels,
and H. Lin. 2017. FairTest: Discovering Unwarranted Associations in Data-Driven
Applications. In 2017 IEEE European Symposium on Security and Privacy (EuroS
P). 401-416. https://doi.org/10.1109/EuroSP.2017.29

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ton Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10).
USENIX Association, Berkeley, CA, USA, 10-10. http://dl.acm.org/citation.cfm?
1d=1863103.1863113

Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork.
2013. Learning Fair Representations. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013.
325-333. http://jmlr.org/proceedings/papers/v28/zemel13.html

https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2783258.2783311
http://arxiv.org/abs/1610.02413
http://arxiv.org/abs/1610.02413
http://proceedings.mlr.press/v80/liu18c.html
https://doi.org/10.1109/EuroSP.2017.29
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://jmlr.org/proceedings/papers/v28/zemel13.html

	Abstract
	1 Introduction
	2 Overview & Examples
	3 A Fairness-Aware Language
	4 Runtime Fairness Analysis
	5 Case Studies
	6 Discussion
	7 Related Work
	8 Conclusion
	References

