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Abstract
By abstracting away the complexity of distributed systems, large-
scale data processing platforms—MapReduce, Hadoop, Spark,
Dryad, etc.—have provided developers with simple means for
harnessing the power of the cloud. In this paper, we ask whether
we can automatically synthesize MapReduce-style distributed pro-
grams from input–output examples. Our ultimate goal is to enable
end users to specify large-scale data analyses through the simple
interface of examples. We thus present a new algorithm and tool
for synthesizing programs composed of efficient data-parallel op-
erations that can execute on cloud computing infrastructure. We
evaluate our tool on a range of real-world big-data analysis tasks
and general computations. Our results demonstrate the efficiency
of our approach and the small number of examples it requires to
synthesize correct, scalable programs.
Categories and Subject Descriptors I.2.2 [Automatic Program-
ming]: Program synthesis
Keywords program synthesis, data analysis, verification

1. Introduction
Over the past decade, we have witnessed a transformational rise
in distributed computing platforms that allowed us to seamlessly
harness the power of cloud and cluster computing infrastructure.
Distributed programming platforms—such as Google’s original
MapReduce [25], Hadoop [58], Spark [62], and Dryad [61]—
equipped average developers with tools that instantly transformed
them into distributed systems developers. Specifically, these plat-
forms provided developers with abstract data-parallel operators—
forms of map and reduce—that shielded them from the monstrous
complexity of distributed computing, e.g., node failures, load bal-
ancing, network topology, distributed protocols, etc.

By adding a layer of abstraction on top of distributed systems
and providing developers with a restricted API, large-scale data pro-
cessing platforms have become household names and indispensable
tools for the modern software developer and data analyst. In this
paper, we ask whether we can raise the level of abstraction even
higher than what state-of-the-art platforms provide, but this time
with the goal of unleashing the power of cloud computing for the
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average computer user. To that end, we present a novel program
synthesis technique that is capable of synthesizing programs in the
general MapReduce paradigm. Our technique uses the simple in-
terface of input and output examples as the means for specifying a
computation. With this synthesis technology and the simplicity of
its example-based interface, we make a step forward towards en-
abling end users to perform large-scale data analyses and general
computations, without knowledge of programming and distributed
computing frameworks.

Our contributions are inspired by, and bring together, a number
of seemingly disparate threads of development:

Program synthesis Recent developments in end-user program
synthesis and synthesis from examples [13, 26, 29, 40, 45, 46]
demonstrated the power of input–output examples as a means for
describing non-trivial computation at a level accessible by users
with no programming knowledge. A success story in this space
is the work on spreadsheet manipulation, FlashFill [30], which
quickly made the transition from research into Microsoft Excel.

Data-parallel systems Distributed computing platforms [25, 58,
61, 62] have supplied us with powerful yet simple abstractions
for large-scale data analysis and general computation. Frame-
works like Spark and Hadoop have a large user base, commercial
support, and are part of the modern developer’s toolkit.

Large-scale data analysis We are witnessing an explosive growth
in big-data analytics, with across-the-board interest from indus-
try, governments, journalists, and even tech-savvy individuals.
This wide interest in data analysis, coupled with the rise in pub-
lic cloud infrastructure [1, 5, 7], has made writing large-scale
data analyses a standard task.

Synthesis challenges In its simplest form, a MapReduce-like pro-
gram1 is composed of a mapper, which applies an operation in par-
allel to each element in a (potentially very large) list of elements,
and a reducer, which aggregates the results computed by the map-
per to produce a final output. The question we ask here is how can
we synthesize a MapReduce program from input–output examples?
This raises a number of challenges:

– There are many ways to define a data-parallel program for some
desired task. How do we partition the computation between
different data-parallel operators?

– While the MapReduce paradigm shields us from many com-
plexities of distributed systems, it does not shield us from net-
work non-determinism (the shuffle phase [25]). So, how do we
synthesize deterministic programs in this setting?

– How do we synthesize two or more data-parallel functions (e.g.,
map and reduce) whose composition is the desired program?

1 We shall use MapReduce to generically refer to the large family of dis-
tributed programming frameworks, and not only Google’s MapReduce sys-
tem [25] or its open source implementation, Hadoop [58].



Functional synthesis technique To tackle these challenges, first,
we notice that MapReduce-style programming readily provides us
with a common structure for our program: a composition of data-
parallel operations, e.g., map followed by reduce, or a sequence of
map and reduce. This restricts the space of possible programs, as
we are not searching for an arbitrary piece of code to realize the
given input–output examples. In a sense, the MapReduce paradigm
provides us with a program template in which we need to fill the
missing pieces. We make the key observation that restricting syn-
thesis to MapReduce-like programs forces discovery of inherently
parallel implementations of a desired computation. Capitalizing on
this insight, we designed our program synthesis technique to be pa-
rameterized by a set of higher-order sketches (HOS): templates that
dictate a data-parallel structure on the synthesized program. For in-
stance, if we want to find a program composed of a map followed
by a reduce, we simply instantiate our algorithm with the following
HOS:

map  . reduce  
where map and reduce are higher-order functions, as typically de-
fined in functional programming languages; the  symbol signifies
the missing pieces of the template—in this case, functions to be ap-
plied by the mapper and reducer; and the . symbol is reverse func-
tion composition, i.e., (f. g)(x) denotes g(f(x)). Alternatively, if
we seek a more complex function, perhaps a post-processing step
after the reduce, we can instantiate our technique with the follow-
ing HOS:

map  . reduce  .  
where the final  signifies the missing computation that is applied
to the results of the reducer. By instantiating our algorithm with
various HOSs, we guide it towards synthesizing programs following
data-parallel programming patterns.

Our synthesis algorithm is compositional, parallelizable, and
synthesizes programs in typed λ-calculus equipped with predefined
functions and data-parallel operators that closely mimic those in
Apache Spark’s API [3]. We chose Spark due to its functional na-
ture, which allows us to design an elegant synthesis algorithm and
leverage developments in functional program synthesis [11, 26, 31,
38, 45]. We carefully chose the set of data-parallel components to
be generic across cluster programming frameworks. Thus, our ap-
proach is not tied to Spark, and our synthesized programs can be
easily translated to other platforms. It is important to note that we
do not consider low-level features (like persistence) that are ex-
posed by cluster-programming frameworks for maximizing perfor-
mance (see Section 8).
Dealing with shuffles In a distributed setting, the results of the
mapper—a list of elements—may be shuffled along the way to
the reducer; that is, an arbitrary permutation of the results of the
mapper will be processed by the reducer. As a result, we need to
synthesize reducers that are deterministic despite non-determinism
introduced by the network. Specifically, the argument r to a re-
ducer is a binary function of type τ → τ → τ . To ensure that
the reducer is deterministic, we need to synthesize programs where
(τ, r) form a commutative semigroup; that is, r needs to be com-
mutative, associative, and closed on the set of elements of type τ .
This ensures that the reducer (i) is deterministic in the face of net-
work non-determinism and (ii) can apply the binary function r in
parallel on elements of the input list and as a combiner [25]. Our
technique employs a hyperproperty verification phase that utilizes
SMT solvers to prove that binary functions applied by reducers form
commutative semigroups.
Implementation and evaluation We have implemented our al-
gorithm in BIGλ, a modular tool that synthesizes Apache Spark
programs that can seamlessly execute on a single machine or on

the cloud. We have used BIGλ to synthesize a range of parallel
programs, including data-analysis tasks on real-world datasets—
Twitter streams [8], Wikipedia dumps [9], cycling data [6]—and
other non-trivial data-parallel programs. Our evaluation demon-
strates the (i) efficiency of our technique, (ii) its ease of use with a
small number of examples, and (iii) its wide-ranging applicability.

Contributions We summarize our contributions below:

– We present a compositional program synthesis algorithm that
enables synthesis of data-parallel programs under the MapRe-
duce programming paradigm, broadly construed.

– We address the problem of synthesizing distributed programs
in the presence of network-induced non-determinism, and use
hyperproperty verification techniques to prove that reduce op-
erations form commutative semigroups.

– We present BIGλ, a modular data-parallel program synthesis
tool that is built on top of the Apache Spark API and the Z3
SMT solver.

– We demonstrate BIGλ’s efficiency, its usability, and its applica-
bility to synthesizing a range of programs, including distributed
data analysis tasks on real-world datasets.

2. Background and Motivation
We now provide background on MapReduce frameworks and
demonstrate our synthesis approach with examples.

2.1 Data-parallel programming frameworks
Since the introduction of Google’s MapReduce system in Dean and
Ghemawat’s seminal paper [25], a number of powerful systems
that implement and extend the MapReduce paradigm have been
proposed, e.g., Hadoop [58], Spark [62], and Dryad [61], amongst
others [2, 12, 32] . For the purposes of our work here, we present a
generic view of data-parallel programs as functional programs.

In its simplest form, a MapReduce program contains an appli-
cation of map followed by an application of reduceByKey:

map m . reduceByKey r

where the types of m and r are

m : τ → (k, v) r : v → v → v

That is, given a list of elements of type τ , the mapper applies m in
parallel to each element, producing a key–value pair of type (k, v).
Then, for each key produced by the mapper, reduceByKey receives
a list of elements of type v—all values associated with the key—
and proceeds to aggregate (or fold) each such list using the function
r. Thus, the result of this computation is a list of key–value pairs of
type (k, v), where each key appears once in the list.

Let us illustrate MapReduce computation with a very simple
example. Suppose we are given a list of words and we would like
to count the number of occurrences of each word in the list. We can
do this with the following function:

let count = map m . reduceByKey r
where

m w = (w,1)
r a b = a + b

For each input wordw, the mapper emits the key–value pair (w, 1);
the reducer then sums the values associated with each word w,
producing a list [(w1, v1), . . . , (wn, vn)] containing each unique
word wi and its corresponding count vi. So far, this is good old
functional programming. In a distributed environment, however,
execution and data are partitioned amongst many nodes. This is
illustrated and described in Figure 1, where count is applied to
a list of words [w1, . . . , wn]. Notice how the shuffle phase routes



. . .w1 w2 w3 wn

(w1, 1) (w2, 1) (w3, 1) (wn, 1)

Reducer Reducer Reducer

. . .

(”abc”, 10) (”pldi”, 99)(”xyz”, 3)

Output of reducers
each unique word from input

with number of its occurrences

Map phase
The mappers apply a function m to each element
wi of the input list. This process is done in parallel
by different nodes in a cluster or processors on a
single machine.}

}
Shuffle phase

}
Reduce phase
In parallel, reducers iteratively apply a binary func-
tion r to values of each key to compute a single
value—in our example, the sum of all values.

. . .. . .

The shuffle phase routes key–value pairs with the
same key to the reducers. For instance, w1 = w3,
and therefore both (w1, 1) and (w3, 1) are routed to
the same reducer. Results may arrive out of order.

Input
a list of words

Output of mappers
a list of word–number pairs

Figure 1. High-level view of a MapReduce computation on a simple example

key–value pairs, of the form (wi, 1), to their respective reducers. In
this process, values of a given key wi may arrive out of order. In
a sense, the reducer views the list as an unordered collection, and
therefore may produce different results depending on the order in
which it applies the binary reduce function r.

To ensure that the reducer produces the same value regardless
of the shuffle phase, we need to ensure that the binary function
passed to the reducer—in this example, addition—is both associa-
tive, commutative, and closed on the type the reducer operates on.
Indeed, this is what, for instance, the Apache Spark [3] and Twit-
ter Summingbird [20] APIs expect from the binary reduce func-
tion. Commutativity and associativity ensure determinism despite
the shuffle phase. They also allow the runtime environment to ap-
ply the function r in parallel and at the mappers before transferring
results to the reducers, in order to reduce the amount of transferred
data, which might be a bottleneck for large workloads.

We presented a simple data-parallel program: a mapper fol-
lowed by a reducer. In many modern frameworks, e.g., Spark and
Dryad, we can have more sophisticated combinations of mappers
and reducers (e.g., iterative MapReduce) and various forms of data-
parallel operations (e.g., flatMap). Here, we will focus on pro-
grams made of arbitrary compositions of data-parallel operations
presented as higher-order sketches.

2.2 Examples
We now illustrate synthesis of two simplified data analyses.

Wordcount: The Fibonacci of MapReduce Suppose that you want
to compute the number of occurrences of each word appearing in
Wikipedia. With many gigabytes of articles, the only way to do
this efficiently is via distribution. To synthesize this task, you can
supply our algorithm with a fairly simple example describing word
counting, e.g.:

["hello pldi", "hello popl"] ↪→
[("hello",2),("popl",1),("pldi",1)]

where the left side of ↪→ is the input (two strings representing
simple documents) and the right side is the output (the list of words
appearing in the input and their counts).

The fascinating aspect here is that even with a very simple ex-
ample that can fit in one line, we can synthesize a word-counting
program that can easily scale to gigabytes of documents. Specifi-
cally, our technique synthesizes the following:

let wc = flatMap ms . map mp . reduceByKey r
where

ms doc = split doc " "
mp word = (word,1)
r c1 c2 = c1 + c2

The synthesized program is a composition of three data-parallel
operations: (i) a flatMap that maps each document into the list
of words appearing in it (using split), and flattens (concatenates)
lists of words from all documents into a single list; (ii) a map that
transforms each word w into the string–integer pair (w, 1); and
(iii) a reduceByKey that computes a count of occurrences of each
word.

Note that for our input–output example, the following argument
to reduceByKey would suffice:

r c1 c2 = c1 + 1

However, this will be rejected by our algorithm, since this reduce
function does not form a commutative semigroup over integers.
Specifically, using this function results in a non-deterministic pro-
gram that may produce incorrect results for larger inputs. Suppose,
for instance, that our input has four occurrences of "hello". Then,
for the key "hello", the reducer would receive the list of values
[1,1,1,1]. Applying the binary function r in parallel (or as a com-
biner) could yield the wrong results, e.g., by applying r as follows:

1 1 1 1

2 2

3

r 1 1 = 2

r 2 2 = 3

Our algorithm ensures that synthesized programs are deterministic,
despite the shuffle phase and parallel applications of binary reduce
functions (see Section 5). Figure 2 provides two additional exam-
ples to illustrate the effects of non-commutative or non-associative
reduce functions.

Histograms Now, suppose that you would like to plot a histogram
of the page views of Wikipedia articles2 using three bins: less than
100 views, 100–10,000 views, and greater than 10,000 views. Such
histogram might look as follows:

>10,000100–10,000<100

N
um

be
r

of
pa

ge
s

Number of views

2 Note: this information is available in Wikipedia log dumps [9].



String concatenation
Associative but not commutative

"a" "b"

"ab"

"a""b"

"ba"

Arithmetic mean
Commutative but not associative

1 3 4

2

0 1 3 4 0

03.5

1.751

} Non-deterministic output
due to shuffle phase

} Non-deterministic output due
to order of parallel application of
binary reduce function

1.375

2

2

Figure 2. Non-associative/commutative reduce functions

To construct a histogram, we need a procedure that finds out the
number of articles in each bin. To synthesize such procedure, we
can supply the following example:

[("pg1", 99),("pg2",20000),("pg3",200),("pg4",300)] ↪→
[(bin1,1), (bin2,2), (bin3,1)]

The inputs specify a set of pages (by title) and their views; the
outputs specify each of the three bins in the histogram (<100, 100–
10,000, and >10,000) as bin1, bin2, and bin3.

Here, our technique would synthesize the following:3

let hist = map m . reduceByKey r
where

m p = if (snd p) < 100 then (bin1,1)
else if (snd p) < 10000 then (bin2,1)
else (bin3,1)

r c1 c2 = c1 + c2

where snd, as is standard, returns the second element of a pair and
bini are values of an enumerated type. Observe that map places each
page in the appropriate bin and reduceByKey counts the number of
pages in each bin.

3. Preliminaries
We now formalize our program model and synthesis tasks.

Programs The language in which we synthesize programs is a re-
stricted, typed λ-calculus that is parameterized by a set of compo-
nents (predefined functions) with fixed arities. We first fix an ML-
like type system. Let ι1, ι2, . . . be countably many base types, and
let α1, α2, . . . be countably many type variables. Then, a type can
be a monotype or a polytype:

monotype τ := ι base type
| α type variable
| τ1 → τ2 function construction
| τ1 × τ2 product construction
| mset[τ ] multiset construction

polytype σ := ∀α. τ polymorphic construction

We use Σ to denote a set of components. The arity of a component
f ∈ Σ is denoted arity(f) ∈ N, where if arity(f) = n, then f
has type τ1 → . . . → τn → τ . A program term p over a set of

3 Assuming the tool is instantiated with appropriate constants

components Σ is defined below:

p :=  wildcard
| v variable
| f f ∈ Σ and arity(f) = 0

| f p1 . . . pn f ∈ Σ and arity(f) = n > 0

| λv. p1 v is free in p1

where a variable is free in a program if it is not captured by
a λ abstraction. We assume there are countably many variables,
v1, v2, . . ., and wildcards,  1, 2, . . . (defined later in this section).
For purposes of synthesis, we restrict applications to the form
f p1 . . . pn, where f ∈ Σ and arity(f) = n.

We say that a program term (or program, for short) is closed if
it has no free variables; otherwise, it is open. Given the simplicity
of our type system, we elide type checking and inference rules. We
shall use p1 →∗ p2 to denote that p1 evaluates to p2 in zero or
more reductions.

We will often use . to denote reverse function composition. For
example, given three unary functions f, g, h, the term λi. (f . g . h) i
is equivalent to λi. h (g (f i)).
Higher-order sketches A higher-order sketch (HOS) is an incom-
plete, well-typed, closed program. A program is incomplete if
it contains wildcards. Given a program p, wild(p) is the set of
all wildcards appearing in p. Thus, a program p is complete iff
wild(p) = ∅. We shall use  ∈ p to denote  ∈ wild(p). We
assume the same wildcard appears at most once in a HOS. Seman-
tically, wildcards are treated the same as free variables.

Given a HOS h and a complete, closed, well-typed program p,
we say that p is a completion of h if there exists a mapping µ
from wild(h) to complete programs such that if we replace each
 i ∈ wild(h) with µ( i), we get the program p. We use µh to
denote the completion of h with µ. Intuitively, a completion of a
HOS h replaces all wildcards with terms that have no wildcards to
produce a complete program.
Data-parallel components As defined above, a HOS can be any
program with wildcards. However, for practical purposes, a HOS
will typically be a composition of data-parallel components, such
as map and reduce. Formally, a HOS is a program over some set
of components Σ such that ΣDP ⊆ Σ, where ΣDP is a set of data-
parallel components.

We curated ΣDP using data-parallel components that mimic the
primary operations offered by Apache Spark [3]. ΣDP components
are described and exemplified in Table 1. Note that our restricted
language does not exploit advanced cluster-programming features
needed to maximize performance for complex workloads (see Sec-
tion 8). An important point to make here is that Spark operates
over Resilient Distributed Datasets (RDDs) [62], a data abstraction
that represents a collection of elements partitioned and replicated
amongst various nodes in a cluster. Such data representation is in-
credibly important for scalability of systems like Spark; however,
for our purposes—program synthesis—it suffices to model an RDD
of elements of a given type τ simply as a multiset (or bag) of τ ,
denoted mset[τ ].
Synthesis tasks A synthesis task S is a triple (E,Σ, H):

1. E is a finite set of input–output examples: pairs of programs
{(I1, O1), . . . , (In, On)}. We assume all programs in E are
closed, complete, and well-typed. We assume that all input
examples Ii have the same type and all output examples Oi

have the same type.

2. Σ is a set of components. We assume that all functions f ∈ Σ
are terminating and referentially transparent.

3. H is a set of HOSs over the signature Σ ∪ ΣDP.



Component name : type Description and example

map : (α→ β)→ mset[α]→ mset[β] Applies a function f in parallel to each element in a multiset, producing a new multiset.
map (λx. x + 1) {1,2,3} →∗ {2,3,4}

flatMap : (α→ mset[β])→ mset[α]→ mset[β] Applies a function f (that produces a multiset) to each element in a multiset and returns
union of all multisets.
flatMap (λx. {x,x}) {1,2,3} →∗ {1,1,2,2,3,3}

reduce : (α→ α→ α)→ mset[α]→ α Continuously applies a binary function f in parallel to pairs of elements in a multiset,
producing a single element as a result.
reduce (λx,y. x + y) {1,2,3} →∗ 6

reduceByKey : (α→ α→ α)→ mset[(β, α)]→ mset[(β, α)] Similar to reduce, but applies the binary function f to the multiset of values of a given
key, resulting in a multiset of key–value pairs, with one value per key.
reduceByKey (λx,y. x + y) {(a,1),(b,2),(a,3)} →∗ {(a,4),(b,2)}

filter : (α→ bool)→ mset[α]→ mset[α] In parallel, removes elements of multiset that do not satisfy a Boolean predicate.
filter (λx. upperCase x) {"PLDI","pldi","POPL"} →∗ {"POPL","PLDI"}

Table 1. Set of data-parallel components ΣDP from Apache Spark (variables α and β are implicitly universally quantified)

Definition 1 (Synthesis task solution). A solution of a synthesis
task S = (E,Σ, H) is a program p such that:

1. There is h ∈ H such that p is a completion of h using compo-
nents Σ.

2. ∀(I,O) ∈ E. p(I)→∗ O; we denote this as p |= E.
3. The program p is deterministic, regardless of how reduce and

reduceByKey operate (see Section 5).

Intuitively, a synthesis task solution is a deterministic program
p that, when applied to any input example Ii, produces the corre-
sponding output example Oi. Further, p is a completion of one of
the HOSs H .

4. Compositional Synthesis Algorithm
We now present our synthesis algorithm and its properties.

4.1 Algorithm description
Given a synthesis task S = (E,Σ, H), our goal is to complete
one of the HOSs in H such that the result is a solution of S. For
practical purposes, we assume that input–output examples in E are
monotyped (with no type variables).

To compute a solution of S, our algorithm employs two cooper-
ating phases, synthesis and composition, that act as producers and
consumers, respectively.

Synthesis phase (producers) Initially, the algorithm infers the
type of terms that may appear for each wildcard in H . For
instance, it may infer that  needs to be replaced by a term of
type int → int. Thus, for each inferred type τ , the synthesis
phase will produce terms of type τ .

Composition phase (consumers) For each HOS h ∈ H , the
composition phase attempts to find a map µ, from wildcards to
complete programs, such that µh is a solution of S. To construct
the map µ, this phase consumes results produced by the synthesis
phase.

To implement the two phases, the algorithm maintains two data
structures: (i) M , a map from types and typing contexts to sets of
(potentially incomplete) programs of the given type; and (ii) C, a
set of complete, well-typed programs that are candidate solutions
to the synthesis task. Informally, the synthesis phase populates M
with programs of inferred types; the composition phase scavenges
M to construct candidate solutions and place them in C. This
algorithm is best illustrated through an example.

Example 1 (High-level illustrative example). Suppose that our
goal is to synthesize the wordcount example from Section 2.2, and
that we have the following two HOSs, {h1, h2}:

h1 = λi. (map  1 . reduceByKey  2) i
h2 = λj. (flatMap  3 . map  4 . reduceByKey  5) j

The types of the input and output examples are mset[int] and
mset[(string,int)]. Accordingly, the algorithm determines the
types of programs that need to be synthesized for the various
wildcards  i. Specifically, it will determine that
 1 : string → (string,int)  4 : α→ (string, int)
 2 : int → int → int  5 : int → int → int
 3 : string → mset[α]

Observe that, for  4, we will be looking for programs of type
τ → (string,int), where τ is any variable-free monotype. In
other words, we know that  4 should be replaced by a function
that returns a string–integer pair, but we do not know what type of
argument it should take, so we need to consider all possibilities.

The algorithm detects that the type of  5 is the same as that of
 2, and thus will create one item for that type in the map M . This
ensures that we do not duplicate work for wildcards of the same
type, even if they appear in different HOSs.4

Figure 3 shows the map M , where each key corresponds to the
inferred type of one or more of the wildcards in the HOSs. Each
value in M is a set of programs of a given type. For instance, we
see that for int → int → int, M contains two programs.

Producers populate each set M(τΓ) with programs in τΓ

(where Γ is the typing context—described later). Consumers query
M with the goal of replacing the wildcards in H with complete
programs. For instance, consumers might complete the HOS h2 as
follows, using programs from appropriate locations in M to fill the
wildcards  {3,4,5}:
 3 ← λx. split x " "
 4 ← λx. (x,1)
 5 ← λx. x + y

This results in the same program we saw in Section 2.2, which is a
solution to the wordcount task. �

The algorithm is presented in Figure 4 as a set of rules that
update M and C if the premise holds. The algorithm uses the
rules INIT and INITM to initialize the map M as follows: For each
wildcard appearing in a HOS h ∈ H , the algorithm infers a type τ

4 Note that we can rename variables in both sketches to get the same typing
context for both  2 and  5.



for  , along with a typing context Γ. The typing context contains all
f ∈ Σ, as well as all variables in scope at  . For example, consider
the following HOS h: λi. map  i, and suppose that our input–
output examples are both of type mset[int]. Then, the function
infer( , h) detects that  must have the type int → int, and that
the variable i of type mset[int] is in its context. Note that infer can
be implemented using Hindley–Milner type inference.
Type checking notation Given a program p, we will use p ∈ τΓ
to denote that there exists a typing context Γ

′ ⊇ Γ such that
σΓ′ ` p : στ , where the notation X ` Y : T , as usual, means that
program Y is typable as T under context X , and where σ is a map
that replaces all free type variables with variable-free monotypes.
Synthesis phase The synthesis rules—PVAR, PAPP, and PABS—
construct programs of a given type τ under context Γ. This is a
top-down synthesis process: it starts with an incomplete program
and gradually replaces its wildcards with complete terms. Being
type-directed, synthesis rules maintain the invariant that, for any
p in M(τΓ), we have p ∈ τΓ. As we shall see, these rules can
synthesize every possible complete program for a given type and
context.

Rule PVAR replaces a wildcard  in some program p with a
variable that is in scope at the location of  . For instance, suppose p
is the program λx. f  , then PVAR may replace with x, or another
variable that is in scope. We use the auxiliary function scope( , p)
to denote the set of variables in scope at  in p (which include
variables in context Γ).

Rule PAPP replaces a wildcard with a function application f
from components Σ. The arguments of f are fresh wildcards. Fi-
nally, the rule PABS introduces a λ abstraction.

Example 2. Suppose that we wanted to synthesize a program
of type τ = int → int and that the program p = λx. is in
M(τΓ). Then, using p, PVAR can construct p′ = λx. x, which can
be of the desired type int → int. �

Example 3. Suppose that we want a program of type τ = τ1 →
τ2 → τ3. Suppose also that p = λx. is in M(τΓ). Then, PABS
can construct a new program p′ = λx. λy. , from p, by adding an
additional λ abstraction. Now, to complete p′, we need to replace
 with a term of type τ3. �

Composition phase This phase composes programs in M to syn-
thesize a program p that is a solution to the synthesis task. We
use two rules to define this phase. First, for a HOS h ∈ H , the
rule CONS attempts to find a completion of h by finding a program
p ∈ M(τΓ) for each wildcard of type τ and context Γ in h. If this
results in a program that is consistent with the type τI → τO (type
of input–output examples), then we consider it a candidate solution
and add it to the set C.

The rule VERIFY picks a candidate program p from C and
checks that (i) p |= E and (ii) p is deterministic, using the function
DETERM. If the rule applies, then p is a solution to the synthesis
task (Definition 1). For this section, we assume that DETERM is
an oracle that determines whether, for every input, the program
produces the same output for any order of application of the binary
reduce functions in reduce and reduceByKey, if used in p. In
Section 5, we present a sound implementation of DETERM.

4.2 Soundness and completeness
The following theorem states that the algorithm is sound.

Theorem 1 (Soundness). Given a synthesis task S = (E,Σ, H),
if the synthesis algorithm returns a program p, then p is a solution
to S (as per Definition 1).

The algorithm, as presented, is non-deterministic. To ensure
completeness, we need to impose a notion of fairness on rule appli-
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Figure 3. High-level illustration of synthesis algorithm

Initialization rules
INIT

M ← ∅ C ← ∅

h ∈ H τ, Γ = infer( , h) τΓ 6∈ dom(M)
INITM

M ←M [τΓ 7→ { }]

Synthesis phase (producers)

p ∈M(τΓ)  ∈ p v ∈ scope( , p) p′ = p[ ← v] ∈ τΓ
PVAR

M ←M [τΓ 7→M(τΓ) ∪ p′]

p ∈M(τΓ)  ∈ p f : τ1 → . . .→ τn → τ ′ ∈ Σ

p′ = p[ ← f  1 . . . n] ∈ τΓ { i}i are fresh
PAPP

M ←M [τΓ 7→M(τΓ) ∪ p′]

p ∈M(τΓ)  ∈ p p′ = p[ ← λv. ′] ∈ τΓ
 ′ and v are fresh

PABS
M ←M [τΓ 7→M(τΓ) ∪ p′]

Composition phase (consumers)

µ = { 7→ p |  ∈ h, τ, Γ = infer( , h), complete p ∈M(τΓ)}
h ∈ H µh : τI → τO

CONS
C ← C ∪ µh

p ∈ C p |= E DETERM(p)
VERIFY

p is a solution to synthesis task

Figure 4. Synthesis algorithm

cation. A fair schedule is an infinite sequence of rules c1, c2, c3, . . . ,
where if at any point i in the sequence some rule c is applicable on
some set of parameters, and c has not appeared before, then c even-
tually appears in the sequence. A fair execution is an application
of the rules under a fair schedule. The following theorem states
completeness of the algorithm, relative to existence of an oracle
DETERM and existence of a solution.

Theorem 2 (Relative completeness). Given a task S = (E,Σ, H)
with a solution, a fair execution will find some solution p of S in
finitely many rule applications.



4.3 Determinization and optimality
In practice, we are often interested in synthesizing programs that
optimize a given objective function. For instance, program size has
been found to be desirable in inductive synthesis [11, 26, 45], as
smaller programs are considered more likely to generalize to any
input–output example. We now show how our algorithm can be
enhanced with optimality criteria. We define a weight function ω
from programs to natural numbers, where each component f is
assigned a weight kf , and a single weight k is assigned to all
variables.

ω( ) = 0

ω(v) = k > 0

ω(f) = kf > 0

ω(λx. p) = ω(x) + ω(p)

ω(f p1 . . . pn) = ω(f) +
∑
i

ω(pi)

To ensure that the algorithm returns the solution p with the
smallest possible ω(p), we need to impose the following restriction
on fair executions. An optimal execution is a fair execution where
(i) synthesis rules produce programs in M in order of of increasing
weight, and (ii) composition rules compose candidate solutions in
C and check them in order of increasing size. In practice, following
the above conditions is made feasible by the fact that the weight
of function application is additive—not an arbitrary function of
the weights of f . By ensuring that any execution is optimal, we
ensure that we always synthesize a solution with minimal weight
if a solution exists. In Section 6, we describe how we practically
implement an optimal schedule.

5. Commutative Semigroup Reducers
We now address the problem of ensuring that synthesized programs
are deterministic. Specifically, we provide a sound implementation
of the oracle DETERM used in Section 4.

Key idea To ensure that synthesized programs are deterministic, a
sufficient condition is that each binary function r : τ → τ → τ ,
synthesized as an argument to reduce or reduceByKey, forms a
commutative semigroup over τ .

Definition 2 (Commutative semigroup (CSG)). A semigroup is a
pair (S,⊗), where S is set of elements, ⊗ : S × S → S is an
associative binary operator over elements of S, and S is closed
over ⊗. A commutative semigroup (CSG) is a semigroup (S,⊗)
where⊗ is also commutative. We say that⊗ forms a CSG over S if
(S,⊗) is a CSG.

Note that this is a sufficient but not necessary condition, mean-
ing that a reduce function that does not form a CSG may still result
in a deterministic program. Consider, for instance, the following
function over integers:

let r s1 s2 = max (abs s1) s2

where max returns the larger of two integers and abs returns the ab-
solute value of an integer. This is not a commutative function: e.g.,
r -3 2 →∗ 3, but r 2 -3 →∗ 2. However, suppose we know
that the reducer will only operate on positive integers, perhaps as an
artifact of the mapper, then we know that r forms a CSG over posi-
tive integers, and can thus operate deterministically in a distributed
environment.

Here, we choose to check the sufficient condition for the follow-
ing reasons: To check the necessary conditions, we would need a
fine-grained type for the reducer, e.g., using refinement types [27],
that specifies the range of values on which it is invoked, e.g., posi-
tive integers. This requires a heavyweight type system and reason-

ing about all operations of the synthesized program, and not only
reducers—which, in our experience, is unnecessary.

High-level proof technique To prove that a binary reduce function
forms a CSG, we employ a two-tiered strategy:

1. Dynamic analysis: First, using the input–output examples, we
run the synthesized program simulating every possible shuffle
and order of application of binary reduce functions. This pro-
vides a lightweight mechanism for rejecting non-CSG reduce
functions before resorting to a heavyweight static analysis. This
requires exploring an exponential number of possible execu-
tions per example; however, we are typically given a small set
of examples, allowing us to feasibly explore all possible execu-
tions.

2. Static analysis: If dynamic analysis cannot show that the reduce
function does not form a CSG, we apply a verification phase that
checks whether the reduce function is a CSG by encoding it as
a first-order SMT formula.

Hyperproperty verification condition In what follows, we de-
scribe our static analysis technique. Commutativity and associa-
tivity are considered hyperproperties [23]: they require reasoning
about multiple executions of a function. Specifically, commutativ-
ity is a 2-safety property, as it requires two executions, and asso-
ciativity is a 4-safety property, as it requires four executions. We
exploit this fact to encode CSG checking into a single verification
problem, using the self-composition technique [16, 63].

We encode a binary reduce function r as a ternary relation
R(i1, i2, o), where i1 and i2 represent the parameters of r, and o
represents its return value. Then, we know that r forms a CSG over
its input type iff the following formula is valid:

∀V. ϕcom ∧ ϕassoc ⇒ ψCSG (1)

where

ϕcom , R(i1, i2, o1) ∧R(i2, i1, o2)

ϕassoc , R(o1, i3, o3) ∧R(i2, i3, o4) ∧R(i1, o4, o5)

ψCSG , o1 = o2 ∧ o3 = o5

V = {i1, i2, i3, o1, . . . , o5}

The formula ϕcom encodes two executions of r with flipped argu-
ments, i1 and i2, for checking commutativity. Formula ϕassoc en-
codes three executions of r, for checking associativity, despite as-
sociativity being a 4-safety property; this is because ϕassoc reuses
one of the executions in ϕcom. Finally, ψCSG encodes the correctness
condition for r to form a CSG.

Theorem 3 (VC correctness). Given a binary function r : τ →
τ → τ and its encoding R as a ternary relation, then (τ, r) is a
CSG if and only if Formula 1 is valid.

Encoding verification conditions We now discuss how to take
a binary function r and construct a corresponding ternary rela-
tion R. Since r is binary, it is of the form λi1, i2. p, where p is
a program. We make the simplifying assumption that p uses no
higher-order components. As is standard [29, 34, 38, 56], we as-
sume that each component f ∈ Σ has a corresponding encoding
Rf (a1, . . . , an, o). We now encode p using the function ENC, de-
fined below. We note that our encoding is analogous to other en-
codings of functional and imperative programs [38, 56].



ENC(p) = match p with
| ii → Rii(o),where Rii(o) ≡ o = ii
| f → Rf (o)

| f p1 . . . pn → Rf (a1, . . . , an, o)∧∧
i

ENC(pi) ∧ ai = oi,

where ENC(pi) = Rpi(. . . , oi)

where {a1, . . . , an, o} are fresh variables, constructed uniquely in
every recursive call to ENC. All variables other than i1, i2 and the
top-most o are implicitly existentially quantified.

Example 4. The algorithm ENC traverses a program p recur-
sively, constructing a logical representationRf for each component
f . Consider, for example, the following binary reduce function:
λi1, i2.max i1 i2, where max returns the larger of its two integer
operands. We use ENC(max i1 i2) to construct the logical represen-
tation of this function. Here, the third case of ENC matches and we
get the following relation over the variables i1, i2, and o:

∃a1, a2, o1, o2. Rmax(a1, a2, o) ∧
∧

i∈{1,2}

ai = oi ∧ oi = ii

where

Rmax(a1, a2, o) ≡ a1 > a2 ⇒ o = a1∧
a1 6 a2 ⇒ o = a2

Observe that the above formula can only by satisfied if o is set to
the value of the larger of i1 or i2. �

6. Implementation and Evaluation
6.1 Implementation
We implemented our algorithm in a modular tool we call BIGλ.
Components in BIGλ are represented as annotated functions in a
separate extensible library. These annotations provide typing in-
formation and a logical encoding of each component. Producers
generate an infinite list of programs in increasing weight order, for
each type in the map M , while consumers lazily combine these
programs with the appropriate HOSs. Each producer and consumer
runs in a separate process, with one producer process per key of
M and one consumer process per HOS. Communication is man-
aged by Python’s multiprocessing library. Candidate solutions
are checked for determinism by a separate CSG checker, which in-
vokes the Z3 SMT solver [24]. Synthesized programs are converted
into Apache Spark code and are ready to be executed on an appro-
priate platform.
Optimal execution We ensure that BIGλ always generates an opti-
mal program with respect to the weight function ω. Producers gen-
erate infinitely many programs in increasing weight order; by ex-
ploiting additivity of our weight function, consumers can efficiently
explore the Cartesian products of these infinite lists in increasing
weight order. If a consumer produces a solution p, we are guaran-
teed that p is an optimal solution (with respect to that consumer).
In practice, we have multiple consumers; when the first consumer
reports a solution p of weight w, we continue executing all other
consumers until they produce a solution p′ of weight w′ < w or a
candidate solution p′ of weight w′ > w.
Weight selection BIGλ allows for arbitrary definitions of the
weight function. Uniform weights over components optimize for
smaller programs. To prevent producers from getting lost down
expansions of irrelevant types, we start with uniform weights and
automatically inject a bias towards components over types present
in the given examples.

Component name Description
general
pair : α→ β → (α, β) create pair
cons : α→ mset[α]→ mset[α] add element to a multiset
emit : α→ mset[α] create singleton multiset

arithmetic
one : int integer constant 1
add : int→ int→ int integer addition
eq? : int→ int→ Bool check two ints for equality
mult : int→ int→ int integer multiplication
max : int→ int→ int return maximal integer
factors : int→ mset[int] return list of factors of int
div : int→ int→ float integer division to float
round : float→ int round float to int

string
pattern : string→ Bool string selector (e.g. regex)
chars : string→ mset[string] convert to list of chars
split : string→ mset[string] split text by whitespace
lower : string→ string convert to lowercase
len : string→ int get length of string
order : string→ string orders the chars of a string

data-based
hashtag : string→ Bool regex selecting hashtags
canonical : (α, α)→ Bool checks if left 6 right
get tag : Json→ string→ Json get value of tag in JSON file
find tags : Json→ mset[string] get top-level tags in JSON file
gen perms : mset[α]→ mset[(α, α)] convert multiset into all pairs

Table 2. A sample of the used components

Type checking BIGλ employs incremental type inference, where
sets of typing constraints are maintained with each program. Since
producers do not communicate during synthesis, different wild-
cards with the same type variables might specialize to different
variable-free monotypes. In order to resolve these inconsistencies,
producers keep track of constraints over type variables as they gen-
erate programs. The consumers then ensure that the intersection of
the constraints are satisfiable before producing a candidate solution.

Limitations Cluster programming platforms like Apache Spark of-
fer a range of advanced low-level features for maximizing per-
formance of a given workload on a given cluster configuration.
BIGλ is currently not workload- or configuration-aware, and syn-
thesizes compositions of data-parallel operators without, for in-
stance, broadcasting or persisting data.

6.2 Synthesis tasks
We curated a set of synthesis tasks with data-analysis problems and
general MapReduce programs (see Table 3).

Data-analysis tasks Nowadays, data is generated at an incredible
pace, and not only by large organizations, but also by our always-on
personal and home devices. We believe that, in the very near future,
analyzing data will be of great interest to the average individual
with no or little programming knowledge. We have thus collected a
number of datasets, with unstructured and semi-structured data, on
which we applied our approach to synthesize MapReduce programs
that compute useful information.

Our datasets include a large set of tweets from Twitter that
we collected via its streaming API [8]. We have synthesized pro-
grams that extract hashtags and compute their occurrence as well
as their co-occurrence frequencies (which are often used in topic
modelling [19]).

We also acquired a cycling dataset generated by a bike com-
puter. The owner of this data (a cyclist and computer scientist) has
used Apache Spark to perform a series of complex analyses [6].
We have used this dataset to synthesize programs that generate a



Set:task Description Wall CPU AST |E| VERIFY
WL

time time size time
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Strings
anagram groups words that are anagrams of each other 2.1 10.7 17 1 911 7
dateextract extract formatted date strings from text 0.2 1.2 13 1 78 0.4
grep extract all matches of a pre-defined pattern 0.6 4.2 14 2 593 33.2
histogram discretize real-valued data by binning 0.1 0.5 12 2 34 0.8
postagging count numbers of parts of speech 0.2 1.0 16 2 154 3.1
letteranalysis count the number of letter occurrences 4.4 25.1 16 2 6978 7
wordcount count the number of word occurrences 0.2 1.0 15 1 146 2.1

Numerical
factors count the prime factors of multiple integers 0.4 2.8 15 2 623 35.0
max find max integer element 0.4 2.2 9 3 551 0.8
min find min integer element 0.4 2.1 10 3 392 0.8
roundedsum round floats to ints and compute sum 0.6 4.1 11 2 1047 2.2
squaredsum square integers and compute sum 0.8 5.0 10 2 1728 2.9
sum compute sum of entire input 0.1 0.6 9 2 72 0.3
sumoffactors add all prime factors of input integers 0.1 0.6 10 2 64 0.3
sumrounded compute sum, then round result 2.9 14.0 13 2 8734 36.8
sumsquared compute sum, then square result 3.3 15.3 13 3 10822 58.6

Databases
union merge databases together 0.1 0.5 10 1 30 1.3
selection select rows over several databases 0.3 2.2 17 1 476 7
join Cartesian join over provided key 1.3 7.6 18 1 380 7

D
at
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s

Cycling
bpm maximum heart-rate per 10 minute interval 4.3 22.0 14 1 1287 7
watts maximum wattage per 10 minute interval 4.1 21.9 14 1 1327 7
speed amount of time spent in each speed category 2.0 12.4 13 1 2323 37.1

Twitter
hashtags compute number of appearances of each hashtag 0.9 6.7 16 1 1361 50.1
co-occurrence compute hashtag co-occurrences 0.4 2.7 17 1 419 7

Wikipedia
pageviews (log) aggregate page views for each page 0.3 2.0 13 1 242 2.1
bytes (log) aggregate number of bytes sent from each page 0.3 2.1 13 1 253 2.2
filtered (dump) compute occurrences of words that appear in given dictionary 12.8 53.6 20 1 22423 7

Shakespeare
characters compute number of lines per character 3.5 12.0 19 1 1319 7
sentiment compute occurrences of words in dialog appearing in a given dictionary 4.9 15.0 19 1 1450 7

Yelp
city compute number of reviews per city 0.2 1.3 13 1 171 2.01
state compute number of reviews per state 0.2 1.2 13 1 157 1.99
kids compute number of kid-friendly-labeled reviews per city 0.1 0.5 13 1 34 0.24

Enron
to extract recipient field from e-mail 0.2 1.0 15 1 120 0.44
from extract sender field from e-mail 0.6 4.6 15 1 995 4.02

Table 3. Synthesis task descriptions and results (7 indicates a timeout)

number of histograms of interest to cyclists, e.g., amount of time
spent in a speed range and maximum power output in ten-minute
intervals.

Our datasets also include Shakespeare’s full works, where, for
example, we synthesized a program that detects and counts the
number of lines said by each character in Shakespeare’s plays. We
also synthesized programs that analyzed Yelp reviews [10], English
Wikipedia dumps and log files [9], and Enron emails [4].

General MapReduce tasks These tasks represent the most com-
mon MapReduce tasks seen in tutorials and demonstrations, as well
as tasks that can be parallelized in the MapReduce paradigm. In ad-
dition, we include (relational algebra) database operations—join,
union, etc.—that are often compiled to MapReduce for application
to large databases [41].

Components and sketches Each synthesis task uses a set of core
components for common base types (such as integers, strings, pairs,
lists) along with several higher-order components representing
maps and filters. Each task also has more domain-specific com-
ponents for the input data. For example, when dealing with our
Twitter dataset, we add components to handle the metadata and

manipulate hashtags. Table 2 lists and describes a sample of the
components appearing in our synthesis tasks.

For all tasks, we fix a set of eight HOSs with various composi-
tions of the data-parallel operations in Table 1 and an average of
2-3 wildcards per sketch. These compositions are commonly used
in Spark programs and represent most common MapReduce-like
patterns [44].

6.3 Evaluation
Experimental design We designed our experiments to primarily
investigate the following questions:

1. Efficiency: How fast is the synthesis process?

2. Usability: How many examples do we need for synthesis?

3. Quality: Are the synthesized programs scalable?

To address these questions, we perform two sets of experiments.
The first set involves synthesis of our collected tasks, which we
conducted on a Linux machine with a 4-core Intel i7-4790k pro-
cessor and 16GBs of memory. The second set of experiments takes
the solution of synthesized tasks (in the form of executable Apache



Spark code) and determines parallel scalability by applying them
to gigabytes of data on Google Cloud clusters with n1-standard-8
nodes [5].

Results Table 3 describes the synthesis tasks we collected and re-
sults of applying BIGλ on these tasks. All tasks were successfully
synthesized under a time limit of 90 seconds and a memory limit of
8GBs. For each task, the table shows (i) the amount of wall and CPU
time (aggregate time over all cores) taken by BIGλ; (ii) the size of
the synthesized programs (measured by AST nodes); (iii) the num-
ber of examples needed for generating a desired solution; (iv) the
number of candidate solutions examined for each task (applications
of VERIFY); and (v) the amount of time taken by a worklist algo-
rithm.

The results show that BIGλ can synthesize all tasks in a few
seconds at most, with only a single benchmark exceeding 5 sec-
onds. To demonstrate the difficulty of these benchmarks, we show
runtime results for a (sequential) type-directed, top-down synthe-
sis algorithm that maintains a single worklist that initially contains
all HOSs. The algorithm, which we call WL, uses the worklist to
explore all well-typed completions of the HOSs. This is analogous
to Feser et al.’s technique [26], but without the deduce step, which
is inapplicable in our generic setting. The results show that BIGλ

outperforms WL, which exceeds time limit in many instances. WL
keeps a single worklist with a HOS h and partial completions for
each  ∈ wild(h) as elements. Due to this, if h has two wild-
cards with n completions each, WL might require n2 elements in
the worklist. BIGλ breaks up h into two producers, one for each
wildcard, both of which maintain a separate worklist of at most
size n. By breaking h into subproblems, BIGλ turns a multiplica-
tive cost into an additive one and saves on space and time.

Our results indicate that BIGλ can synthesize desired programs
with a very small set of examples, despite the complex nature
of the programs we synthesize (with solutions consisting of any-
where between 9 and 20 AST nodes). For example, BIGλ correctly
synthesizes the following program, which computes hashtag co-
occurrence patterns in tweets with only a single example multiset.

let hashtag_pairs = map m . reduceByKey r
where

m s = map
(λp. (p, 1))
(filter canonical (gen_perms (match "#[\w]" s)))

r x y = x + y

Throughout our benchmarks, each example is relatively small,
consisting of an input multiset of between 3 and 8 elements and an
output value of approximately the same size. We checked correct-
ness of synthesized programs manually against our own solutions
(which we constructed in the process of collecting the tasks). We at-
tribute the fact that a small number of examples is needed to (i) the
restricted structure programs can take, as imposed by HOSs, and
(ii) the optimality criterion that favours smaller programs.

Our evaluation shows that restricting search to higher-order
sketches resembling common data-parallel programming patterns
indeed results in scalable implementations. For most tasks, syn-
thesized programs closely resembled our own solutions. Figure 5
shows the time it took for three of our synthesized analyses to run
on Twitter data, Wikipedia log files, and Wikipedia page dumps,
respectively. The plots show the decreasing running time as we in-
crease the number of available compute nodes, from 2 to 10, in our
Google cloud cluster. All data sets are on the order of ∼20GBs.
We see an expected log-like increase in speedup as we increase the
number of nodes (reducers need to apply a binary function log n
times on n items), indicating that our synthesized solutions are
indeed data-parallel, and thus fit naturally on distributed architec-
tures.

Wiki: pagecount Wiki: filteredTwitter: co-occurrence

Ti
m

e (
s)

Number of worker nodes (machines)

Figure 5. Scalability experimental results

Summary In summary, our implementation and evaluation indi-
cate our technique’s ability to efficiently synthesize non-trivial
data-parallel programs. Our evaluation also shows that, despite the
rich language we have and the size of the data we wish to analyze,
a small number of examples suffices for synthesizing powerful
programs that can scalably execute on cloud infrastructure.

7. Related Work
Functional program synthesis A number of works have addressed
synthesis of functional programs [11, 26, 31, 37–39, 45, 55]. The
works of Feser et al. [26], Osera and Zdancewic [45], and Fran-
kle et al. [35], like our work, utilize both examples and types to
search the space of programs. The works of Kneuss et al. [38],
Kuncak et al. [39], and Polikarpova and Solar-Lezama [47], syn-
thesize functional programs from logical specifications or refine-
ment types. Gvero et al. [31] synthesize code snippets from types,
by enumerating all terms inhabiting a type (similar to what pro-
ducers do in our algorithm). In comparison with these works, our
work addresses the question of synthesizing functional programs
that (i) utilize data-parallel operations and (ii) are robust to network
non-determinism and reducer parallelization. Our work also intro-
duces higher-order sketches to direct synthesis towards efficient,
parallel implementations. Algorithmically, our work is inspired by
the approaches of ESCHER [11], λsyn [45], and λ2 [26].
Data transformation synthesis Gulwani’s FlashFill [29] initiated
a promising line of work on program synthesis for data manipula-
tion by end users, particularly for spreadsheets. The work has been
extended to string and number transformations [53, 54], table trans-
formations [33], and data extraction from spreadsheets [13, 40].
The techniques have also been cast into a generic synthesis frame-
work [48].

The aforementioned works are primarily targeted at data extrac-
tion and transformation. Our work differs in two ways: (i) our pri-
mary goal is to synthesize programs that can run on large clusters;
(ii) our work is also suited for data aggregation tasks—e.g., count-
ing, compressing, building histograms—and not only data trans-
formation tasks. We believe that combining our program synthesis
technique with domain-specific data transformation synthesis, data
wrangling [36], and query synthesis [57, 64] is a promising direc-
tion towards enabling end-user data analysis.
Synthesis of parallel programs Numerous works have addressed
the problem of synthesizing parallel programs—for high-performance
applications [59], automatic vectorization [14], and graph algo-
rithms [49, 50]. Our work is fairly different both in application and
technique: we synthesize data-parallel programs for MapReduce-
like systems using input–output examples, as opposed to reference
implementations or high-level specifications.
Data-parallel programming and compilation A range of commu-
nities have studied data-parallel programming. We address the most
related works. Radoi et al. [51] studied the problem of compil-
ing sequential loops into MapReduce programs by translating Java
loops into a λ-calculus with fold and then, using rewrite rules, at-
tempting to create mappers. Our domain here is different: synthesis



from examples. However, our approach opens the door to black-
box parallelization, in which a sequential program is queried for
input–output examples and a synthesis engine proposes candidate
data-parallel programs.

Raychev et al. [52] recently proposed parallelizing sequential
user-defined aggregations (over lists) by symbolically executing ag-
gregations on chunks of the input list in parallel. This develop-
ment is interesting from our perspective as we might be able to (if
needed) synthesize sequential reducers that can be run in parallel.
Yu et al. also looked at the problem of parallelizing aggregations by
detecting that an aggregation is associatively decomposable [60].
Hyperproperty verification Hyperproperty-verification techniques
include self-composition [16], product programs [15, 17, 63] and
relational Hoare logic [18, 21]. Our CSG verification can be seen
as a self-composition encoding of programs into SMT formulas.
Recently, Chen et al. [22] studied decidability of the problem of
verifying determinism of Hadoop-style reducers (over lists), and
proposed a reduction to sequential assertion checking. Our problem
is different in that our setting is functional, and we need to only
consider binary reduce functions to prove determinism.

8. Discussion
We presented a novel program synthesis technique that, using
input–output examples, synthesizes data-parallel programs that can
run on cloud infrastructure. Our evaluation demonstrates the power
of our approach for synthesizing big-data analyses, amongst other
tasks. Our work is a first step towards synthesizing data-parallel
programs, and there are many interesting problems that we need to
address to help our technique reach its full potential. We discuss
two such problems: (i) forms of user interaction and (ii) optimality
of synthesized programs.

User interaction In our exposition, we assumed that the user
supplies input–output examples describing the desired compu-
tation. This form of interaction might be complicated and time
consuming, as the user is expected to construct input examples as
well as output ones. However, in a real setting, the user likely has
access to the data on which they would like to perform the anal-
ysis (e.g., a large set of tweets). Therefore, we can use a small
slice of that data as a representative input example, and have the
user describe the output. From a graphical interaction perspec-
tive, the closest work to this proposal is Kandel et al.’s work on
Wrangler [36] and Barowy et al.’s work on FlashRelate [13].

Optimized data-parallel programs Our domain of synthesized
programs uses a restricted subset of the data-parallel compo-
nents available in a cluster computing framework like Apache
Spark. Whereas this allows us to harness the parallelism offered
by Spark, our synthesized programs do not exploit the various
knobs needed to maximize performance. For instance, Spark of-
fers the ability to broadcast data to all nodes in a computation, in
order to reduce communication overhead. An interesting prob-
lem for future exploration is that of synthesizing programs that
are optimized for a given workload and cluster, e.g., by detecting
when to broadcast, what data to broadcast, whether to use disk
or memory, etc.

In addition to the aforementioned points, our work opens the
door for a range of research opportunities, which we plan on ad-
dressing in the near future.

Automatic parallelization through synthesis We would like to
investigate our technique’s applicability to transforming sequen-
tial programs into data-parallel programs. Specifically, using a
CEGIS-like synthesis strategy, we can produce input-output ex-
amples from the sequential program and use them to synthesize
a parallel version that utilizes data-parallel operations.

Synthesizing parallel graph algorithms Motivated by our re-
sults, we would like to investigate a similar synthesis technique
for parallel, vertex-centric graph algorithms as used in distributed
graph processing systems like Pregel [43], GraphLab [42],
GraphX [28], etc.

Hyperproperty-aware synthesis To ensure that reduce functions
form commutative semigroups, we employed a posthoc verifi-
cation phase—after the synthesis algorithm detects a program.
We would like to investigate whether we can design synthesis
algorithms that exploit the fact that we would like to synthe-
size a program satisfying a hyperproperty (such as associativity
or commutativity) to direct the synthesis strategy and prune the
search space.
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