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Picture a world where you can ask questions about a piece of code and have tools that automatically

and efficiently answer them for you. Can a division by zero ever occur? Are all elements in this list

always greater than ten? Does this program always terminate? Are there any race conditions? In such a

world, software is considerably more reliable and secure than what we currently have; software has fewer

bugs and is easily certifiable like other engineering artifacts; software-induced disasters are effortlessly

avoided; and the billions of dollars that are normally spent on testing and maintenance activities are

instead poured into more productive endeavours. Alas, such a world is an imaginary utopia, as the

majority of these verification questions translate into undecidable problems (due to their relation to the

halting problem). Nevertheless, we can still try to design algorithms that answer some questions about

programs most of the time, and this is exactly what we do in this dissertation.

Specifically, we address the problem of automatically verifying safety properties of programs. Safety

properties encompass a wide range of desirable correctness criteria (e.g., no assertions are violated,

memory safety, secure information flow, etc.) and form the basis of other verification techniques for

liveness properties (like termination). To prove that a program satisfies a safety property, we need

to find a safe inductive invariant. A safe inductive invariant characterizes an over-approximation of

reachable program states (a valuation of program variables) that does not intersect with unsafe states

specified by the property. We advance safety property verification in several directions.

First, we target interpolation-based (IB) verification techniques. IB techniques are a new and effi-

cient class of algorithms that avoids traditional abstract fixpoint invariant computation. IB techniques

utilize the logical notion of Craig interpolants to hypothesize a safe inductive invariant by examining

symbolic executions (finite paths) through the program. We propose DAG interpolants: a novel form of

interpolants that facilitates efficient symbolic reasoning about exponentially many program paths repre-

sented succinctly as a DAG. In contrast, previous IB techniques explicitly enumerate paths and employ

heuristics to avoid path explosion. We show how DAG interpolants can be used to construct efficient

safety verification algorithms.

Second, we present an extension of McMillan’s original IB algorithm [McM06] to the interprocedural
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setting, enabling verification of programs with procedures and recursion. To do so, we introduce the

notion of state/transition interpolants, and show how existing interpolant generation techniques can be

used for hypothesizing procedure summaries.

Third, we propose new verification algorithms that combine abstraction-based (AB) verification

techniques, based on abstract domains with fixpoint invariant computation, with IB techniques. Our

new algorithms are parameterized by the degree with which AB and IB techniques drive the analysis,

providing a spectrum of possible instantiations, and allowing us to harness the advantages of both IB and

AB techniques. We experimentally demonstrate the effectiveness of our new hybrid IB/AB techniques

and show that our algorithms can outperform state-of-the-art verification techniques from the literature.

Finally, we describe the design and implementation of UFOapp, an award-winning tool and framework

for C program verification in which we implemented and evaluated our algorithms.
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Chapter 1

Introduction

1.1 Preamble

Over the past few decades, we have witnessed software systems invading every facet of our life. With

our increased reliance on software, both at the personal and organizational level, the consequences of

software failure can transcend mere annoyance and have profound negative effects on our lives. Thus,

tools and techniques for rigorous analysis and reasoning about software are ever more important.

The simplest and most used technique for reasoning about a piece of software is to test it. While

great advances have been made in testing technologies, both in academia and industry, testing is usually

insufficient for guaranteeing safe program operation. To appeal to Edsger Dijkstra’s famous quote [Dij72],

“Program testing can be used to show the presence of bugs, but never to show their absence!” In other

words, testing only explores a small subset of the possible behaviours of a program; therefore, it does not

supply guarantees on all possible behaviours. This is where the problem of software verification comes

into play: proving, mathematically, that a program satisfies some desired property, e.g., memory safety,

termination on all inputs, or some program-specific functional specification like the program always

returns a positive integer.

Software verification is a classic problem that dates back to Alan Turing’s proof of undecidability of

the halting problem [Tur36], which effectively eliminated all hope for an automatic procedure for proving

program termination, and as a corollary, most desirable properties of programs.

Turing’s proof of undecidability of the halting problem did not deter scientists from studying manual

and automated techniques for verifying software. Indeed, the importance of being able to formally

reason about software, particularly in our increasingly computerized world, promulgated verification to

the forefront of a number of major computer science research communities (which have enjoyed quite a

few Turing Awards over the years). The work on software verification started in the sixties and seventies1

with mathematical frameworks for manually reasoning about programs, paving the way for automated

techniques in the eighties, nineties, and aughts.

This dissertation continues this long and rich tradition of software verification research by con-

tributing novel algorithmic techniques for automatically verifying safety properties of programs, with the

overarching goal of advancing the efficiency and applicability of automated verification techniques.

A program state is a valuation of all variables of the program (including the program counter). A

1Needless to say, we are talking here about the 20th century!

1
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safety property specifies a set of bad (unsafe) states that the program should never be in. A program

is correct with respect to a safety property if there is no execution that can reach a bad state specified

by the property. We are concerned with the problem of automatically proving a program correct with

respect to a safety property.

In this first chapter, we paint a wide (but incomplete) picture of software verification research over

the past few decades and provide a detailed view of modern automated safety verification techniques

(Section 1.2). We then state the main contributions of this dissertation and describe how it advances

the state of the art of automated verification (Section 1.3).

1.2 A (Partial) History of Software Verification

1.2.1 The Early Days

One of the first to recognize the practical importance of reasoning about software was Turing himself—

the person who proved undecidability of the problem. In a paper titled “On Checking a Large Routine”

from 1949 [Tur49], Turing starts by asking, “How can one check a routine in the sense of making sure

that it is right?” He then proceeds to sketch a proof of two properties of a program that computes the

factorial, n!, of its input n ∈ Z: (1) the program always terminates with a result on all inputs and (2)

always returns the factorial of its input parameter. The former is now known as a liveness property :

the program will eventually do something good (in this case, terminate with some result). The latter is

now considered a safety property: the program should never do something bad (in this case, return an

incorrect value). As mentioned, this dissertation focuses on verifying safety properties of programs, which

specify that the program should not reach an undesired (bad) state—in Turing’s factorial program, this

is a state where the program reaches the return statement with a return value that is not equal to n!. We

note that modern liveness verification techniques, for example, Cook et al.’s Terminator tool [CPR06],

reduce liveness checking to checking a sequence of safety properties [CPR05]. Thus, progress in safety

property verification directly and positively impacts liveness property verification.

A little more than a decade after Turing’s 1949 paper—as computers started to play a bigger

role in industrial and academic life—early computer science pioneers recognized the importance of,

as Floyd [Flo67] concisely put it, “assigning meanings to programs,” that is, viewing programs as math-

ematical artifacts that we can formally reason about. As a result, Floyd-Hoare logic [Flo67, Hoa69]

and Dijkstra’s predicate transformers [Dij75] introduced a logical framework for deducing the reachable

states of a program, thus providing a disciplined approach for manual program verification and laying

the theoretical underpinnings of the (semi-)automated verification techniques to come.

1.2.2 The Age of Automation

The road towards automatic software verification started with two almost independent lines of research

born in the late seventies and early eighties:

• Model checking, initiated independently by Clarke and Emerson [CE81] and Quielle and Sifakis [QS81],

started as an algorithmic technique for checking if a given structure is a model of a formula in

temporal logic. Models of temporal logics, like Linear Temporal Logic (LTL) [Pnu77], are Kripke

structures (finite state machines). Thus, by viewing a software or hardware system as a finite
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state machine, model checking offers an automated way of verifying sophisticated temporal logic

properties, which encompass a wide range of safety and liveness properties.

Model checking relies on algorithmically enumerating all the states of a Kripke structure in order

to determine if it satisfies a temporal logic specification. Unfortunately, when dealing with real

programs, the state space can be prohibitively large or even infinite (for example, due to arbi-

trary precision integers or unknown size of memory). Due to this limitation, the success of model

checking was constrained to hardware and protocol verification, which typically give rise to smaller

state spaces. But even for hardware and protocol verification, efficient model checking required

significant algorithmic advances that came in the form of symbolic techniques for succinctly rep-

resenting large sets of states as formulas. Specifically, Binary Decision Diagrams (BDDs) [Bry86]

and efficient satisfiability (SAT) solvers [MZ09] gave rise to symbolic model checking [McM93] and

bounded model checking [BCCZ99] techniques.

• Cousot and Cousot’s abstract interpretation framework [CC77] provided a unifying lens with which

we can view program analysis and verification techniques: as over-approximations (abstractions) of

the concrete semantics of a program. Specifically, Cousot and Cousot showed how data-flow anal-

yses used in compiler optimizations (for example, constant propagation and live variable analysis)

and Floyd-Hoare proofs can be viewed as an “execution” of an abstract version of the program

where only a few facts are tracked and the rest are thrown away. For instance, a live variable

analysis executes the program while only tracking what variables are live at each program loca-

tion, dismissing what values these variables actually hold. The abstract interpretation framework

provided a disciplined way of (1) defining abstractions, known as abstract domains, of concrete

program semantics and (2) building program analyses over these abstract domains, thus allowing

us to compute over-approximations of reachable program states.

The last fifteen years saw an explosion in automated software verification techniques that can be

applied to real programs with thousands of lines of code. Advances in model checking, abstract interpre-

tation, and automated theorem proving conspired to create this breakthrough. We highlight the main

advances below:

• Predicate abstraction [GS97] provided a family of abstract domains that over-approximate the

semantics of a program and result in a finite-state abstraction of the program (where each state in

the finite abstraction represents possibly infinitely many concrete program states). This enabled

direct application of classic model checking approaches to programs which might have large or

infinite state spaces.

• To enable construction of finite-state program abstractions, heavy use of automated theorem prov-

ing is required. Luckily, the early aughts also witnessed significant breakthroughs in SAT and

Satisfiability Modulo Theories (SMT) solving [BSST09]. SMT solvers capitalized on the algorith-

mic and engineering advances of SAT solvers in order to reason about a rich subset of first-order

logic. This includes first-order theories such as bitvectors, linear arithmetic, and arrays. These

advances facilitated precise modeling of, and reasoning about, program semantics.

• An abstraction of a program might be too coarse, resulting in false positives. In other words, an

abstraction might throw away too much information, causing verification to conclude that a bad
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Figure 1.1: Illustration of over-approximations of reachable states.

state is reachable when it is not. The Counterexample-Guided Abstraction Refinement (CEGAR)

framework [CGJ+00] offered a solution to this problem. Specifically, given a counterexample (a

faulty execution) found by analyzing the finite-state abstraction, CEGAR either confirms that the

counterexample is real (maps to a faulty execution under the concrete semantics) or proposes a

refined (less coarse) abstraction in which this counterexample is eliminated. Given the general

undecidability of the verification problem, an abstraction might keep getting refined indefinitely!

Perhaps the most notable application of predicate abstraction and CEGAR is within the Slam

project [BR01]. The Slam project built an industrial-grade toolchain for verifying API-usage

properties of Windows device drivers, and inspired huge interest in automated software verification

research.

• The aforementioned advances relied on a two-step process: (1) computing a finite-state program

abstraction with the help of predicate abstraction and automated theorem proving, and (2) utilizing

finite-state model checking techniques for proving program safety. As a result, in the literature,

they fall under the umbrella of so-called software model checking techniques. In parallel to software

model checking techniques, numerical abstract domains were also used to verify properties of

real programs; most notably, proving run-time safety of aircraft software [BCC+03]. Unlike the

abstract domains typically used in software model checking, most numerical abstract domains (for

example, intervals [CC76] and octagons [Min06]) do not yield finite-state abstractions, and instead

depend on over-approximation (widening) strategies in order to force the analysis to terminate.

These domains are considered infinite-height domains: they represent lattices of infinite height,

where elements higher in the lattice capture more concrete program states. Conversely, predicate

abstraction domains are finite-height domains (since they yield finite-state abstractions).

We note that our brief survey is biased towards the focus of this dissertation and thus neglects

important classes of work on program correctness. We do not discuss the huge fields of type systems and

interactive proof assistants. We also do not discuss semi-automated (deductive) verification techniques.

It is important to also note that manual and semi-automated verification remain very active areas of

research, particularly for complex properties and programs that cannot be handled by existing automated

techniques.
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Figure 1.2: Illustration of interpolation-based verification.

1.2.3 Two Automated Verification Techniques

In principle, all safety verification techniques compute an over-approximation of the set of reachable

program states, called an inductive invariant. An invariant is an over-approximation I of the set of

reachable program states. An inductive invariant is one where executing the program from any state in

I results in a state that is also in I. A safety property defines a set of unsafe program states. Thus, if

the inductive invariant does not intersect with the set of unsafe states, then it constitutes a proof that

the program is correct with respect to the given safety property—we say it is a safe inductive invariant.

Figure 1.1 illustrates this idea.

The key question is: How do we compute an inductive invariant? We categorize contemporary

automated verification techniques into two closely related classes, differentiated by the method used to

construct a safe inductive invariant.

• Abstraction-based (AB) techniques: AB techniques utilize an abstract domain (e.g., predi-

cate abstraction) that over-approximates the semantics of program statements. The program is

executed under the abstract semantics, while collecting all abstract states encountered along the

way. The process stops when no new abstract states can be found, i.e., an inductive invariant has

been computed. Most automated verification techniques fall under this class, e.g., software model

checking with predicate abstraction, abstract interpretation with numerical domains, etc.

Intuitively, the abstract domain restricts the language with which we can define an inductive

invariant. For instance, the intervals numerical domain restricts invariants to formulas of the form∧
i li 6 xi 6 ui, where {xi}i are program variables and {li, ui}i are numerical constants. Imposing

a restriction on the logical language makes it easier to systematically search for an inductive

invariant. For example, a predicate abstraction domain defines a finite set of candidate invariants;

thus, we can simply search through all candidates until we arrive at a safe inductive invariant (of

course, this might not be the most efficient strategy).

The main disadvantages of abstraction-based verification are two-fold: First, an abstract domain

might be too weak to construct a safe inductive invariant, e.g., no safe inductive invariant is express-

ible in the restricted language imposed by the abstract domain. Second, executing the program

under abstract semantics is often very expensive, for example, involving worst-case exponential
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operations in the case of predicate abstraction. This is known as an absctract post operation:

executing a program statement starting from an abstract state to arrive at a new abstract state.

• Interpolation-based (IB) techniques: As an alternative to AB techniques, McMillan intro-

duced IB techniques first for hardware [McM03] and then for software verification [McM06], and

showed that they can outperform AB techniques. The key advantage of IB techniques over AB

techniques is that they do not restrict the search for an inductive invariant with an abstract do-

main; thus, they avoid the expensive abstract post computation required by AB techniques. At a

high level, IB techniques work as follows:

1. Pick some finite execution paths through the control-flow graph of the program and encode

them as first-order formulas (in a manner similar to bounded model checking or symbolic

execution [Kin76]).

2. The formulas represent a subset (an under-approximation) of the reachable program states. In

Figure 1.2, this is represented by the subset, A, with double borders. If the subset intersects

with set of unsafe states, B, then we know that the program is unsafe. Otherwise, Craig

interpolants [Cra57] are computed to over-approximate this subset while making sure that the

over-approximation does not intersect with the unsafe states. One such over-approximation,

I, is shown in Figure 1.2 with a dashed border. Effectively, this over-approximation serves

as a hypothesis (an educated guess) for a safe inductive invariant. Obviously, the hypothesis

in our figure is not invariant, since it does not encompass all reachable states. In this case,

the process continues by examining a larger subset of reachable states that includes A and

refining the hypothesis.

Given two formulasA andB in first-order logic, whereA∧B is inconsistent, a Craig interpolant

is a formula I over the shared symbols of A and B, where A⇒ I and I ⇒ ¬B. Thus, if we view

A as our subset of reachable states and B as our set of unsafe states, an interpolant is an over-

approximation of our subset of reachable states that does not intersect with the unsafe states.

McMillan [McM03] showed that interpolants can be efficiently extracted from refutation proofs

produced by SAT solvers; a flood of later works extended the idea to other SMT theories.

Note that the hypotheses computed using interpolants can be arbitrary formulas within the

logic used to encode program paths and unsafe states; therefore, hypotheses (and inductive

invariants) are not restricted to an abstract domain.

IB techniques examine concrete program states; this enables them to potentially find counterexam-

ples faster than AB techniques that rely on CEGAR to confirm or refute abstract counterexamples.

The main disadvantage of IB techniques is that they are merely making hypotheses that may or

may not result in an inductive invariant—informally, one can view them as unguided. On the

other hand, AB techniques are eagerly constructing an inductive invariant. Thus, in cases where

abstract post computation is cheap and the abstract domain is sufficient, AB techniques might

arrive at an answer faster than IB techniques.

One may argue that there is no distinction between IB and AB techniques. For instance, one may

argue that the fragment of first-order logic used for interpolation is an abstract domain used by an IB

technique. Indeed, we do agree with that: any logic used to model concrete program semantics can be
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viewed as an abstract interpretation of concrete program semantics. Our distinction here is operational

and philosophical:

• At the algorithmic level, IB techniques do not employ a forward abstract fixpoint computation like

AB techniques, and thus do not execute an abstract version of the program. In other words, AB

techniques spend most of their time in abstract post computation (and only occasionally perform

other operations such as refinement). On the other hand, IB techniques spend most of their time

examining program paths by encoding their concrete semantics and proving their safety using

automated theorem proving.

• At the philosophical level, the logic used to model program semantics can be viewed as an abstract

domain, but it is much less restrictive than traditional abstract domains, where strong syntactic

requirements are imposed on the invariants with sole goal of enabling abstract fixpoint computation.

1.3 Challenges and Contributions

In the previous section, we gave an overview of modern automated verification techniques, categorizing

them into abstraction-based and interpolation-based. The high level contribution of this disser-

tation is new verification algorithms that push the frontiers of interpolation-based verifi-

cation, making it efficient and practical, while incorporating ideas from abstraction-based

techniques. The following discussion explicates our individual contributions. Figure 1.3 helps outline

our contributions with respect to IB and AB techniques.

1: Verification with DAG Interpolants (Chapter 3) Craig interpolants [Cra57] made their

way into verification literature and tools through McMillan’s seminal work on hardware model check-

ing [McM03]. Building on the success of bounded model checking (BMC) with SAT solvers [BCCZ99],

McMillan showed how to exploit the resolution proof produced by a SAT solver for a BMC problem to

over-approximate the reachable states of a finite unrolling of a transition relation (bounded executions

of the program). The key insight is that in the course of a resolution proof, a SAT solver makes decisions

on which variables are important or relevant (the ones on which it resolves). By traversing the reso-

lution proof bottom-up and focusing on relevant states, McMillan showed how to construct a formula,

an interpolant, that over-approximates reachable states through a bounded unrolling of a problem and

acts as a guess for a safe inductive invariant, thus, extending bounded model checking to the unbounded

case.

Interpolants eventually made their way into infinite-state software verification. First, in the work of

Henzinger et al. [HJMM04], interpolants were used for abstraction refinement in the CEGAR framework.

Specifically, given an infeasible program path to an error location, interpolants were used to compute

new predicates to refine (strengthen) a predicate abstract domain in order to eliminate the infeasible

program path and possibly others. This approach was implemented with success in the Blast software

model checker’s lazy abstraction algorithm [HJMS02].

In his later work on lazy abstraction with interpolants (LAWI), McMillan used interpolants to di-

rectly compute inductive invariants. That is, instead of using interpolants as a means for refining a

predicate abstract domain, McMillan showed how the interpolants themselves can be used to construct

the inductive invariant, in a style similar to their initial use in finite-state model checking [McM03]. This
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Figure 1.3: The five major contributions of this dissertation and the dependencies between them.
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approach is what we call an interpolation-based (IB) software verification technique in this dissertation,

as it eschews use of abstract domains and abstract fixpoint computation. To achieve this for software

verification, new interpolation procedures were proposed for first-order theories like linear arithmetic,

arrays, and bitvectors [HJMM04, JM07, KW07].

At a high level, LAWI works by sampling finite paths through the control-flow graph of the program

to an error location (e.g., location of an assertion violation), and then uses interpolants to compute

a Hoare-style [Hoa69] proof of each path. The semantics of instructions along each sampled path are

encoded as a sequence of formulas, a formula per instruction. If the conjunction of the sequence of

formulas is unsatisfiable (equivalent to false), then sequence interpolants are computed from the proof

of unsatisfiability (refutation proof). Sequence interpolants form a Hoare-style proof of infeasibility of

the path, that is, a proof that no concrete execution through the path can reach the error location.

Even a program with no loops can have exponentially many paths in the size of its control-flow

graph—the simplest example is a program with a sequence of if-then-else statements. In such cases,

LAWI might end up sampling a huge number of paths before arriving at an inductive invariant. A

number of heuristics are proposed in [McM06] for dealing with path explosion.

One of the main insights in this dissertation is that we can compute proofs for a large number of

symbolically-encoded paths in a single shot, instead of mechanically enumerating them. We demonstrate

how to exploit the enumerative power of SMT solvers to achieve this. Specifically, in this chapter, we

introduce the concept of Directed Acyclic Graph (DAG) interpolants. DAG interpolants extend the

concept of an interpolant between two formulas, or a sequence of formulas, to a set of formulas spatially

arranged in a DAG structure. Given a technique for computing DAG interpolants, we can compute

proofs for a set of program paths succinctly encoded as a DAG, where every path through the DAG

represents a program path.

Armed with a procedure for computing DAG interpolants, we show how to construct a verification

algorithm by systematically unrolling the control-flow graph into a DAG (instead of a tree) and using

DAG interpolants to hypothesize a safe inductive invariant.

2: Integrating Predicate Abstraction and Interpolation (Chapter 4) As mentioned in Sec-

tion 1.2, AB and IB techniques offer different sets of complementary advantages. IB techniques com-

pletely avoid post operators, but might get stuck making incorrect hypotheses for a long time. AB

techniques, on the other hand, eagerly try to compute an inductive invariant, but can spend too much

time if the post operator is expensive or if the abstract domain used is insufficient and requires consid-

erable refinement using CEGAR.

We propose a novel algorithm that integrates predicate-abstraction-based verification (an AB tech-

nique) with our DAG-interpolation-based verification algorithm (an IB technique). The algorithm is

parameterized by the degree with which AB and IB approaches drive the analysis, providing a spectrum

of possible instantiations and allowing us to harness the advantages of both IB and AB techniques. At

one extreme, it is an AB algorithm where a predicate abstraction domain computes inductive invariants

and interpolants are only used to refine the abstract domain. At the other end of the spectrum, it is an

IB algorithm where no abstract domain is used and DAG interpolants hypothesize inductive invariants.

In the middle of the spectrum, the algorithm can be instantiated as a hybrid IB/AB technique, where

interpolants hypothesize an invariant I, and predicate abstraction tries to “fix” it by making it a safe

inductive invariant I ′.
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We perform an extensive experimental evaluation and show that our hybrid IB/AB instantiations of

the algorithm can outperform pure IB and AB techniques. Further, we show our DAG interpolation–

based IB technique outperforms an implementation of McMillan’s original IB algorithm [McM03].

3: Integrating Abstract Domains and Interpolation (Chapter 5) Contribution 2 introduces

an integrated predicate abstraction and interpolation algorithm. We take this idea one step further

by admitting arbitrary abstract domains for the AB portion of the algorithm, instead of just predicate

abstraction domains. That is, we allow infinite-height domains, like intervals, boxes, or octagons, to be

used for abstract fixpoint computation. Extending the algorithm in this direction allows us to experiment

with different abstract domains (including highly efficient ones like intervals) that might be suited for

different classes of programs. Additionally, we introduce the concept of restricted DAG interpolants:

an extension of DAG interpolants that allows us to utilize the results of AB in order to improve the

“quality” of hypotheses made by interpolants.

In generalizing our algorithm to arbitrary abstract domains, we faced a number of technical chal-

lenges. For instance, (1) maintaining disjunctive invariants in the form of a DAG (in order to apply DAG

interpolation) and (2) extending widening operations of a given abstract domain to its finite powerset.

The resulting algorithm can be viewed through two lenses:

1. We can view abstract domains as a form of guidance for our DAG interpolation procedure. That is,

we can view our algorithm as an IB algorithm where information computed using the AB portion

is simply used to enhance the interpolation process.

2. Alternatively, we can view our algorithm as a technique for refining unsafe inductive invariants

(computed with abstract domains) using interpolation. Specifically, we place invariant genera-

tion with abstract interpretation within a refinement loop, where DAG interpolants are used to

strengthen inductive invariants computed with abstract domains. That is, interpolants are sim-

ply used to eliminate false alarms (false reports of bugs) incurred due to coarse abstractions and

over-approximating operations typical of abstract domains (e.g., join and widening). This is one

of the first works to place general abstract-domain-based analyses in a refinement loop.

We experiment with different abstract domains and show that the resulting technique can outperform

state-of-the-art tools as well as our previous algorithms.

4: Interprocedural Verification with Interpolation (Chapter 6) Contributions 2 and 3 are

restricted to intraprocedural analysis, i.e., analysis of programs with a single function. We propose a

novel interprocedural verification algorithm that is interpolation based. Specifically, we introduce the

notion of state/transition interpolants and demonstrate how they can be used to hypothesize procedure

summaries in order to compute modular proofs of correctness for programs with procedure calls and

recursion.

Our contribution is an extension of McMillan’s IB algorithm [McM03] to the interprocedural setting.

Whereas [McM03] unrolls the control-flow graph of a program, our algorithm unrolls the call graph, and

uses state/transition interpolants to label it with procedure summaries. In a fashion similar to DAG

interpolants, state/transition interpolants enable symbolic reasoning about a set of DAGs, where each

DAG in the set represents the control-flow graph of a procedure. To the best of our knowledge, this is

the first extension of [McM03] that computes modular interprocedural proofs.
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5: Building Efficient Verification Tools (Chapter 7) To facilitate and experiment with the

algorithmic contributions of this dissertation, we built a state-of-the-art program analysis and verification

framework, called UFOapp, using the LLVM compiler infrastructure [LA04]. We used UFOapp to verify

safety properties of a large set of C programs. UFOapp competed in the 2013 International Software

Verification Competition [Bey13] and won four out of ten verification categories—all the categories of

programs for which it was designed. We provide a detailed description of UFOapp’s extensible architecture

and prominent optimizations.

A Note on our Contributions Contributions (2) and (3) are both intraprocedural verification algo-

rithms (Ufo and Vinta, respectively). Contribution (3) strictly generalizes (subsumes) and improves

Contribution (2) by enabling general abstract domains to be used as the AB portion of the algorithm;

Contribution (2) is restricted to predicate abstract domains.

Contribution (4) is an interprocedural verification technique, allowing us to directly handle recursive

programs. Note that, unlike (2) and (3), Contribution (4) is purely interpolation-based, i.e., it does

not utilize abstraction-based techniques to aid the interpolation process. In Section 6.8, we discuss the

relative (dis)advantages of using interprocedural versus intraprocedural verification, given that we can

convert a program with a single procedure to a recursive program and vice versa.

1.4 Organization of this Dissertation

The rest of this dissertation is organized as follows:

• In Chapter 2, we formalize the main concepts required for describing our contributions.

• In Chapter 3, we introduce and formalize DAG interpolants, present a procedure for computing

them, and show how to build a software verification procedure using DAG interpolants. (Based

on [AGC12b].)

• In Chapter 4, we introduce a parameterized verification algorithm that combines predicate abstrac-

tion and DAG interpolation. We then present an experimental evaluation of different instantiations

of our algorithm. (Based on [AGC12b].)

• In Chapter 5, we extend the algorithm from Chapter 4 to arbitrary abstract domains, present the

enabling concept of restricted DAG interpolants, and demonstrate its practical merit experimen-

tally. (Based on [AGC12a].)

• In Chapter 6, we present an interprocedural verification algorithm that computes procedure-

modular proofs using the novel notion of state/transition interpolants. (Based on [AGC12d].)

• In Chapter 7, we describe the design and implementation of UFOapp, our verification tool and

framework in which we implemented our algorithms for experimentation and evaluation. (Based

on [AGC12c, AGL+13].)

• Finally, in Chapter 8, we summarize our contributions and discuss open problems and future

research directions.

Appendix A contains a simple example illustrating inductive invariants.

Appendix B contains proofs of lemmas and theorems whose proofs do not appear in the main text.



Chapter 2

Background

In this dissertation, we are concerned with the problem of proving program safety. In this chapter, we

present a number of core concepts required for describing our contributions in the rest of this disserta-

tion.

2.1 Programs and Safety

Programs A program P is a tuple (L, δ, en, err,Var), where

• L is a finite set of control locations,

• δ is a finite set of actions,

• en ∈ L is a special control location denoting the entry location of P ,

• err ∈ L is the only error location, and

• Var is the set of variables of program P .

An action (`1, T, `2) ∈ δ represents a program statement between `1 and `2, where `1, `2 ∈ L and

T is the program statement. We assume that there does not exist an action (`1, T, `2) ∈ δ such that

`1 = err.

A statement T can be an assignment x := E or assume statement assume(B), where x is a variable

in Var, E is an expression over Var, and B is a Boolean expression over the variables in Var.

A statement T can be viewed as a transition relation over the variables Var ∪ Var′, where Var′ is the

set of primed versions of variables in Var. We write JT K for the standard semantics of a statement T .

For example, if T is x := x + 1, then JT K ≡ x′ = x + 1. If T is assume(x > 0), then JT K ≡ x > 0.

Throughout this dissertation, we use type writer fonts for program variables and statements, and math

fonts for their mathematical denotation.

Program Safety Given a program P = (L, δ, en, err,Var), we say that P is safe if and only if every

execution that starts in en, with any valuation of the variables Var, never reaches err. More formally, P

is safe if there exists an annotation Inv : L → B, a safe inductive invariant, from program locations to

Boolean formulas over Var such that

12
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1. Inv(en) ≡ true,

2. Inv(err) ≡ false, and

3. for all (`1, T, `2) ∈ L, Inv(`1) ∧ JT K⇒ Inv(`2)′.

The annotations Inv form a Hoare-style proof of correctness, where each location in the program is

annotated with a formula encoding an over-approximation of reachable states at that location. For any

action (`1, T, `2) ∈ L,

{Inv(`1)} T {Inv(`2)}

is a valid Hoare triple [Hoa69], an axiom stating that if we execute the statement T starting from any

state in Inv(`1), we will arrive at state in Inv(`2). Annotations of loop heads (cutpoints) are loop

inductive invariants. For an example illustrating safe inductive invariants and how they are computed,

we refer the reader to Appendix A.

Strongest Postcondition Let T be a statement in some program P with variables Var. Let ϕ be a

formula over Var (representing a set of program states). We define the strongest postcondition, SP(ϕ, T ),

as the strongest formula with free variables in Var such that ϕ ∧ JT K ⇒ SP(ϕ, T )′ is valid. Informally,

SP(ϕ, T ) represents the set of states reachable by executing T from any state that satisfies ϕ. Concretely,

SP(ϕ, T )′ is equivalent to

∃Var.ϕ ∧ JT K.

2.2 Abstract Reachability Graphs

We now present Abstract Reachability Graphs (ARGs). ARGs are data structures we use to compute a

safe inductive invariant for a given program. ARGs are a generalization of Abstract Reachability Trees

(ARTs) [McM06, HJMS02] to directed acyclic graphs.

Definition 2.1 (Abstract Reachability Graph (ARG)). Let P = (L, δ, en, err,Var) be a program. An

ARG A of P is a tuple (V,E, ven, ν, τ, ψ), where

• (V,E, ven) is a directed acyclic graph (DAG) rooted at the entry node ven ∈ V ;

• ν : V → L is a map from nodes to locations of P , where ν(ven) = en;

• τ : E → δ is a map from edges to actions of P such that for every edge (u, v) ∈ E, there exists an

action (ν(u), τ(u, v), ν(v)) ∈ δ; and

• ψ : V → B is a map from nodes V to Boolean formulas over Var.

A node v such that ν(v) = err is called an error node. A node v ∈ V is covered if and only if there

exists a node u ∈ V that dominates v and there exists a set of nodes X ⊆ V such that

• ∀x ∈ X · x is uncovered,

• ψ(u)⇒ ∨
x∈X ψ(x), and

• ∀x ∈ X · ν(u) = ν(x) ∧ u 6� x,
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where � is the ancestor relation on nodes and all x ∈ X are less than u according to some fixed total

order on nodes V . We say that node u is covered by X (when X = {v}, i.e., a singleton set, we will

say u is covered by v). A node u dominates v if and only if all paths from ven to v pass through u. By

convention, every node dominates itself.

Definition 2.2 (Well-labeledness of ARGs). Given an ARG A = (V,E, ven, ν, τ, ψ) of a program P =

(L, δ, en, err,Var) and a map M from every v ∈ V to a Boolean formula over Var, we say that M is a

well-labeling of A if and only if

1. M(ven) ≡ true and

2. ∀(u, v) ∈ E · M(u) ∧ Jτ(u, v)K⇒M(v)′.

If ψ is a well-labeling of A, we say that A is well-labeled.

We also define the following key properties of ARGs:

Definition 2.3 (Other Properties of ARGs). Let A = (V,E, ven, ν, τ, ψ) be an ARG of a program

P = (L, δ, en, err,Var).

• A is safe if and only if for all v ∈ V such that ν(v) = err, ψ(v) ≡ false.

• A is complete if and only if for all uncovered nodes u, for all (ν(u), T, `) ∈ δ, there exists an edge

(u, v) ∈ E such that ν(v) = ` and τ(u, v) = T .

Using the above properties of ARGs, the following theorem shows how to prove safety of a program

P by constructing an abstract reachability graph A of P . Informally, the labeling of a safe, complete,

well-labeled ARG A of P implicitly encodes a safe inductive invariant of P , and thus implies its safety.

We state the following theorem to demonstrate how ARGs can be used to prove program safety. This

theorem is a generalization of [McM06, Theorem 1] to ARGs. A detailed proof is available in Appendix B.

Theorem 2.1 (Program Safety). If there exists a safe, complete, and well-labeled ARG for a program

P , then P is safe.

Proof. (sketch) This follows from [McM06, Theorem 1]. Suppose we are given a safe, complete, well-

labeled ARG A of a program P . Then,

Inv = {` 7→ I` | ` ∈ L},

where I` =
∨
{ψ(v) | v ∈ V and ν(v) = ` and v is uncovered},

is a safe inductive invariant of P .

Example 2.1. Figure 2.1 shows a program and its control-flow graph representation, where * denotes

non-deterministic choice. Our goal is to prove that location 5 (error()) is unreachable. By definition,

an ARG may be a tree unrolling of the control-flow graph of the program or even a DAG unrolling. In

Figure 2.2, we show two possible ARGs for that program. Each node vi relates to program location i, i.e.,

ν(vi) = i, where program locations are the set {1, . . . , 5}. The primes are used to distinguish between

nodes relating to the same location. The dotted arrows are added for convenience to demonstrate covering,
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1	
  x	
  :=	
  0;	
  y	
  :=	
  0;

2	
  while	
  (*)
	
  	
  	
  	
  	
  	
  	
  x++;	
  y++;

3	
  while	
  (x	
  >	
  0)
	
  	
  	
  	
  	
  	
  	
  x-­‐-­‐;	
  y-­‐-­‐;

4	
  if	
  (y	
  !=	
  0)
5	
  	
  	
  	
  error();

1

2

3

4

5

x := 0; y := 0

[true]
[true]

[x > 0]

[x <= 0]

[y != 0]

(a) (b)

Figure 2.1: Example program and its control-flow-graph representation.

e.g., the label of node v′2 is subsumed by the label of node v2. Therefore, v′2 is covered by v2. For clarity,

we omit labels of some covered nodes. Note that both ARGs (a) and (b) are safe, since exit locations are

labeled by false; well-labeled, since labels satisfy Definition 2.2; and complete, since every uncovered node

has edges to all possible successor locations.

2.3 Iteration Strategy

A Weak Topological Ordering WTO [Bou93] of a directed graph G = (V,E) is a well-parenthesized

total-order, denoted ≺, of V without two consecutive “(” such that for every edge (u, v) ∈ E:

(u ≺ v ∧ v 6∈ ω(u)) ∨ (v � u ∧ v ∈ ω(u)),

where elements between two matching parentheses are called a (WTO-)component, the first element of

a component is called a head, and ω(v) is the set of heads of all components containing v.

We define two operations on a WTO, WtoNext and WtoExit:

• Let v ∈ V , and U be the innermost component that contains v in the WTO. We write WtoNext(v)

for an element u ∈ U that immediately follows v, if it exists, and for the head of U otherwise.

• Let Uv be a component with head v. First, suppose that Uv is a subcomponent of some component

U . If there exists a u ∈ U such that u 6∈ Uv and u is the first element in the total-order such

that v ≺ u, then WtoExit(v) = u. Otherwise, WtoExit(v) = w, where w is the head of U .

Second, suppose that Uv is not a subcomponent of any other component, then WtoExit(v) = u,

where u is the first element in the total-order such that u 6∈ Uv and v ≺ u. Intuitively, if the

WTO represented nodes/locations in a program’s control-flow graph, then WtoExit(v) is the

first control location visited after exiting the loop headed by v, where the locations in the body of

the loop are in a WTO-component headed by v.
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For example, for the program in Figure 2.1(b), a WTO of the control locations is

`1 (`2) (`3) `4 `5,

where `2 is the head of the component comprising the first while loop and `3 is the head of the component

comprising the second loop. WtoNext(`2) = `2 and WtoExit(`2) = `3. Note that WtoNext and

WtoExit are partial functions and we only use them where they have been defined.

A detailed description of how to compute WTOs is available in [Bou93]. For our purposes here, we

only require their definition.

2.4 Classical and Sequence Interpolants

We assume that all formulas are in some interpreted first-order theory T , e.g., linear integer arithmetic.

Given a formula A, we use FV (A) to denote the set of free variables appearing in A. Given a sequence

of formulas A1, . . . , An, we use FV (A1, . . . , An) to denote
⋃
i∈[1,n] FV (Ai). We use the terms validity

and satisfiability as is standard for first-order logic.

Interpolants Given two formulas A and B such that A ∧ B is unsatisfiable, an interpolant for the

pair (A,B) is a formula I such that

1. A⇒ I is valid,

2. I ⇒ ¬B is valid, and

3. FV (I) ⊆ FV (A) ∩ FV (B)

In other words, an interpolant is a formula that is (1) implied by A, (2) unsatisfiable with B, and (3)

over the free variables that are shared by A and B. In some quantifier-free theories relevant for encoding

program semantics, like linear real arithmetic and propositional logic, a quantifier-free interpolant always

exists for a pair of unsatisfiable formulas (A,B).

Example 2.2. Let A ≡ x = y + z ∧ y > 0 ∧ z > 5 and B ≡ x 6 −10. Treating all variables as integer

variables, it is obvious that A ∧B is unsatisfiable. One possible interpolant I for (A,B) is x > 0. Note

that I is only over the variable x that is shared between A and B.

Sequence Interpolants Sequence interpolants [HJMM04, McM06] extend interpolants from a pair of

formulas (A,B) to a sequence of formulas A1, A2, . . . , An. Assuming that
∧
i∈[1,n]Ai is unsatisfiable, a

sequence of interpolants for A1, . . . , An is a sequence of formulas I1, . . . , In+1 such that

1. I1 ≡ true,

2. In+1 ≡ false,

3. ∀i ∈ [1, n] · Ii ∧Ai ⇒ Ii+1, and

4. ∀i ∈ [2, n] · FV (Ii) ⊆ FV (A1, . . . , Ai−1) ∩ FV (Ai, . . . , An).
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From this definition, we see that for all i ∈ [1, n+ 1], Ii is an interpolant for the pair of formulas ∧
j∈[1,i−1]

Aj ,
∧

j∈[i,n+1]

Aj

 .

The following example illustrates sequence interpolants.

Example 2.3. Let A1, A2, A3 be a sequence of formulas, where

A1 ≡ x1 > 1

A2 ≡ x2 = x1

A3 ≡ x2 = 0

A1 ∧A2 ∧A3 is unsatisfiable. One possible sequence of interpolants is

I1 ≡ true

I2 ≡ x1 > 1

I3 ≡ x2 6= 0

I4 ≡ false

Consider the interpolant I2; it is over the only variable, x1, that is shared between the two formulas

A1 and A2 ∧A3. Note also that I2 ∧A2 ⇒ I3 is valid.

2.5 Predicate Abstraction

Predicate abstraction [GS97] is an abstract domain promoted by Graf and Säıdi as a technique for

building a finite state abstraction of an infinite state system or a system with a prohibitively large

state space. Soon after its debut, predicate abstraction found its way into software model checking, as

successfully implemented by the Slam [BR01] project. In Slam, predicate abstraction was used to build

a Boolean (finite domain) program from an infinite state C program by only tracking a few program facts

(predicates) and abstracting away the rest of the program. Constructing the abstraction is an expensive

step that requires theorem proving. To that end, predicate abstraction techniques with varying precision

have been proposed.

Let Preds = {P1, . . . , Pn} be a set of predicates, where a predicate Pi is a first-order formula over

the variables of the program in question. Most verification tools use predicates in linear or bitvector

arithmetic, e.g., a predicate x > 0 tracks whether the variable x is greater than 0.

Predicate abstraction over-approximates the results of strongest postconditions over program state-

ments. Let T be a program statement of program P with variables Var, and ϕ be a formula over Var.

Cartesian and Boolean predicate abstraction are defined as follows:

• Cartesian abstraction: The Cartesian abstraction, CPost(ϕ, T ), of the strongest postcondition

SP(ϕ, T ) is the formula∧
{¬Pi | Pi ∈ Preds, SP(ϕ, T )⇒ ¬Pi} ∧

∧
{Pi | Pi ∈ Preds, SP(ϕ, T )⇒ Pi}.
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In other words, for each predicate Pi ∈ Preds, if it is implied by SP(ϕ, T ) then it is conjoined to

the result (and similarly for the negation of each predicate). It is easy to see that to compute

CPost, Cartesian predicate abstraction requires at most 2n calls to a theorem prover, where n is

the number of predicates.

• Boolean abstraction: Whereas Cartesian abstraction is efficient—requiring a linear number of calls

to a theorem prover in the size of the predicate set—it may be imprecise, as it does not find the

strongest over-approximation of SP(ϕ, T ) that can be described using Preds. Therefore, using

Cartesian abstraction might lead to many refinements in a CEGAR loop in order to check for

spurious counterexamples.

Boolean predicate abstraction, on the other hand, is an aggressive abstraction that computes

the strongest possible Boolean combination of Preds that over-approximates SP(ϕ, T ), denoted

BPost(ϕ, T ). Specifically, given the set of sets of predicates 2Preds∪Preds
¬

, where Preds¬ = {¬Pi |
Pi ∈ Preds}, Boolean abstraction finds the strongest formula

∨
P ′∈S

 ∧
p∈P ′

p

 ,

where S ⊆ 2Preds∪Preds
¬

, that is implied by SP(ϕ, T ). In the worst case, one might require an

exponential number of calls to the theorem prover, in the size of Preds, to compute BPost(ϕ, T ).

Example 2.4. Let T be the sequence of two statements x := x− 1; y := y− 1 in a program where the

only variables are x and y. Let ϕ ≡ x = y ∧ x > 0 and the predicate set Preds = {x = y, x > 0}. To

compute a Cartesian abstraction of SP(ϕ, T ) over Preds, a verification tool typically makes the following

four queries to a theorem prover, e.g., an SMT solver:

1. Is SP(ϕ, T )⇒ x = y valid?

2. Is SP(ϕ, T )⇒ x > 0 valid?

3. Is SP(ϕ, T )⇒ x 6= y valid?

4. Is SP(ϕ, T )⇒ x < 0 valid?

Since only the first formula is valid, CPost(ϕ, T ) returns the formula x = y.
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v1

v2

v2' v3

v3' v4

v5

true

x = y ^ x � 0

x = y ^ x � 0

x = y ^ x � 0

x = y ^ x � 0

x = y ^ x = 0

false

v1

v2

v2' v3

v3'

v4

v5

true

false

v4

v5 false

v3''

v3'''

v4

v5 false

x = y ^ x � 0

x = y ^ x � 0 x = y ^ x � 0

x = y ^ x � 0

x = y ^ x = 0

(a)

(b)

Figure 2.2: Safe, complete, and well-labeled ARGs for the program in Figure 2.1.



Chapter 3

Verification with DAG Interpolants

3.1 Introduction

In this chapter, we introduce the concept of Directed Acyclic Graph (DAG) interpolants. DAG inter-

polants extend the concept of an interpolant between two formulas, or a sequence of formulas, to a set of

formulas spatially arranged in a DAG structure. Given a technique for computing DAG interpolants, we

can compute proofs for a set of program paths succinctly encoded as a DAG, where every path through

the DAG represents a program path.

We then present (what we believe to be) an elegant transformation that encodes the DAG as a

sequence of formulas, and reduces the problem of computing DAG interpolants to that of computing

sequence interpolants. Effectively, we linearize the DAG: we view the program represented by the DAG,

with all of its branching, as if it is a sequence of instructions (i.e., a single path). Thus, we use off-the-shelf

sequence interpolation procedures within highly-efficient SMT solvers to compute DAG interpolants.

Armed with our procedure for computing DAG interpolants, we show how they can be used for

verification of programs with loops. Specifically, we present a simple declarative procedure that, given

a program, constructs a DAG-shaped abstract reachability graph which can be labeled using DAG

interpolants.

Contributions

We summarize this chapter’s contributions as follows:

• We extend the classical notion of an interpolant between two formulas to a set of formulas spatially

organized as a directed acyclic graph.

• We present a technique for computing DAG interpolants by reducing the problem to sequence

interpolation, thus enabling reuse of existing interpolation algorithms and implementations.

• We describe how DAG interpolants can be used to construct an interpolation-based verification

technique by unrolling control-flow graphs of programs into DAGs.

Organization

This chapter is organized as follows:

20
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• In Section 3.2, we formalize the concept of DAG interpolants.

• In Section 3.3, we present a procedure for computing DAG interpolants.

• In Section 3.4, we describe a simple and declarative verification procedure that uses DAG inter-

polants for computing safe inductive invariants.

• In Section 3.5, we place DAG interpolants within the growing mass of research on interpolant

generation for verification.

• Finally, we conclude with a summary of the chapter in Section 3.6.

3.2 Graph Interpolation

In this section, we formally present DAG interpolants, a new form of interpolants that subsumes sequence

interpolants (see Chapter 2).

DAG interpolants extend sequence interpolants to a set of formulas annotating edges of a directed

acyclic graph. We also show that sequence interpolants are a special case of DAG interpolants.

In this chapter, we write

• F for the set of all possible formulas;

• G = (V,E, ven, vex) for a DAG with an entry node ven ∈ V and an exit node vex ∈ V , where ven

has no predecessors, vex has no successors, and every node v ∈ V lies on a (ven, vex)-path (a path

from ven to vex);

• desc(v) and anc(v) for the sets of edges that can reach and are reachable from a node v ∈ V ,

respectively; and

• LE : E → F for a map from edges to formulas.

We call LE an edge labeling. We use LE(vi, vj) to denote the formula labeling the edge (vi, vj) ∈ E.

Definition 3.1 (DAG Interpolants (DItp)). Let G and LE be as defined above. A DAG Interpolant

for G and LE is a map DItp : V → F such that

1. ∀(vi, vj) ∈ E ·DItp(vi) ∧ LE(vi, vj)⇒ DItp(vj),

2. DItp(ven) ≡ true,

3. DItp(vex) ≡ false, and

4. ∀vi ∈ V · FV (DItp(vi)) ⊆
(⋃

e∈desc(vi) FV (LE(e))
)
∩
(⋃

e∈anc(vi) FV (LE(e))
)

.

Roughly speaking, if we take any path v1, . . . , vi, . . . , vn through the DAG, where v1 = ven and

vn = vex, the DAG interpolant DItp(vi) at node vi is an interpolant for the pair of formulas ∧
j∈[1,i−1]

LE(vj , vj+1),
∧

j∈[i,n−1]
LE(vj , vj+1)

 .
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v1

v2

v3

v4 v5

v7

v8

v6

v2'

i0 = 0 ^ x0 = 0

i0 < n

i0 � n ^ x4 = x0

i0  2 i0 > 2

x1 = 0 ^ x3 = x1 x2 = i0^
x3 = x2

i1 = i0 + 1

i1 � n^
x4 = x3

x4 � 0

v1

v2

v3

v4 v5

v7

v8

v6

{true}

{false}

v2'

i0 = 0 ^ x0 = 0

i0 < n

i0 � n ^ x4 = x0

i0  2 i0 > 2

x1 = 0 ^ x3 = x1 x2 = i0^
x3 = x2

i1 = i0 + 1

i1 � n^
x4 = x3

x4 � 0

{x0 � 0}

{x0 � 0}

{x0 � 0^
i0 � 0}{x0 � 0}

{x3 � 0}

{x3 � 0}
{x4 � 0}

(a) (b)

Figure 3.1: Example illustrating DAG interpolants.

Note that this is true assuming universal quantification of variables in DItp(vi) that are not shared

between the A and B formulas.

From this observation, we note that if we restrict Definition 3.1 to DAGs where each node has at

most one branch, i.e., the DAG is a single path from ven to vex, the definition of DAG interpolants

reduces to that of sequence interpolants (see Section 2.4). Thus, sequence interpolants are a special case

of DAG interpolants. We illustrate DAG interpolants in the following example:

Example 3.1. Consider the DAG in Figure 3.1(a), where node v1 = ven and node v8 = vex. The edges of

the DAG are labeled by the formulas in LE. Figure 3.1(b) shows the same DAG with its nodes annotated

by some DAG interpolants, DItp, in curly braces. Note that DItp(v1) = true and DItp(v8) = false, as

per Definition 3.1. Consider, for instance, the edge (v4, v6); we notice that

DItp(v4) ∧ LE(v4, v6)⇒ DItp(v6),

as per condition 1 in Definition 3.1. Also, note that for each v ∈ V , the variables appearing in DItp(v)

are only those that appear both on the edges of the subgraph that can reach v and the subgraph that is

reachable from v, as per condition 4 in Definition 3.1.
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3.3 Computing DAG Interpolants

In this section, we present a procedure for computing DAG interpolants. As is the case in most interpo-

lation procedures, the first step is to prove unsatisfiability of the given formulas, after which we “mine”

the refutation proof for interpolants. In classical interpolants, we prove unsatisfiability of a pair (A,B).

In sequence interpolants, we prove unsatisfiability of the conjunction of all formulas in the sequence. In

the case of DAG interpolants, we need to show that every path through the DAG is unsatisfiable. We

do so using a DAG Condition formula.

DAG Condition Given a DAG G and edge labeling LE , we define DAGCond as follows:

DAGCond(G,LE) ≡ cv1 ∧ µ1 ∧ · · · ∧ µn, (3.1)

where µi ≡ cvi ⇒
∨

(vi,w)∈E
(cw ∧ LE(vi, w)) ; (3.2)

v1 = ven; v1, . . . , vn is a sequence of all nodes in V \ {vex} ordered by vt, a fixed linearization of the

topological ordering of the nodes in V ; and cvi is a fresh Boolean control variable representing the node

vi.

This is a standard encoding of all paths in a DAG that start in ven and end in vex. Therefore,

DAGCond(G,LE) is unsatisfiable if and only if for every (ven, vex)-path through the DAG, the con-

junction of all edge labels along the path is unsatisfiable.

Example 3.2. Consider the DAG in Figure 3.1(a); call it G and its edge labeling LE. Assume we pick

the following total (and topological) order for the nodes V of G: v1, v2, v3, v4, v5, v6, v
′
2, v7, v8. Then,

DAGCond(G,LE) ≡ cv1 ∧ µ1 ∧ · · · ∧ µ7, where

µ1 ≡ cv1 ⇒ (i0 = 0 ∧ x0 = 0 ∧ cv2)

µ2 ≡ cv2 ⇒ ((i0 < n ∧ cv3) ∨ (i0 > n ∧ x4 = x0 ∧ cv7))

µ3 ≡ cv3 ⇒ ((i0 6 2 ∧ cv4) ∨ (i0 > 2 ∧ cv5))

µ4 ≡ cv4 ⇒ (x1 = 0 ∧ x3 = x1 ∧ cv6)

µ5 ≡ cv5 ⇒ (x2 = i0 ∧ x3 = x2 ∧ cv6)

µ6 ≡ cv6 ⇒ (i1 = i0 + 1 ∧ cv′2)

µ′2 ≡ cv′2 ⇒ (i1 > n ∧ x4 = x3 ∧ cv7)

µ7 ≡ cv7 ⇒ (x4 > 0 ∧ cv8)

DAG Interpolants from Sequence interpolants We now describe how to compute DAG inter-

polants via a transformation of sequence interpolants over the formulas constituting DAGCond(G,LE).

Let I1, . . . , In+1 be some sequence interpolants for the sequence of formulas (cv1 ∧ µ1), µ2, . . . , µn

constituting DAGCond(G,LE), as defined in formula 3.1 above. From the sequence interpolants

I1, . . . , In+1, we want to extract DAG interpolants for G and LE . Specifically, for each node vi, our

goal is to extract DItp(vi) from the interpolant Ii. The following example demonstrates the difficulty

this process entails.

Example 3.3. Continuing Example 3.2, consider node v6 from Figure 3.1. We want to extract (for

instance) x3 > 0 from I6. I6 is the sequence interpolant that comes right before µ6, i.e., the one that
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satisfies the condition I6 ∧ µ6 ⇒ I ′2, by definition of sequence interpolants. The interpolant I6 can be,

for instance,

(cv6 ∧ x3 > 0) ∨ (cv7 ∧ x4 > 0).

Note that the interpolant I6 can contain both control variables (e.g., cv6) and variables that should not

appear in the DAG interpolant at node v6, namely, the variable x4. Therefore, we need a way of extracting

the “useful” part of I6: the one we need for DItp(v6).

The following procedure takes an interpolant Ii and returns a formula I ′i. When applied to the

sequence of interpolants I1, . . . , In+1, it results in DAG interpolants for G and LE .

Clean(Ii) ≡ ∀{x | x ∈ FV (Ii) ∧ ¬inScope(x, vi)} · ∀{cvj | vj ∈ V } · I[cvi ← true],

where inScope(x, vi) is is true if and only if x ∈
(⋃

e∈desc(vi) FV (LE(e))
)
∩
(⋃

e∈anc(vi) FV (LE(e))
)

.

We say that x is out-of-scope at node vi if ¬inScope(x, vi) holds.

Example 3.4. Continuing Example 3.3,

I ′6 = Clean(I6) = ∀x4, cv7 · I6[cv6 ← >] = x3 > 0.

Note that x4 is universally quantified since it is not within the set of variables that are allowed to appear

at node v6; cv6 is set to true because we want to “focus” on the label of node v6; and cv7 is universally

quantified because we do not care about the label of node v7—just v6.

By definition, Clean(Ii) is a formula over the variables that are allowed to appear at node vi.

Specifically, Clean eliminates, via universal quantification and substitution, all control variables and

out-of-scope variables at node vi. Theorem 3.1 states that the transformed interpolants resulting from

applying Clean to sequence interpolants are indeed DAG interpolants.

Theorem 3.1. Let I ′k = Clean(Ik) for all k ∈ [1, n + 1]. DItp = {vi 7→ I ′i|i ∈ [1, n + 1]} are DAG

interpolants for G and LE, as per Definition 3.1.

Proof. We proceed by showing that DItp satisfies the four conditions in Definition 3.1.

• Condition 1 : We want to show that for any two vertices vi and vj such that (vi, vj) ∈ E, we

have DItp(vi) ∧ LE(vi, vj) ⇒ DItp(vj). By definition, for any two such vertices, we know that

vi @t vj , and therefore interpolant Ii is before Ij in the computed sequence interpolants. It follows
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by definition of DAGCond and sequence interpolants that:

Ii ∧ µi ∧ · · · ∧ µj−1 ⇒ Ij

(set cvi to true and simplification)

⇒ Ii[cvi ← true] ∧ cvj ∧ LE(vi, vj) ∧ µi+1 ∧ · · · ∧ µj−1 ⇒ Ij

(let Π = {cvi+1
, . . . , cvj−1

})

⇒ Ii[cvi ← true,Π← false] ∧ cvj ∧ LE(vi, vj)⇒ Ij

(set cvj to true)

⇒ Ii[Π← false, cvi ← true, cvj ← true] ∧ LE(vi, vj)⇒ Ij [cvj ← true]

(use (∀x.f)⇒ f)

⇒ I ′i ∧ LE(vi, vj)⇒ Ij [cvj ← true]

(out-of-scope variables of vj are not in the antecedent)

⇒ I ′i ∧ LE(vi, vj)⇒ I ′j

Therefore, we have DItp(vi) ∧ LE(vi, vj)⇒ DItp(vj), since DItp(vi) = I ′i and DItp(vj) = I ′j .

• Condition 2 : Follows trivially from the fact that I1 ≡ true, by definition of sequence interpolants.

• Condition 3 : Follows trivially from the fact that In+1 ≡ false, by definition of sequence inter-

polants.

• Condition 4 : By definition of Clean(Ii), in the resulting formula I ′i, all control variables are

bound by the universal quantifier or are replaced by constants. Similarly, all non-control variables

that are not in  ⋃
e∈desc(vi)

FV (LE(e))

 ∩
 ⋃
e∈anc(vi)

FV (LE(e))


are bound by the universal quantifier.

In summary, we have shown how to compute DAG interpolants using a three-step process:

1. encode DAG as a sequence of formulas, a DAG condition, where each formula in the sequence

encodes one of the nodes and the edges emanating from it;

2. compute a sequence of interpolants for the DAG condition; and,

3. finally, transform sequence interpolants into DAG interpolants.

3.4 Verification with DAG Interpolants

In this section, we demonstrate how DAG interpolants can be utilized for proving program safety. To

that end, we present a simple declarative procedure that uses DAG interpolants to label an abstract
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reachability graph (ARG) of a given program (see Definition 2.1). We illustrate the process through

an example as we present it. In Chapter 4, we present an operational (and more detailed) verification

procedure. Our goal in this chapter is to demonstrate, generically, how DAG interpolants can be used

for verifying safety properties of programs.

In Chapter 2, we formally defined and illustrated ARGs as a mechanism for proving program safety.

Specifically, we showed that a safe, complete, well-labeled ARG A of a program P implies that the

program is safe (by Theorem 2.1). To prove program safety, we proceed in two steps:

1. Construct an ARG A of a given program P .

2. Label nodes of A (i.e., define ψ) such that the result is a safe, complete, well-labeled ARG. We

demonstrate how this can be achieved with DAG interpolants.

Abstract Reachability Graphs of Programs Given a program P = (L, δ, en, err,Var), we first

construct a DAG-shaped ARG A = (V,E, ven, ν, τ, ψ) of P . We assume that we have a procedure that

constructs well-labeled, complete, but not necessarily safe ARGs. We also assume assume that one and

only one node in the ARG maps to the error location in the program. That is, we assume that there

exists one and only one node v ∈ V such that ν(v) = err—we use verr to denote such node. The following

example shows a program and one of its possible ARGs.

Example 3.5. Consider the program P = (L, δ, en, err,Var) in Figure 3.2(a). The locations L of P

are the set of integers {1, . . . , 9}. The error location err is 8. The instruction x := 0 at location 4 is

represented by the action

(4, x := 0, 6) ∈ δ.

One possible ARG A = (V,E, ven, ν, τ, ψ) for P is shown in Figure 3.2(b). The subscript of each

node of A denotes the program location it maps to. For instance, ν(v2) = 2. The formula in curly braces

beside each node v is its label ψ(v). For instance, ψ(v1) = true. Note that using true as the label of

all nodes always results in a well-labeled ARG. For any edge (vi, vj) ∈ E in this ARG, the edge label

τ(vi, vj) is a program instruction T such that (i, T, j) ∈ δ.
This ARG is well-labeled, because all nodes are labeled true and thus satisfy Definition 2.2; complete,

because node v′2 is covered by node v2 (as shown by the backwards dotted arrow); and unsafe, since node

v8, which maps to the error location, is not labeled by false.

Intuitively, A represents an unrolling of the control-flow graph of P , where the body of the while loop

is allowed to execute at most once. This is similar to a BMC unrolling of a program [CKL04].

DAG Interpolants for Labeling ARGs Now that we have an ARG A of program P , we would like

to find a labeling ϕ of its nodes such that it becomes well-labeled, safe, and complete. To do so, we use

DAG interpolants.

We view an ARG A as a DAG G = (V ′, E′, ven, vex), where ven = ven and vex = verr. The sets of

vertices and edges, V ′ and E′, of G are the same as those in the ARG minus edges/vertices that cannot

reach verr. For example, for the ARG in Figure 3.2(b), edges (v′2, v
′
3) and (v7, v9) are not in E′, and

nodes v′3 and v9 are not in V ′.

We now need to compute an edge labeling, LE , for G that encodes the semantics of program instruc-

tions represented by the edges. For the purpose of presentation, we provide a simplified definition of our
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encoding. In practice, we use the Static single assignment (SSA) form encoding defined in [GCS11]. Let

SVar = {xv | x ∈ Var ∧ v ∈ V ′}

be the set of variables that can appear in LE . That is, for each variable x ∈ Var and node v ∈ V ′, we

create a symbolic variable xv ∈ SVar. The map SMap : SVar→ Var associates each xv with its program

variable x. The following definition formalizes the process of encoding edge labels from instructions.

Definition 3.2 (Encoding edge labels LE). For an edge (u, v) ∈ E′:

• If τ(u, v) is an assignment statement x := E, then

LE(u, v) = (xv = E[x← xu]) ∧
∧
{yv = yu | y ∈ Var ∧ y 6= x}.

• If τ(u, v) is an assume statement assume(Q), then

LE(u, v) = Q[x← xu | x ∈ var(Q)] ∧
∧
{yv = yu | y ∈ Var},

where var(Q) is the set of variables appearing in Q.

In other words, each assignment instruction to variable x is modelled as a formula that updates the

value of x at the destination node, while maintaining the values of all other variables as they were at

the source node (i.e., a frame condition). assume instructions constrain the values variables can take.

For example, for an edge (u, v) ∈ E such that τ(u, v) is x := x + 1, the edge label LE(u, v) is

xv = xu + 1 ∧ yv = yu,

assuming Var = {x, y}.
There are two points to note here

1. Our encoding results in a total onto map from satisfying assignments of DAGCond(G,LE) to

feasible program executions represented by paths from ven to verr (the node that maps to the error

location) through the ARG.

2. As a result, if DAGCond(G,LE) is unsatisfiable, we can compute DAG interpolants for G, from

which we can extract a safe well-labeling of the ARG.

Note that DAG interpolants for G will be over the set of symbolic variables SVar. Thus, to extract

a safe well-labeling for the ARG from DItp, we need to rename variables back to their original names.

Specifically, we use the following simple transformation:

ψ = {v 7→ DItp(v)[x← SMap(x) | x ∈ SVar] | v ∈ V ′} ∪ {v 7→ true | v ∈ V \ V ′}

which replaces every symbolic variable xv with its original variable x (using the map SMap). Additionally,

nodes that are in the ARG but not in G are labeled by true (thus maintaining well-labeledness of the

ARG).

Example 3.6. Recall Example 3.1 illustrated in Figure 3.1. Figure 3.1(b) happens to show the DAG

G resulting from the ARG in Figure 3.2(b). The edge labeling of G is a simplified version of our
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above encoding, to avoid too many extraneous constraints. Each variable x has a number of symbolic

counterparts, xi, where i is an integer subscript. The labels of the nodes in Figure 3.1(b) are DAG

interpolants. By removing the subscripts from symbolic variables, we arrive at a safe, well-labeled ARG,

shown in Figure 3.2(c). Our new labels also result in a complete ARG, and therefore we conclude that

the program is correct: there is no execution that can reach the error location (location 8). From the

labels of the ARG, we notice that the inductive invariant of the while loop (label of node v2) is x > 0.

Summary In this section, we have shown how to compute a safe well-labeling of an ARG using DAG

interpolants, but we have left a number of questions unanswered:

• Given a program P , how do we construct an ARG A?

• What if DAG interpolants do not result in a complete ARG?

In Chapter 4, we answer these questions by showing how to systematically grow an abstract reacha-

bility graph and use DAG interpolants to label it. In addition, we demonstrate how to incorporate AB

techniques within this IB framework to improve performance.

3.5 Related Work and Survey of Interpolation Techniques

In this section, we place DAG interpolants within the landscape of related work and provide an overview

of interpolant generation techniques.

Interpolants from Resolution Proofs In his initial work on SAT-based model checking with inter-

polation [McM03], McMillan introduced an interpolation procedure for propositional logic. McMillan’s

procedure assumes existence of a resolution proof of unsatisfiability of a pair of formulas (A,B). By

traversing the resolution proof and maintaining partial interpolants, an interpolant for (A,B) can be

computed in time linear in the size of the proof. Within the verification and decision procedures com-

munities, this resulted in a large number of papers extending McMillan’s algorithm to more expressive

theories and studying its properties.

In [McM04], McMillan introduced an interpolation procedure from refutation proofs for the theory

of linear arithmetic and uninterpreted functions; this procedure was used in the Blast software model

checker [HJMM04] for predicate discovery and the Impact software model checker for interpolation-

based verification [McM06]. Jhala and McMillan [JM07] extended [McM04] for computing quantified

interpolants of restricted form in the theory of arrays. A number of other works explored interpolation

in the theory of bitvectors [KW07, Gri11], with the goal of enabling bit-precise encodings of program

semantics.

For any pair of formulas (A,B) such that A ∧ B is unsatisfiable, there can be a range of possible

interpolants. An interpolating procedure computes one specific interpolant within a possibly infinite

set of interpolants. The work of D’Silva et al. [DKPW10] studied the range of interpolants that can

be computed from a given propositional resolution proof, characterizing them in terms of strength.

Weissenbacher [Wei12] extended [DKPW10] to strength of interpolants in first-order proof systems and

hyper-resolution proofs.

All of the above works on computing interpolants are orthogonal to the problem addressed in this

chapter: computing DAG interpolants. Our proposed procedure reduces the problem to computing
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sequence interpolants, a well-studied problem in the above-mentioned works. Thus, we can directly

leverage advances in interpolation procedures for computing DAG interpolants.

A number of new forms of interpolants have also been recently proposed. Tree interpolants [MR13]

define interpolants over a tree labeled with formulas. Tree interpolants are incomparable to DAG inter-

polants, though both subsume sequence interpolants. Disjunctive interpolants [RHK13b] generalize tree

interpolants to interpolation between a formula and one of its subexpressions. Like tree interpolants,

disjunctive interpolants are also incomparable with DAG interpolants [RHK13a].

Interpolants and Horn Clauses Recently, there has been growing interest in casting verification

problems as solving Horn-like clauses. Interpolation can be utilized as a means for solving different classes

of Horn clauses. Rümmer et al. [RHK13a] connect different forms of interpolation (classical, sequence,

DAG, tree, etc.) to different classes of Horn clauses. For instance, they show that DAG interpolants

subsume sequence interpolants and can be used for solving linear non-recursive Horn clauses. Gupta et

al. [GPR11] present a specialized procedure for solving linear non-recursive Horn clauses for the combined

theories of linear integer arithmetic and uninterpreted functions.

Interpolation-based Verification Techniques Interpolation-based verification has received a great

deal of interest over the past few years. We delay our comparison with IB techniques and others to

Chapter 4.

3.6 Conclusion

Encoding finite (bounded) program executions as formulas dates back to, at least, Cook’s proof that

3SAT is NP-Complete [Coo71]. Later, King [Kin76] introduced symbolic execution with the goal of

test generation and program exploration. Advances in SAT/SMT solving and bounded model checking

revived interest in the area. Craig interpolants added a new dimension to symbolic encodings of bounded

executions: they enabled inferring proofs of correctness for the unbounded case. In this chapter, we

introduced a new form of interpolants, DAG interpolants, that allow us to examine multiple bounded

paths through the program simultaneously through a DAG encoding. We showed that we can utilize the

power and efficiency of modern SMT solvers (with their interpolation features) to compute a Hoare-style

proof of a loop-free unrolling of a program, from which we can infer a proof of the whole program.

DAG interpolants generalize McMillan’s sequence interpolants to sets of sequences encoded as a

directed acyclic graph. As a result, we demonstrated how DAG interpolants can be used for software

verification, in a style similar to McMillan’s lazy abstraction with interpolants (LAWI). In comparison

with LAWI, our procedure does not unroll the control-flow graph of the program into a tree; instead, it

unrolls the program into a DAG, and uses DAG interpolants to hypothesize a safe inductive invariant.

DAG interpolants allow us to avoid path explosion that could result from an explicit tree unrolling

of the program by delegating the explosion to the SMT solver. In the rest of this dissertation, we

describe efficient verification algorithms that utilize DAG interpolants, demonstrate their effectiveness,

and extend them in various directions.
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Figure 3.2: Safe, complete, well-labeled ARG using DAG interpolants.



Chapter 4

Predicate Abstraction and

Interpolation-based Verification

4.1 Introduction

In Chapter 1, we categorized automated verification techniques into abstraction-based (AB) and interpolation-

based (IB), and discussed their advantages and disadvantages. In AB techniques, an abstract fixpoint

computation is used to compute an inductive invariant for the program by executing an abstract version

of the program, as defined by the abstract domain. On the other hand, IB techniques do not restrict

the search for an inductive invariant by an abstract domain and do not perform a forward/backward

fixpoint computation; instead, they operate by hypothesizing invariants from proofs of correctness of

finite paths through a program’s control-flow graph.

In this chapter, we present Ufo, an automated verification algorithm that combines AB and IB

verification. Ufo is parameterized by the degree with which IB or AB drives the analysis.1 From a

technical perspective, Ufo makes a number of contributions:

• On one extreme, when Ufo is instantiated without any predicate abstract domain, it is an efficient

implementation of the IB technique we presented in Chapter 3, where DAG interpolants are used

to hypothesize safe inductive invariants.

• On the other extreme, Ufo can be instantiated in such a way that AB techniques drive the analysis,

and DAG interpolants are simply used to add new predicates (in the CEGAR refinement phase)

in case unsafe inductive invariants are computed.

• In the middle, Ufo can be instantiated as a hybrid IB/AB algorithm, where IB and AB techniques

alternate and build on the results of each other.

All of these instantiations result in novel algorithms and allow us to evaluate different ends of the

IB/AB spectrum. Ufo is implemented in the UFOapp verification tool and framework (see Chapter 7), in

the LLVM compiler infrastructure [LA04]. Due to an unfortunate historical mistake, the Ufo algorithm

and the UFOapp tool have the same name; to clearly distinguish between them, we always use a different

font and the subscript app when we are referring to the tool. Our experimental evaluation of different

1The U in Ufo stands for under-approximation, O for over-approximation, and F for a function combining both.

31
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Ufo instantiations on a suite of C programs demonstrates (1) the utility of our IB instantiation of Ufo

and (2) the power of hybrid IB/AB instantiations in comparison with either extreme.

Contributions

We summarize this chapter’s contributions as follows:

• We present a parameterized algorithm that integrates abstraction-based and interpolation-based

verification techniques.

• We show how our algorithm can be instantiated into abstraction-based algorithms, the interpolation-

based algorithm presented in Chapter 3, as well as novel hybrid algorithms that combine advantages

of abstraction- and interpolation-based techniques.

• We evaluate the efficiency of concrete instantiations of our algorithm and show that hybrid IB/AB

instantiations of the algorithm can outperform pure IB and AB techniques. Further, we show our

DAG-interpolation-based technique (Chapter 3) outperforms an implementation of McMillan’s

original IB algorithm [McM03].

Organization

This chapter is organized as follows:

• In Section 4.2, we present the verification algorithm Ufo.

• In Section 4.3, we present an experimental evaluation of different instantiations of Ufo.

• In Section 4.4, we place Ufo within IB and AB techniques from the literature.

• Finally, in Section 4.5, we summarize the chapter.

4.2 The Ufo Algorithm

In this section, we present our parameterized verification algorithm, Ufo, and describe a range of

possible instantiations. At a high level, Ufo alternates between two phases, one using interpolants

to hypothesize a safe inductive invariant and one using an abstract fixpoint computation to compute

an inductive invariant. Both phases share information by operating over the same data structure, an

abstract reachability graph (Definition 2.1). The process continues until a safe inductive invariant or a

counterexample is found.

4.2.1 Parameterized Algorithm

The Ufo algorithm takes a program P = (L, δ, en, err,Var) and determines whether it is safe or unsafe.

The output of the algorithm is either an execution of P that ends in err, i.e., a counterexample, or a

complete, well-labeled, safe ARG A of P , indicating that the program is safe.

The novelty of Ufo lies in its combination of IB and AB techniques. Figure 4.1 illustrates the two

main states of Ufo:
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Figure 4.1: High level description of Ufo.

Algorithm 1 The Ufo Algorithm.

1: function UfoMain(Program P )
2: create node ven
3: ψ(ven)← true
4: ν(ven)← en
5: marked(ven)← true
6: labels← ∅
7: while true do
8: ExpandArg()
9: if ψ(verr) is UNSAT then

10: return SAFE
11: labels← Refine()
12: if labels = ∅ then
13: return UNSAFE
14: clear AH and FN

15: function GetFutureNode(` ∈ L)
16: if FN(`) exists then
17: return FN(`)

18: create node v
19: ψ(v)← true
20: ν(v)← `
21: FN(l)← v
22: return v

23: function ExpandNode(v ∈ V )
24: if v has children then
25: for all (v, w) ∈ E do
26: FN(ν(w))← w

27: else
28: for all (ν(v), T, `) ∈ δ do
29: w ← GetFutureNode(`)
30: E ← E ∪ {(v, w)}
31: τ(v, w)← T

• Exploring (AB): The exploration phase is an abstract fixpoint computation to compute an inductive

invariant of P . Specifically, exploring constructs an ARG of P by unwinding the control-flow graph

of P while computing node labels using an abstract post operator, Post. The result is always a

complete, well-labeled ARG. Of course, the ARG might be unsafe due to imprecision in Post.

• Generalizing (IB): Generalizing is done by computing (typically using DAG interpolants) a safe,

well-labeling of the current ARG from a proof of infeasibility of execution paths to error nodes in

the ARG. Of course, interpolants are not guaranteed to give a complete ARG.

By alternating between these two phases, Ufo combines AB and IB techniques.

The pseudo-code of Ufo is given in Algorithms 1 and 2. Function ExpandArg (Algorithm 2) is

responsible for the exploration and Refine (line 11) for generalization. Note that Ufo is parameterized

by Post (line 35). More precise Post makes Ufo more AB-like; less precise Post makes Ufo more

IB-like.
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Algorithm 2 Ufo’s ExpandArg algorithm.

32: function ExpandArg
33: v ← ven
34: while true do
35: ExpandNode(v)
36: if marked(v) then
37: marked(v)← false
38: ψ(v)← ∨

(u,v)∈E Post(u, v)

39: for all (v, w) ∈ E do
40: marked(w)← true

41: else if labels(v) bound then
42: ψ(v)← labels(v)
43: for all {(v, w) ∈ E | labels(w) unbound} do
44: marked(w)← true

45: if v = verr then break

46: if ν(v) is head of a component then
47: if ψ(v)⇒ ∨

u∈AH(ν(v)) ψ(u) then

48: erase AH(ν(v)) and FN(ν(v))
49: l←WtoExit(ν(v))
50: v ← FN(l)
51: erase FN(l)
52: for all {(v, w) ∈ E |6 ∃u 6= v · (u,w) ∈ E} do
53: erase FN(ν(w))

54: continue
55: add v to AH(ν(v))

56: l←WtoNext(ν(v))
57: v ← FN(l)
58: erase FN(l)
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Main Loop UfoMain is the main function of Ufo.2 It receives a program P = (L, δ, en, err,Var) as

input and attempts to prove that P is safe (or unsafe) by constructing a complete, well-labeled, safe

ARG for P (or by finding an execution to err). The function ExpandArg is used to construct an ARG

A = (V,E, ven, ν, τ, ψ) for P . By definition, it always constructs a complete, well-labeled ARG. Line 8

of UfoMain checks if the result of ExpandArg is a safe ARG by checking whether the label on the

node verr is satisfiable—by construction, verr is the only node in A such that ν(verr) = err. If ψ(verr) is

unsatisfiable, then A is safe, and Ufo terminates by declaring the program safe (following Theorem 2.1).

Otherwise, Refine is used to compute new labels. In Definition 4.1, we provide a specification of Refine

that maintains the soundness of Ufo.

Definition 4.1 (Specification of Refine). If there exists a feasible execution to verr in A, then Refine

returns an empty map (labels = ∅). Otherwise, it returns a map from nodes to labels such that

1. labels(verr) ≡ false,

2. labels(ven) ≡ true, and

3. ∀(u, v) ∈ E′ · labels(u)∧ Jτ(u, v)K⇒ labels(v)′, where E′ is E restricted to edges along paths to verr.

In other words, the labeling precludes erroneous executions (results in a safe ARG) and maintains well-

labeledness of A (as per Definition 2.2).

Constructing the ARG ExpandArg adopts a standard recursive iteration strategy [Bou93] for

unrolling a program’s control-flow graph into an ARG. To do so, it makes use of a weak topological

ordering (WTO) [Bou93] of program locations—see formal definition in Chapter 2. A recursive iteration

strategy starts by unrolling the innermost loops until stabilization, i.e., until a loop head is covered,

before exiting to the outermost loops. We assume that the first location in the WTO is en and the last

one is err.

ExpandArg maintains two global maps: AH (active heads) and FN (future nodes). For a loop head

l, AH(l) is the set of nodes V` ⊆ V for location l that are heads of the component being unrolled. When

a loop head is covered (line 47), all active heads belonging to its location are removed from AH (line

48). FN maps a location to a single node and is used as a worklist, i.e., it maintains the next node to be

explored for a given location. Example 4.1 demonstrates the operation of ExpandArg.

Example 4.1. Recall our example in Figure 3.2 from Chapter 3. Consider the process of constructing

the ARG in Figure 3.2(b) for the program in Figure 3.2(a). First, a WTO for this program is

1 (2 3 4 5 6) 7 9 8.

In this example, Post always returns true. When ExpandArg processes node v′2 (i.e., when v = v′2 at

line 31), AH(2) = {v2}, since the component (2 3 4 5 6) representing the loop is being unrolled and v2 is

the only node for location 2 that has been processed. When Ufo covers v′2 (line 47), it sets AH(2) = ∅
(line 48) since the component has stabilized and Ufo has to exit it. Here, WtoExit(2) = 7, so Ufo

continues processing from node v7 = FN(7) (the node for the first location after the loop).

Suppose Refine returned a new label for node v. When ExpandArg updates ψ(v) (line 42), it

marks all of its children that do not have labels in labels. This is used to strengthen the labels of

2The astute reader will probably be able to deduce this fact from the function’s name.
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v’s children with respect to the refined over-approximation of reachable states at v, using the operator

Post (line 38). Informally, Refine, typically using DAG interpolants, returns new labels for the ARG

that make it well-labeled and safe, but it might not be complete. ExpandArg continues the abstract

post computation (AB) from the results of DAG interpolants (IB). Specifically, ExpandArg continues

abstract post computation from uncovered nodes in the ARG in order to make the ARG complete—the

safe invariant inductive.

ExpandArg only attempts to cover nodes that are loop heads. It does so by checking if the label

on a node v is subsumed by the labels on AH(ν(v)) (line 47). If v is covered, Ufo exits the loop (line

49); otherwise, it adds v to AH(ν(v)).

Post Operator Ufo is parameterized by the abstract operator, Post. For sound implementations of

Ufo, Post should take an edge (u, v) as input and return a formula φ such that ψ(u) ∧ Jτ(u, v)K⇒ φ′,

thus maintaining well-labeledness of the ARG. In the IB case, Post always returns true, the weakest

possible abstraction. In the combined IB+AB case, Post is driven by an abstract domain, e.g., based

on predicate abstraction.

Theorem 4.1 (Soundness). Given a program P , if a Ufo run on P terminates with SAFE, the resulting

ARG A is safe, complete, and well-labeled. If Ufo terminates with UNSAFE, then there exists an

execution that reaches err in P .

4.2.2 Instantiating Post and Refine

We have presented Ufo without giving a concrete definition of Post and Refine.

For Refine, one possible instantiation is using DAG interpolants, as described in Section 3.4. First,

we view the ARG A as a DAG G and encode its instructions as edge labels LE . Then, we compute DAG

interpolants DItp for the DAG by proving that there are no feasible executions to verr. We assume that

Refine returns an empty labeling if no DAG interpolants exist. Note that if no DAG interpolants exist,

then DAGCond(G,LE) is satisfiable, and we can extract a concrete program execution from en to err

from the satisfying assignment.

Let us now explore different instantiations of Post. By varying the implementation of Post, we

vary the degree with which AB versus IB drives the construction of a safe inductive invariant.

• In its simplest implementation, Post always returns true. Note that this always results in well-

labeling of the ARG. In this case, Post is not involved at all in constructing an inductive invariant,

and all (useful) labeling of the ARG is performed by DAG interpolants, as computed by the function

Refine. Therefore, this is an IB instantiation of Ufo. In fact, this is an implementation of the

algorithm we specified in Chapter 3.

• We can implement Post using Cartesian predicate abstraction and instantiate it with some set

Preds of predicates. (See Section 2.5 for predicate abstraction definitions.) Specifically,

Post(u, v) = CPost(ψ(u), τ(u, v)).

In this case, ExpandArg computes an inductive invariant for P—represented as a complete, well-

labeled ARG. Then, if the inductive invariant is unsafe, Refine uses DAG interpolants to relabel

the ARG such that it is safe and well-labeled. If the result is not a complete ARG, ExpandArg
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continues the abstract fixpoint computation from the new labels produced by DAG interpolants.

This is hybrid IB/AB technique.

• Similarly, we can implement Post using Boolean predicate abstraction as

Post(u, v) = BPost(ψ(u), τ(u, v)).

This is similar to the Cartesian abstraction instantiation above, and is therefore a hybrid technique

as well. The difference is that Boolean abstraction is more precise and more expensive than

Cartesian abstraction; we thus consider that this instantiation is driven more by the AB portion

of the algorithm. As illustrated in Figure 4.1, the more precise Post is, the more time is spent in

ExpandArg, and, therefore, the more AB-like an instantiation is.

• We can also use Ufo as a pure AB technique. Specifically, we use ExpandArg to compute

inductive invariants using Boolean or Cartesian abstraction. If the result is an unsafe inductive

invariant, we use Refine to find new predicates to add to Preds, and then restart ExpandArg

to rebuild the ARG from scratch (i.e., the ARG is reset to a single node—the root), as in eager

abstraction [BR01].

4.3 Experimental Evaluation

In this section, we describe the implementation and evaluation of different Ufo instantiations.

Implementation The Ufo algorithm is implemented in the UFOapp tool, whose architecture, imple-

mentation, and optimizations are described in detail in Chapter 7. We mention here some implementation

details to provide a clear picture of our experimental setup:

• The UFOapp tool is implemented in the popular LLVM compiler infrastructure [LA04]. The veri-

fication algorithms operate over LLVM’s intermediate representation (bitcode). We use a combi-

nation of CIL [NMRW02], llvm-gcc, and compiler optimizations supplied by LLVM to transform

program written in C into LLVM’s intermediate representation.

• For the experiments presented in this chapter, we used MathSAT4 [BCF+08] SMT solver to

compute DAG interpolants (by computing sequence interpolants).

• We used the Z3 SMT solver [dMB08] for quantifier elimination required for transforming sequence

interpolants to DAG interpolants. Program semantics were encoded using quantifier-free formulas

over linear rational arithmetic (QF LRA).

• We implemented independent proof and counterexample checkers to ensure soundness of our results.

Our proof checker takes the ARG produced by UFOapp when the result is SAFE and checks that it

indeed encodes a safe inductive invariant of the program. The counterexample checker unrolls an

ARG into a tree and checks each path from ven to verr to see if it is feasible. All results discussed

here have been validated by an appropriate checker.
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Algorithm #Solved #Safe #Unsafe #Unsound Total Time (s)

iUfo 78 22 56 0 8,289
cpUfo 79 22 57 1 7,838
bpUfo 69 17 52 1 11,260
Cp 49 10 39 0 15,363
Bp 71 19 52 1 10,018

Wolverine 38 18 20 5 19,753

Table 4.1: Evaluation of Ufo: results summary.

Evaluation For evaluation, we used the ntdrivers-simplified, ssh-simplified, and systemc

benchmarks from the 2012 edition of the Competition on Software Verification (SV-COMP 2012) [Bey12],

and the pacemaker benchmarks from [AGC12d]. Overall, we had 105 C programs: 48 safe and 57 buggy.

All experiments were conducted on an Intel Xeon 2.66GHz processor running a 64-bit Linux, with a 300

second time and 4GB memory limits per program.

We have evaluated 5 instantiations of Ufo:

1. a pure IB, called iUfo, where Post always returns true;

2. a hybrid instantiation with Cartesian predicate abstraction, called cpUfo;

3. a hybrid instantiation with Boolean predicate abstraction, called bpUfo;

4. a pure AB instantiation with Cartesian predicate abstraction, called Cp; and

5. a pure AB instantiation with Boolean predicate abstraction, called Bp.

Recall that Boolean predicate abstraction is more precise, but is exponentially more expensive than

Cartesian abstraction.

The results are summarized in Table 5.1. For each configuration, we show the number of instances

solved (#Solved), number of safe (#Safe) and unsafe (#Unsafe) instances solved, number of unsound

results (#Unsound), where a result is unsound if it does not agree with the benchmark categorization

in [Bey12], and the total time.

On these benchmarks, cpUfo outperforms other configurations, both in total time and number of

instances solved. The iUfo configuration is a very close second. We have also compared our results

against the IB tool Wolverine [KW11] that implements a version of Impact [McM06] algorithm. All

configurations of Ufo perform significantly better than Wolverine.

Furthermore, we compared our tool against the results of the extensive study reported in [BK11]

for the state-of-the-art AB tools CPAChecker [BK11], Blast [BHJM07], and SatAbs [CKSY05].

Both iUfo and cpUfo configurations are able to solve all buggy transmitter examples. However,

according to [BK11], CPAChecker, Blast, and SatAbs are unable to solve most of these examples,

even though they are run on a faster processor with a 900s time limit and 16GB of memory. Additionally,

on the ntdrivers-simplified, iUfo, cpUfo, and bpUfo perform significantly better than all of the

aforementioned tools.

Table 4.2 presents a detailed comparison between different instantiations of Ufo on 32 (out of 105)

programs. In the table, we show time, number of iterations of the main loop in UfoMain (#Iter), and

time spent in interpolation (#iTime) and post (#pTime), respectively. Times taken by other parts of
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the algorithm (such as Clean) were insignificant and are omitted. The Cp configuration was not able

to solve all but one of these examples, and is omitted as well.

In this sample, cpUfo is best overall, however, it is often not the fastest approach on any given

example. This is representative of its performance over the whole benchmark. As expected, both iUfo

and cpUfo spend most of their time in computing interpolants (IB), while bpUfo and Bp spend most

of their time in predicate abstraction (AB).

The results demonstrate a synergy between IB and AB parts of the analysis. For example, in

toy1 BUG and s3 srvr 1a, predicate abstraction decreases the number of required iterations. Several of

the buggy examples from the token ring family cannot be solved by the pure IB iUfo configuration

alone. However, there are also some undesired interactions. For many of the safe cases that require a

few iterations, iUfo performs better than other combinations. For many unsafe cases that bpUfo can

solve, it performs much better alone than in a combination.

In summary, our results show that the novel IB, DAG-interpolation-based algorithm that underlies

Ufo (iUfo configuration) is very effective compared to the state-of-the-art approaches. Furthermore,

our results suggest potential advantages in combining IB and AB approaches, with cpUfo performing

the best overall. However, there are also some interactions where the combination does not result in the

best of the individual approaches. Inspired by these results, in Chapter 5 we explore deeper and more

general combinations of AB and IB techniques.

4.4 Related Work

In this section, we place Ufo in the context of related work. Specifically, we compare it with the most

related IB and AB techniques.

Interpolation-based Verification In its IB instantiation, Ufo is a novel interpolation-based verifi-

cation algorithm: It extends McMillan’s original IB technique, LAWI [McM06], by unrolling the program

into a DAG instead of a tree and by using DAG interpolants discharge all infeasible unsafe executions and

to compute new ARG labels. In effect, Ufo uses the SMT solver to enumerate acyclic program paths,

whereas LAWI enumerates those paths explicitly via a tree unrolling. Furthermore, when instantiated

with a predicate abstract domain, Ufo extends LAWI by using an abstract post operator to push labels

computed by DAG interpolants down the abstract reachability graph. As we show in our experiments,

this can lead to fewer iterations and faster verification.

In some sense, our IB instantiation of Ufo is similar to McMillan’s first finite-state model checking

algorithm with interpolants [McM03]. McMillan’s algorithm unrolls a symbolic transition relation a

finite number of times. If bounded model checking does not find a counterexample for the bounded

unrolling, an invariant is hypothesized using interpolants. In Ufo, we unroll the program’s transition

relation at a fine-grained level, unrolling loops instead of the whole relation; and compute fine-grained

invariants, per program location instead of global (monolithic) invariants for the whole program.

Synergy [GHK+06] and Dash [BNRS08] can also be viewed as interpolation-based algorithms, in

the sense that they do not utilize an abstract domain and abstract fixpoint computation. The difference

is they use weakest preconditions (WP) over infeasible program executions to hypothesize a safe inductive

invariant. In contrast, Ufo examines (refines) multiple program paths at the same time. Moreover, Ufo

uses interpolants for refinement, an approach that has been shown to provide more relevant predicates



Chapter 4. Predicate Abstraction and Interpolation-based Verification 40

than WP-based refinement [HJMM04]. We believe that our multi-path refinement strategy can be easily

implemented in Dash to generate test-cases for multiple frontiers or split different regions at the same

time.

Abstraction-based Verification Lazy abstraction [HJMS02] is the closest AB algorithm to Ufo.

Lazy abstraction operates by unrolling the program into an abstract reachability tree and labeling nodes

using a predicate abstract domain. If a path through the tree reaches an unsafe error node, new predicates

are computed and the subtree that reached the unsafe node is rebuilt using the refined abstract domain—

in comparison, eager abstraction rebuilds the whole tree with the new set of predicates. Ufo can be

seen as extending lazy abstraction in two directions. First, Ufo unrolls a program into a DAG instead

of a tree, providing the same advantages as compared to LAWI. Second, it uses interpolants to directly

label the ARG, and only applies predicate abstraction to the frontier nodes that are not known to reach

an error location.

Slam is one of the first software verification algorithms to marry predicate abstraction and CEGAR.

Its success was primarily due to its application to Windows device driver verification and bug finding.

Specifically, SLAM showed that a small set of predicates is often sufficient for proving API-usage prop-

erties, e.g., locking and unlocking patterns, of device drivers. SLAM implements an eager abstraction

refinement loop: First, an invariant is computed using Boolean (or Cartesian) predicate abstraction

starting from an empty set of predicates. A refinement phase detects abstract counterexamples and

checks one of them. If the counterexample is spurious, new predicates are added to the predicate set,

and the abstract fixpoint is restarted using a refined predicate abstract domain. Our AB instantiation

of Ufo in Section 4.3 is similar to Slam in the sense that is eager: resets the ARG when an unsafe

inductive invariant is found. However, our instantiation uses DAG interpolants to find predicates for

potentially exponentially many abstract counterexamples, instead of a single abstract counterexample.

We are not the first to apply interpolation to multiple program paths. In [EKS06], Esparza et al.

use interpolants to find predicates that eliminate multiple spurious counterexamples simultaneously.

Their algorithm uses an eager abstraction-refinement loop and a BDD-based interpolation procedure.

In contrast, the refinement in Ufo uses an SMT-solver-based interpolation procedure, providing more

efficient implementations and more expressivity in terms of logics used to model program semantics.

4.5 Conclusion

In this chapter, we presented Ufo, an algorithm that combines abstraction-based and interpolation-

based software verification techniques. Traditional static analyses for verification fall under the AB

category: they employ an abstract domain (implicitly or explicitly) and an abstract fixpoint computation

to produce an inductive program invariant. AB techniques spend most of their time executing the

program under abstract semantics (using abstract transformers), which is typically an expensive process

for expressive abstract domains. IB techniques are a new class of techniques that eschews use of expensive

abstract transformers; instead, IB techniques examine program executions using efficient theorem provers

and hypothesize safe inductive invariants using Craig interpolants.

Ufo is parameterized by the degree with which IB and AB techniques drive the verification process.

On the one hand, it can be instantiated as a pure IB technique: an implementation of the DAG-

interpolation-based technique presented in Chapter 3. On the other hand, it can be instantiated as an
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AB technique using a predicate abstract domain, where DAG interpolants are simply used to refine the

abstract domain by augmenting the predicate set. In the middle, it is a hybrid IB/AB technique, where

IB and AB verification alternate, reusing the results of each other.

We have evaluated different instantiations of Ufo: pure IB, pure AB (with Boolean and Cartesian

abstraction), and hybrid IB/AB. Our evaluation of these different instantiations on a suite of C programs

demonstrates (1) the power of our DAG-interpolation-based algorithm in relation to other IB techniques

and (2) the advantages gained from combining AB and IB techniques. In Chapter 5, we extend Ufo to

utilize infinite-height domains for the AB portion, as opposed to just predicate abstraction, and show

how DAG interpolants can be used to refine results of abstract interpretation.
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Table 4.2: Evaluation of Ufo: detailed results.



Chapter 5

Abstract Interpretation and

Interpolation-based Verification

“There is no abstract art. You must always

start with something. Afterward you can

remove all traces of reality.”

— Pablo Picasso

5.1 Introduction

As we have discussed in Chapter 1, abstraction-based verification relies on an abstract domain D to

iteratively compute an inductive invariant of a given program. This process is typically described as

an abstract interpretation (AI) of program semantics. The price of AI’s efficiency is false alarms (i.e.,

inability to find a safe I) that are introduced through imprecision inherent in many steps of the analysis,

e.g., widening, join, inexpressiveness of the domain, etc.

In this chapter, we describe Vinta1, an iterative algorithm that uses interpolants to refine and guide

AI away from false alarms. Vinta marries the efficiency of AI with the precision of Bounded Model

Checking (BMC) [BCCZ99] and the ability to generalize from concrete executions of interpolation-based

software verification. Vinta can be viewed through two different lenses:

• Vinta is an improved and generalized version of Ufo (described in Chapter 4), where arbitrary

abstract domains can be used for the AB portion of the algorithm. Ufo is restricted to predi-

cate abstraction, a finite-height domain: with a given set of predicates, only a finite number of

invariants is expressible (as Boolean combinations of predicates). Vinta extends Ufo to general

abstract domains, like intervals and octagons, by tackling an array of issues including widening

and abstraction. The array of possible instantiations of Vinta strictly subsume those of Ufo.

• Vinta is a refinement loop for invariant generation with AI. Specifically, Vinta computes an

inductive invariant using some abstract domain; if the result is an unsafe inductive invariant,

Vinta uses an extension of DAG interpolants to recover imprecision lost due to widening, joins,

or even inexpressiveness in the abstract domain.

1Verification with INTerpolation and Abstract interpretation.
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Figure 5.1: High level description of Vinta.

Overview The main phases of the algorithm are shown in Figure 5.1. Given a program P and a safety

property ϕ, Vinta starts by computing an inductive invariant I of P using an abstract domain D (the

AI phase). If I is a safe inductive invariant, then P is safe as well. Otherwise, Vinta goes to a novel

refinement phase. First, refinement uses BMC to check for a counterexample in the explored part of P .

Second, if BMC fails to find a counterexample, it uses an interpolation-based procedure to strengthen I

to I ′. If I ′ is not inductive (checked in the “Is Inductive?” phase), the AI phase is repeated to weaken

I ′ to include all reachable states of P . This process continues until either a safe inductive invariant or

a counterexample is found, or resources (i.e., time or memory) are exhausted.

Our presentation of Vinta closely follows that of Ufo: The BMC and interpolant generation phases

are used to compute a new form of DAG interpolants, called Restricted DAG Interpolants, that are used

to recover imprecision in the AI phase.

Contributions

We summarize this chapter’s contributions as follows:

• We present an extension of the algorithm presented in Chapter 4 to arbitrary abstract domains

(instead of predicate abstraction) for the AB portion. The resulting algorithm is a refinement loop

for invariant generation with abstract interpretation.

• We present the notion of restricted DAG interpolants, which are DAG interpolants that utilize

invariants computed via abstract domains to “guide” the interpolation process.

• We evaluate instantiations of our algorithm and show that it can outperform state-of-the-art tools

from the literature as well as previous instantiations from Chapter 4.
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Organization

This chapter is organized as follows:

• In Section 5.2, we illustrate the operation of Vinta on a simple example.

• In Section 5.4, we formally present Vinta along with its widening and refinement strategies.

• In Section 5.5, we present a thorough evaluation of Vinta with different abstract domains and

refinement strategies.

• In Section 5.6, we describe closely related work.

• Finally, in section 5.7, we conclude the chapter.

5.2 Illustrative Example

In this section, we illustrate the operation of Vinta for proving safety of a program P from [GCNR08],

shown in Figure 5.2(a). P is known to be hard to analyze without refinement, and even the refinement

approaches of Gulavani et al. [GHK+06] and Wang et al. [WYGI07] fail to solve it (see Gulavani et

al. [GCNR08] for details). Dagger [GCNR08] (the state-of-the-art in AI refinement) solves it using

the domain of polyhedra by computing the safe inductive invariant x 6 y 6 100x. Here, we show how

Vinta solves the problem using the Box (intervals) domain and refinement to compute an alternative

safe inductive invariant:

x > 4⇒ y > 100.

In this example, the refinement must recover imprecision lost due to widening and join, and extend the

base-domain with disjunction. All of this is done automatically using a new form of DAG interpolants.

Step 1.1: AI Vinta works on a cutpoint graph (CPG) of a program: a collapsed CFG where the only

nodes are cutpoints (loop heads), entry, and error locations. A CPG for P is shown in Figure 5.2(b).

Vinta uses a typical AI computation following the recursive iteration strategy [Bou93] and widening

at every loop unrolling. Additionally, it records the finite traces explored by AI in an Abstract Reacha-

bility Graph (ARG). Analogous to Ufo in Chapter 4, an ARG is an unrolling of the CPG. Each node u

of an ARG corresponds to some node v of a CPG, and is labeled with an over-approximation of the set

of states reachable at that point.

Figure 5.2(c) shows the ARG from the first AI computation on P . Each node vi in the ARG refers

to node `i in the CPG. The superscript in nodes va2 , vb2, vc2, and vd2 is used to distinguish between the

different unrollings of the loop at `2. The labels of the nodes va2 , vb2, and vc2 over-approximate the states

reachable before the first, second, and third iterations of the loop, respectively. The node vc2 is said

to be covered (i.e., subsumed) by {va2 , vb2}. The labels of the set {va2 , vb2} form an inductive invariant

I1 ≡ (x > 0 ∧ y > 0). The node vd2 is called an unexplored child, and has no label and no children. It is

used later when AI computation is restarted. Finally, note that I1 is not safe (the error location ve is

not labeled by false), and thus refinement is needed.
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Figure 5.2: Illustration of Vinta on a safe program.

Step 1.2: AI-guided Refinement First, Vinta uses a BMC-style technique [GCS11] to check, using

an SMT solver, whether the current ARG has a feasible execution to the error node `e. There is no such
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execution in our example (see Figure 5.2(c)) and the algorithm moves to the next phase.

The second phase of refinement is based on an extension of DAG interpolants (Chapter 3) that we

call Restricted DAG Interpolants. Specifically, the procedure takes the current ARG (Figure 5.2(c)) and

its labeling and, using restricted DAG interpolants, produces a new safe (but not necessarily induc-

tive) labeling shown in Figure 5.2(d). From an abstract interpretation perspective, refinement reversed

the effects of widening by restoring the upper bounds on x. Note that the new labels are stronger

than the original ones—this is guaranteed by the procedure and the original labels are used to guide

it. Alternatively, from an interpolation-based verification perspective, we used restricted DAG inter-

polants to compute a safe well-labeling of the ARG that took into account the labeling produced by

the Box abstract domain. Intuitively, restricted DAG interpolants answer the question: what is needed

to strengthen the current labels of the ARG in order to make it safe and well-labeled? For instance,

interpolants strengthened the label of vb2 by simply adding the constraint x 6 1 to the AI label, instead

of computing a completely new label. We say the refinement here is guided by AI.

Step 1.3: Is Inductive? The new ARG labeling (Figure 5.2(d)) is not inductive since the label of vc2

is not contained in the label of vb2 (checked by an SMT solver), and another AI phase is started.

Step 2.1: AI (again) AI is restarted “lazily” from the nodes that have unexplored children. Here,

vc2 is the only such node. This ensures that AI is restarted from the inner-most loop where the invariant

is no longer inductive. First, the label of vc2 is converted into an element of an abstract domain by a

given abstraction function. In our example, the label is immediately expressible in Box, so this step is

trivial. Then, AI computation is restarted as usual.

In the following four iterations (omitted here), refinement works with the AI-based exploration to

construct a safe inductive invariant x > 4 ⇒ y > 100. Note that since the invariant contains a

disjunction, this means refinement had to recover from imprecision of join (as well as recovering from

imprecision due to widening shown above).

This example is simple enough to be solved with other interpolation-based techniques, but they

require more iterations. The Ufo algorithm (Chapter 4), without AI-guided exploration and refinement,

needs nine iterations, and a version of Vinta with unguided refinement from Ufo needs seven. Our

experiments suggest that this translates into a significant performance difference on bigger programs.

5.3 Preliminaries: Abstract Domains

Abstract and concrete domains are often presented as Galois-connected lattices [CC77]. In this chapter,

we use a more operational presentation. Without loss of generality, we restrict the concrete domain to a

set B of all Boolean expressions over program variables (as opposed to the powerset of concrete program

states). We define an abstract domain as a tuple D = (D,>,⊥,t,O, α, γ), where

• D is the set of abstract elements with two designated elements;

• >,⊥ ∈ D, called top and bottom, respectively;

• two binary functions t,O : D ×D → D, called join and widen, respectively; and

• two functions: an abstraction function α : B → D and a concretization function γ : D → B.
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Algorithm 3 The Vinta algorithm.

1: function VintaMain(Program P )
2: create nodes ven, verr
3: ψ(ven)← true
4: ν(ven)← en
5: ψ(verr)← false
6: ν(verr)← err
7: marked(ven)← true
8: labels← ∅
9: while true do

10: ExpandArg()
11: if ψ(verr) is unsatisfiable then
12: return SAFE
13: labels← Refine(A)
14: if labels = ∅ then
15: return UNSAFE

16: function GetFutureNode(` ∈ L)
17: if FN(`) is defined then
18: return FN(`)

19: create node v
20: ψ(v)← true
21: ν(v)← `
22: FN(l)← v
23: return v

24: function ExpandNode(v ∈ V )
25: if v has children then
26: for all (v, w) ∈ E do
27: FN(ν(w))← w

28: else
29: for all (ν(v), T, `) ∈ δ do
30: w ← GetFutureNode(`)
31: E ← E ∪ {(v, w)}
32: τ(v, w)← T

The functions respect the expected properties: α(true) = >, γ(⊥) = false, for x, y, z ∈ D, if z = xty
then γ(x) ∨ γ(y) ⇒ γ(z), etc. Note that D has no meet and no abstract order—we do not use them.

Finally, we assume that for every program statement T , there is a sound abstract transformer APostD
such that if d2 = APostD(T, d1) then γ(d1) ∧ JT K ⇒ γ(d2)′, where d1, d2 ∈ D, and for a formula X, X ′

is X with all variables primed.

5.4 The Vinta Algorithm

In this section, we formally describe Vinta and discuss its properties. Vinta is shown in Algorithms 3

and 4. Vinta is based on Ufo, but improves it in several directions:

1. It extends Ufo to arbitrary abstract domains using a new form of widening;

2. While in theory Vinta is compatible with the refinement strategy of Ufo, in Section 5.4.3 we

describe the shortcomings of Ufo’s refinement in our setting and present a new and advanced

refinement strategy.

3. It employs a more efficient covering strategy (line 53): instead of checking subsumption against

nodes of the current unrolling of a given loop—as in Ufo—Vinta checks subsumption against all

visited nodes in the construction of an ARG.

The following presentation of Vinta closely follows that of Ufo in Chapter 4; we point out and

explain the major differences: widening, refinement, abstract post computation, and covering.

5.4.1 Main Algorithm

VintaMain Function VintaMain in Algorithm 3 implements the loop in Figure 5.1. It takes a

program P = (L, δ, en, err,Var) and checks whether the error location err is reachable. Without loss
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Algorithm 4 Vinta’s ExpandArg algorithm.

33: function ExpandArg
34: vis← ∅
35: FN← ∅
36: FN(err)← verr
37: v ← ven
38: while true do
39: `← ν(v)
40: ExpandNode(v)
41: if marked(v) then
42: marked(v)← false
43: ψ(v)← ComputePost(v)
44: ψ(v)←WidenWith({ψ(u) | u ∈ vis(`)}, ψ(v))
45: for all (v, w) ∈ E do
46: marked(w)← true

47: else if labels(v) is defined then
48: ψ(v)← labels(v)
49: for all {(v, w) ∈ E | labels(w) is undefined} do
50: marked(w)← true

51: vis(`)← vis(`) ∪ {v}
52: if v = verr then break

53: if Smt.IsValid(ψ(v)⇒ ∨
u∈vis(`),u6=v ψ(u)) then

54: erase FN(`)
55: repeat
56: `←WtoExit(`)
57: until FN(`) is defined
58: v ← FN(`)
59: erase FN(`)
60: for all {(v, w) ∈ E |6 ∃u 6= v · (u,w) ∈ E} do
61: erase FN(ν(w))

62: else
63: `←WtoNext(`)
64: v ← FN(`)
65: erase FN(`)
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of generality, we assume that every location in L is reachable from en and can reach err (ignoring the

semantics of actions). In addition, we assume that all nodes in L are cutpoints (loop heads), and every

action is a loop-free program segment between two cutpoints (as in large-block encoding [BCG+09]).

We call the induced CFG a cutpoint graph (CPG). VintaMain maintains a globally accessible ARG

A = (V,E, ven, ν, τ, ψ). If VintaMain returns SAFE, then A is safe, complete, and well-labeled (thus

proving safety of P by Theorem 2.1).

VintaMain is parameterized by (1) the abstract domain D and (2) the refinement function Refine.

First, an ARG is constructed by ExpandArg using an abstract transformer APostD. For simplicity of

presentation, we assume that all labels are Boolean expressions that are implicitly converted to and from

D using functions α and γ, respectively. ExpandArg always returns a complete and well-labeled ARG.

So, on line 11, VintaMain only needs to check whether the current ARG is safe. If the check fails,

Refine is called to find a counterexample and remove false alarms. We describe our implementation

of Refine in Section 5.4.3, but the correctness of the algorithm depends only on the following abstract

specification of Refine, as introduced in Chapter 4.

Definition 5.1 (Specification of Refine (Chapter 4)). Refine returns an empty map (labels = ∅) if

there exists a feasible execution from ven to verr in A. Otherwise, it returns a map labels from nodes to

Boolean expressions such that

1. labels(ven) ≡ true,

2. labels(verr) ≡ false,

3. ∀(u, v) ∈ E · labels(u) ∧ Jτ(u, v)K⇒ labels(v)′.

In our case, refinement uses BMC and interpolation through an SMT solver to compute labels,

therefore, if no labels are found, refinement produces a counterexample as a side effect.

Whenever Refine returns a non-empty labeling (i.e., false alarms were removed), VintaMain calls

ExpandArg again. ExpandArg uses labels to relabel the existing ARG nodes and uses APostD to

expand the ARG further (if the resulting labeling is not an inductive invariant).

The ExpandArg Algorithm ExpandArg constructs the ARG in a recursive iteration strategy [Bou93],

It assumes existence of a weak topological ordering (WTO) [Bou93] of the CPG and two functions,

WtoNext and WtoExit, as described in Chapter 2.

ExpandArg maintains two local maps: vis and FN. vis maps a cutpoint ` to the set of visited nodes

corresponding to `, and FN maps a cutpoint ` to the first unexplored node v ∈ V such that ν(v) = `.

The predicate marked specifies whether a node is labeled using AI (marked is true) or it gets a label

from the map labels produced by Refine (marked is false). Marks are propagated from a node to

children (lines 45 and 49). Initially, the entry node is marked (line 7), which causes all of its descendants

to be marked as well. AI over all incoming edges of a node v is done using ComputePost(v) that

over-approximates PostD computations over all predecessors of a node v (that are in vis).

Note that Vinta uses an ARG as an efficient representation of a disjunctive invariant: for each

cutpoint ` ∈ L, the disjunction
∨
v∈vis(`) ψ(v) is an inductive invariant. The key to efficiency is two-

fold. First, a possibly expensive abstract subsumption check is replaced by an SMT check (line 53).

Second, inspired by [GCNR08], an expensive powerset widening is replaced by a simple widening scheme,

WidenWith, that lifts base domain widening O to a widening between a set and a single abstract

element. We describe WidenWith in detail in Section 5.4.2.
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Abstract Post The function ComputePost propagates and joins labels (abstract states) to some

node v. Formally:

ComputePost(v) =
⊔
{APostD(τ(u, v), α(labels(u))) | (u, v) ∈ E, u ∈ vis} .

In other words, abstract post under domain D is computed along each edge ending in v, and all of the

resulting abstract states are joined.

5.4.2 Widening

In this section, we describe the powerset widening operator WidenWith used by Vinta.

Definition 5.2 (Specification of WidenWith). Let D = (D,>,⊥,t,O, α, γ) be an abstract domain.

An operator OW : Pf (D) × D → D is a WidenWith operator if and only if it satisfies the following

two conditions:

1. (soundness) for any finite set X ⊆ D and y ∈ D, (γ(X) ∨ γ(y))⇒ (γ(X) ∨ γ(X OW y));

2. (termination) for any finite set X ⊆ D and a sequence {yi}i ∈ D, the sequence {Zi}i ⊆ D, where

Z0 = X and Zi = Zi−1 ∪ {Zi−1 OW yi}, converges, i.e., ∃i · γ(Zi+1)⇒ γ(Zi),

where γ(X) ≡ ∨x∈X γ(x), for some set of abstract elements X.

Note that unlike traditional powerset widening operators (e.g., Bagnara et al. [BHZ06]), WidenWith

is defined for a pair of a set and an element (and not a pair of sets). It is inspired by the widening

operator OpT of Gulavani et al. [GCNR08], but differs from it in three important aspects.

1. We do not require that if z = WidenWith(X, y), then z is “bigger” than y, i.e., γ(y) ⇒ γ(z).

Intuitively, if X and y approximate sets of reachable states, then z over-approximates the frontier

of y (i.e., states in y but not in X).

2. Our termination condition is based on concrete implication (and not on an abstract order).

3. We do not require thatX or the sets {Zi}i in Definition 5.2 contain only “maximal” elements [GCNR08].

These differences give us more freedom in designing the operator and significantly simplify the imple-

mentation.

We now describe two implementations of WidenWith: the first, WidenWitht, is based on OpT
from [GCNR08] and applies to any abstract domain; the second, WidenWith∨, requires an abstract

domain that supports disjunction (∨), i.e., precise join, and set difference (\). One example of such a

domain is Boxes [GC10]. The operators are defined as follows:

WidenWitht(∅, y) = y (5.1)

WidenWith∨(∅, y) = y (5.2)

WidenWitht(X, y) = xO(x t y) (5.3)

WidenWith∨(X, y) =
(

(
∨
X)O(

∨
X ∨ y)

)
\
∨
X (5.4)

where x ∈ X is picked non-deterministically from X.

Theorem 5.1 (WidenWith{∨,t} Correctness). WidenWitht and WidenWith∨ satisfy the two con-

ditions of Definition 5.2.
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Algorithm 5 Ufo’s refinement technique.

1: function UfoRef(ARG A = (V,E, ven, ν, τ, ψ))
2: LE ← EncodeBmc(A)
3: DItp← ComputeDItp((V,E, ven, verr),LE)
4: return DecodeBmc(DItp)

5.4.3 Refinement

In this section, we formalize Vinta’s refinement strategy. We start by describing Restricted DAG Inter-

polants (RDI): an extension of a DAG Interpolants that utilizes information from abstract interpretation

to guide the process of computing interpolants.

In the rest of this section, we write

• F for a set of formulas;

• G = (V,E, ven, vex) for a DAG with an entry node ven ∈ V and an exit node vex ∈ V , where ven

has no predecessors, vex has no successors, and every node v ∈ V lies on a (ven, vex)-path;

• desc(v) and anc(v) for the sets of edges that can reach and are reachable from a node v ∈ V ,

respectively;

• LE : E → F and LV : V → F for maps from edges and vertices to formulas, respectively; and

• FV (ϕ) for the set of free variables in a given formula ϕ.

Definition 5.3 (Restricted DAG Interpolant (RDI)). Let G, LE , and LV be as defined above. An RDI

for G,LE , and LV is a map RDItp : V → F such that

1. ∀e = (vi, vj) ∈ E ·
(
RDItp(vi) ∧ LV (vi) ∧ LE(e)

)
=⇒ RDItp(vj) ∧ LV (vj),

2. RDItp(ven) ≡ true,

3.
(
RDItp(vex) ∧ LV (vex)

)
≡ false, and

4. ∀vi ∈ V · FV (RDItp(vi)) ⊆
(⋃

e∈desc(vi) FV (LE(e))
)
∩
(⋃

e∈anc(vi) FV (LE(e))
)

.

Whenever ∀v · LV (v) ≡ true, we say that an RDI is unrestricted or simply a DAG Interpolant (DI).

Intuitively, when all node labels are set to true, the definition of RDI reduces to that of DI, as point 1

of Definition 5.3 simplifies to

∀e = (vi, vj) ∈ E ·
(
LV (vi) ∧ LE(e)

)
=⇒ LV (vj).

In general, in a proper RDI (i.e., when ∃v · LV (v) 6= true), RDItp(v) is not an interpolant by itself, but

is a projection of an interpolant to LV (v). That is, RDItp(v) is the restriction needed to turn LV (v)

into an interpolant. Thus, an RDI can be weaker (and possibly easier to compute) than a DI.

Ufo Refinement Ufo’s refinement procedure is shown in Algorithm 5, where the function En-

codeBmc encodes the edge labeling LE of the ARG, the function ComputeDItp computes DAG

interpolants, and the function DecodeBmc removes subscripts (introduced by encoding) from DItp to

produce a well-labeling of the ARG.
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Figure 5.3: Example illustrating refinement with restricted DAG interpolants.

Given an ARG A = (V,E, ven, ν, τ, ψ) with an error node verr, it first constructs an edge labeling

LE using a BMC encoding such that for each ARG edge e, LE(e) is the semantics of the corresponding

action τ(e) (i.e., Jτ(e)K), with variables renamed and added as necessary, and such that for any path

v1, . . . , vk, the formula
∧
i∈[1,k) LE(vi, vi+1) encodes all executions from v1 to vk. Many BMC encodings

can be used for this step—we use the approach of [GCS11]. For example, for the three edges (v1, v
a
2 ),

(va2 , ve), (va2 , v
b
2) of the ARG in Figure 5.2(c), the LE map is

LE(v1, v
a
2 ) ≡ x0 = 0 ∧ y0 = 0, (5.5)

LE(va2 , ve) ≡ xφ > 4 ∧ yφ 6 2 ∧ xφ = x0 ∧ yφ = y0, and (5.6)

LE(va2 , v
b
2) ≡ (x1 = x0 + 1 ∧ y1 = y0 + 1) ∨ (5.7)

(x0 > 4 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1) ∨
(x1 = x0 ∧ y1 = y0),

where, in addition to renaming, two extra variables xφ and yφ were added for the SSA encoding since

node ve has multiple edges incident on it. LE(v1, v
a
2 ) ∧ LE(va2 , ve) encodes all executions on the path

v1, v
a
2 , ve, and LE(v1, v

a
2 ) ∧ LE(va2 , v

b
2) encodes all executions on the path v1, v

a
2 , v

b
2. Second, the refined

labels are computed as a DAG interpolant DItp = ComputeDItp((V,E, ven, verr),LE). Note that after

reversing the renaming done by BMC encoding (i.e., removing the subscripts), the DI DItp is a safe (by

condition 2 of Definition 5.3) well-labeling (by condition 1 of Definition 5.3) of the ARG A. Furthermore,

DItp(v) is expressed completely in terms of variables defined before and used after v ∈ V . The result

of refinement on our running example is shown in Figure 5.2(d).

Using Ufo Refinement with Vinta While Vinta can use Ufo’s refinement since it satisfies the

specification of Refine in Definition 5.1, we found that it does not scale in practice. We believe there

are two key reasons for this.

The first reason is that the DI-based refinement uses just the ARG while completely ignoring its

node labeling (i.e., the set of reachable states discovered by AI). Thus, while the DI-based refinement

recovers from imprecision to remove false alarms, it may introduce imprecision for further exploration

steps. For example, consider the program in Figure 5.3(a) and its ARG in Figure 5.3(b) produced by AI

using the Box domain. The ARG has a false alarm (in reality, ve is unreachable). A possible DI-based

refinement changes the labels of vb2, vc2, and ve to x 6 10 ∧ x 6= 9, x 6= 9, and false, respectively. While

this is sufficient to eliminate the false alarm, the new labels do not form an inductive invariant, and
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therefore further unrolling of the ARG is required. Note that the refinement “improved” the label of vc2

to x 6= 9, but “lost” an important fact x 6 10. Instead, we propose to restrict refinement to produce

new labels that are stronger than the existing ones. In this example, such a restricted refinement would

change the labels of vb2, vc2, and ve to x 6 10 ∧ x 6= 9, x 6 10 ∧ x 6= 9, and false, thus resulting in a safe

inductive invariant.

The second reason is that ARGs produced by AI are large, and generating interpolants directly from

them takes too long. Here, again, part of the problem is that refinement does not use the existing

labeling to simplify the constraints. Instead of computing a DI of the ARG, we propose to compute an

RDI restricted by the current labeling. Since an RDI is simpler (i.e., weaker, has fewer connectives, etc.)

than a corresponding DI, the hope is that it is also easier to compute.

Vinta Refinement Vinta’s refinement procedure VintaRef is shown in Algorithm 6. It takes a

labeled ARG A and returns a new safe well-labeling labels of A. First, it encodes the edges of A
using BMC encoding as described above (line 3). Second, the current labeling ψ of A is encoded to

match the renaming introduced by the BMC encoding. For example, for va2 in our running example,

ψ(va2 ) ≡ x = 0 ∧ y = 0, and the encoding LV (va2 ) ≡ x0 = 0 ∧ y0 = 0. Third, it uses ComputeRDItp

(shown in Algorithm 6) to compute an RDI of A restricted by LV . Fourth, it turns the RDI into a DI

by conjoining it with LV (line 7). Finally, it decodes the labels by undoing the BMC encoding (line 9).

The function ComputeRDItp computes an RDI by reducing it to computing DAG interpolants,

which can be computed using the procedure from Chapter 3. Note that it requires that LV is a well-

labeling, i.e., for all (u, v) ∈ E, LV (u) ∧ LE(u, v)⇒ LV (v). The idea is to “communicate” to the SMT

solver the restriction of node u by conjoining LV (u) to every edge from u. This information might be

helpful to the SMT solver for simplifying its proofs2 and the resulting interpolants.

Theorem 5.2 (Correctness of VintaRef). VintaRef satisfies the specification of Refine in Defini-

tion 5.1.

There is a simple generalization of VintaRef: ψ on line 3 can be replaced by any over-approximation

U of reachable states. The current invariant represented by the ARG is a good candidate and so are

invariants computed by other techniques. The only restriction is that ComputeRDItp requires U to

be a well-labeling. Removing this restriction from ComputeRDItp remains an open problem.

5.5 Experimental Evaluation

We have implemented Vinta in the UFOapp framework (Chapter 7) for verifying C programs, which is

built on top of the LLVM compiler infrastructure [LA04]. Our implementation is an extension of our

implementation of the Ufo algorithm. Vinta’s implementation allows abstract domains to be easily

plugged in and experimented with. In the rest of this section, we describe our experimental setup and

evaluation.

Abstraction Functions We are using a simple abstraction function to convert between Boolean

expressions and Boxes and Box abstract domains. Given a formula ϕ, we first convert it to Negation

Normal Form (NNF), where negations only appear at the level of literals. Then, we replace all literals

2The abstract interpretation results conjoined to the formulas may help the SMT solver discover useful theory lemmas
and prove unsatisfiability more efficiently.
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Algorithm 6 Vinta’s refinement technique.

1: function VintaRef(ARG A = (V,E, ven, ν, τ, ψ))
2: LE ← EncodeBmc(A)
3: LV ← Encode(ψ)
4: RDItp← ComputeRDItp((V,E, ven, verr),LE ,LV )
5: if RDItp = ∅ then
6: return RDItp
7: for all v ∈ V do
8: RDItp(v)← RDItp(v) ∧ LV (v)

9: return DecodeBmc(RDItp)

Require: LV is a well-labeling of G
10: function ComputeRDItp(G, LE , LV )
11: for all e = (u, v) ∈ E do
12: LE(e)← LV (u) ∧ LE(e)

13: RDItp← ComputeDItp(G,LE)
14: return RDItp

Algorithm #Solved #Safe #Unsafe Total Time (s)

vBox 71 20 51 580 (539/41)
uBox 68 19 49 1,240 (1,162/78)
vBoxes 67 25 42 1,782 (596/1,186)
uBoxes 60 18 42 2,731 (808/1,923)
CpaAbe 65 29 36 1,167 (707/460)
CpaMemo 64 24 40 1,794 (454/1,341)
iUfo 70 20 50 1,535 (1,457/78)
cpUfo 69 19 50 1,687 (1,509/178)
bpUfo 64 15 49 1,062 (57/1,006)

Table 5.1: Evaluation of Vinta: results summary.

involving more than one variable (e.g., x + y = 0) with true, thus over-approximating ϕ and removing

all terms not expressible in Box. Finally, for Box, we additionally use join to approximate logical

disjunction. This naive approach is very imprecise in general, but works well on our benchmarks.

Experimental Setup For evaluation, we used ntdrivers-simplified, ssh-simplified, and systemc

benchmarks from the 2012 Software Verification Competition (SV-COMP 2012) [Bey12]. In total, we

had 93 C programs (41 safe and 52 buggy).

We implemented several instantiations of Vinta:

• vBox: Vinta using Box,

• vBoxes: Vinta using Boxes,

• uBox: Vinta using Box and UfoRef for refinement,

• uBoxes, Vinta using Boxes and UfoRef.

vBox and vBoxes used VintaRef for refinement. For Box and Boxes, we used the widening operators

WidenWitht and WidenWith∨ from Section 5.4.2, respectively. In all cases, we applied widening

on every third unrolling of each loop. We compared Vinta against the top two tools from SV-COMP
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Figure 5.4: Evaluation of Vinta: Instances solved vs. timeout.

2012: CPAChecker-Abe [LW12] (CpaAbe) and CPAChecker-Memo [Won12] (CpaMemo), which

are two variations of the predicate-abstraction-based software model checker CPAChecker [BK11].

For both tools, we used the same version and configuration as in the competition. We also compared

against several instantiations of the Ufo algorithm: iUfo, cpUfo, and bpUfo, using interpolation-based

verification by itself and in combination with Cartesian and Boolean predicate abstractions, respectively.

(See Chapter 4 for a detailed description of these Ufo instantiations.)

The overall results are summarized in Table 5.1. All experiments were conducted on a 3.40GHz Intel

Core i7 processor with 8GB of RAM running Ubuntu Linux v11.10. We imposed a time limit of 500

seconds and a memory limit of 4GB per program. For each tool, we show the number of safe and unsafe

instances solved and the total time taken. For example, vBox solved 20 safe and 51 unsafe examples

in 580 seconds, spending 539s on safe ones and 41s on unsafe ones (time spent in unsolved instances

is not counted). vBox is an overall winner, and is able to solve the most unsafe instances in the least

amount of time. CpaAbe is the winner on the safe instances, with vBoxes coming in second. In the

rest of this section, we examine these results in more detail.

Instances Solved vs. Timeout Figure 5.4 shows the number of instances solved in a given timeout

for (a) safe and (b) unsafe benchmarks, respectively. To avoid clutter, we omit iUfo, bpUfo, and cpUfo

from the graphs and restrict the timeout to 120s, since only a few instances took more time. For the safe

cases, vBoxes is a clear winner for the timeout of 6 10s. Indeed, on most safe benchmarks, vBoxes

takes a lot less time to complete than CpaAbe, CpaMemo, and all other instantiations of Ufo and

Vinta. For the unsafe cases, vBox is a clear winner for all timeouts. Interestingly, the extra precision

of Boxes makes vBoxes perform poorly on unsafe instances: it either solves an unsafe instance in one

iteration (i.e., no refinement), or runs out of time in the first AI- or refinement-phase.

Detailed Comparison We now examine a portion of the benchmark suite in more detail, specifically,

safe ssh-simplified benchmarks and safe token ring benchmarks (from systemc). Table 5.2 shows

the time taken by the different instantiations of Vinta, CpaAbe, and CpaMemo. On these benchmarks,

we observe that vBoxes outperforms all other approaches.

Compared with CpaAbe and CpaMemo, vBoxes is able to solve almost all instances in much less

time. For example, on token ring.05, both CpaAbe and CpaMemo fail to return a result, but vBoxes
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Program vBoxes uBoxes vBox uBox CpaAbe CpaMemo

s3 clnt 1 0.30 0.30 8.61 13.67 7.34 11.63
s3 clnt 2 0.3 0.30 8.79 13.45 6.72 8.53
s3 clnt 3 0.30 0.29 9.01 6.80 9.72 7.10
s3 clnt 4 0.30 0.30 9.55 8.52 6.33 12.43
s3 srvr 1a 0.15 – 1.08 – 2.86 4.344
s3 srvr 1b 0.02 0.02 – – 1.49 1.64
s3 srvr 1 0.00 0.00 0.00 0.00 21.21 8.63
s3 srvr 2 0.64 115.48 – 115.13 63.44 113.07
s3 srvr 3 0.75 123.57 69.70 123.61 17.23 22.55
s3 srvr 4 0.59 168.44 85.81 168.08 7.50 14.57
s3 srvr 6 473.15 319.00 74.87 359.39 181.82 –
s3 srvr 7 13.82 – – 274.12 24.84 112.53
s3 srvr 8 0.69 78.53 245.52 76.12 18.48 8.82
token ring.01 0.94 – 4.05 – 4.13 8.04
token ring.02 2.53 – 18.29 – 6.69 49.11
token ring.03 6.06 – – – 29.55 –
token ring.04 18.22 – – – 146.43 –
token ring.05 76.29 – – – – –
token ring.06 – – – – – –
token ring.07 – – – – – –
token ring.08 – – – – – –

Table 5.2: Evaluation of Vinta: detailed results and tool comparison.

proves safety in 76 seconds. Similarly, vBoxes is superior on most ssh-simplified examples.

To understand the importance of the refinement strategy, consider the ssh-simplified benchmarks.

The invariant for most ssh-simplified instances is computable using Boxes with an appropriate

widening strategy (“widen on every fourth unrolling”). The results in the table show how Vinta’s

refinement strategy is able to recover precision when an inadequate refinement strategy is used (i.e.,

“widen on every third unrolling”). Using Ufo’s refinement, uBoxes takes substantially more time and

more iterations or fails to return a result within the allotted time limit. For example, on s3 srvr 2,

vBoxes requires a single refinement, whereas uBoxes requires 38. Positive effects of Vinta’s AI-guided

refinement are also visible in vBox vs. uBox.

In summary, our results demonstrate the power of Vinta’s refinement strategy and show how

basic instantiations of Vinta can compete and outperform highly-optimized verification tools like

CPAChecker. To further improve Vinta’s performance, it would be interesting to experiment with

other abstract domains as well as with different automatic strategies for choosing an appropriate do-

main. For example, we saw that Boxes, in comparison with Box, generates very large ARGs for unsafe

examples. One strategy would be to keep track of ARG size and time spent in refinement and revert to

a less precise abstract domain like Box when they become too large.

5.6 Related Work

Vinta is closely related to the Dagger tool of Gulavani et al. [GCNR08] that is also based on refining

AI, and to our earlier tool Ufo that combines predicate abstraction with interpolation-based verification.

The key differences between Vinta and Dagger are: (1) Dagger can only refine imprecision caused
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by widening and join. Vinta can refine imprecision up to the concrete semantics of the program (as

modeled in SMT). (2) Dagger refines joins explicitly, which may result in an exponential increase

in the number of abstract states compared to the size of the program. Vinta refines joins implicitly

using interpolants and SMT. (3) Dagger requires a specialized interpolation procedure, which, so far,

has only been developed for the octagon and the polyhedra domains. Vinta can use any off-the-shelf

interpolating SMT solver, immediately benefiting from any advances in the field.

Compared to Ufo, Vinta improves both the exploration algorithm (by extending it to an arbitrary

abstract domain) and the refinement procedure (by extending it to use intermediate invariants computed

by AI). Both of these extensions are important for Vinta’s success, as shown in the experiments in

Section 5.5.

5.7 Conclusion

Invariant generation via abstract interpretation is one of the most scalable techniques for computing

inductive invariants. The price of efficiency is false alarms created by weak invariants that fail to preclude

unsafe program states. In this chapter, we described Vinta, a refinement algorithm for general invariant

generation with abstract domains that recovers lost precision due to the different over-approximations

employed by abstract interpretation: inexpressive abstract domains, approximate joins, and widening.

Vinta is an improvement and generalization of Ufo (Chapter 4). Specifically, Vinta allows Ufo to

adopt general abstract domains (as opposed to predicate abstraction) by incorporating a novel widening

strategy. Additionally, Vinta adopts an extension of DAG interpolants for refinement, which allows it

to utilize results of abstract interpretation to compute “better” interpolants and improve SMT solving.

Our extensive evaluation demonstrates (1) the improvements Vinta makes over Ufo and state-of-the-art

tools and (2) the utility of its new refinement technique.



Chapter 6

Interpolation-based Interprocedural

Verification

“My language is a metaphor for the

metaphor.”

— Mahmoud Darwish

6.1 Introduction

In the previous chapters, we discussed new interpolation-based verification techniques, all of which

have been intraprocedural—constrained to programs with no procedure calls and recursion. Despite

the promise of interpolation-based techniques and the mass of literature on the subject, the ques-

tion of adapting interpolation-based verification to the interprocedural setting has received little at-

tention [McM10, HHP10].

In this chapter, we present Whale: an interprocedural IB algorithm that produces modular safety

proofs of (recursive) sequential programs.1 Our key insight is to use interpolation to compute a function

summary by generalizing from an under-approximation of a function, thus avoiding the need to fully

expand the function and resulting in modular proofs of correctness. The use of interpolants allows us to

produce concise summaries that eliminate facts irrelevant to the property in question. We also show how

the power of SMT solvers can be exploited in our setting by encoding a path condition over multiple (or

all) interprocedural paths of a program in a single formula. We have implemented a prototype of Whale

using the LLVM compiler infrastructure [LA04] and verified properties of low-level C code written for

the pacemaker grand challenge.

Whale can be viewed as an adaptation of lazy abstraction with interpolants (LAWI) [McM06] to the

interprocedural setting. LAWI computes a safe inductive invariant by unrolling the control-flow graph

of a given procedure and annotating it with a Hoare-style proof of correctness, with the hope that the

proof of a bounded unrolling is a proof for the whole program. Whale lifts this idea to the granularity

of procedures. Specifically, Whale unrolls the call graph of a program with procedures (and possibly

recursion). Given a bounded unrolling of a call graph, we can encode all paths through the unrolling as

1The naming is a subtle pun on McMillan’s Impact (aka LAWI) tool and algorithm [McM06]: a Whale makes a big
Impact.

59
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an SMT formula, and use an SMT solver to check if there are bugs. When no counterexamples are found,

we demonstrate how state/transition interpolants—a new notion of interpolants that we present—can

be used to annotate the call graph unrolling with procedure summaries. In a manner analogous to

LAWI, the goal is to compute annotations for the bounded unrolling that are procedure summaries for

the complete (unbounded) procedures.

Contributions

We summarize this chapter’s contributions as follows:

• We introduce a reformulation of McMillan’s lazy abstraction with interpolants algorithm [McM06]

to the interprocedural setting.

• We introduce the notion of state/transition interpolants for guessing procedure summaries, and

show how they can be computed using existing interpolant generation techniques.

• We show that our prototype implementation can outperform existing tools for verification of low-

level code from the artificial cardiac pacemaker challenge.

Organization

This chapter is organized as follows:

• In Section 6.2, we demonstrate the operation of Whale on a simple recursive program.

• In Section 6.3, we formalize concepts required for the rest of the chapter.

• In Section 6.4, we present an extension of abstract reachability graphs for proving correctness of

programs with procedures and recursion.

• In Section 6.5, we formalize Whale and discuss its properties.

• In Section 6.6, we present an experimental evaluation of Whale.

• In Section 6.7, we place Whale within related work on interprocedural analysis and interpolation-

based techniques.

• Finally, in Section 6.8, we conclude the chapter with a summary and a comparison of Whale with

Ufo and Vinta.

6.2 Illustrative Example

In this section, we use Whale to prove that mc91 in Figure 6.1, a variant of the famous McCarthy 91

function [MM70], always returns a value > 91, i.e., mc91(p) > 91 for all values of p.

Whale works by iteratively constructing a forest of abstract reachability graphs (ARGs) (we call

it an iARG) with one ARG for the main function and one ARG for each function call inside each

ARG. Each ARG Ai is associated with some function Fk; an expression Gi over the arguments of Fk,

called the guard ; and an expression Si over the arguments and the return variables of Fk, called the

summary. Note that our definition of ARGs in this chapter is slightly different from that
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in Chapter 2 in order to accommodate for parameters and returns of functions. Intuitively,

Whale uses ARG Ai to show that function Fk behaves according to Si, assuming the arguments satisfy

Gi and assuming all other functions behave according to their corresponding ARGs in the iARG. A node

v in an ARG Ai corresponds to a control location `v and is labeled by a Boolean formula ev over program

variables. Whale maintains the invariant that ev is an over-approximation of the states reachable from

those in Gi, at the entry point of Fk, along the path to v. It is always sound to let ev be true. We now

apply Whale to mc91 in Figure 6.1, producing ARGs A (starting with A1), with G and S as their guards

and summaries, respectively.

Step 1 For each ARG in Figure 6.1, the number inside a node v is the location `v and the expression

in braces is ev. For our property, mc91(p) > 91, the guard G1 is true and the summary S1 is r > 91.

The single path of A1 is a potential counterexample: it reaches the return statement (line 8), and node

8 is labeled true (which does not imply the summary r > 91). To check for feasibility of the computed

counterexample, Whale checks satisfiability of the corresponding path formula

π = true ∧ (p > 100) ∧ (r = p− 10) ∧ (r < 91)

obtained by conjoining the guard, all of the conditions and assignments on the path, and the negation

of the summary. Here, π is unsatisfiable. Hence, the counterexample is infeasible, and the ARG labeling

can be strengthened to exclude it.

Step 2 Like [McM06], Whale uses interpolants to strengthen the labels. Recall that for a pair of

formulas (A,B) such that A∧B is unsatisfiable, an interpolant I is a formula in the common vocabulary

of A and B such that A ⇒ I and I ⇒ ¬B. Intuitively, I is a weakening of A that is inconsistent with

B. Each node v in the infeasible counterexample is labeled by an interpolant obtained by letting A be

the part of the path formula for the path from root to v, and B be the rest of the path formula. The

new labeling is shown in Figure 6.1 in ARG A′1.

Step 3 Next, the second path through mc91 is added to A′1 and has to be checked for feasibility. This

path has two recursive calls that need to be represented in the path formula. For each call statement,

Whale creates a new justifying ARG, in order to keep track of the under-approximation of the callee

used in the proof of the caller and to construct the proof that the callee behaves according to a given

specification.

Let A2 and A3 be the ARGs justifying the first and the second calls, respectively. For simplicity of

presentation, assume that A2 and A3 have been unrolled and are identical to A1 in Figure 6.1. The path

formula π for the path 2, 5, . . . , 8a is constructed by under-approximating the callees by inlining them

with the justifying ARGs (shown by bold labels on the grey call-edges in A′1). Specifically,

π = true ∧ (p 6 100) ∧ (p1 = p+ 11) ∧ U1 ∧ U2 ∧ (r < 91),

where U1 and U2 represent the under-approximations of the called functions on edges (6,7) and (7,8),

respectively. This path formula is unsatisfiable and thus the counterexample is infeasible. Again, in-

terpolants are used to strengthen node labels, as shown in ARG A′′1 . Furthermore, the interpolants are

also used to generalize the under-approximations of the callees by taking the interpolant of the pair
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Figure 6.1: Illustration of Whale on the McCarthy 91 function.

(A,B), where A is the path formula of the under-approximation and B is the rest of the path formula.

The resulting interpolant I is a specification of the callee that is weaker than its under-approximation,

but strong enough to exclude the infeasible counterexample. For example, to generalize the under-

approximation U1, we set A to U1 and B to true ∧ (p 6 100) ∧ (p1 = p + 11) ∧ U2 ∧ (r < 91). The

resulting generalizations, which happen to be r > 91 for both calls, are shown on the call-edges in ARG

A′′1 with variables renamed to suit the call context.

Step 4 At this point, all intraprocedural paths of mc91 have been examined. Hence, A′′1 is a proof that

the body of mc91 returns r > 91 assuming that the first call returns r > 91 and that the second one

returns r > 91 whenever p > 91. To discharge the assumptions, Whale sets guards and summaries for

the ARGs A2 and A3 as follows: G2 = true, S2 = r > 91, G3 = p > 91 and S3 = r > 91, and can continue

to unroll them following steps 1-3 above. However, in this example, the assumptions on recursive calls to

mc91 are weaker than what was established about the body of mc91. Thus, we conclude that the ARGs

A2 and A3 are covered by A′′1 and do not need to be expanded further, finishing the analysis. Intuitively,
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the termination condition is based on the Hoare proof rule for recursive functions [Hoa71].

In practice, Whale only keeps track of guards, summaries, and labels at entry and exit nodes. Other

labels can be derived from those when needed.

Summary Whale explores the program by unwinding its control flow graph. Each time a possible

counterexample is found, it is checked for feasibility and, if needed, the labels are strengthened using

interpolants. If the counterexample is interprocedural, then an under-approximation of the callee is used

for the feasibility check, and interpolants are used to guess a summary of the called function. Whale

attempts to verify the summary in a similar manner, but if the verification is unsuccessful, it generates

a counterexample which is used to refine the under-approximation used by the caller and to guess a new

summary.

6.3 Preliminaries: Procedural Programs and Hoare Proofs

This section presents important definitions required in the rest of the chapter. Specifically, we extend

and modify the definition of programs from Chapter 2 to contain procedures and procedure calls. We

also review some Hoare logic rules for reasoning about procedure calls and recursion.

Program Syntax We divide program statements into simple statements and function calls. A simple

statement is either an assignment statement x := E or a conditional statement assume(Q), where x is

a program variable, and E and Q are an expression and a Boolean expression over program variables,

respectively. We write JT K for the standard semantics of a simple statement T .

Functions are declared as

func foo (p1, . . . , pn) : r1, . . . , rk Bfoo,

defining a function with name foo, n parameters P = {p1, . . . , pn}, k return variables R = {r1, . . . , rk},
and body Bfoo. We assume that a function never modifies its parameters. The return value of a function

is the valuation of all return variables at the time when the execution reaches the exit location. Functions

are called using syntax

b1, . . . , bk = foo (a1, . . . , an)

interpreted as a call to foo, passing values of local variables a1, . . . , an as parameters p1, . . . , pn, respec-

tively, and storing the values of the return variables r1, . . . , rk in local variables b1, . . . , bk, respectively.

The variables {ai}ni=1 and {bi}ki=1 are assumed to be disjoint. Moreover, for all i, j ∈ [1, n], such that

i 6= j, we have ai 6= aj . That is, there are no duplicate elements in {ai}ni=1. The same holds for the set

{bi}ki=1.

Program Model A program P = (F1, F2, . . . , Fn) is a list of n functions. Each function F is a tuple

(L, δ, en, ex,P,R,Var), where

• L is a finite set of control locations,

• δ is a finite set of actions,

• en, ex ∈ L are designated entry and exit locations, respectively, and
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P ′ ⇒ P {P}T{Q} Q⇒ Q′

{P ′}T{Q′}

(P ′ ∧ ~p = ~a)⇒ P {P}BF {Q} (Q ∧ ~p, ~r = ~a,~b)⇒ Q′

{P ′}~b = F (~a){Q′}

{P}~b = F (~a){Q} ` {P}BF {Q}
{P}~b = F (~a){Q}

Figure 6.2: Hoare logic rules for interprocedural reasoning.

• P, R and Var are sets of parameter, return and local variables, respectively (we use no global

variables).

An action (`1, T, `2) ∈ δ is a tuple where `1, `2 ∈ L and T is a program statement over Var ∪ P ∪R.

We assume that the control-flow graph (CFG) represented by (L, δ) is a directed acyclic graph (DAG),

where loops are modeled by tail recursion. Execution starts in the first function in the program. For a

function F = (L, δ, en, ex,P,R,Var), we write L(F ) for L, δ(F ) for δ, etc. We write ~pi and ~ri to denote

vectors of parameter and return variables of Fi.

Floyd-Hoare Logic A Hoare Triple [Hoa69] {P}T{Q}, where T is a program statement and P and

Q are propositional formulas, indicates that if P is true of program variables before executing T , and

T terminates, then Q is true after T completes. P and Q are called the pre- and the postcondition,

respectively.

We make use of three proof rules shown in Figure 6.2:

• The first is the rule of consequence, indicating that a precondition of a statement can be strength-

ened whereas its postcondition can be weakened.

• The second is the rule of function instantiation, where BF is a body of a function F with parameters

~p and returns ~r. It explicates the conditions under which F can be called with actual parameters ~a,

returning ~b, and with P ′ and Q′ as pre- and postconditions, respectively. For this rule, we assume

that P is over the set of variables ~p and Q is over the variables ~p and ~r.

• The third is the rule of recursion, indicating that a recursive function F satisfies the pre-/postconditions

(P , Q) if the body of F satisfies (P , Q) assuming that all recursive calls satisfy (P , Q).

For two sets of triples X and Y , X ` Y indicates that Y can be proven from X (i.e., X is weaker than

Y ). We also say ` X to mean that X is valid, i.e., that it follows from the axioms.

6.4 Interprocedural Reachability Graphs

In this section, we extend and modify the definition of abstract reachability graphs from Chapter 2 to

handle procedure calls and define safety over pre-/post-conditions as opposed to error locations. At a

high level, an ARG represents an exploration of the state space of a function, while making assumptions

about the behavior of other functions it calls. We define a forest of ARGs, called an Interprocedural

Abstract Reachability Graph (iARG), to represent a modular proof of correctness of a program with

multiple functions.
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Abstract Reachability Graphs (ARGs) Let F = (L, δ, en, ex,P,R,Var) be a function. A Reacha-

bility Graph (RG) of F is a tuple (V,E, ε, ν, τ) where

• (V,E, ε) is a DAG rooted at ε ∈ V ,

• ν : V → L is a node map, mapping nodes to control locations such that ν(ε) = en and ν(v) = ex

for every leaf node v,

• and τ : E → δ is an edge map, mapping edges to program actions such that for every edge (u, v) ∈ E
there exists (ν(u), τ(u, v), ν(v)) ∈ δ.

We write V e = {v ∈ V | ν(v) = ex} for all leaves (exit nodes) in V . We call an edge e, where τ(e) is a

call statement, a call-edge. We assume that call-edges are ordered in some linearization of a topological

order of (V,E).

An Abstract Reachability Graph (ARG) A of F is a tuple (U,ψ,G, S), where

• U is reachability graph of F ,

• ψ is a node labeling that labels the root and leaves of U with formulas over program variables,

• G is a formula over P called a guard,

• and S is a formula over P ∪R called a summary.

For example, ARG A1 is given in Figure 6.1 with a guard G1 = true, a summary S1 = r 6 91, and

with ψ shown in braces.

An ARG A is complete if and only if for every path in F there is a corresponding path in A.

Specifically, A is complete if and only if every node v ∈ V has a successor for every action (ν(v), T, `) ∈ δ,
i.e., there exists an edge (v, w) ∈ E such that ν(w) = ` and τ(v, w) = T . It is safe if and only if for every

leaf v ∈ V , ψ(v) ⇒ S. For example, in Figure 6.2, ARG A′′1 is safe and complete, ARG A′1 is complete

but not safe, and other ARGs are neither safe nor complete.

Interprocedural ARGs An Interprocedural Abstract Reachability Graph (iARG) IA(P ) of a program

P = (F1, . . . , Fn) is a tuple (σ, {A1, . . . ,Ak}, RJ , RC), where

• σ : [1, k]→ [1, n] maps ARGs to corresponding functions, i.e., Ai is an ARG of Fσ(i),

• {A1, . . . ,Ak} is a set of ARGs,

• RJ is an acyclic justification relation between ARGs such that ({A1, . . . ,Ak}, RJ ) is the justifi-

cation tree of IA(P ) rooted at A1,

• and RC is a covering relation between ARGs.

The justification tree corresponds to a partially unrolled call graph. Informally, if (Ai,Aj) ∈ RJ

then there is a call-edge in Ai that is justified (expanded) by Aj . We write Ai vJ Aj for the ancestor

relation in the justification tree. Given two nodes u, v ∈ Vi, an interprocedural (u, v)-path in Ai is a

(u, v)-path in Ai in which every call-edge e is expanded, recursively, by a trace in an ARG Aj , where

(Ai,Aj) ∈ RJ . For convenience, we assume that σ(1) = 1, and use a subscript to refer to components

of an Ai in IA(P ), e.g., ψi is the node labeling of Ai.
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An ARG Ai is directly covered by Aj if and only if (Ai,Aj) ∈ RC . Ai is covered by Aj if and only if

Aj vJ Ai and Aj is directly covered by another ARG. Ai is covered if and only if it is covered by some

Aj ; otherwise, it is uncovered. A covering relation RC is sound if and only if for all (Ai,Aj) ∈ RC :

• Ai and Aj are mapped to the same function Fl, i.e., σ(i) = σ(j) = l;

• i 6= j and Ai is not an ancestor of Aj , i.e., Ai 6vJ Aj ;

• the specification of Aj is stronger than that of Ai, i.e., {Gj}~r = Fl(~p){Sj} ` {Gi}~r = Fl(~p){Si};

• and Aj is uncovered.

For example, for ARGs in Figure 6.1, (A3, A
′′
1 ) ∈ RC , and A′′1 is uncovered. A3 is left incomplete, since

the validity of its guard and summary follow from the validity of the guard and summary of A′′1 :

{true}Bmc91{r > 91} ` {p > 91}Bmc91{r > 91},

where (true, r > 91) and (p > 91, r > 91) are the guard and summary pairs of A′′1 and A3, respectively.

An iARG IA(P ) is safe if and only if A1 is safe. It is complete if and only if every uncovered ARG

Ai ∈ IA(P ) is complete.

6.5 The Whale Algorithm

In this section, we provide a detailed exposition of Whale. We begin with an overview of its basic

building blocks.

Overview Given a program P = (F1, . . . Fn) and a pair of formulas (G,S), our goal is to decide

whether ` {G}BF1
{S}. Whale starts with an iARG IA(P ) = (σ, {A1}, RJ , RC) where σ(1) = 1, and

RJ and RC are empty relations. A1 has one vertex v and ν(v) = en(F1). The guard G1 and summary S1

are set to G and S, respectively. In addition to the iARG, Whale maintains a map J from call-edges

to ARGs and an invariant that (Ai,Aj) ∈ RJ if and only if there exists e ∈ Ei such that J (e) = Aj .
Whale is an extension of Impact [McM06] to interprocedural programs. Its three main operations

(shown in Algorithm 7), ExpandARG, CoverARG, and RefineARG, correspond to their counter-

parts of Impact. ExpandARG adds new paths to explore, CoverARG ensures that there is no

unnecessary exploration, and RefineARG checks for presence of counterexamples and guesses guards

and summaries. All operations maintain soundness of RC . Whale terminates either when RefineARG

finds a counterexample, or when none of the operations are applicable. In the latter case, the iARG is

complete. We show at the end of this section that this also establishes the desired result: ` {G1}BF1
{S1}.

ExpandARG adds new paths to an ARG Ai if it is incomplete, by replacing an RG Ui with a

supergraph U ′i . Implicitly, new ARGs are created to justify any new call-edges, as needed, and are

logged in the justification map J . A new ARG Aj is initialized with a Gj = Sj = true and Vj = {v},
where v is an entry node. The paths can be added one-at-a-time (as in Impact and in the example in

Section 6.2), all-at-once (by adding a complete CFG), or in other ways. Finally, all affected labels are

reset to true.

CoverARG covers an ARG Ai by Aj . Its precondition maintains the soundness of RC . Furthermore,

we impose a total order, ≺, on ARGs such that Ai @ Aj implies Ai ≺ Aj , to ensure that CoverARG
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Algorithm 7 The Whale Algorithm.

Require: Ai is uncovered and incomplete
1: function ExpandARG(ARG Ai)
2: replace Ui with a supergraph U ′i ,

where Ui is the unwinding of Ai
3: Reset(Ai)

Require: Ai 6vJ Aj , σ(i) = σ(j),
Ai and Aj are uncovered,
{Gj}BFσ(i){Sj} ` {Gi}BFσ(i){Si}

4: function CoverARG(ARGs Ai and Aj)
5: RC ← RC \ {(Al,Ai) | (Al,Ai) ∈ RC}
6: RC ← RC ∪ {(Ai,Aj)}

7: function Reset(ARG Ai)
8: ∀v · ψi(v)← true
9: for all {Aj | ∃e ∈ Ei · J (e) = Aj} do

10: (Gj , Sj)← (true, true)
11: Reset(Aj)

12: function Update(ARG Ai, g, s)
13: (Gi, Si)← (Gi ∧ g, Si ∧ s)
14: Reset(Ai)

Require: Ai is uncovered,
ν(v) = ex(Fσ(i)),
ψi(v) 6⇒ Si

15: function RefineARG(vertex v in Ai)
16: cond← Gi ∧ iARGCond(Ai, {v}) ∧ ¬Si
17: if cond is unsatisfiable then
18: g0, s0, g1, s1, . . . , sm+1 ←STItp(cond)
19: ψi(v)← ψi(v) ∧ Si
20: ψi(εi)← ψi(εi) ∧ g0
21: let e1, . . . , em be a topologically ordered

sequence of all call-edges in Ai
that can reach v

22: for all ek = (u,w) ∈ e1, . . . , em do
23: Update(J (ek),Guard(gk),Sum(sk))

24: else
25: if i = 1 then
26: Terminate with UNSAFE
27: RC ← RC \ {(Al,Ai) | (Al,Ai) ∈ RC}
28: for all {Aj | (Aj ,Ai) ∈ RJ } do
29: Reset(Aj)

Require: Ai is uncovered, safe, and complete
30: function UpdateGuard(ARG Ai)
31: Gi ← ψ(εi)

is not applicable indefinitely. Note that once an ARG is covered, all ARGs it covers are uncovered (line

5).

RefineARG is the core of Whale. Given an exit node v of some unsafe ARG Ai, it checks

whether there exists an interprocedural counterexample in IA(P ), i.e., an interprocedural (εi, v)-path

that satisfies the guard Gi and violates the summary Si. This is done using iARGCond to construct a

condition cond that is satisfiable if and only if there is a counterexample (line 16). If cond is satisfiable

and i = 1, then there is a counterexample to {G1}BF1 {S1}, and Whale terminates (line 24). If cond

is satisfiable and i 6= 1, the guard and the summary of Ai are invalidated, all ARGs covered by Ai are

uncovered, and all ARGs used to justify call-edges of Ai are reset (lines 25-26). If cond is unsatisfiable,

then there is no counterexample in the current iARG. However, since the iARG represents only a partial

unrolling of the program, this does not imply that the program is safe. In this case, RefineARG uses

interpolants to guess guards and summaries of functions called from Ai (lines 17-22) that can be used

to replace their under-approximations without introducing new counterexamples.

The two primary distinctions between Whale and Impact are in constructing a set of formulas

to represent an ARG and in using interpolants to guess function summaries from these formulas. We

describe these below.

6.5.1 Interprocedural ARG Condition

An ARG condition of an ARG A is a formula ϕ such that every satisfying assignment to ϕ corresponds to

an execution through A, and vice versa. A naive way to construct it is to take a disjunction of all the path
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conditions of the paths in the ARG. ARG Conditions are the similar to DAG Conditions, DAGCond,

in Chapter 3: they encode paths through a DAG labeled with formula-labeled edges. Here, we use ARG

Conditions as building blocks for encoding interprocedural program paths. An interprocedural ARG

condition of an ARG A in an iARG IA(P ) (computed by the function iARGCond) is a formula ϕ

whose every satisfying assignment corresponds to an interprocedural execution through Ai in IA(P )

and vice versa.

We assume that Ai is in static single assignment (SSA) form [CFR+91] (i.e., every variable is assigned

at most once on every path). iARGCond uses the function ARGCond to compute a ARG condition2:

ARGCond(Ai, X) ≡ C ∧D, where

C = cεi ∧
∧
v∈V ′i

{cv ⇒
∨
{cw | (v, w) ∈ Ei}},

D =
∧

(v,w)∈E′i

{(cv ∧ cw)⇒ Jτi(v, w)K | τi(v, w) is simple}, (6.1)

ci are Boolean control variables for nodes of Ai such that a variable cv corresponds to node v, and

V ′i ⊆ Vi and E′i ⊆ Ei are sets of nodes and edges, respectively, that can reach a node in the set of

exit nodes X. Intuitively, C and D encode all paths through Ai and the corresponding path condition,

respectively. ARGCond ignores call statements which (in SSA) corresponds to replacing calls by non-

deterministic assignments.

Example 6.1. Consider computing ARGCond(A′1, {8, 8a}) for the ARG A′1 in Figure 6.1, where c8 and

c8a represent the two exit nodes, on the left and on the right, respectively. Then,

C =c2 ∧ (c2 ⇒ (c3 ∨ c5)) ∧ (c3 ⇒ c8)∧
(c5 ⇒ c6) ∧ (c6 ⇒ c7) ∧ (c7 ⇒ c8a) and

D =(c2 ∧ c3 ⇒ p 6 100)∧
(c3 ∧ c8 ⇒ r = p− 10)∧
(c2 ∧ c5 ⇒ p 6 100)∧
(c5 ∧ c6 ⇒ p1 = p+ 11).

Any satisfying assignment to C ∧D represents an execution through the path 2,3,8 or 2,5,. . . ,8, where

the call statements on edges (6,7) and (7,8) set p2 and r non-deterministically.

The function iARGCond(Ai, X) computes an interprocedural ARG condition for a given ARG and

a set X of exit nodes of Ai by using ARGCond and interpreting function calls. A naive encoding is

to inline every call-edge e with the justifying ARG J (e), but this results in a monolithic formula which

hinders interpolation in the next step of RefineARG. Instead, we define it as follows:

iARGCond(Ai, X) ≡ ARGCond(Ai, X) ∧
m∧
k=1

µk, where

µk ≡ (cvk ∧ cwk)⇒ ((~pσ(j), ~rσ(j) = ~a,~b) ∧ iARGCond(Aj , V ej )), (6.2)

2In practice, we use a more efficient encoding described in [GCS11].
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m is the number of call-edges inAi, e = (vk, wk) is the kth call-edge3, Aj = J (e), and τ(e) is~b = Fσ(j)(~a).

Intuitively, µk is the under-approximation of the kth call-edge e in Ai by the traces in the justifying

ARG Aj = J (e). Note that iARGCond always terminates since the justification relation is acyclic.

Example 6.2. Following Example 6.1, iARGCond(A′1, {8, 8a}) is (C ∧D) ∧ µ1 ∧ µ2, where C ∧D are

as previously defined, and µ1, µ2 represent constraints on the edges (6, 7) and (7, 8). Here,

µ1 = (c6 ∧ c7)⇒ ((p′ = p1 ∧ p2 = r′) ∧ARGCond(A2, {8})).

That is, if an execution goes through the edge (6,7), then it has to go through the paths of A2—the ARG

justifying this edge. Using primed variables avoids name clashes between the locals of the caller and the

callee.

Lemma 6.1. Given an iARG IA(P ), an ARG Ai ∈ IA(P ), and a set of exit nodes X, there exists a

total onto map from satisfying assignments of iARGCond(Ai, X) to interprocedural (εi, X)-executions

in IA(P ).

A corollary to Lemma 6.1 is that for any pair of formulas G and S, G ∧ iARGCond(Ai, X) ∧ S is

unsatisfiable if and only if there does not exist an execution in Ai that starts at εi in a state satisfying

G and ends in a state v ∈ X satisfying S.

6.5.2 Guessing Guards/Summaries with State/Transition Interpolants

Our goal now is to show how under-approximations of callees in formulas produced by iARGCond can

be generalized. First, we define a function

SpecCond(Ai, X, I) ≡ ARGCond(Ai, X) ∧
m∧
k=1

µk, where

µk = (cvk ∧ cwk)⇒ ((~pσ(j), ~rσ(j) = ~a,~b) ∧ (qk ⇒ tk)),

I = {(qk, tk)}mk=1 is a sequence of formulas over program variables, and the rest is as in the definition of

iARGCond. SpecCond is similar to iARGCond, except that it takes a sequence of pairs of formulas

(pre- and postconditions) that act as specifications of the called functions on the call-edges {ek}mk=1 along

the paths to X in Ai. Every satisfying assignment of SpecCond(Ai, X, I) corresponds to an execution

through Ai ending in X, where each call-edge ek is interpreted as assume(qk ⇒ tk).

Lemma 6.2. Given an iARG IA(P ), an ARG Ai ∈ IA(P ), a set of exit nodes X, and a sequence of for-

mulas I = {(qk, tk)}mk=1, there exists a total and onto map from satisfying assignments of SpecCond(Ai, X, I)

to (εi, X)-executions in Ai, where each call-edge ek is interpreted as assume(qk ⇒ tk).

Given an unsatisfiable formula Φ = Gi ∧ iARGCond(Ai, X) ∧ ¬Si, the goal is to find a sequence of

pairs of formulas I = {(qk, tk)}k such that Gi∧SpecCond(Ai, X, I)∧¬Si is unsatisfiable, and for every

tk, iARGCond(Aj , V ej )⇒ tk, where Aj = J (ek). That is, we want to weaken the under-approximations

of callees in Φ, while keeping Φ unsatisfiable. For this, we use interpolants.

We require a stronger notion of interpolants than usual:

3Recall, call-edges are ordered in some linearization of a topological order of RG Ui.
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Definition 6.1 (State/Transition Interpolants). Let Π = ϕ0 ∧ · · · ∧ ϕn+1 be unsatisfiable. A sequence

of formulas g0, s0, . . . , gn−1, sn−1, gn is a state/transition interpolant sequence of Π, written STItp(Π),

if and only if

1. ϕ0 ⇒ g0,

2. ∀i ∈ [0, n] · ϕi+1 ⇒ si,

3. ∀i ∈ [0, n] · (gi ∧ si)⇒ gi+1,

4. and gn ∧ ϕn+1 is unsatisfiable.

We call gi and si the state- and transition-interpolants, respectively.

STItp(Π) can be computed by a repeated application of current SMT interpolation algorithms [CGS10]

on the same resolution proof:

gi = Itp(

i∧
j=0

ϕj ,

n+1∧
j=i+1

ϕj , pf) and

si = Itp(ϕi,

i−1∧
j=0

ϕj ∧
n+1∧
j=i+1

ϕj , pf),

where pf is a fixed resolution proof and Itp(A,B, pf) is a Craig interpolant of (A,B) from pf.

Recall that RefineARG (Algorithm 7), on line 16, computes a formula cond = Gi∧ϕ∧
∧m
k=1 µk∧¬Si

using iARGCond for ARG Ai and an exit node v, where µk is an under-approximation representing

the call-edge ek = (uk, wk). For simplicity of presentation, let τ(ek) be ~bk = Fk(~ak). Assume cond is

unsatisfiable and let g0, s0, . . . , sm, gm+1 be state/transition interpolants for cond. By definition, each

sk is an over-approximation of µk that keeps cond unsatisfiable. Similarly, g0 is an over-approximation

of Gi that keeps cond unsatisfiable, and gk, where k 6= 0, is an over-approximation of the executions of

Ai assuming that all call statements on edges ek, . . . , em are non-deterministic. This is due to the fact

that (Gi ∧ϕ∧µ1 ∧ · · · ∧µj−1)⇒ gj . Note that g0, s0, . . . , sm, gm+1 are also state/transition interpolants

for the formula

Gi ∧ ϕ ∧ (g1 ⇒ s1) ∧ · · · ∧ (gm ⇒ sm) ∧ ¬Si.

The goal (lines 18–22) is to use the sequence {(gk, sk)}mk=1 to compute a sequence I = {(qk, tk)}mk=1 such

that

Gi ∧ SpecCond(Ai, {v}, I) ∧ ¬Si

is unsatisfiable. By definition of an interpolant, sk is over the variables ~ak, ~bk, cuk , and cwk , whereas tk

has to be over ~pk and ~rk, to represent a summary of Fk. Similarly, gk is over ~ak, ~bk, cuj , and cwj for all

j > k, whereas qk has to be over ~pk to represent a guard on the calling contexts. This transformation is

done using the following functions:

Sum(sk) ≡ sk[cuk , cwk ← >][~ak,~bk ← ~pk, ~rk]

Guard(gk) ≡ ∃Q · gk[cu ← (uk v u) | u ∈ Vi][~ak ← ~pk],

where the notation ϕ[x ← y] stands for a formula ϕ with all occurrences of x replaced by y, w v u

means that a node u is reachable from w in Ai, and Q is the set of all variables in gk except for ~ak.
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Given a transition interpolant sk, Sum(sk) is an over-approximation of the set of reachable states by

the paths in J (uk, wk). Guard(gk) sets all (and only) successor nodes of uk to true, thus restricting gk

to executions reaching the call-edge (uk, wk); furthermore, all variables except for the arguments ~ak are

existentially quantified, effectively over-approximating the set of parameter values with which the call

on (uk, wk) is made.

Lemma 6.3. Given an ARG Ai ∈ IA(P ), and a set of exit nodes X, let Φ = Gi∧ iARGCond(Ai, X)∧
¬Si be unsatisfiable and let g0, s0, . . . , sm, gm+1 be STItp(Φ). Then,

Gi ∧ SpecCond(Ai, X, {(Guard(gk),Sum(sk))}mk=1) ∧ ¬Si

is unsatisfiable.

Example 6.3. Let cond = true∧ϕ∧ µ1 ∧ µ2 ∧ (r < 91), where true is the guard of A′1, ϕ is C ∧D from

Example 6.1, µ1 and µ2 are as defined in Example 6.2, and (r < 91) is the negation of the summary of

A′1. A possible sequence of state/transition interpolants for cond is g0, s0, g1, s1, g2, s2, g3, where

g1 = (r < 91⇒ (c6 ∧ c7 ∧ c8a)),

s1 = ((c6 ∧ c7)⇒ p2 > 91),

g2 = (r < 91⇒ (c7 ∧ c8a ∧ p2 > 91)), and

s2 = ((c7 ∧ c8a)⇒ r > 91).

Hence, Guard(g1) = ∃r · r < 91 (since all cu, where node u is reachable from node 6, are set to true),

Sum(s1) = r > 91 (since r is the return variable of mc91), Guard(g2) = p > 91, and Sum(s2) = r > 91.

RefineARG uses (Guard(gk),Sum(sk)) of each edge ek to strengthen the guard and summary

of its justifying ARG J (ek). While Guard(gk) may have existential quantifiers, it is not a problem

for iARGCond since existentials can be skolemized. However, its may be a problem for deciding

the precondition of CoverArg. In practice, we eliminate existentials using interpolants by observing

that for a complete ARG Ai, ψi(εi) is a quantifier-free safe over-approximation of the guard. Once

an ARG Ai is complete, UpdateGuard in Algorithm 7 is used to update Gi with its quantifier-free

over-approximation. Hence, an expensive quantifier elimination step is avoided.

6.5.3 Soundness and Completeness

By Lemma 6.1 and Lemma 6.2, Whale maintains an invariant that every complete, safe and uncovered

ARG Ai means that its corresponding function satisfies its guard and summary assuming that all other

functions satisfy the corresponding guards and summaries of all ARGs in the current iARG. Formally,

let Y and Z be two sets of triples defined as follows:

Y ≡ {{Gj}~b = Fσ(j) (~a){Sj} | Aj ∈ IA(P ) is uncovered or directly covered}
Z ≡ {{Gi}BFσ(i) {Si} | Ai ∈ IA(P ) is safe, complete, and uncovered}

Whale maintains the invariant Y ` Z. Furthermore, if the algorithm terminates, every uncovered ARG

is safe and complete, and every directly covered ARG is justified by an uncovered one. This satisfies the

premise of Hoare’s (generalized) proof rule for mutual recursion and establishes soundness of Whale.
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Whale Wolverine 0.5 Blast 2.5
Program #ARGs #Refine Time Time Time (B1) Time (B2) #Preds (B1) #Preds (B2)

ddd1.c 5 3 0.43 4.01 4.64 1.71 15 8
ddd2.c 5 3 0.59 5.71 5.29 2.65 16 10
ddd3.c 6 5 20.19 30.56 48 20.32 25 16

ddd1err.c 5 1 0.16 3.82 0.42 1.00 25 8
ddd2err.c 5 1 0.28 5.72 0.44 0.96 5 8
ddd3err.c 5 11 126.4 17.25 TO 43.11 TO 37
ddd4err.c 6 1 5.73 1.76 24.51 CR 19 CR

Table 6.1: Evaluation of Whale: results and tool comparison.

Whale is complete for Boolean programs, under the restriction that the three main operations are

scheduled fairly (specifically, CoverARG is applied infinitely often). The key is that Whale only uses

interpolants over program variables in a current scope. For Boolean programs, this bounds the number

of available interpolants. Therefore, all incomplete ARGs are eventually covered.

Theorem 6.1. Whale is sound. Under fair scheduling, it is complete for Boolean programs.

6.6 Experimental Evaluation

We implemented Whale in an early experimental version of the UFOapp tool. The development, im-

plementation, and evaluation of Whale preceded that of the Ufo and Vinta algorithms presented

in Chapters 4 and 5, respectively. For satisfiability checking and interpolant generation, we use the

MathSAT4 SMT solver [BCF+08].

Our implementation of Whale is a particular heuristic determinization of the three operations

described in Section 6.5: A FIFO queue is used to schedule the processing of ARGs. Initially, the

queue contains only the main ARG A1. When an ARG is picked up from the queue, we first try to

cover it with another ARG, using CoverARG. In case it is still uncovered, we apply UpdateARG and

RefineARG until they are no longer applicable, or until RefineARG returns a counterexample. Every

ARG created by UpdateARG or modified by Reset is added to the processing queue. Furthermore,

we use several optimizations not reported here. In particular, we merge ARGs of same the function. The

figures reported in this section are for the number of combined ARGs and do not represent the number

of function calls considered by the analysis.

Our goal in evaluating Whale is two-fold: (1) to compare effectiveness of our interpolation-based

approach against traditional predicate abstraction techniques, and (2) to compare our interprocedural

analysis against intraprocedural interpolation-based algorithms. For (1), we compared Whale with

Blast [BHJM07]. For (2), we compared Whale with Wolverine [KW11], a recent software model

checker that implements Impact algorithm [McM06] (it inlines functions and, thus, does not handle

recursion).

For both evaluations, we used non-recursive low-level C programs written for the pacemaker grand

challenge [pac]. Pacemakers are devices implanted in a human’s body to monitor heart rate and send

electrical signals (paces) to the heart when required. We wrote test harnesses to simulate the pacemaker’s

interaction with the heart on one of the most complex pacemaker operation modes (DDD). The major

actions of a pacemaker are sensing and pacing. Periodically, a pacemaker suspends its sensing operation

and then turns it back on. The properties we checked involved verifying correct sequences of toggling
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sensing operations, e.g., that sensing is not suspended for more than two time steps, where we measured

time steps by the number of interrupts the pacemaker receives.

Table 6.1 summarizes the results of our experiments. Blast was run in two configurations, B1 and

B2.4 Wolverine was run in its default (optimal) configuration. For Whale, we show the number

of ARGs created and the number of calls to RefineARG for each program. For Blast, we show the

number of predicates needed to prove or refute the property in question. ‘CR’ and ‘TO’ denote a crash

and an execution taking longer than 180s, respectively. The programs named dddi.c are safe; dddierr.c

have errors. While all programs are small (∼300 LOC), their control structure is relatively complex.

For example, Table 6.1 shows that Whale created five ARGs while processing ddd3.c, called Re-

fineARG three times and proved the program’s correctness in 0.59 seconds. Blast’s configuration

B1 tool 5.29 seconds and used 16 predicates, whereas B2 took 2.65 seconds and used 10 predicates.

Wolverine’s performance was comparable to B1, verifying the program in 5.71 seconds.

For most properties and programs, we observe that Whale outperforms Wolverine and Blast

(in both configurations). Note that neither of the used Blast configurations could handle the entire set

of programs without crashing or timing out. ddd3err.c contains a deep error, and to find it, Whale

spends a considerable amount of time in SMT solver calls, refining and finding counterexamples to a

summary, until the under-approximation leading to the error state is found. For this particular example,

we believe Wolverine’s dominance is an artifact of its search strategy. In the future, we want to

experiment with heuristics for picking initial under-approximations and heuristics for refining them, in

order to achieve faster convergence.

6.7 Related Work

In this section, we place Whale within the landscape of related work.

At a high level, all interpolation-based verification techniques examine a bounded version (an under-

approximation) of a given program and hypothesize a proof of correctness for the whole program. The

Whale algorithm is no different; what is unique is the modular nature of the computed proof. Specifi-

cally, Whale uses interpolants to hypothesize a procedure-modular proof, where the behaviour of each

procedure is defined by pre- and post-conditions. Whale can be viewed as a reformulation of McMillan’s

LAWI [McM06] algorithm to programs with procedures and recursion. LAWI unrolls the control-flow

graph of the program into a tree, and labels nodes of the tree with over-approximations of reachable

states at their respective locations. Whale, on the other hand, unrolls the call graph of the program

into a tree, and labels nodes of the tree, which map to procedures, with procedure summaries. Our no-

tion of ARG covering is analogous to McMillan’s vertex covering lifted to the ARG level. While LAWI

unrolls loops until all vertices are covered or fully expanded (thus, an invariant is found), Whale unrolls

recursive calls until all ARGs are covered or fully expanded (completed). One advantage of Whale is

that it encodes all intraprocedural paths by a single SMT formula. Effectively, this results in delegating

intraprocedural covering to the SMT solver.

Whale can also be viewed as an extension of our DAG-interpolation-based algorithm, Ufo, presented

in Chapters 3 and 4, to the interprocedural setting. Specifically, Whale extends Ufo by constructing

a forest of ARGs for multiple procedures—instead of a single ARG. Ufo uses DAG interpolants to label

nodes of an ARG. Whale uses state/transition interpolants to label whole ARGs, without labeling

4B1 is -dfs -craig 2 -predH 0 and B2 is -msvc -nofp -dfs -tproj -cldepth 1 -predH 6 -scope -nolattice.
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nodes of an ARG.

In [McM10], interpolants are used as blocking conditions on infeasible symbolic execution paths and

as means of computing function summaries. This approach differs from Whale in that the exploration is

not property-driven and thus is more suited for bug finding than verification. Also, handling unbounded

loops and recursion requires addition of auxiliary variables into the program. In [HHP10], Heizmann

et al. present an interprocedural verification technique that uses interpolants to generalize an infeasible

interprocedural path to a set of infeasible paths. Automata-based language inclusion is then used to check

if all program paths are included in the infeasible set. Whale computes modular proofs of correctness,

a summary per procedure, whereas [HHP10]’s notion of a proof is monolithic—a nested word automata

that includes every possible execution.

McMillan and Rybalchenko [MR13] proposed a similar extension of LAWI to procedures and recur-

sion, called Duality. In a similar fashion to Whale, Duality unrolls the call graph of the program

and uses interpolants to compute procedure summaries. Duality uses a deeper form of interpolants,

called tree interpolants, to label an iARG-like structure. From an encoding of the iARG, tree inter-

polants enable generating a well-labeling for the whole iARG. In contrast, Whale uses state/transition

interpolants, which only produce labels for the children of the root of the ARG, and has to proceed

downwards to label the rest. A thorough technical comparison of Duality’s approach with Whale is

given in [MR13]. Rümmer et al. [RHK13b] generalized tree and transition interpolants into disjunctive

interpolants. Specifically, Rümmer et al. recognized that we can take an interpolant between a formula

and one of its positively appearing sub-formulas. In the context of interprocedural verification, given

a formula encoding an unrolling of the program with sub-formulas encoding under-approximations of

function calls, disjunctive interpolants can be used to generalize the under-approximations. Transition

interpolants are a restricted form of disjunctive interpolants where sub-formulas can only appear as

outer-level conjuncts.

Synergy [GHK+06] and its interprocedural successor Smash [GNRT10] start with an approximate

partitioning of reachable states of a given program. Partition refinement is guided by the weakest

precondition computations over infeasible program paths. The main differences between Whale and

[GHK+06, GNRT10] are: (a) interpolants focus on relevant facts and can force faster convergence than

weakest preconditions [HJMM04, McM10]; (b) our use of interpolants does not require an expensive

quantifier elimination step employed by Smash to produce summaries; and (c) Synergy and Smash

use concrete test cases to guide their choice of program paths to explore. Compared to Whale, this

makes them better suited for bug finding.

Abstraction-based techniques, employing a forward abstract transformer, as implemented in Slam [BR01]

and others, typically use classical summary-based interprocedural data-flow analysis algorithms to com-

pute inductive invariants for programs with procedures [SP81, RHS95]. In cases where the number of

possible configurations (states of procedures) is finite, e.g., in Boolean programs, techniques employ-

ing [RHS95] are polynomial in the number of reachable configurations. In contrast, IB techniques like

Whale and Duality unroll the call graph into a tree in order to produce an SMT encoding, risking

an avoidable exponential explosion.
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6.8 Conclusion

In this section, we summarize this chapter and compare and contrast intraprocedural and interprocedural

analyses.

Summary Interpolation-based verification has received a considerable amount of attention in recent

years for a number of reasons: its lightweight nature (no abstract domain used), the rise of SMT solvers,

and the ability of interpolants to focus on relevant facts for the property at hand and compute simple

invariants. Despite the great deal of research in the area, very little work has addressed the problem of

interprocedural analysis with interpolants.

In this chapter, we presented a new IB technique for verifying safety of programs with procedures and

recursion. Our algorithm, Whale, lifts the lazy abstraction with interpolants [McM06] algorithm to the

granularity of procedures. Whale thus unrolls the call graph of a given program—instead of the control-

flow graph—and computes procedure-modular proofs in the form of procedure summaries. Whale is

enabled by state/transition interpolants, a new notion of interpolants that allow over-approximating

bounded procedure unrollings as procedure summaries.

Interprocedural vs. Intraprocedural Algorithms We have presented in this dissertation intrapro-

cedural and interprocedural verification algorithms. This raises the question of why do we need intrapro-

cedural algorithms in the presence of more general interprocedural ones; or even the opposite question:

why do we need interprocedural algorithms when all programs are, after compilation, intraprocedural in

nature. We discuss these points below.

• Given an interprocedural analysis, like the one presented in this chapter, we can always convert all

loops in a program with a single procedure into recursive procedures and use the interprocedural

algorithm. Theoretically speaking, for a number of program analysis questions, the intraprocedural

problem is (likely) easier than the interprocedural one [Rep96]. Specifically, Reps showed that for

a class data-flow analysis problems, interprocedural analysis is P-hard, meaning that it is unlikely

to have parallel, NC, algorithms unless P=NC. On the other hand, intraprocedural analysis reduces

to a graph-reachability problem with NC algorithms. Thus, it is likely that interprocedural analysis

is harder, unless all polynomial problems are efficiently parallelizable (in NC).

• Alternatively, why can’t we convert a program with procedures and recursion into a program with

a single procedure and use intraprocedural analyses? First, suppose the program has no recursion.

The conversion is now straightforward: we simply inline all procedures into their callers. The

problem here is this might result in a single-procedure program that is exponentially larger than

the original program with procedures. Consider the simple example where the main procedure F1

calls procedure F2 at n call sites and procedure F2 calls F3 also n times. Then, after inlining, F1

will have n2 copies of F3. Extending this example to longer procedure-call chains easily shows that

leaf procedures in the call graph can get copied exponentially many times in the size of the call

graph.

Now suppose that the program has recursion. We can convert it into a program with a single

procedure by explicitly managing the call stack. This, of course, can easily result in a very complex

program that is hard to analyze intraprocedurally. For instance, we now need to model the stack

in our logic and abstract domains, a difficult problem with no well-developed techniques.
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At a more practical level, procedure summarization can be helpful when we are analyzing frequently

called procedures, where summaries can be stored and reused, e.g., for verifying other programs

calling the same library of procedures. Inlining would result in a monolithic program, making it

non-trivial to reuse computed invariants/summaries. Furthermore, developing efficient intraproce-

dural analyses can directly benefit interprocedural analysis, as demonstrated by a number of recent

works [GNRT10, AKNR12, YFCW14].



Chapter 7

Tool Support: Architecture and

Engineering

“Numbers don’t lie, check the scoreboard.”

— Shawn Corey Carter

7.1 Introduction

Chapters 3-6 introduced new verification algorithms and concepts and demonstrated their practical

utility. In the process of experimenting with and evaluating our algorithms, we designed, implemented,

and refined a verification tool and framework called UFOapp, which we have used for verifying (and

finding bugs in) sequential C programs.

In this chapter, we describe the architecture of UFOapp, its prominent optimizations, and its success

in the International Software Verification Competition (SV-COMP). The main features of UFOapp are:

• UFOapp is a framework for building and experimenting with IB, AB, and combined IB/AB ver-

ification algorithms. It is parameterized by the abstract post operator, refinement strategy, and

expansion strategy. The architecture and parameterization of UFOapp and the underlying LLVM

framework provide users with an extensible environment for experimenting with different software

verification algorithms.

• The UFOapp framework contains a number of novel instantiations described in Chapters 3-5: purely

interpolation-based algorithm, combined IB/AB algorithms with numerous abstract domains, and

purely AB algorithms. At the core of UFOapp is an efficient DAG interpolation procedure for

hypothesizing invariants and strengthening results of abstract interpretation. Unlike other tools

that enumerate paths explicitly, for example, [McM06, KW11, BHJM07], UFOapp delegates path

enumeration to an efficient SMT solver.

• UFOapp is implemented using the very popular, open source LLVM compiler infrastructure [LA04].

Since LLVM is a well-maintained, well-documented, and continuously evolving framework, it allows

UFOapp users to easily integrate program analyses, transformations, and other tools built on LLVM

77
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Figure 7.1: Architecture of UFOapp.
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(e.g., Klee [CDE08]) as they become available. Furthermore, since UFOapp analyzes LLVM bitcode

(LLVM’s intermediate language), it is possible to experiment with verifying programs written in

other languages compilable to LLVM bitcode, such as C++, Ada, and Swift.

UFOapp’s source code and compilation instructions are available at bitbucket.org/arieg/ufo.

Organization

This chapter is organized as follows:

• In Section 7.2, we described the architecture and implementation of UFOapp.

• In Section 7.3, we describe the important optimizations implemented in the UFOapp framework.

• In Section 7.4, we discuss UFOapp’s participation in SV-COMP and its parallel (multiple configu-

rations) approach.

• Finally, in Section 7.5, we conclude this chapter.

7.2 Architecture and Implementation

UFOapp is implemented on top of the LLVM compiler infrastructure [LA04]. See Figure 7.1 for an

architectural overview. UFOapp accepts as input a C program P with assertions. For simplicity of

presentation, let P = (V, T, φI , φE), where V is the set of program variables, T is the transition relation

of the program (over V and V ′, the set of primed variables), φI is a formula describing the set of initial

states, and φE is a formula describing the set of error states.

First, P goes through a preprocessing phase where it is compiled into LLVM bitcode (intermediate

representation) and optimized and transformed for verification purposes, resulting in a semantically

equivalent but optimized program P o = (V o, T o, φoI , φ
o
E).

Then, the analysis phase verifies P o and either outputs a certificate of correctness or a counterex-

ample. A certificate of correctness for P o is a safe inductive invariant I such that (1) φoI ⇒ I, (2)

I ∧ T o ⇒ I ′, and (3) I ∧ φoE is unsatisfiable.

7.2.1 Preprocessing Phase

We now describe the various components of the preprocessing phase.

C to LLVM The first step converts the program P to LLVM bitcode using the llvm-gcc or clang

compilers [cla]. LLVM bitcode is the LLVM infrastructure’s intermediate representation (IR) on which

all analyses and transformations are performed.

Optimizations for Verification A number of native LLVM optimizations are then applied to the

bitcode, the most important of which are function inlining (inline) and SSA conversion (mem2reg).

Since UFOapp implements an intraprocedural analysis, it requires all functions to be inlined into main. In

order to exploit efficient SMT program encoding techniques like [GCS11], UFOapp expects the program to

be in SSA form; SSA form allows us to encode straight-line programs without requiring frame conditions

explicitly specifying that variables did not change. A number of standard program simplifications are

bitbucket.org/arieg/ufo
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also performed at this stage, with the goal of simplifying verification. The final result is the optimized

program P o. Mapping counterexamples from P o back to the original C program P is made possible by

the debugging information inserted into the generated bitcode by clang.

Before the above optimizations could be applied, we had to bridge the gap between the semantics of

C assumed by LLVM (built for compiler construction) and the verification tasks/benchmarks. Consider,

for example, the following snippet of C code:

int main(){

int x;

if (x == 0)

func1();

if (x != 0)

func2();

return 1;

}

After LLVM optimizations, this program is reduced to the empty program:

return 1;

LLVM replaces undefined values by constants that result in the simplest possible program. In our

example, the conditions of both if-statements are assigned to 0, even though they contradict each other.

(C semantics provide compilers the freedom to transform code with undefined behaviours [WCC+12,

WZKSL13]—in this case, the value of x is undefined.) On the other hand, verification benchmarks such

as [Bey12] assume that without an explicit initialization the value of x is non-deterministic. To account

for such semantic differences, a UFOapp-specific LLVM transformation is scheduled before optimizations

are run. It initializes each variable with a call to an external function nondet(), forcing LLVM not to

make assumptions about its value.

Cutpoint Graph and Weak Topological Ordering A cutpoint graph (CPG) is a “summarized”

control-flow graph (CFG), where each node represents a cutpoint (loop head) and each edge represents a

loop-free path through the CFG. Computed using the technique presented in [GCS11], the CPG is used

as the main representation of the program P o. Using it allows us to perform abstract post operations on

loop-free segments, utilizing the SMT solver (e.g., in the case of predicate abstraction) for enumerating

a potentially exponential number of paths. A weak topological ordering (WTO), see Section ??, is an

ordering of the nodes of the CPG that enables exploring it with a recursive iteration strategy starting

with the inner-most loops and ending with the outer-most ones. CPG and WTO are computed on the

program P o and are implemented as LLVM passes (analyses).

7.2.2 Analysis Phase

The analysis phase, which receives the CPG and the WTO of P o from the preprocessing phase, is

comprised of the following components:
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ARG Constructor The ARG Constructor is the main driver of the analysis. It maintains an abstract

reachability graph (ARG) of the CPG annotated with formulas representing over-approximations of

reachable states at each cutpoint. When the algorithm terminates without finding a counterexample,

the annotated ARG represents a certificate of correctness in the form of a safe inductive invariant I for

P o. To compute annotations for the ARG, the ARG constructor uses three parameterized components:

• the abstract post, to annotate the ARG as it is being expanded;

• the refiner, to compute annotations that eliminate spurious counterexamples; and

• the expansion strategy, to decide where to restart expanding the ARG after refinement.

Abstract Post. The abstract post component takes a CPG edge and a formula φpre describing a set of

states, and returns a formula φpost over-approximating the states reachable from φpre after executing the

CPG edge. UFOapp includes a number of abstract domains for computing abstract post: Boolean predi-

cate abstraction, Cartesian predicate abstraction, intervals (Box) , intervals with disjunctions (Boxes),

the family of template constraint matrix (TCM) domains [SSM05], as well as combinations of those.

Refiner. The refiner receives the current ARG with potential paths to an error location (i.e., the error

location is not annotated with false). Its goal is either to find a new annotation for the ARG such that

the error location is annotated with false, or to report a counterexample. UFOapp includes a number of

implementations of refinement using (restricted) DAG interpolants.

Expansion Strategy. After the refinement, the ARG constructor needs to decide where to restart ex-

panding the ARG. The expansion strategy specifies this parameter. UFOapp includes an eager strategy

and a lazy strategy. The lazy strategy is utilized by Ufo and Vinta to continue expanding the ARG

after refinement. The eager strategy is used to implement eager predicate abstraction (AB) approaches,

where the whole ARG is recomputed after new predicates are added to the domain.

SMT Solver Interface Components of the analysis phase use an SMT solver in a variety of ways:

• the ARG constructor uses it to check that the annotations of the ARG form a safe inductive

invariant;

• abstract post, e.g., using predicate abstraction, may encode post computations as SMT queries;

and

• the refiner can use it to find counterexamples and to compute interpolants.

All these uses are handled through a general interface to two SMT solvers: MathSAT5 [CGSS13] and

Z3 [dMB08]. MathSAT5 is used for its native interpolation support. Z3 is favored for its efficiency

and is used for all satisfiability queries (not requiring interpolation) and quantifier elimination for DAG

interpolant computation.1

1At the time of implementation, Z3 did not have interpolant generation support.
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7.3 Prominent Optimizations

We have incorporated in UFOapp a number of optimizations in order to improve performance of its

various components. We describe the most prominent optimizations here:

Incremental Solving for Covering The ExpandArg algorithm, both in Vinta and Ufo, uses an

SMT call to check if a node is covered. Since this is a heavily applied operation, a naive application

of covering checks using independent calls to the SMT solver can be quite inefficient. In practice, we

exploit Z3’s incremental interface (using push and pop commands); it allows us to avoid performing

SMT solving from scratch for similar queries.

For each cutpoint `, we maintain a separate SMT context ctx`. Every time a node v such that

ν(v) = ` is not covered (i.e., in Vinta, the check on line 53 in Algorithm 4 fails), ¬ψ(v) is added to

ctx`. To check whether a node u with ν(u) = ` is covered, we check whether ψ(u) is satisfiable in ctx`.

If the result is unsatisfiable, then u is covered; otherwise, it is not covered and ¬ψ(u) is added to ctx`.

Effectively, this is the same as checking whether

ψ(u) ∧
∧

v∈vis(ν(u)),v 6=u
¬ψ(v)

is unsatisfiable, which is equivalent to Vinta’s line 53 of ExpandArg (Algorithm 4).

Using Post Computations for Simplification In our implementation, we keep track of those ARG

edges for which PostD computations returned ⊥. For each such edge e, we can replace LE(e) with false,

where LE(e) encodes semantics of an edge e in the ARG, as used in the refinement strategies of Ufo

and Vinta (UfoRef 5 and VintaRef 6). We call such edges false edges, and exploit them to shrink

encodings before passing them onto the SMT solver.

Improving Interpolation with UNSAT Cores One technical challenge we faced is that Math-

Sat5’s performance degrades significantly when interpolation support is turned on, particularly on large

formulas encoding ARGs (see ARGCond in Section 3.3). To reduce the size of the formula given to

MathSat5, we use the assumptions feature in the highly efficient Z3. Let a formula ϕ1 ∧ . . . ∧ ϕn and

a set X = {bi}ni=1 of Boolean assumption variables be given. When Z3 is given a formula

Φ = (b1 ⇒ ϕ1) ∧ . . . ∧ (bn ⇒ ϕn),

it returns a subset of X, called an UNSAT core, that has to be true to make Φ unsatisfiable. In our case,

we add an assumption for each literal appearing in formulas in LE , and use Z3 to find unnecessary literals,

i.e., those not in the UNSAT core. Since Z3 does not produce a minimal core, we heuristically repeat

the minimization process three times. Finally, we set unnecessary literals to true and use MathSat5

to interpolate over the simplified formula. The simplified formula is weaker than the original formula,

but by definition of UNSAT core is still unsatisfiable. In other words, the simplified formula over-

approximates our encoding of program semantics. Therefore, a well-labeling of the ARG computed via

the over-approximated semantics is still a well-labeling of the precise semantics.
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7.4 Contributions in SV-COMP

In this section, we discuss UFOapp’s participation in the second and third editions of the International

Competition on Software Verification (SV-COMP), a community initiative to benchmark and compare

verification tools.

7.4.1 SV-COMP 2013

Benchmarks and Results The 2013 edition of SV-COMP [Bey13] contained a number of verification

categories, which are sets of benchmarks on which verification tools are run and evaluated, primarily on

the amount of correct results computed within an allotted time limit of 15 minutes of CPU time per

benchmark. Each verification category contains programs with assertions that share common verification

needs, for instance, requiring numerical invariants or concurrency support.

For SV-COMP 2013, we submitted an instantiation of UFOapp that placed first in the four categories

for which it was designed to work. The total number of categories was ten. UFOapp received the gold

medal in the following categories:

• ControlFlowInteger: a set of benchmarks including Microsoft Windows device drivers, SSH

models, amongst others.

• DeviceDrivers64: a set of 64-bit Linux device drivers where the goal is to verify correct usage of

APIs.

• SystemC: a set of benchmarks derived from sequentializing SystemC programs and translating

them into C [CMNR10].

• ProductLines: a set of programs generated from software product lines [AvRW+13].

In the above categories, UFOapp outperformed a number of prominent and highly-engineered tools

including CPAChecker [BK11] and a new version of Blast [BHJM07]. In the ControlFlowInteger

category, UFOapp correctly solved all benchmarks in 450 seconds, whereas two different versions of

CPAChecker took 1200 and 3400 seconds to solve benchmarks in this category. Both CPAChecker [Wen13,

Löw13] tools did not solve the full set of benchmarks in ControlFlowInteger. We notice a similar trend

in the other categories as well: UFOapp is not only able to solve more benchmarks per category, but is

highly competitive in terms of time taken per benchmark. A thorough presentation of the competition’s

results is available in Beyer’s SV-COMP 2013 report [Bey13].

Categories in which UFOapp did not participate include Concurrency and MemorySafety, which

require reasoning about threads and heap shapes, two forms of analysis currently not supported by

UFOapp.

Parallel UFO As we saw in Chapters 4 and 5, different instantiations of UFOapp can produce dras-

tically different performance. Given the diversity of the competitions benchmarks, there was no single

instantiation of UFOapp’s abstract domains that was a clear winner. Therefore, for the purposes of the

competition, we designed a parallel implementation of UFOapp that runs seven instantiations of UFOapp

in parallel. These instantiations vary the abstract domain and the widening strategy, while always using

Vinta’s refinement strategy with restricted DAG interpolants.
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Abstract domain Widening Time limit (s)

Boxes 3 20
Boxes 17 10
Cartesian Abs. - ∞
Box 3 ∞
Boolean Abs. - 20
Box + Boolean Abs. 3 60

Table 7.1: Instantiations of UFOapp in SV-COMP 2013.

Since the competition’s rules have a CPU time limit, we had to be careful not to incorporate ineffective

instantiations. To that end, we devised a strategy that aborts certain instantiations after a set amount of

time. Specifically, we found that on instantiations using very precise domains, like Boxes and Boolean

predicate abstraction, if the analysis takes more than a minute, then it will likely not return a result

within a reasonable amount of time. This is partly due to the fact that precise analyses quickly produce

large ARGs whose encodings are very large formulas that SMT solvers cannot handle.

Table 7.1 shows the different instantiations of UFOapp used in parallel UFOapp.2 Each row shows

an instantiation as the abstract domain used, the widening strategy used in terms of when widening

is applied (e.g., after three loop unrollings), and the time limit imposed on the instantiation. For

instance, the first instantiation is the Boxes domain, where widening is applied every third iteration

and the instantiation is aborted if does not return a result within 20 seconds. The last instantiation uses

an abstract domain combining Box and Boolean abstraction, where the results of post are computed

independently for each and conjoined after concretization.

7.4.2 SV-COMP 2014

In the 2014 edition of SV-COMP [Bey14], we submitted a similar version of UFOapp to that used in SV-

COMP 2013. UFOapp won the silver medal in two of the verification categories, namely, DeviceDrivers64

and Simple.

We attribute the relatively lower performance of UFOapp in SV-COMP 2014 to two primary factors:

• Improvements in competing tools. For instance, an efficient version of Blast, submitted by sup-

pliers of the Linux device drivers benchmarks [ldv], won the DeviceDrivers64 category, leaving

UFOapp second.

• New benchmarks that cannot be handled efficiently by our front-end. For instance, new benchmarks

were added to the SystemC category from SV-COMP 2013 that use arrays to model thread sequen-

tialization. In theory, these arrays can be transformed into integer variables, but our front-end

could not perform this transformation. This left our analysis algorithm unable to precisely model

program semantics (as it does not currently have support for arrays). Additionally, new large

Linux device drivers exposed a bottleneck in our front-end: a very long preprocessing phase and

an unreasonably large program P o.

2One of the configurations is elided as it just uses a slightly different preprocessing step to produce P o.
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7.5 Conclusion

In this chapter, we described UFOapp, a verification tool and framework that we implemented in the

LLVM infrastructure for verifying C programs. UFOapp was used to implement and evaluate various

instantiations of the Ufo and Vinta algorithms. UFOapp’s modular architecture makes it suitable

for implementation and evaluation of different verification algorithms. For instance, by modifying the

abstract domain or the refinement strategy, we can arrive at drastically different verification algorithms,

each with different strengths and weaknesses.



Chapter 8

Conclusion

We have arrived at the end of this dissertation. In this chapter, we recap the highlights of this dissertation

and sketch possible future paths to take from here.

8.1 Dissertation Summary

In this dissertation, we addressed the problem of automated software verification: proving that a program

satisfies some property, for example, memory safety, termination, or functional correctness. This gener-

ally undecidable problem has received an enormous amount of attention from a wide array of computer

science communities. Here, we focused on a promising class of algorithms called interpolation-based

techniques, where Craig interpolants are used to hypothesize inductive invariants. Specifically, we ad-

vanced the state-of-the-art in several directions: (1) new intraprocedural interpolation-based verification

techniques using the notion of DAG interpolants; (2) new interpolation-based techniques that utilize

and complement results of classical abstract fixpoint invariant computation techniques; and (3) a new

interprocedural verification technique that exploits Craig interpolants to compute procedure-modular

proofs of correctness. The power of our conceptual and algorithmic contributions is demonstrated in

UFOapp: an automated software verification tool for verifying (and finding bugs in) programs written

in the C programming language. In its first participation in the International Competition on Software

Verification (SV-COMP 2013), our UFOapp tool placed first in four out of ten verification categories,

winning every benchmark category for which it was designed to work and outperforming state-of-the-art

tools from the community. In the rest of this section, we recap the key technical contributions of this

dissertation.

In Chapter 3, we introduced the notion of directed acyclic graph (DAG) interpolants and demon-

strated how they can be utilized for intraprocedural verification. In interpolation-based software ver-

ification, interpolants are used to hypothesize an inductive invariant by proving correctness of finite

(loop-free) paths through the control-flow graph of a program. DAG interpolants allow us to symbol-

ically prove correctness of sets of program paths succinctly encoded as a DAG. Our main insight for

computing DAG interpolants is a reduction of DAG interpolation to sequence interpolation. In other

words, we linearize the DAG and treat it as if it is a sequence of instructions (a straight line program)

and utilize previous techniques from the literature to compute a proof for the DAG-like program.

In Chapter 4, we addressed the problem of how to efficiently verify programs using DAG interpolants.
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Specifically, we proposed a new algorithm, called Ufo, that iteratively unrolls the control-flow graph of a

program into a DAG structure, called an abstract reachability graph (ARG), and uses DAG interpolants

to label the ARG with a Hoare-style proof. We took Ufo further and incorporated abstraction-based

techniques like predicate abstraction to unroll the program into an ARG and provide us with inductive

invariants. The result was a hybrid algorithm that incorporates interpolation-based and abstraction-

based verification techniques. Our experimental evaluation showed that hybrid instantiations of Ufo

can outperform purely interpolation-based and abstraction-based techniques.

In Chapter 5, we proposed Vinta, an algorithm that extends Ufo in two directions. First, we

extended Ufo to accept arbitrary abstract domains, as opposed to finite-height domains like predicate

abstraction. This enabled greater flexibility in experimenting with a wide range of abstract domains.

Second, we introduced the concept of restricted DAG interpolants, which enabled a tighter integration

between results of interpolation and abstract interpretation. Whereas we set out with the goal of improv-

ing interpolation-based techniques, the Vinta algorithm can also be viewed as a technique for refining

(strengthening) inductive invariants computed via abstract interpretation. Specifically, interpolants re-

cover imprecision incurred by approximate operations employed by abstract domains, for example, join

and widening.

In Chapter 6, we addressed the problem of verifying programs with procedures and recursion using

interpolants, a question that had received little attention in the literature. Specifically, we presented

Whale, a interprocedural verification algorithm that utilizes interpolants to compute proofs in the form

of procedure summaries. Our key insight is that interpolants can be used to hypothesize a procedure

summary by generalizing an under-approximation of a procedure (a finite unrolling). The properties

of interpolants, particularly language restriction, provide us with concise summaries over a procedure’s

parameters and returns.

In Chapter 7, we presented and discussed the architecture, implementation, and optimizations of

our UFOapp tool. UFOapp is a framework for building verification algorithms that is modelled after the

Ufo and Vinta algorithms. UFOapp is parameterized mainly by the abstract domain used and the

refinement strategy, providing us with flexible platform for experimenting with different instantiations

of Ufo, Vinta, and others. Indeed, we utilized UFOapp’s flexibility to build a number of instantiations

of Vinta using different domains that run in parallel to increase chances of proving safety or finding

bugs. Our parallel version of UFOapp won the largest number of gold medals in SV-COMP 2013.

8.2 Future Outlook

Despite all of the advances made in this dissertation, a huge number of problems remain unanswered!

In this section we discuss some of the most important and interesting directions for future research.

• Supporting Concurrency All techniques presented in this dissertation have been restricted

to sequential programs—without concurrency. Of course, one could model interleavings between

concurrent threads using an explicit scheduler, reducing the program to a sequential one. But such

reduction results in highly complex sequential programs that are hard to analyze. Modular proof

systems for concurrent programs were introduced to avoid explicitly modeling thread interleavings.

For instance, Owicki-Gries [OG76] and Rely-Guarantee [Jon83] proofs can be computed using

techniques similar to interprocedural analysis, as shown by Grebenshchikov et al. [GLPR12]. So

far, though, techniques for computing modular proofs have been restricted to very simple programs
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and properties. We believe the ideas presented in this dissertation can be adapted for concurrent

program verification.

Using DAG interpolants, we showed how to examine a finite set of paths through the control-flow

graph of a program and hypothesize a proof of the whole program. This raises the question of

whether we can use a similar idea for concurrent program verification. Specifically, we need a suc-

cinct encoding of thread interleavings and a way to hypothesize proofs of correctness. Recent work

by Sinha and Wang [SW11] presented an encoding of unrollings of two threads where interleavings

are succinctly symbolically encoded. Sinha and Wang used the encoding for bounded verification.

One question we could ask is whether we can extract a proof from bounded verification attempts.

Specifically, given an unsatisfiable encoding of two unrolled threads (i.e., there are no bugs), can

we use interpolants to hypothesize a proof of correctness? The first issue here is what proof system

to use. In the case of sequential programs, we are typically interested in computing loop invariants.

In a concurrent setting, there’s a plethora of proof techniques (Owicki-Gries, Rely-Guarantee, iD-

FGs [FKP13], etc.), and each one has its limitations. Second, sequential program encodings have

a lot of structure: we can split the encoding into two halves, one encoding all executions before

some statement in the program and another encoding all executions after it. This enables com-

puting interpolants that describe states at a particular location. Succinct encodings of concurrent

programs, like Sinha and Wang’s [SW11], do not have such obvious structure. Given the power

of SMT solvers and interpolation, it would be interesting to explore this direction for concurrent

program verification.

• Handling Deep Heap Properties In this dissertation, we relied on first-order logic encodings

of program semantics to compute first-order invariants. To prove memory safety and properties of

heap-allocated data structures, first-order invariants often do not suffice. For instance, we might

require an invariant that states that there is a linked list on the heap and all of its elements are

greater than five. Verifying programs requiring such invariants is an interesting and important

problem that has not received its fair share of research.

In current work, we are exploring a combination of separation logic with interpolation. Separation

logic allows us to describe shapes of heap-allocated data structures, like lists, trees, lists of lists, etc.

Interpolants, on the other hand, provide us with descriptions of program data like integer variables.

By combining the two, we are able to compute invariants that describe heap shape, program data, as

well data stored in the heap. This line of work poses a large number of challenges: we need efficient

decision procedures for rich fragments of separation logic with first-order constraints; we need ways

of inferring heap shapes, preferably without fixing templates a priori as is commonly done; we need

interpolation techniques that incorporate heap shape information described in separation logic; etc.

We believe that this is a ripe and important area of research and that techniques in this dissertation

can be profitably extended in this direction.

• Verification in the Presence of Absence In principle, an automated verification tool takes

a program and automatically verifies it. This is not entirely true. Using automated verification

tools often requires a significant manual effort to get the program into a shape acceptable by the

tool. This is because programs typically use libraries and OS routines, some of which may be

too complex to analyze or unavailable (if they are proprietary). Thus, stubs are often written to

replace these unavailable pieces of the program. Stub writing is a time consuming and error prone
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process, where a developer has to write a simple procedure that mimics behaviour of an original

procedure and is sufficient for verification purposes. One interesting direction is to automate this

process. Specifically, given a program and a property, can we synthesize the most permissive

specification of unknown procedures that ensures the property holds? In other words, can we

compute a conditional proof of program correctness: the program satisfies the property assuming

unknown procedures behave according to X. Armed with such a technique, the job of the developer

is now to simply check the inferred specifications/stubs, an arguably simpler process than coming

up with stubs from scratch. We believe developing this research direction is essential for verification

of large programs, which inevitably have complex dependencies.

• Improving Interprocedural Verification In Vinta, we showed how to utilize results of ab-

stract interpretation to improve the interpolation process and vice versa. Our experience and

evaluation of Ufo and Vinta indicated that the best configurations are those that use both ab-

stract domains and interpolation. It is thus an interesting direction to explore this combination

in an interprocedural setting, as in Whale. Specifically, it would be interesting to explore an

approach analogous to Vinta’s. First, an abstract domain is used to compute procedure sum-

maries. Whether the analysis is performed top-down or bottom-up, the result will be an unrolling

of the call graph of the program, an interprocedural ARG (iARG) that is annotated with procedure

summaries. If procedure summaries are too weak to prove a property of interest, we could use

state/transition or tree interpolants to strengthen the annotation and continue the fixpoint com-

putation. Further, we could extend transition interpolants to restricted transition interpolants, in

a manner analogous to RDI, where results of abstract interpretation are used to weaken the inter-

polation problem. It is our belief that such interprocedural analysis would improve upon purely

interpolation-based techniques like Whale and Duality [MR13].

• Tightening Interpolant–Abstract Domain Integration In Vinta, we moved information be-

tween interpolants and the abstract domain. We assumed that the abstract domain is subsumed by

the logic used for interpolation. For instance, all elements of the Box domain are representable in

the theory of linear rational arithmetic (QF LRA). On the other hand, converting (via abstraction

function α) a formula in our logic to an abstract element may result in imprecision. For instance,

QF LRA contains disjunctions and non-linear constraints, which cannot be represented in Box.

In our experiments, we implemented a simple and imprecise abstraction function. To avoid this

imprecision, we need ways of computing best abstraction functions. In recent work [LAK+14], we

addressed this problem for computing best abstractions of QF LRA formulas in the family of tem-

plate constraint matrix (TCM) domains, which include Box, octagons, etc. Specifically, we cast

this problem as non-convex optimization and extended SMT solvers with optimization capabilities.

In the future, it would be interesting to extend this technique to other theories like linear integer

arithmetic (QF LIA) and bitvector arithmetic (QF BV). The appeal of this problem extends be-

yond its immediate application in our setting, as optimization is of importance in synthesis, bug

finding, constraint programming, amongst others.
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[LW12] Stefan Löwe and Philipp Wendler. CPAchecker with Adjustable Predicate Analysis - (Com-

petition Contribution). In Proceedings of Tools and Algorithms for Construction and Anal-

ysis of Systems (TACAS), pages 528–530, 2012.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

[McM03] Kenneth L. McMillan. Interpolation and SAT-Based Model Checking. In Proceedings of the

International Conference on Computer Aided Verification (CAV), volume 2725 of LNCS,

pages 1–13, 2003.

http://linuxtesting.org/project/ldv


BIBLIOGRAPHY 97

[McM04] Kenneth L. McMillan. An Interpolating Theorem Prover. In Proceedings of the Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), volume 2988, pages 16–30. Springer, 2004.

[McM06] Kenneth L. McMillan. Lazy Abstraction with Interpolants. In Proceedings of the Inter-

national Conference on Computer Aided Verification (CAV), volume 4144 of LNCS, pages

123–136, 2006.

[McM10] Kenneth McMillan. Lazy Annotation for Program Testing and Verification. In Proceedings

of the International Conference on Computer Aided Verification (CAV), volume 6174 of

LNCS, pages 104–118, 2010.
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Appendix A

Inductive Invariants Example

We provide an informal description of safe inductive invariants as a mechanism for proving programs

correct, and briefly discuss how a software verifier can find such invariants.

Consider the program in Figure A.1(a), where * denotes a nondeterministic choice. Our goal is to

prove that the call to error() is unreachable. To do so, we require a safe inductive invariant. An induc-

tive invariant is an annotation of each location (line) in the program describing an over-approximation

of the set of reachable states at that location, where a state is a valuation of all program variables.

Additionally, annotations of two consecutive program locations must form a valid Hoare triple [Hoa69].

For example, an inductive invariant might specify that x > 0 at location 2, since when an execution first

arrives at location 2 the value of x is 0, and then after each loop iteration the value of x just increases.

The annotation of location 2 forms a valid Hoare triple with itself, denoted

{x > 0} x + +; y + + {x > 0}.

This Hoare triple specifies that if we start in any state such that x is greater than or equal to 0 (as

specified on the left side of the triple) and we execute x + +; y + +, we will definitely arrive at a state

where x is greater than or equal to 0 (as specified on the right side of the triple). Note that we are

assuming that the variables are of type Z, therefore, no overflows or underflows occur. A safe inductive

invariant is one where the error location, location 5 in our case, is labeled by false, implying that no

execution can reach that location.

Consider the annotation Inv1 of our program shown in Table A.1. The annotation represents an

inductive invariant. Note that location 5 is labeled by x > 0, implying that executions may reach the

error location. Thus, Inv1 does not preclude unsafe states and is an unsafe inductive invariant. Inv2 is

another inductive invariant for the program in Figure A.1 that labels location 5 with false, proving that

no execution can reach error(). Thus, Inv2 is a safe inductive invariant.

Given our example program, an automated verifier based on predicate abstraction typically starts

by constructing an invariant using a restricted language of predicates, e.g., invariants only including

the predicate x > 0. Using the predicate x > 0, the strongest logical formula that can be used to

annotate location 4 is x > 0 (as in Inv1). This is a very coarse over-approximation of reachable states

at location 4, since a state satisfying x > 0 may also satisfy y 6= 0 (the guard of the if-statement);

therefore, the verification tool cannot annotate location 5 with false. When a verifier employing a

CEGAR loop [CGJ+00] constructs an unsafe invariant, it checks if the program is indeed unsafe, i.e.,
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1	
  x	
  :=	
  0;	
  y	
  :=	
  0;

2	
  while	
  (*)
	
  	
  	
  	
  	
  	
  	
  x++;	
  y++;

3	
  while	
  (x	
  >	
  0)
	
  	
  	
  	
  	
  	
  	
  x-­‐-­‐;	
  y-­‐-­‐;

4	
  if	
  (y	
  !=	
  0)
5	
  	
  	
  	
  error();

1

2

3

4

5

x := 0; y := 0

[true]
[true]

[x > 0]

[x <= 0]

[y != 0]

(a) (b)

Figure A.1: Example program and its control-flow-graph representation.

Location Inv1 Inv2
1 true true
2 x > 0 x = y ∧ x > 0
3 x > 0 x = y ∧ x > 0
4 x > 0 x = y ∧ x = 0
5 x > 0 false

Table A.1: Safe and unsafe inductive invariants.

that there is an erroneous execution. If it cannot find such an execution, it adds more predicates to the

language of the invariant and constructs a new invariant. In this example, the verifier might discover

the predicates x = 0 and x = y, enabling it to compute Inv2 and prove the program safe.



Appendix B

Proofs

In this appendix, we prove lemmas and theorems whose proofs do not appear, or are sketched, in the

main text.

B.1 Proof of Theorem 2.1

Theorem (Program Safety). If there exists a safe, complete, and well-labeled ARG for a program P ,

then P is safe.

Proof. Suppose we are given a safe, complete, well-labeled ARG A = (V,E, ven, ν, τ, ψ) of a program

P = (L, δ, en, err,Var). Then, we want to show that

Inv = {` 7→ I` | ` ∈ L},where

I` =
∨
{ψ(v) | v ∈ V and ν(v) = ` and v is uncovered},

is a safe inductive invariant of P .

By definition of a safe and well-labeled ARG, we know that

1. Inv(en) = true, since ψ(ven) = true; and

2. Inv(err) = false, since ψ(v) = false, for all v ∈ V such that ν(v) = err.

We now need to show that for any (`1, T, `2) ∈ δ,

Inv(`1) ∧ JT K⇒ Inv(`2)′.

By our construction of Inv , we know that

Inv(`1) =
∨
{ψ(v) | v ∈ V and ν(v) = `1 and v is uncovered}

Inv(`2) =
∨
{ψ(v) | v ∈ V and ν(v) = `2 and v is uncovered}

Let u ∈ V be an uncovered node such that ν(v) = `1. By completeness of A, this means that there
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exists a vertex v ∈ V such that ν(v) = `2. By well-labeledness of A, we know that

ψ(u) ∧ JT K⇒ ψ(v)′.

By definition of Inv(`1), ψ(u) is one of the disjuncts in Inv(`1). If v is uncovered, then ψ(v) is a

disjunct in Inv(v). If v is covered, then we have to consider two cases. Recall definition of covered: there

exists a node q ∈ V that dominates u and there exists a set of nodes X ⊆ V such that

• ∀x ∈ X · x is uncovered,

• ψ(q)⇒ ∨
x∈X ψ(x), and

• ∀x ∈ X · ν(q) = ν(x) ∧ q 6� x,

We consider the following two cases:

1. If q 6= v, then q must also dominate u, but u is uncovered, so it cannot be the case.

2. If q = v, then there is a set X of uncovered nodes such that (1) ψ(q)⇒ ∨
x∈X ψ(x) and (2) for all

x ∈ X, ν(x) = ν(v) (as per conditions of covering above). Since nodes in X are uncovered,∨
x∈X

ψ(x)⇒ Inv(`2).

This means that

ψ(u) ∧ JT K⇒ Inv(`2)′.

Therefore, for any (`1, T, `2) ∈ δ,

Inv(`1) ∧ JT K⇒ Inv(`2)′.

We have shown that a safe, complete, well-labeled ARG constitutes a safe inductive invariant, and

therefore proves that P is safe.

B.2 Proof of Theorem 5.1

Theorem (WidenWith{∨,t} Correctness). WidenWitht and WidenWith∨ satisfy the two condi-

tions of Definition 5.2.

Proof. We prove correctness of WidenWitht and WidenWith∨ separately. Our proofs rely on the

standard definition of the widening operator O (where v is the abstract order):

• For all x, y ∈ D, x v xOy and y v xOy.

• For any sequence y0, . . ., where yi ∈ D, the sequence x0, . . ., where x0 = ⊥ and xi = xi−1Oyi−1
converges, i.e., ∃i · xi v xi−1.
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WidenWitht Proof

First we prove soundness and then termination, as per Definition 5.2.

Soundness: We need to show that for any X ⊆ D and y ∈ D,

(γ(X) ∨ γ(y))⇒ (γ(X) ∨ γ(X OW y)).

It suffices to show that

γ(y)⇒ γ(X OW y). (B.1)

In the case that X = ∅, we know that (X OW y) = y, as per definition of WidenWitht. Therefore,

Formula B.1 is valid.

In the case that X 6= ∅, we know that X OW y = xO(x t y), where x is an arbitrary element of X.

By definition of O, x v (X OW y) and y v (X OW y). Therefore, Formula B.1 is valid.

Termination: We want to show that for any X ⊆ D and sequence {yi}i ∈ D, the sequence {Zi}i ⊆ D,

where Z0 = X and Zi = Zi−1 ∪ {Zi−1 OW yi}, converges.

Fix some i. Now, consider any z ∈ Zi. Either z ∈ X or ∃z′ ∈ Zi−1 · z = z′Oy, by definition of

WidenWitht. By definition of O and by the fact the X is a finite set, there must be a j > i such that

for every zj ∈ Zj , there exists zi ∈ Zi where γ(zj)⇒ γ(zi). Therefore, there must be a j > i such that

γ(Zj)⇒ γ(Zi).

WidenWith∨ Proof

Soundness: We need to show that for any X ⊆ D and y ∈ D,

(γ(X) ∨ γ(y))⇒ (γ(X) ∨ γ(X OW y)).

In the case that X = ∅, it is the same as the WidenWitht case.

In the case that X 6= ∅, we know that

X OW y =
(

(
∨
X)O(

∨
X ∨ y)

)
\
∨
X,

as per definition of WidenWith∨. By definition of O, we know that

γ(X OW y)⇐ γ
(
y \
∨
X
)
. (B.2)

Since we are dealing with a disjunctive domain, we know that

γ
(
y \
∨
X
)
≡ γ(y) ∧ ¬γ

(∨
X
)
. (B.3)

From Formulas B.2 and B.3, it follows that soundness holds for WidenWith∨.

Termination: We want to show that for any X ⊆ D and sequence {yi}i ∈ D, the sequence {Zi}i ⊆ D,

where Z0 = X and Zi = Zi−1 ∪ {Zi−1 OW yi}, converges.
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By definition of WidenWith∨, we know that

Zi = Zi−1 ∪
{(∨

Zi−1O
(∨

Zi−1 ∨ yi
))
\
∨
Zi−1

}
Since the set Zi is removed (using \) and added back (using ∪), we can simplify the above to

Zi =
(∨

Zi−1
)
O
(∨

Zi−1 ∨ yi
)
.

By definition of O, this sequence converges.

B.3 Proof of Theorem 5.2

Theorem (Correctness of VintaRef). VintaRef satisfies the specification of Refine in Defini-

tion 5.1.

Proof. Our proof assumes soundness and completeness of the oracle ComputeDItp, which computes

DAG interpolants. That is, ComputeDItp returns DAG interpolants (a nonempty set DItp) if and

only if for every path v1, . . . , vn (where v1 = ven and vn = vex), ∧
i∈[1,n−1]

LE(vi, vi+1)

⇒ false.

Correctness of ComputeRDItp

First, we prove that ComputeRDItp (Algorithm 6) indeed computes restricted DAG interpolants for

a graph G with variable and edge labelings LV and LE .

The first step of ComputeRDItp is to update the map LE to L′E in the loop at line 11. For each

e = (u, v) ∈ E,

L′E(e) = LV (u) ∧ LE(e).

Then DAG interpolants are computed for G and L′E and stored in RDItp.

Suppose RDItp 6= ∅. Then, by Definition 3.1 of DAG interpolants, RDItp(ven) = true and

RDItp(vex) = false. This satisfies conditions 2 and 3 of Definition 5.3. Similarly, by definition of

DAG interpolants, we know that for each (u, v) ∈ E,

RDItp(u) ∧ L′E(u, v)⇒ RDItp(v).

By construction of L′E , this means that

RDItp(u) ∧ LV (v) ∧ LE(u, v)⇒ RDItp(v). (B.4)

By precondition of ComputeRDItp, LV is a well-labeling of G. Therefore, for each (u, v) ∈ E,

LV (u) ∧ LE(u, v)⇒ LV (v). (B.5)
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It follows from Formulas B.4 and B.5 that for all (u, v) ∈ E,

(RDItp(u) ∧ LV (v) ∧ LE(u, v))⇒ (LV (v) ∧RDItp(v)).

This satisfies condition 1 of Definition 5.3.

The only thing that is left to show is condition 4 of Definition 5.3. This holds when the vertex

labeling LV satisfies the condition:

∀vi ∈ V · FV (LV (vi)) ⊆

 ⋃
e∈desc(vi)

FV (LE(e))

 ∩
 ⋃
e∈anc(vi)

FV (LE(e))


Since the precondition of ComputeRDItp does not enforce this on condition on LV , it is not guaranteed

that resulting restricted DAG interpolants satisfy condition 4. Nonetheless, correctness of VintaRef is

not affected by this.

Correctness of VintaRef

Assuming ComputeRDItp did not return an empty set, then VintaRef satisfies the specification of

Refine (Definition 5.1). This follows from the definition of restricted DAG interpolants (Definition 5.3),

the correctness of the function ComputeRDItp, and the correctness of the function DecodeBmc.

Now, suppose that ComputeRDItp returned an empty map. This means that there is a path

v1, . . . , vn in G, from the entry node to the exit node, such that∧
i∈[1,n]

LV (vi) ∧ LE(vi, vi+1)

is satisfiable. It follows that ∧
i∈[1,n]

LE(vi, vi+1)

is satisfiable. By correctness of the BMC encoding of program semantics (EncodeBmc), it follows that

there is a feasible execution to the error location.

B.4 Proof of Lemma 6.1

Lemma. Given an iARG IA(P ), an ARG Ai ∈ IA(P ), and a set of exit nodes X, there exists a

total onto map from satisfying assignments of iARGCond(Ai, X) to interprocedural (εi, X)-executions

in IA(P ).

Proof. Let IA(P ), an iARG of some program P , be of arbitrary size, Ai be some ARG in IA(P ), and

X be a set of exit nodes. We prove this lemma by induction on the depth of satisfying assignments

– or the depth recursion in iARGCond(Ai, X). Depth n recursion means that for recursive calls at

depth n, iARGCond(Ai, X) is replaced by ARGCond(Ai, X), i.e., call edges are unconstrained (non-

deterministic).

Base Case: For depth 0,

Φ0 = iARGCond(Ai, X) = ARGCond(Ai, X) = C ∧D.
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Let Z be some satisfying assignment for Φ0. Then, by definition of constraints C, there exists a sequence

of Booleans cv1 , . . . , cvl that are set to true in Z, where v1 = εi, vl is an exit node in X, and there is a

path v1, . . . , vl in Ai.

By definition of D, for each edge represented by (cva , cvb) along cv1 , . . . , cvl , the corresponding formula

Jτ(va, vb)K has to be satisfiable by Z. Therefore, by our SSA assumption, there exists an execution along

ν(v1), . . . , ν(vl) where call statements are treated as non-deterministic assignments. This proves that

there is a total map.

To prove that the map is onto, suppose there is a feasible execution of P starting in ν(εi) and

ending in a location corresponding to an exit node v ∈ X, where every call statement is treated non-

deterministically. Let v1, . . . , vl be the path traversed by the execution. To make C satisfiable, set

cv1 , . . . , cvl to true and all other variables cv to false. Under these constraints, to make D satisfiable,

for each edge variable assigned along the execution, set its corresponding variable in the formula to the

value it holds in the execution. All unassigned variables can hold any value. This satisfies every formula

Jτ(va, vb)K, where a = b− 1 and 1 < b 6 l. Therefore, D holds. Note that due to our SSA assumption,

each value is assigned once.

Inductive Hypothesis: Assume Lemma holds for depth n of recursion.

Inductive Step: For depth n+ 1,

Φn+1 = iARGCond(Ai, X) = C ∧D ∧
m∧
j=1

µj .

Let Z be a depth n + 1 assignment. That is, Z represents a path through IA(P ) of depth n + 1.

Therefore, Z is also a satisfying assignment for Φn, since in Φn all call statements at level n + 1 are

treated non-deterministically. The only difference between Φn+1 and Φn are the additional constraints

for call statements of depth n+ 1. By the inductive hypothesis and base case, there exists an execution

of depth n+ 1 through IA(P ) corresponding to Z.

Suppose there is an execution of depth n+ 1 through IA(P ). By the inductive hypothesis, there is

a satisfying assignment Z for Φn. To extend Z to a satisfying assignment Z ′ for Φn+1, set the variables

appearing in the constraints of calls at level n+ 1 to their corresponding values from the execution. By

the base case, Z ′ satisfies Φn+1.

B.5 Proof of Lemma 6.2

Lemma. Given an iARG IA(P ), an ARG Ai ∈ IA(P ), a set of exit nodes X, and a sequence of formulas

I = {(qk, tk)}mk=1, there exists a total and onto map from satisfying assignments of SpecCond(Ai, X, I)

to (εi, X)-executions in Ai, where each call-edge ek is interpreted as assume(qk ⇒ tk).

Proof. This holds trivially from the proof of Lemma 6.1, since SpecCond is the same as a depth 1

iARGCond, where bodies of callees are replaced by an assume statement.
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B.6 Proof of Lemma 6.3

Lemma. Given an ARG Ai ∈ IA(P ), and a set of exit nodes X, let Φ = Gi∧ iARGCond(Ai, X)∧¬Si
be unsatisfiable and let g0, s0, . . . , sm, gm+1 be STItp(Φ). Then,

Gi ∧ SpecCond(Ai, X, {(Guard(gk),Sum(sk))}mk=1) ∧ ¬Si

is unsatisfiable.

Proof. Given some ARG Ai ∈ IA(P ), let

Φ = Gi ∧ iARGCond ∧ ¬Si = Gi ∧ ϕ ∧ µ1 ∧ · · · ∧ µm ∧ ¬Si.

Suppose Φ is UNSAT and STItp(Φ) = g0, s0, . . . , sm, gm+1. We prove that

Gi ∧ SpecCond
(
Ai, X, {(Guard(gk),Sum(sk)}mj=1

)
∧ ¬Si is UNSAT

by transforming Φ into it, ensuring unsatisfiability at every step.

By the definition of state/transition interpolants,

Gi ∧ ϕ ∧ s1 ∧ · · · ∧ sm ∧ ¬Si is UNSAT. (B.6)

Note that sk is over the variables ~ak,~bk and cvk , cwk . (See Chapter 6 for a description of these

variables.) Therefore, we can replace occurrences of ~ak,~bk with ~pk, ~rk in each sk. and add the constraint

χk = (~ak = ~pk ∧ ~rk = ~bk) to each conjunct s.t.

Gi ∧ ϕ ∧ (χ1 ∧ s′1) ∧ · · · ∧ (χm ∧ s′m) ∧ ¬Si is UNSAT, (B.7)

where s′k = sk[~ak,~bk ← ~pk, ~rk].

Now, for each conjunct (χk ∧ s′k), we transform it into (cvk ∧ cwk)⇒ (χk ∧ s′′k), where s′′k = s′k[cu ←
true | cu is a control variable]:

Gi ∧ ϕ ∧ ((cv1 ∧ cw1
)⇒ (χ1 ∧ s′′1)) ∧ · · · ∧

((cvm ∧ cwm)⇒ (χm ∧ s′′m)) ∧ ¬Si is UNSAT (B.8)

We show that (3) is UNSAT by showing that for an interpolant sk, sk ≡ (cvk∧cwk)⇒ sk[cvk , cwk ← true].

By definition of sk,

¬cvk ⇒ sk and ¬cwk ⇒ sk. (B.9)

We show the equivalence as follows:

sk case splitting

⇔ (¬cvk ∧ s) ∨ (¬cwk ∧ s) ∨ (cvk ∧ cwk ∧ sk) using (B.9)

⇔ ¬cvk ∨ ¬cwk ∨ (cwk ∧ cvk ∧ sk) material implication

⇐⇒ (cvk ∧ cwk)⇒ cvk ∧ cwk ∧ sk substitution

⇔ (cvk ∧ cwk)⇒ sk[cvk , cwk ← true]
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Note that ϕ ≡ ϕ1 ∨ · · · ∨ ϕl, where each ϕj represents a single path through Ai to X. From the

definition of state interpolants, it follows that for every ϕj , ρ
k
j ⇒ gk+1, where

ρkj = Gi ∧ ϕj ∧ ((cv1 ∧ cw1
)⇒ (χ1 ∧ s′′1)) ∧ . . . ((cvk ∧ cwk)⇒ (χk ∧ s′′k))

Our goal now is to show that ρkj ⇒ Guard(gk+1). We start by showing that for all j, k,

ρkj ⇒ gk+1[cu ← true | vk+1 v u].

First, assume that ϕj represents a path that does not go through the k + 1st call edge. If node u

is reachable from vk+1 and is on path j, then any satisfying assignment to ρkj forces cu to be true. So

ρkj ⇒ gk+1[cu ← true | vk+1 v u]. That is, we set all nodes on the path to true, as well as all other

nodes reachable from vk+1. Note that for every node u reachable from vk+1 and not appearing on the

path j, its control variabl cu does not appear in ρkj . Therefore, the transformation preserves our desired

implication.

Now suppose that node u is reachable from vk+1, but not on path j, then cu is not a variable in

ρkj (by property of interpolants and topological ordering of call formulae.) So ρkj ⇒ gk+1[cu ← true |
vk+1 v u and u is not on path j].

Second, assume j is a path that does not go through the k + 1st edge. If u is reachable from vk+1,

then u is on the current path or cu is not in ρjk. Therefore, ρkj ⇒ gk+1[cu ← true | vk+1 v u].

From this, we know that for all j, k,

ρkj ⇒ gk+1[cu ← true | vk+1 v u].

By the above, we know that

Φj = Gi ∧ ϕj ∧ ((cv1 ∧ cw1
)⇒ (χ1 ∧ (g′1 ⇒ s′′1)) ∧ · · · ∧

((cvm ∧ cwm)⇒ (χm ∧ (g′m ⇒ s′′m)) ∧ ¬Si is UNSAT, (B.10)

where g′k = ∃Q · gk+1[cu ← true | vk+1 v u][~bk+1 ← ~pk+1]. Q here refers to all variables in gk+1 except

node Booleans (of form cv) and ~pk+1. Existential quantification relaxes the formula and does not affect

unsatisfiability. It follows from (4) that Φj [cu ← false | u not on path j] is also UNSAT. By definition

of Guard,

Φj [g
′
k ← Guard(gk) | for all k]⇒ Φj [cu ← false | u not on path j].

By definition of SpecCond, it follows that:

Gi ∧ SpecCond
(
Ai, X, {(Guard(gk),Sum(sk)}mj=1

)
∧ ¬Si is UNSAT.

B.7 Proof of Theorem 6.1

Theorem. Whale is sound. Under fair scheduling, it is complete for Boolean programs.
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Proof. Soundness: We prove soundness using a generalized version of Hoare’s rule for recursion:

c ∈ Y Y ` Z ∀y ∈ Y · ∃z ∈ Z · z ` y
c

where Y is a set of Hoare triples over call statements and Z is a set of Hoare triples over function bodies.

Given an iARG IA(P ) that is the result of a terminating execution of Whale that did not return

UNSAFE, let

Y ≡ {{Gj}~b = Fσ(j) (~a){Sj} | Aj ∈ IA(P ) is uncovered or directly covered}
Z ≡ {{Gi}BFσ(i) {Si} | Ai ∈ IA(P ) is uncovered}

If y ∈ Y is a triple from an uncovered ARG, then, by definition of Y and Z, ∃z ∈ Z · z ` y. If y ∈ Y
is a triple from a directly covered ARG Ai, then by soundness of the cover relation zj ` y, where zj ∈ Z
is the body triple of the ARG Aj covering Ai.

By the above rule, ∀y ∈ Y · ` y. Therefore ` {G1}~r = F1(~p){S1}.

Completeness: To prove completeness of fair Whale on Boolean programs, it is sufficient to show that

the algorithm cannot construct an infinite justification tree.

We proceed by contradiction. Assume that the algorithm constructed an infinite justification tree.

Note that each Ai ∈ IA(P ) has finitely many call-edges, hence the justification tree is finite branching.

By König’s lemma, it must have an infinite path.

Let π = Ai1 , . . . be this infinite path. Note that all ARGs on π are uncovered (otherwise the path

is finite). Since there are finitely many functions, there is an infinite subsequence {kj} of the path such

that σ(ikj ) = l for all j, for some function Fl. Furthermore, since the number of Boolean formulas over

a finite set of variables is finite, we can assume that Gikj = Gik
j′

and Sikj = Sik
j′

for all j and j′. Note

that for any pair (j, j′) s.t. j < j′, Aikj covers Aik
j′

. Hence, CoverARG is enabled infinitely often.

By fairness assumption, CoverARG must be applied at least once on π. This makes π finite, which

contradicts the assumption that the justification tree is infinite.
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