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Abstract—Hardness against nondeterministic circuits is
known to suffice for derandomizing Arthur-Merlin games.
We show a result in the other direction – that hardness
against nondeterministic circuits is necessary for derandom-
izing Arthur-Merlin games. In fact, we obtain an equivalence
for a mild notion of derandomization: Arthur-Merlin games
can be simulated in Σ2SUBEXP (the subexponential version
of Σ2P) with subpolynomial advice on infinitely many input
lengths if and only if Σ2E (the linear-exponential version of
Σ2P) requires nondeterministic circuits of superpolynomial size
on infinitely many input lengths.

Our equivalence result represents a full analogue of a
similar result by Impagliazzo et al. in the deterministic set-
ting: Randomized polynomial-time decision procedures can be
simulated in NSUBEXP (the subexponential version of NP)
with subpolynomial advice on infinitely many input lengths if
and only if NE (the linear-exponential version of NP) requires
deterministic circuits of superpolynomial size on infinitely
many input lengths.

A key ingredient in our proofs is improved Karp-Lipton style
collapse results for nondeterministic circuits. The following are
two instantiations that may be of independent interest: Assum-
ing that Arthur-Merlin games can be derandomized in Σ2P, we
show that (i) PSPACE ⊆ NP/poly implies PSPACE ⊆ Σ2P,
and (ii) coNP ⊆ NP/poly implies PH ⊆ PΣ2P.

Keywords-Derandomization, Circuit Lower Bounds, Arthur-
Merlin Games

I. INTRODUCTION

The power of randomness constitutes a central topic in
complexity theory. In the context of randomized decision
procedures the question is whether the class BPP, or its
promise version prBPP, can be simulated deterministically
without much overhead – in subexponential or maybe even
polynomial time. Similarly, in the context of randomized
verification procedures one seeks for efficient nondetermin-
istic simulations of Arthur-Merlin games: the class AM, or
its promise version prAM.

A major development in the area are hardness versus
randomness tradeoffs [18], [3], [11], which state that either
nonuniformity speeds up computations significantly or else
nontrivial derandomization is possible. More precisely, these
results show how to use a language in some complexity class
C that is assumed to require “large” circuits, to construct

a pseudorandom generator (PRG) with “small” seed length
that is computable in C. The PRG transforms its seed into a
longer string, say of length s, such that the average behavior
of any circuit C of size s is almost the same when the
input to C is provided from the uniform distribution or from
the output distribution of the PRG on a uniform seed. We
say that the PRG fools the circuit C. If C requires large
circuits of a certain type τ , then the resulting PRG fools
circuits of type τ [16], and can be used to derandomize
randomized processes that can be modeled by small circuits
of type τ . See the table below for some examples from the
above papers and [19], where E

.
= DTIME(2O(n)) and

NE
.
= NTIME(2O(n)) and τ = d/n denotes determinis-

tic/nondeterministic circuits.

τ class C
randomized

class derandomization
d E prBPP DTIME(t)
n NE ∩ coNE prAM NTIME(t)

Once we have such a PRG, the derandomization is obtained
by cycling over all seeds and simulating the randomized
algorithm on the output of the PRG for each seed. Stronger
circuit lower bounds for C imply smaller seed lengths for
the generator, yielding more efficient derandomizations. At
the “low end”, superpolynomial circuit lower bounds yield
subpolynomial seed length and derandomizations that run in
subexponential time t. At the “high end”, linear-exponential
circuit lower bounds yield logarithmic seed length and
derandomizations that run in polynomial time t.

As the circuit lower bounds seem plausible, even at the
high end, the hardness versus randomness tradeoffs have
fueled the conjecture that prBPP can be fully derandomized
to P, and prAM to NP. However, even the low-end hardness
conditions remain open to date. This raises the question
whether there are means of derandomizing that do not
need any hardness assumptions. In other words, whether
derandomization implies hardness.

In recent years we have seen a number of results for
(pr)BPP showing that derandomization implies hardness of
some sort, although typically not strong enough so as to



imply back the derandomization (e.g., [10], [12], [15]). One
exceptional example is a low-end equivalence for prBPP in
[10]: prBPP can be simulated in nondeterministic subex-
ponential time (NSUBEXP) with subpolynomial advice
for infinitely many input lengths if and only if nondeter-
ministic linear-exponential time (NE) requires deterministic
circuits of superpolynomial size for infinitely many input
lengths. Regardless of the equivalence, the result shows that
derandomizing prBPP requires advancing the frontiers in
deterministic circuit lower bounds – it is unknown whether
superpolynomial size circuits are required for NE, or even
for ENP for that matter.

In contrast to the class prBPP, derandomization-to-
hardness connections for prAM have not gathered much
attention thus far. The only result in this direction is a
“hybrid” connection that shows an implication from de-
randomizing prAM to deterministic circuit lower bounds
[2], whereas the hardness-to-derandomization implication
for prAM involves nondeterministic circuits. In particular,
what kind of nondeterministic circuit lower bounds, if any,
are implied by derandomizing prAM is an open question.

Our results. In this paper we take up this question and
obtain an equivalence of hardness and derandomization for
prAM. Specifically, we show that a mild derandomization
of prAM with small advice implies nondeterministic circuit
lower bounds, which in turn imply back the same derandom-
ization. By a “mild” derandomization of prAM we mean a
simulation of prAM in Σ2SUBEXP

.
= ∩ε>0Σ2TIME(2n

ε

).
The standard notion of derandomization for prAM refers
to simulations in NTIME(t), which is trivially included in
Σ2TIME(t). Hence the term “mild.”

Theorem 1 (Equivalence for Arthur-Merlin games).
The following are equivalent:
◦ For every ε > 0, prAM can be simulated in

Σ2TIME(2n
ε

)/nε for infinitely many input lengths.
◦ Σ2E contains a language that requires nondeterminis-

tic circuits of superpolynomial size for infinitely many
input lengths.

Theorem 1 represents an analogue of the equivalence es-
tablished by Impagliazzo et al. [10] for prBPP. Their equiv-
alence involves simulations of prBPP in NTIME(t) with
small advice, whereas the standard notion of derandomiza-
tion for prBPP refers to simulations in DTIME(t). Recall
that prAM can be simulated in Π2P, but simulations in Σ2P
are open, even though plausible hardness assumptions imply
simulations in NP. Gutfreund et al. [9] suggest an approach
to unconditionally prove that prAM can be simulated in
Σ2SUBEXP. Theorem 1 implies that such a result would
yield new circuit lower bounds as it is open whether Σ2E
requires superpolynomial-size nondeterministic circuits. In
fact, as far as we know, it is even open whether EΣ2P

requires such circuits. Thus, the situation for Arthur-Merlin
games is similar to the one for decision procedures, except

“one level up” in the exponential-time hierarchy.
A key step in the proof of Theorem 1 shows that mild de-

randomizations of prAM imply improved Karp-Lipton style
collapse results for nondeterministic circuits. The following
are two instantiations that may be of independent interest.

Theorem 2 (High-end collapse results). Suppose prAM
can be simulated in Σ2P. Then

(i) PSPACE ⊆ NP/poly =⇒ PSPACE ⊆ Σ2P, and
(ii) coNP ⊆ NP/poly =⇒ PH ⊆ PΣ2P.

Karp and Lipton [14] showed that if NP ⊆ P/ poly then
PH ⊆ Σ2P. Yap’s adaptation [20] of the Karp-Lipton
result gives that if coNP ⊆ NP/ poly then PH ⊆ Σ3P.
Modulo the derandomization assumption, the second item of
Theorem 2 improves Yap’s result by “half a level”. Another
variant of the Karp-Lipton argument (attributed to Meyer)
states that if PSPACE ⊆ P/ poly then PSPACE ⊆ Σ2P.
Relativizing the latter result yields the strongest collapse
consequence of PSPACE ⊆ NP/ poly known uncondition-
ally, namely PSPACE ⊆ Σ3P. The first item of Theorem
2 improves this collapse by one level, modulo the deran-
domization assumption. We refer to Section II-D for related
work on more refined collapses.

We use a low-end version of the first collapse result in
Theorem 2 to establish the forward direction of Theorem
1. The proof relies on interactive proofs for PSPACE, and
as such does not relativize. If we use the second collapse
result instead of the first one, we obtain a relativizing proof
of a weaker result, namely that simulations of prAM in
Σ2SUBEXP imply that EΣ2P contains a language that
requires nondeterministic circuits of superpolynomial size
infinitely often.

Organization. In Section II we sketch the ideas behind
our results and discuss the relationship with earlier work. In
Section III we set up our notation for the formal develop-
ment. In Section IV we present the collapse results and in
Section V the equivalence result.

II. OUTLINE OF THE ARGUMENTS AND RELATED WORK

We now outline the proofs of Theorem 1 and Theorem 2.
We focus on the most novel part of the proof of Theorem 1,
which is the direction from derandomization to hardness,
as well as the weaker but relativizing variant mentioned
in the introduction. Both can be cast as instantiations of
a general framework that also captures the related result
of [10]. The framework relies on Kannan’s theorem [13]
that some level of the polynomial-time hierarchy cannot be
decided by circuits of fixed polynomial size, and critically
relies on collapse results in order to bring down the required
level of the polynomial-time hierarchy.

We first explain the collapse results we need and then
present the framework. For ease of exposition, in this
overview we use the assumption that prAM can be simulated
in Σ2P, yielding the high-end collapse results of Theorem



2, although for the proof of Theorem 1 it suffices to have
the weaker assumption that prAM can be simulated in
∩ε>0i.o.− Σ2TIME(2n

ε

)/nε.

A. First high-end collapse result

Our first collapse result is an adaptation to the nondeter-
ministic setting of the classical result that if PSPACE has
polynomial-size deterministic circuits then PSPACE ⊆ MA
[17]. Let us first recall the proof of that classical result.

Assuming that PSPACE has polynomial-size determinis-
tic circuits, we want to compute some PSPACE-complete
language L in MA. The proof hinges on the existence of an
interactive proof system for L in which the honest prover’s
responses are computable in PSPACE. By assumption, there
is a polynomial-size deterministic circuit Dprover that encodes
the honest prover’s strategy; i.e., given a transcript of a
message history, the circuit computes the next bit the honest
prover sends. Now the MA-protocol for L is as follows:
Merlin sends a polynomial-size circuit D′ to Arthur, who
then carries out the interactive protocol for L by himself,
evaluating the circuit D′ to determine the prover’s responses.
If the input is in L, Merlin can send the circuit Dprover, which
makes Arthur accept with high probability. If the input is
not in L, the soundness property of the interactive proof
system guarantees that no deterministic circuit can make
Arthur accept with significant probability. This proves that
L ∈ MA.

Now let us turn to our setting and try to achieve a similar
collapse under the assumption that PSPACE has nonde-
terministic circuits of polynomial size. Since Arthur may
need Merlin’s help in evaluating nondeterministic circuits,
we allow for one more round of interaction between Arthur
and Merlin, and aim for a collapse to MAM=AM rather
than MA. By assumption, there exists a polynomial-size
nondeterministic circuit C implementing the honest prover’s
strategy; i.e., given a transcript of the message history and
a bit b, C accepts if the honest prover’s next message bit
is b, and rejects otherwise. Now consider the following
attempt at a protocol for the PSPACE-complete language
L: Merlin sends a polynomial-size nondeterministic circuit
C ′, purported to encode the strategy of the honest prover.
Upon receiving the circuit C ′, Arthur reveals his coin flips ρ
to Merlin. Merlin then provides the certificates for the circuit
C ′ that allow Arthur to construct and verify every bit of the
transcript of the interactive proof corresponding to the coin
flips ρ. Finally, Arthur accepts if the resulting transcript is
accepting.

This protocol is complete but not necessarily sound.
Indeed, Merlin can send a nondeterministic circuit C ′ that
has accepting and rejecting computation paths on every
input, which allows Merlin to adapt his strategy to the coin
flips ρ in whatever way he wants, by revealing accepting
computation paths only if he wishes to. We somehow need
to force Merlin to commit to a fixed strategy in advance.

In order to do so, we use our derandomization assumption
and aim for a collapse to Σ2P instead of AM. First, in an
existential phase we “guess” a nondeterministic circuit C ′

supposed to implement the honest prover’s strategy for L.
We provide C ′ as additional input to the AM-protocol, and
require Merlin to convince Arthur using the specific circuit
C ′ provided. Moreover, in parallel to the AM-protocol, we
make sure C ′ commits Merlin to a fixed strategy. More
precisely, in a universal phase we check that on every partial
transcript for at least one of the choices of the bit b, C ′

rejects on all computation paths. This fixes the soundness
problem while maintaining completeness.

Note that the above procedure can be implemented within
Σ2P: We use two alternations outside the AM-protocol,
where the second alternation for checking the circuit is
executed in parallel to the protocol. Since by our deran-
domization assumption the AM-protocol can be simulated
in Σ2P, a collapse of PSPACE to Σ2P follows.

B. Second high-end collapse result

To outline the proof of our second collapse result, let
us first recall the proof of the classical result by Karp and
Lipton for the case of NP and deterministic circuits. Assum-
ing that satisfiability (SAT) has polynomial-size circuits, we
consider any Π2P-predicate of the form (∀u)(∃v)ϕ(u, v),
where ϕ is a Boolean formula, and translate it into an
equivalent Σ2P-predicate.

One way to construct the Σ2P-predicate goes as follows.
Use an existential quantifier to “guess” a deterministic circuit
D, verify that D correctly decides SAT, and then use D to
transform the final existential phase of the original Π2P-
predicate into a deterministic one, effectively eliminating
one quantifier alternation. Hence, we obtain an equivalent
predicate that reads as

(∃D) [correct(D) ∧ (∀u)D(“(∃v)ϕ(u, v)”) = 1] . (1)

Exploiting the self-reducibility of SAT, correct(D) can
be expressed as a coNP-predicate. This way (1) becomes a
Σ2P-predicate.

Let us now turn to our setting and try to achieve the
same collapse under the assumption that SAT has non-
deterministic circuits of polynomial size. Mimicking the
above proof, we use an existential quantifier to guess a
nondeterministic circuit C, check its correctness for SAT,
and then feed the final existential phase of the Π2P-predicate
into C. The latter transforms the final existential phase into
an equivalent universal phase, which can be merged with the
initial universal phase of the original Π2P-predicate. This
complementation gives us a new equivalent predicate of the
form

(∃C) [correct(C) ∧ (∀u)C(“(∃v)ϕ(u, v)”) = 0] . (2)

In fact, it suffices that the predicate correct(C) checks
the completeness of C for SAT (that C accepts every



unsatisfiable formula) without explicitly checking the sound-
ness of C for SAT (that C only accepts unsatisfiable
formulas). However, while soundness can be tested in coNP,
completeness seems to require Π2P. This turns (2) into a
Σ3P-predicate rather than a Σ2P-predicate. Note that obtain-
ing an equivalent Σ3P-predicate is trivial since we started
from a Π2P-predicate. If we start from a ΠP

3 -predicate
instead, an analogous transformation yields an equivalent
Σ3P-predicate, implying a collapse of the polynomial-time
hierarchy to the third level (this is Yap’s theorem [20]). If
we could check for completeness in Σ2P, then the collapse
would deepen to the second level and we would be done,
but we do not know how to do this, even under our
derandomization assumption. What we can do under our
assumption, is to construct a correct nondeterministic circuit
for SAT “half a level” up from Σ2P, namely in PΣ2P (just
like we could if we knew how to check completeness in
Σ2P). This collapses the polynomial-time hierarchy down
to PΣ2P, giving our second collapse result.

The particular problem in prAM that we assume can
be derandomized is the following approximate lower bound
problem: Given a circuit C and an integer a, decide whether
C accepts at least a inputs or noticeably less than a, say, less
than a(1− ε) where ε = 1/poly(n). Goldwasser and Sipser
[8] showed that this problem lies in prAM, even when C is
nondeterministic.

The key difference our derandomization assumption
makes is the added ability to guarantee, within Σ2P, that a
nondeterministic circuit C is “almost” complete, i.e., that C
accepts at least a (1−ε)-fraction of all unsatisfiable formulas,
and even more generally, that a nondeterministic circuit C
accepts at least a (1−ε)-fraction of all unsatisfiable formulas
that are rejected by some other given nondeterministic
circuit. This enables us to construct in PΣ2P, out of a
sound nondeterministic circuit Ci for SAT, another sound
nondeterministic circuit Ci+1 for SAT that misses at most
half as many unsatisfiable formulas as Ci does. Starting
from the trivial sound circuit C0 that rejects everything, this
process yields a sound and complete nondeterministic circuit
for SAT within n iterations.

To explain the role of the derandomization hypothesis in
more detail, we first sketch how to find C1 because that
case is easier. In constructing C1 we make oracle queries
of the form: Is there a sound nondeterministic circuit of
size s(n) for SAT that accepts a inputs. These queries
can be decided approximately by a Σ2P-oracle because of
our derandomization assumption and because soundness can
be checked in coNP. Assuming SAT has nondeterministic
circuits of size s(n), this enables us to approximate the
number ā of unsatisfiable formulas of length n through
a binary search using a Σ2P-oracle. Moreover, by self-
reduction we get a sound circuit C1 that accepts at least
(1− ε)ā inputs, with the factor (1− ε) being due to the gap
between the yes and no instances of the approximate lower

bound problem. Setting ε = 1/2, we thus find a sound circuit
C1 for SAT that accepts at least half of all unsatisfiable
formulas of length n.

To construct C2 we want to employ a similar strategy as
in the construction of C1, namely to find a sound circuit C̃1

for SAT that seems to accept as many inputs as possible,
and then set C2 = C1 ∨ C̃1. The difference, however, is
that this time we want to maximize not over all inputs, but
just over those inputs that C1 rejects. This causes a problem
because the set of inputs that C1 rejects is in coNP, whereas
the approximate lower bound problem allows us to estimate
the size of NP sets only.

We overcome this obstacle by using the complementation
idea again. By assumption, SAT has small nondeterministic
circuits not only at input length n, but also at larger input
lengths. In particular, there is a nondeterministic circuit
C ′ of size s(n′) for SAT at input length n′, where n′ is
large enough that we can express the computation of an n-
input size-s(n) nondeterministic circuit – in particular C1

– with a Boolean formula of length n′. If we can get a
hold of such a circuit C ′, then we can express the coNP-
set {x ∈ {0, 1}n : C1 rejects x} alternately as the NP-set
{x ∈ {0, 1}n : C ′ accepts φC1

(x, ·)}, where φC1
(x, y) is a

Boolean formula of size n′ that expresses that y is a valid
accepting computation of C1 on input x. Since the latter set
is in NP, it can be provided as input to the approximate
lower bound problem. Of course, getting a hold of a circuit
C ′ for SAT at length n′ is the very problem we are trying
to solve – only harder since n′ > n. We observe, however,
that we do not need to explicitly check the completeness of
C ′ for SAT; it suffices to check the soundness of C ′ for
SAT. Since the latter can be done in coNP, we can guess
and check the circuit C ′ in Σ2P.

To recapitulate, we want to find a sound nondeterministic
circuit C̃1 for SAT that misses at most half of the unsatis-
fiable formulas that C1 misses. We accomplish this by first
encoding the computation of C1 on a generic input x as a
Boolean formula φC1

(x, y) of length n′, such that φC1
(x0, ·)

is satisfiable for a particular x0 iff C1 accepts x0. Then we
make oracle queries that ask: Is there a nondeterministic
circuit C ′ of size s(n′) on n′ inputs, and a nondeterministic
circuit C̃1 of size s(n) on n inputs, such that (i) the set
{x ∈ {0, 1}n : C̃1 accepts x and C ′ accepts φC1

(x, ·) } is
of size at least a, and (ii) C ′ and C̃1 are both sound for SAT.
By our derandomization assumption that prAM ⊆ Σ2P,
these queries can be made to a Σ2P-oracle, which allows us
to construct C̃1 in PΣ2P. We then set C2 = C1 ∨ C̃1.

As a side remark we point out that, although we do not
explicitly require the circuit C ′ to be complete for SAT,
the maximization of a forces C ′ to be complete (on the
relevant instances). This is how we can avoid checking
completeness explicitly (which seems to require the power
of Π2P) although we rely on it.

Having found C2, we then iterate to get a third non-



deterministic circuit C3 that misses at most half as many
unsatisfiable formulas as C2 does, and so on until we reach
perfect completeness. This way we construct in PΣ2P a
nondeterministic circuit of size O(n·s(n)) for SAT at length
n. The collapse of the polynomial-time hierarchy to PΣ2P

follows.

C. The lower bound framework

In both our main result and the result of Impagliazzo et al.
[10] mentioned in the introduction, the proof of the forward
direction – from derandomization to hardness – can be cast
as an instantiation of a generic framework. We now describe
that framework.

Our goal is to show that, under some derandomization
assumption, some class C does not have polynomial-size
circuits of type τ , where τ could be deterministic or nonde-
terministic. The proof goes by contradiction and consists of
the following ingredients. Assume that C has τ -circuits of
polynomial size.

1) Collapsing the polynomial-time hierarchy. Use the hy-
pothesis that C has τ -circuits of polynomial size to
show that the polynomial-time hierarchy can be sim-
ulated in some randomized class R.

2) Derandomization. Use the derandomization assumption
to show that all of R reduces to some fixed K ∈ C
under mapping reductions computable by deterministic
circuits of some fixed polynomial size, for infinitely
many input lengths.

The hypothesis that C has τ -circuits of polynomial size
implies that K has τ -circuits of size nc for some constant c.
By combining the above two ingredients, we conclude that
all of the polynomial-time hierarchy can be decided by τ -
circuits of size less than nd for some fixed constant d and
infinitely many input lengths. This contradicts Kannan’s re-
sultthat for any fixed polynomial nd, there exists a language
in some level of the polynomial-time hierarchy that requires
τ -circuits of size at least nd for all but finitely many input
lengths [13].

The following instantiations of the above framework
yield the derandomization-to-hardness results from [10], our
nonrelativizing argument, and our weaker but relativizing
argument.

C τ R
[10] NE d MA

nonrel. arg. Σ2E n prM(AM||coNP)

rel. arg. EΣ2P n PprM(AM||coNP)

The classes R listed for our results are technical constructs
that are implicit in the proof of Theorem 2, and are explicitly
defined in Section III.

D. Related work

Using Kannan’s argument to get circuit lower bounds
from a derandomization assumption for prAM was carried

out in [2]. The same paper also presents an alternate and
simpler proof that does not use Kannan’s argument, but
uses the power of prAM to directly diagonalize against
deterministic circuits.

The general technique of using a prAM-oracle to iter-
atively construct a sound circuit with rapidly increasing
completeness, appears in the work of Chakaravarthy and
Roy [5]. Using this technique they show that PH collapses
to PprAM, under the classical Karp-Lipton assumption that
NP ⊆ P/poly.

Be it for diagonalization as in [2], or for finding a circuit
as in [5], [2] and our work, the use of a prAM-oracle can be
viewed as finding a witness ỹ that approximately maximizes
a “quality measure” f defined on the set of all strings. For
diagonalization purposes this measure would be the number
of circuits that a given string y eliminates when viewed as
the characteristic string of a function. For finding a circuit for
SAT at length n, y is viewed as a circuit and f(y) measures
the number of unsatisfiable formulas that y accepts provided
that y is sound.

A related work is that of Goldreich [7], who uses a
prBPP-oracle to construct a “targeted canonical generator.”
That work can also be viewed as approximately maxi-
mizing a quality measure f , where f(y) may be defined
recursively as the average quality of the extensions of y,
i.e., f(y) = 1

2 (f(y0) + f(y1)). The difference between
the works mentioned in the previous paragraph and [7] is
that in the latter work f can be additively approximated
using a prBPP-oracle, whereas in the former works it is
multiplicatively approximated using a prAM-oracle.

Regarding our high-end collapse result involving coNP
and NP/ poly, at a more refined level of granularity the
strongest unconditional collapse consequence of the condi-
tion coNP ⊆ NP/ poly is that PH collapses to S2PNP [4],
a class that contains PΣ2P but is not known to equal it.
Similarly, the strongest unconditional collapse consequence
of PSPACE ⊆ NP/ poly is that PSPACE ⊆ S2PNP.

III. NOTATION AND CONVENTIONS

In this section we introduce our notation and conventions,
including the notion of an augmented Arthur-Merlin proto-
col, which is a technical construct that naturally arises in our
collapse arguments. Most of our notation is standard (see,
e.g., [1]), except that in the remainder of this paper the term
“circuit” always refers to a Boolean nondeterministic circuit,
unless stated otherwise.

Circuits. A (nondeterministic Boolean) circuit C consists
of AND and OR gates of fan-in 2, NOT gates of fan-in 1,
input gates of fan-in 0, and additionally, choice gates of fan-
in 0. We say that the circuit accepts input x, or C(x) = 1 in
short, if there is some assignment of Boolean values to the
choice gates that makes the circuit evaluate to 1; otherwise
we say that C rejects x, or C(x) = 0 in short. We measure
the size of a circuit by the number of its connections. A



circuit of size s can be described by a binary string of length
O(s log s).

Promise problems and languages. A promise problem Π
is a pair of disjoint sets (ΠY ,ΠN ) of strings over the binary
alphabet {0, 1}. A language L is a promise problem of the
form (L,L), where L .

= {x ∈ {0, 1}∗ : x 6∈ L}. A promise
problem Π′ = (Π′Y ,Π

′
N ) is said to agree with a promise

problem Π = (ΠY ,ΠN ) if ΠY ⊆ Π′Y and ΠN ⊆ Π′N . For
two classes of promise problems C and C′, we write C ⊆ C′
if for every Π ∈ C there exists Π′ ∈ C′ such that Π′ agrees
with Π. We say that Π reduces to Π′ if there exists an oracle
Turing machine M such that ML′ agrees with Π for every
language L′ that agrees with Π′. In particular, a language
L is in PΠ′ if there exists a polynomial-time oracle Turing
machine M such that ML′ decides L for every language L′

that agrees with Π′. For more on promise problems, see the
survey [6].

SAT represents the language of satisfiable Boolean for-
mulas. By prAM we denote the class of promise problems
Π for which there exists a constant c and a language L ∈ P
such that for every input x

x ∈ ΠY ⇒ Pry[(∃z)〈x, y, z〉 ∈ L] ≥ 2/3, and
x ∈ ΠN ⇒ Pry[(∃z)〈x, y, z〉 ∈ L] ≤ 1/3,

where n denotes the length of x, the variables y and z range
over {0, 1}nc , and the probabilities are with respect to the
uniform distribution. AM denotes those problems in prAM
that are languages. Underlying each problem in prAM there
is a protocol between a randomized polynomial-time verifier
(Arthur) and an all-powerful prover (Merlin); we refer to
these protocols as Arthur-Merlin protocols or Arthur-Merlin
games.

In our proofs the following technical augmentation of
Arthur-Merlin protocols arises naturally. For lack of a better
name, we refer to them as “augmented” Arthur-Merlin
protocols.

Definition 1 (Augmented Arthur-Merlin protocol). The
class prM(AM||coNP) consists of all promise problems
Π for which there exists a constant c, a promise problem
Γ ∈ prAM, and a language V ∈ coNP such that

x ∈ ΠY ⇒ (∃y) (〈x, y〉 ∈ ΓY ∧ 〈x, y〉 ∈ V ) , and
x ∈ ΠN ⇒ (∀y) (〈x, y〉 ∈ ΓN ∨ 〈x, y〉 6∈ V ) ,

where n denotes the length of x, and y ranges over {0, 1}nc .
M(AM||coNP) denotes those problems in prM(AM||coNP)
that are languages.

Similar to the class prAM, underlying each problem in
prM(AM||coNP) there is a protocol between an all-
powerful prover, Merlin, and – in this case – two verifiers,
who cannot communicate with each other. One verifier is the
usual randomized polynomial-time Arthur from the prAM-
problem Γ; the other one is the coNP-verifier V . Merlin
goes first and sends a common message to both verifiers.

At this point, V has to make a decision to accept/reject,
whereas Arthur can interact with Merlin as in the Arthur-
Merlin protocol Γ before making a decision. The input is
accepted by the protocol iff both verifiers accept.

IV. COLLAPSE RESULTS

In this section we establish our collapse result (The-
orem 2), which uses the assumption that prAM can be
mildly derandomized. In fact, we prove an unconditional
collapse result involving the class of augmented Arthur-
Merlin protocols introduced in Definition 1, from which
Theorem 2 follows under the derandomization assumption.
We first establish a collapse result assuming PSPACE has
nondeterministic circuits of polynomial size (corresponding
to the first part in Theorem 2) and then do the same for
coNP instead of PSPACE (corresponding to the second part
in Theorem 2).

A. Collapse result for PSPACE

The proof of the following theorem uses interactive proofs
for PSPACE and as such does not relativize.

Theorem 3. If PSPACE ⊆ NP/ poly then PSPACE ⊆
M(AM||coNP).

Proof: Let L be in PSPACE, fix an interactive proof
system for L, and consider the language Lprover consisting of
all tuples 〈x, y, b〉 such that y is a prefix of the transcript of
an interaction of the verifier with the honest prover on input
x, and the next bit in the transcript is sent by the prover
and equals b. Without loss of generality we can assume that
Lprover is paddable such that given a random string ρ for
the verifier, we can construct the entire transcript with the
honest prover on an input x ∈ {0, 1}n by making queries to
Lprover of a single length τ(n) = poly(n).

By the assumption that PSPACE ⊆ NP/ poly, Lprover can
be decided by some polynomial-size nondeterministic circuit
Cprover. Now consider the following augmented Arthur-
Merlin protocol for deciding L on x ∈ {0, 1}n. Merlin
sends to both verifiers a polynomial-size nondeterministic
circuit C ′, purported to compute Lprover at length m = τ(n).
The coNP-verifier V checks that C ′ is “single-valued”,
i.e., for all possible queries to the circuit C ′, if for some
query 〈x0, y0, b0〉 the circuit C ′ accepts then C ′ rejects the
complementary query 〈x0, y0,¬b0〉. Note that this check is
indeed in coNP.

Arthur picks a random string ρ of the appropriate length
(at most τ(n)) and sends it to Merlin. Merlin sends the
transcript for the interactive protocol for L on input x
corresponding to the coin flips ρ. Merlin also sends the
certificates for C ′ that purportedly produce that transcript.
Arthur accepts iff C ′ produces the transcript when given
those certificates, and the transcript is accepting.

To argue completeness, consider x ∈ L. Then Merlin can
just send C ′ = Cprover. That circuit passes the coNP-verifier
V and also passes Arthur’s verification with high probability.



For the soundness, consider x /∈ L, and suppose that
Merlin sends a circuit C ′ that passes the coNP-verifier. This
means that C ′ is single-valued, and corresponds to a fixed
prover strategy. Then Arthur rejects with high probability by
the soundness of the original interactive proof system for L.

The proof of the first part of Theorem 2 follows immedi-
ately from Theorem 3.

Proof of part (i) of Theorem 2: If prAM can be
simulated in Σ2P then so can prM(AM||coNP). This
follows because replacing ΓY in Definition 1 by a Σ2P-
predicate and ΓN by its complement, turns ΠY into a
Σ2P-predicate and ΠN into its complement. If in addi-
tion PSPACE ⊆ NP/ poly, Theorem 3 implies that
PSPACE ⊆ M(AM||coNP) ⊆ Σ2P.

B. Collapse result for coNP

We proceed with a relativizable proof of the following
unconditional collapse result assuming coNP has nondeter-
ministic circuits of polynomial size.

Theorem 4. If coNP ⊆ NP/poly then Σ3P ⊆
PprM(AM||coNP).

Note that the second part of Theorem 2 follows immediately
from Theorem 4 under the mild derandomization assump-
tion for prAM, in a relativizable way.

Proof of part (ii) of Theorem 2: As we argued in the
proof of part (i), if prAM can be simulated in Σ2P then
so can prM(AM||coNP). If in addition coNP ⊆ NP/ poly,
Yap’s theorem [20] and Theorem 4 imply that PH ⊆ Σ3P ⊆
PprM(AM||coNP) ⊆ PΣ2P.

We now argue Theorem 4. Assume that SAT has nonde-
terministic circuits of size s(n), where s is some polynomial.
Following the outline of Section II-B, with the aid of
a prM(AM||coNP)-oracle, we construct a circuit of size
O(n · s(n)) that correctly decides SAT on all instances of
size n. The circuit is obtained as the end of a sequence of
sound circuits with rapidly improving completeness, starting
from the trivial circuit that rejects everything.

To measure the improvement in each step, we consider
the following function f : {0, 1}∗ × {0, 1}∗ → N, which
takes as arguments the current circuit C in the sequence,
and a candidate circuit C̃ to improve the completeness of C
in the next step, while maintaining soundness.

f(C, C̃) =

{
|C−1(0) ∩ C̃−1(1)| if C̃ is sound for SAT
0 otherwise.

(3)
We map circuits C̃ that are not sound to zero because their
use would violate the soundness of the sequence. If C̃ is
sound, f counts the number of instances of SAT that are
missed by C but caught by C̃.

For a given circuit C that is sound but not complete,
our goal is to find a circuit C̃ that approximately maxi-
mizes f(C, C̃). For this task we only need access to an

approximation of f to within a constant multiplicative factor.
In general, for a function f : {0, 1}∗ × {0, 1}∗ → N,
approximating f to within a multiplicative factor is captured
by the following promise problem Af = (Yf , Nf ), which
additionally takes an integer a in binary and a positive
integer 1/ε in unary.

Yf = {〈x, y, a, ε〉 : f(x, y) ≥ a}
Nf = {〈x, y, a, ε〉 : f(x, y) < (1− ε)a}. (4)

The crux of our argument is the following lemma.

Lemma 1. Let f be the function defined by (3), and Af the
promise problem given by (4). If coNP ⊆ NP/ poly then
Af ∈ prM(AM||coNP).

Proof: We follow the outline from Section II-B, but
cast the resulting algorithm for Af in terms of an aug-
mented Arthur-Merlin protocol with coNP-verifier V on
input (C, C̃).

Since V can check whether C̃ is sound for SAT, if suffices
to construct an augmented Arthur-Merlin protocol for Ag ,
where g is the simplification of f defined by g(C, C̃)

.
=

|C−1(0) ∩ C̃−1(1)|.
Goldwasser and Sipser [8] showed that for every predicate

L ∈ NP and function h : {0, 1}∗ × {0, 1}∗ → N with

h(u, v) = |{w ∈ {0, 1}∗ : 〈u, v, w〉 ∈ L}|, (5)

the promise problem Ah is in prAM. Note that the function
g is of the form (5), except that the underlying predicate
C(w) = 0 ∧ C̃(w) = 1 is the difference of two NP sets
rather than just an NP set. We remedy this issue by invoking
the hypothesis coNP ⊆ NP/ poly as follows.

Let C and C̃ have n inputs and be of size at most s. By
the Cook-Levin Theorem, we can construct in time poly(s)
a Boolean formula φC(x, y) of size n′ such that for all
x0 ∈ {0, 1}n, C(x0) = 0 iff φC(x0, ·) ∈ SAT. Let C ′

denote a circuit that takes inputs of size n′, and let L denote
the predicate that on input 〈u, v, w〉 with u = 〈C,C ′〉 and
v = C̃, decides whether C ′(φC(w, ·)) = 1∧C̃(w) = 1. Note
that L ∈ NP, so Ah ∈ prAM, where h is defined by (5).
Whenever C ′ is sound for SAT on instances of size n′, then
〈〈C,C ′〉, C̃, w〉 ∈ L only if C(w) = 0 ∧ C̃(w) = 1, which
implies that h(〈C,C ′〉, C̃) ≤ g(C, C̃). Moreover, if C ′

correctly decides SAT at length n′, then 〈〈C,C ′〉, C̃, w〉 ∈ L
iff C(w) = 0 ∧ C̃(w) = 1, and h(〈C,C ′〉, C̃) = g(C, C̃).
By the hypothesis that coNP ⊆ NP/ poly, there exists a
circuit C ′ of size poly(n′) that computes SAT on instances
of length n′. This suggests the following augmented Arthur-
Merlin protocol for Ag on input 〈C, C̃, a, ε〉.

If a ≤ 0 the protocol trivially accepts, as g is nonnegative.
Otherwise, Merlin sends as his initial message a circuit C ′

of size poly(n′) on n′-inputs, purported to be a circuit
for SAT at length n′. The coNP-verifier checks that C ′

is sound with respect to SAT, and Arthur engages in a



protocol with Merlin for the promise problem Ah on input
〈〈C,C ′〉, C̃, a, ε〉.

To argue completeness of the protocol for Ag , suppose
that g(C, C̃) ≥ a > 0. In order to make both verifiers
accept, Merlin sends as his initial message a polynomial-
size circuit C ′ for SAT at length n′, which exists by the
hypothesis that coNP ⊆ NP/ poly. Since C ′ is sound for
SAT, the coNP-verifier accepts. As for the other verifier
(Arthur) since C ′ is a correct circuit for SAT, we have that
h(〈C,C ′〉, C̃) = g(C, C̃) ≥ a. The completeness of the
Arthur-Merlin protocol for Ah then guarantees that Arthur
can be convinced.

To argue soundness, suppose that g(C, C̃) < a(1 − ε).
First, if the coNP-verifier accepts, then Merlin must have
sent a sound circuit C ′ for SAT in the first round. Whenever
C ′ is sound for SAT at length n′ then h(〈C,C ′〉, C̃) ≤
g(C, C̃), so h(〈C,C ′〉, C̃) < a(1− ε). By the soundness of
the Arthur-Merlin protocol for Ah, this means that Arthur
rejects with high probability. Thus, whenever the coNP-
verifier accepts, Arthur rejects with high probability. This
completes the proof.

Lemma 1 allows us to efficiently improve the complete-
ness of a sound but incomplete circuit C for SAT when
given oracle access to a language that agrees with Af by
finding a circuit C̃ that approximately maximizes f(C, C̃),
and outputting C ∨ C̃. The approximate maximization can
be done using the following generic lemma.

Lemma 2. Let f : {0, 1}∗ × {0, 1}∗ → N be such
that f(x, y) ≤ 2|x|

c

for some constant c. If Af ∈
prM(AM||coNP), where Af denotes the promise problem
defined by (4), then there exists a promise problem Π ∈
prM(AM||coNP) such that the following holds for any
language L that agrees with Π. On input x ∈ {0, 1}∗, a
nonnegative integer m in unary, and a positive integer 1/ε̃
in unary, we can find, in deterministic polynomial time with
oracle access to L, a value ỹ ∈ {0, 1}m such that

f(x, ỹ) ≥ (1− ε̃) · max
y∈{0,1}m

f(x, y).

Lemma 2 holds more generally when prM(AM||coNP) is
replaced by any reasonable complexity class C that is closed
under the existential operator,such as ΣP

k for any k ≥ 1.
Chakaravarthy and Roy [5] implicitly use it with C = prAM.

Proof of Lemma 2: We run a prefix search for ỹ. In or-
der to do so, we make use of the auxiliary function g(x, y)

.
=

maxyy′∈{0,1}m f(x, yy′), where yy′ denotes the concatena-
tion of y and y′, and we suppress the unary argument m for
simplicity of notation. The fact that Af ∈ prM(AM||coNP)
implies that Π

.
= Ag ∈ prM(AM||coNP). This is because

on input 〈x, y, a, ε〉, the augmented Arthur-Merlin protocol
for Ag can have Merlin first guess y′ ∈ {0, 1}m−|y| and then
run the augmented Arthur-Merlin protocol for Af on input
〈x, yy′, a, ε〉. Let L denote a language that agrees with the
promise problem Π.

In a first phase we find an approximation ã to a∗
.
=

maxy∈{0,1}m f(x, y). To do so, we make use of the predicate
P (a)

.
= 〈x, λ, a, ε〉 ∈ L, where λ denotes the empty string,

ε will be set later, and the rest of the parameters are the
inputs given in the statement of the lemma. Note that P (0)
holds because f is nonnegative. At the other end, P (b+ 1)
fails by definition. We run a binary search for an integer
value ã ∈ [0, b] such that (i) P (ã) holds and (ii) P (ã + 1)
fails. This guarantees that (1−ε)ã ≤ a∗ ≤ ã, where the first
inequality follows from (i) and the fact that P (ã) implies that
g(x, λ) ≥ (1− ε)ã, and the second inequality follows from
(ii) and the fact that ¬P (ã+1) implies that g(x, λ) < ã+1.
This concludes the first phase.

In a second phase we run the actual prefix search for ỹ.
We maintain the invariant that

g(x, ỹ1...i) ≥ ãi, (6)

for 0 ≤ i ≤ m, where ỹ1...i denotes the prefix of length
i of ỹ, and the values ãi are chosen not too much smaller
than ã. More specially, we set ã0 = (1 − ε)ã, and for i =
0, . . . ,m− 1 we extend the prefix of ỹ of length i to length
i+1 as follows. By (6) we know that for at least one choice
of ỹi+1 ∈ {0, 1},

〈x, ỹ1...i+1, ãi, ε〉 ∈ L, (7)

and for any choice of ỹi+1 ∈ {0, 1} satisfying (7),
g(x, ỹ1...i+1) ≥ (1 − ε)ãi. Thus, we pick ỹi+1 as the least
value in {0, 1} for which (7) holds, and set ãi+1 = (1−ε)ãi.

In the end, we obtain ỹ ∈ {0, 1}m satisfying

f(x, ỹ) ≥ ãm = (1−ε)mã0 ≥ (1−ε)m+1ã ≥ (1−ε)m+1a∗,

which is at least (1− ε̃)a∗ provided we set ε = ε̃/(m+ 1).
Since both phases run in polynomial time with oracle

access to L, the result follows.
Starting from the trivial sound circuit C0 that rejects all

inputs, we iteratively apply the improvement step based on
Lemma 1 and Lemma 2 with ε̃ = 1/2. After no more than n
iterations this yields a circuit of polynomial size that decides
SAT on inputs of size n. We have proved the following
theorem.

Theorem 5. Suppose that coNP ⊆ NP/ poly. There exists
a promise problem Π ∈ prM(AM||coNP) such that the
following holds for any language L that agrees with Π.
Given n, we can construct a polynomial-size nondetermin-
istic circuit for SAT at length n in deterministic polynomial
time with oracle access to L.

With Theorem 5 in hand, the nondeterministic variant of the
Karp-Lipton argument yields the collapse stated in Theorem
4.

Proof of Theorem 4: Let K denote the Σ3P-complete
language consisting of all Boolean formulas ϕ(x, y, z) on
three sets of variables x, y, z such that (∃x)(∀y)ϕ(x, y, ·) ∈



SAT. We show that under the assumptions of the theorem,
K ∈ PprM(AM||coNP).

Consider the related language K ′ consisting of all pairs
〈ϕ,C〉, where ϕ is a Boolean formula as above and C
is a circuit such that (∃x)(∀y)C(ϕ(x, y, ·)) = 0. As the
condition C(ϕ(x, y, ·)) = 0 can be decided in quasilinear
time on a co-nondeterministic machine, K ′ ∈ Σ2P ⊆
M(AM||coNP). Moreover, if C is a circuit that correctly
decides SAT on inputs of the appropriate size, then ϕ ∈ K
iff 〈ϕ,C〉 ∈ K ′.

In order to decide L on an input ϕ of size n, we first
run the algorithm from Theorem 5 on input n to obtain
a circuit C of polynomial size for SAT on inputs of the
required size, and then check whether 〈ϕ,C〉 ∈ K ′. Note
that any language L that agrees with the promise problem
Π ∈ prM(AM||coNP) from Theorem 5 suffices as oracle
for the construction; the circuit C we construct may depend
on the choice of L, but the final membership decision to K
does not. The theorem follows.

V. EQUIVALENCE RESULT

In this section we establish our hardness-derandomization
equivalence for Arthur-Merlin games (Theorem 1). We first
argue the derandomization-to-hardness direction for Σ2E, as
well as a weaker but relativizing claim for EΣ2P. We finish
with the hardness-to-derandomization direction for Σ2E.

A. From derandomization to hardness

We use the lower bound framework introduced in Section
II-C. We assume that C ⊆ NP/ poly, where C = Σ2E or C =
EΣ2P, and derive a contradiction with Kannan’s result that
the polynomial-time hierarchy does not have (nondetermin-
istic) circuits of fixed polynomial size. The derivation entails
two key ingredients: (i) collapsing the polynomial-time hier-
archy to some randomized class R, and (ii) derandomizing
R assuming that prAM ⊆ ∩ε>0i.o.− Σ2TIME(2n

ε

)/nε.
We developed (i) in Section IV. We now discuss (ii).

The classes R we consider involve augmented Arthur-
Merlin protocols as introduced in Definition 1. More
precisely, we consider R = prM(AM||coNP) and
R = PprM(AM||coNP). Under the stronger derandom-
ization assumption that prAM ⊆ Σ2SUBEXP

.
=

∩ε>0Σ2TIME(2n
ε

), those classes R can trivially be sim-
ulated in Σ2SUBEXP or SUBEXPΣ2P, respectively. To
carry over that argument to the i.o.-setting with small advice,
we need to make sure that the derandomization of R on
inputs of length n only makes use of the derandomization
of prAM on one of the infinitely many good input lengths
m where the latter simulation is guaranteed to work. The
following lemma shows how to do that for infinitely many
input lengths n by exploiting the paddability of prAM and
using an additional short advice string to point to a nearby
good length m.

Lemma 3 (Derandomization Lemma). Suppose that
prAM ⊆ ∩ε>0i.o.− Σ2TIME(2n

ε

)/nε. Then

(i) prM(AM||coNP) ⊆ ∩ε>0i.o.− Σ2TIME(2n
ε

)/nε,
and

(ii) PprM(AM||coNP) ⊆ ∩ε>0i.o.−DTIMEΣ2P(2n
ε

)/nε.

Proof: Part (i): Let C denote
∩ε>0i.o.− Σ2TIME(2n

ε

)/nε, and let Π ∈
prM(AM||coNP). Let Γ denote the prAM-problem
underlying Π, and V the coNP-verifier, as in Definition 1.
By assumption, there is a language Q ∈ C that agrees with
Γ. If we replace the predicate Γ by Q in the definition of
Π, we obtain the language

R = {x : (∃y ∈ {0, 1}n
c

) (〈x, y〉 ∈ Q ∧ 〈x, y〉 ∈ V )}.
(8)

Observe that R agrees with Π. It remains to show that R ∈
C.

We can assume without loss of generality that Q is
paddable; by this we mean (a) 〈x, y〉 ∈ Q iff 〈x, y, 0pad〉 ∈
Q for all pad ∈ N, and (b) if 〈x, y〉 is of length m then
there is a setting of pad such that 〈x, y, 0pad〉 is of length
m′ for all m′ ≥ m.

Fix any ε > 0. We want to exhibit a language Rε ∈
Σ2TIME(2n

ε

)/nε that agrees with R on infinitely many
lengths n. By assumption, for every δ > 0 there is a
language Qδ ∈ Σ2TIME(2m

δ

)/mδ and an infinite set of
lengths Mδ such that Qδ agrees with Q on all lengths in
Mδ . We use Qδ for a sufficiently small value of δ > 0 to
construct Pε as follows.

Let `(n) denote the maximum length of the (unpadded)
queries issued to the language Q when deciding the language
R on inputs x of length n. Suppose there exists a length
m ∈ Mδ in the range `(n) ≤ m ≤ `(n + 1). Then we
pick such a length m, give Rε at length n as advice the
value of m as well as the advice for Qδ at length m, and
let Rε at length n be defined by (8) but with each query
“〈x, y〉 ∈ Q” replaced by the equivalent query to Qδ padded
to length m, i.e., by “〈x, y, 0pad〉 ∈ Qδ”, where pad is such
that |〈x, y, 0pad〉| = m. Note that in this case Rε agrees with
R at length n. If there is no length m ∈ Mδ in the range
`(n) ≤ m ≤ `(n + 1), we define Rε in the same way but
with m set to `(n). In this case there is no guarantee that
Rε and R agree at length n.

Since the intervals [`(n), `(n + 1)] cover all but finitely
many lengths m, and Qδ agrees with Q for infinitely many
lengths m, Rε agrees with R on infinitely many lengths n.

All that remains is the complexity analysis of Rε. The
queries to Qδ are padded up to length no more than `(n+1),
which is polynomially bounded in n. It follows that those
queries can be decided in Σ2TIME(2n

cδ

)/ncδ for some
fixed constant c. The advice for Rε is of length at most
log(`(n+ 1)) + ncδ . Thus, if we set δ = ε/(c+ 1) we have
that Rε ∈ Σ2TIME(2n

ε

)/nε. This completes part (i).



Part (ii): Let L ∈ DTIMEΠ(nc) where Π ∈
prM(AM||coNP). By padding all queries of the base ma-
chine up to an appropriate length m depending on n as in
part (i), and providing the base machine with the advice we
gave Rε in part (i), we obtain that

L ∈ ∩ε>0i.o.−DTIMEΣ2TIME(2n
ε
)(nd)/nε,

where d is a constant depending on c. Since
Σ2TIME(2n

ε

) ⊆ DTIMEΣ2P(2n
ε

), the conclusion
follows.

What the framework needs of the derandomizations of
R, is that they reduce to some fixed language K ∈ C under
mapping reductions computable by deterministic circuits of
fixed polynomial size. The following lemma establishes that
property for the derandomizations provided by Lemma 3.

Lemma 4 (Reducibility Lemma). For each of the follow-
ing pairs (C′, C), C contains a language K such that every
L ∈ C′ reduces to K under a mapping reduction that is
computable by deterministic circuits of linear size.

C′ C
∩ε>0i.o.− Σ2TIME(2n

ε

)/nε Σ2E

∩ε>0i.o.−DTIMEΣ2P(2n
ε

)/nε EΣ2P

Proof: Part(i): Let K = {〈M,y〉 :
M accepts y in time 2|y| on a machine of type τ}, where
τ is the type that realizes the class Σ2TIME. Note that
K ∈ Σ2TIME(2O(n)).

Let L ∈ C′. For any fixed ε > 0, let Lε ∈
Σ2TIME(2n

ε

)/nε agree with L infinitely often. More pre-
cisely, let L′ε ∈ Σ2TIME(2n

ε

) and a : N → {0, 1}∗ with
|a(n)| ≤ nε be such that for infinitely many lengths n and
all x ∈ {0, 1}n, x ∈ L iff 〈x, a(n)〉 ∈ L′ε.

Now consider the following circuit C: On input x ∈
{0, 1}n, C outputs 〈Mε, y〉 where y = 〈x, a(n)〉 and Mε

is the machine that computes L′ε. The output of C, as well
as its size, is O(1) + n + nε = O(n) for ε ≤ 1. On those
infinitely many lengths n for which Lε agrees with L, we
have for every x ∈ {0, 1}n, x ∈ L ⇐⇒ x ∈ Lε ⇐⇒
〈x, a(n)〉 ∈ L′ε ⇐⇒ C(x) ∈ K.

Part (ii): The above argument applies verbatim when all
occurrences of Σ2TIME are replaced with DTIMEΣ2P.

The framework derives a contradiction with the following
nondeterministic version of a classical result of Kannan’s.

Lemma 5 (implicit in [13]). For every constant d > 0
there exists a language in PΣ3P that requires nondetermin-
istic circuits of size nd for all but finitely many input lengths
n.

We include a proof for completeness.
Proof: Let s(n) = nd. For all but finitely many n, s(n)

is no more than the maximum circuit complexity at length
n. Therefore, there exists a characteristic sequence of length
2n that cannot be computed by circuits of size less than

s(n). Moreover, the length ` of the shortest prefix σ such
that no circuit of size less than s(n) agrees with σ satisfies
` = O(s(n) log s(n)). This follows because circuits of size
s(n) can be described by strings of length O(s(n) log s(n))
and distinct prefixes need distinct circuits.

The lexicographically least such prefix σ, say σ∗, can be
found through a binary search, by using a Σ3P-oracle, in
time poly(s(n)). To see this, given a size-s circuit C and
a length-` string σ, consider the task of deciding whether
the circuit C does not agree with σ. This task can be
performed with an NP-oracle in time poly(s(n)), and hence
in Π2TIME(poly(s(n)). To run the binary search, we need
to answer queries as to whether a given string can be
extended to a string σ such that for all circuits C of size less
than s(n), C does not agree with σ. As these queries can be
decided in Σ3TIME(poly(s(n))) and s(n) is polynomial,
we can construct σ∗ in polynomial time with oracle access
to Σ3P.

Once found, σ∗ is viewed as a string σ′ of length 2n that
is all zeroes beyond the first ` bits (and that equals σ∗ in
its first ` bits). It follows that σ′ is the characteristic string
of a language L that cannot be decided by a circuit of size
less than s(n) at length n. On input x of length n, whether
x ∈ L can be decided according to the xth bit of σ′. Thus,
L ∈ PΣ3P.

We now have all the ingredients to instantiate the lower
bound framework described in Section II-C and obtain the
following derandomization-to-hardness results for Arthur-
Merlin games.

Theorem 6. (i) Σ2E 6⊆ NP/ poly if prAM ⊆
∩ε>0i.o.− Σ2TIME(2n

ε

)/nε.
(ii) Relative to any oracle, EΣ2P 6⊆ NP/poly if prAM ⊆
∩ε>0i.o.− Σ2TIME(2n

ε

)/nε.

Proof: For C ∈ {Σ2E,EΣ2P},R the corresponding left-
hand side class in the Derandomization Lemma (Lemma 3),
and C′ the corresponding class in the Reducibility Lemma
(Lemma 4), the following derivation proves both parts by
contradiction.

C ⊆ NP/poly

=⇒ PH ⊆ R (by the collapse results)
=⇒ PH ⊆ C′ (by Lemma 3)

=⇒ PH ⊆ i.o.−NSIZE(nd) (by Lemma 4)
=⇒ contradiction (by Lemma 5),

where d is some constant and NSIZE(nd) denotes the class
of languages with nondeterministic circuits of size nd.

The relativization claim in (ii) follows because all steps
in that part relativize (whereas the collapse argument for (i)
involves a nonrelativizing step).
Note that part (i) of Theorem 6 yields the forward direction
of Theorem 1.



B. From hardness to derandomization

Finally, we argue the direction from hardness to de-
randomization in Theorem 1. This direction follows in a
straightforward way from the known hardness versus ran-
domness tradeoffs. First, in order to derandomize prAM
it suffices to construct pseudorandom generators that fool
nondeterministic circuits.

Lemma 6 (implicit in [16]). If there is a pseudorandom
generator G that on seed length σ(n) is computable in
Σ2TIME(2O(σ(n))) with advice of length σ(n), and fools
nondeterministic circuits for infinitely many n, then prAM
can infinitely often be simulated in Σ2TIME(2O(σ(n∗))n∗)
with advice of length σ(n∗).

The pseudorandom generators needed in Lemma 6 follow
from the given hardness assumption by the known hardness
versus randomness tradeoffs for prAM.

Lemma 7 (implicit in [19]). There exists a positive con-
stant c such that the following holds for any constructible
function ` : N → N. If there is a language in Σ2E that
requires nondeterministic circuits of size nc at length `(n)
for infinitely many n, then there exists a pseudorandom
generator G that has constructible seed length σ(n) =
O(`2(n)/ log n), is computable in Σ2TIME(2O(σ(n))) on
seed length σ(n) with advice of length σ(n), and fools
nondeterministic circuits at infinitely many lengths n.

Given the hardness hypothesis, for any ε > 0, we can pick
`(n) in Lemma 7 to be nδ for a small enough δ and get
a pseudorandom generator G with seed length σ(n) < nε

that is computable in Σ2TIME(2n
ε

)/nε and fools non-
deterministic circuits for infinitely many n. Using G in
Lemma 6 yields the required derandomization of prAM.
This establishes the backward direction of Theorem 1.
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