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Abstract
Learning the structure of a dynamic Bayesian network (DBN) is a common way of discovering causal

relationships in time series data. However, the combinatorial nature of DBN structure learning limits the
accuracy and scalability of DBN modeling. We propose to avoid these limits by learning structure with
log-linear temporal Markov networks (TMNs). Using TMNs replaces the combinatorial optimization problem
with a continuous, convex one, which can be solved quickly with gradient methods. Furthermore, representing
the data in terms of features gives TMNs an advantage in modeling the dynamics of sequences with irregular,
sparse, or noisy events. Compared to representative DBN structure learners, TMNs run faster while performing
as accurately on synthetic tasks and a real-world task of causal discovery in electronic medical records.

Keywords: causal discovery; graphical model structure learning; log-linear Markov networks; dynamic
Bayesian networks; temporal models; adverse drug events; electronic medical records.

1. Introduction

To understand how events unfold, scientists often analyze time series data with dynamic Bayesian networks
(DBNs) (Dean and Kanazawa, 1989). Even when conditions are ideal—the data are available with the right
time intervals and the right Markov order is selected for the DBN—learning the structure of the relationships
between variables is a combinatorial problem. The enormous search space (Robinson, 1973) prevents a
complete search, and the non-convexity of the likelihood prevents guarantees about the quality of the solution.
Thus, a heuristic or greedy search is frequently employed.

The setting above is the classic search-and-score Bayesian network (BN) structure learning setting as
introduced by Cooper and Herskovits (1992). Some algorithms, such as sparse candidate (Friedman et al.,
1999), choose to manage the complexity of structure learning by limiting the number of candidate parents to k
for each of the n nodes. The result is a subset selection problem that has combinatorial complexity,∑k

i=1 (
n
i
),

which is polynomial complexity of order k but tends to exponential complexity (2n) as k → n. Searching for
subsets of size at most k is certainly better than searching over all of the 2n subsets of the nodes, but it can
still be extremely limiting in domains with networks of high degree, such as in biology. Other algorithms,
such as K2 (Cooper and Herskovits, 1992) and that of Shojaie and Michailidis (2010), choose to presuppose
an ordering of the variables. This requires strong assumptions or background knowledge, or it just exchanges
the search over directed acyclic graphs (DAGs) for a search over permutations of variables (Teyssier and
Koller, 2005).

Constraint-based methods also suffer from combinatorial complexity. Markov blanket induction (Aliferis
et al., 2010), the PC algorithm (Spirtes et al., 2000), and the polynomial min-max skeleton algorithm (Brown
et al., 2005) all search for possible separating sets. This is the subset selection problem rederived. In these
cases, greedy search over subset members can be used to address the complexity but at the loss of accuracy.
Constraint-based methods have additional problems with testing multiple statistical hypotheses and with the
possible cascade of errors inherent in their greedy or sequential decision-making processes.

Greedy equivalence search (GES) (Chickering, 2002) may appear to avoid all of these difficulties by
guaranteeing to find the optimal equivalence class after only a forward and backward pass (assuming faith-
fulness and infinite data), but it is still combinatorial. The number of neighboring search states encountered
at each step can be exponential because adding or deleting edges involved in V-structures again faces a subset
selection problem.
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Drug Condition Label

A ACE inhibitors E angioedema +
T amphotericin B R acute renal failure +
I antibiotics L acute liver failure +
P antiepileptics S aplastic anemia +
Z benzodiazepines F hip fracture +
Φ bisphosphonates U upper GI ulcer +
D tricyc. antidep. M acute MI +
Y typ. antipsycho. M acute MI +
W warfarin B bleeding +
β beta blockers X MI mortality −
N NSAIDs H hypertension

(a) OMOP ADE task and list of events (variables)
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Figure 1: (a) Causal pairs of the OMOP ADE task. Additional negatives are non-ADE drug–condition pairs
among the same events. (b) A real-world causal network involving the variables. (c) Its unrolled DBN.

We propose to avoid the combinatorial nature of these search algorithms by reformulating the structure
learning problem as a smooth, convex, non-combinatorial optimization problem in a log-linear model: first
use a temporal Markov network (TMN) to learn the undirected skeleton and then direct the edges with time.
TMNs provide a way to handle sequences of irregular events (which is important for analyzing medical
data), and the optimization jointly estimates all the edges, avoiding issues of multiple testing and sequential
decisions. Lee et al. (2006) harness the same optimization benefits, but they only learn an undirected skeleton,
one that may be biased by using a L1-regularizer. Our method is correct and unbiased in the limit of the data
(Theorem 5).

1.1 ADE Discovery

Identifying adverse drug events (ADEs) is the causal task that motivates this work. In the USA, ADEs are
estimated to be the fourth leading cause of mortality, affecting more than 2 million people each year and
incurring $136 billion in additional medical care (U.S. Food and Drug Administration, 2009). To combat this
problem and improve patient safety, the Observational Medical Outcomes Partnership (OMOP) led research
into drug safety surveillance methods by developing an ADE identification task (Figure 1a) and making
electronic medical records (EMR) data sets (Figure 3b) available to researchers in a laboratory.1

One of the challenges of identifying ADEs is that it is an inherently causal task, and so requires ap-
propriate methods. Causal methods fall into two broad categories: observational studies (e.g., cohort and
case–control studies) and structural causal models (SCMs) (Pearl, 2009; Spirtes et al., 2000), such as causal
BNs (Figure 1b). With SCMs, causal discovery becomes a structure learning problem. While most of the
work on the OMOP ADE task has focused on observational studies (e.g., Ryan et al., 2012), a contribution of
this work is the application of machine learning to the task: learning the structure of causal DBNs (Figure 1c).

The challenges of causal discovery are amplified in the EMR realm where the data is a messy collection of
events. Patients interact with the medical system sporadically, on their own initiative, and usually only when
they are ill, not when they are well. While EMR data contains thousands of variables describing the state of
a patient’s health, only a few are recorded at any visit. Thus, observations of a patient are irregular, subject
to large time gaps, and very sparse. Furthermore, they are noisy and biased by patient health, by hospital
procedure, or by convenience. Of course, EMR data is observational and so also susceptible to confounding.

1. This work now continues under the Innovation in Medical Evidence Development and Surveillance (IMEDS) and Observational
Health Data Sciences and Informatics (OHDSI) programs.
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Contributions Learning the structure of causal DBNs is difficult due to the combinatorics of deciding
which edges to include. This difficulty is worse when learning from EMR data, which is irregular, noisy, and
sparse, and thus lacks the regular, full observations needed for DBN learning. Causal structure learning via
TMNs addresses these problems by (1) learning the directed structure using an undirected model, wherein the
parameters indicate the edges and learning the parameters is a convex optimization problem, and (2) using
features to model the irregularity, sparsity, and temporality of EMR data. As far as we are aware, combining
structure learning via parameter learning and coarse temporal modeling is novel, and the results show that it
is effective for causal structure learning.

2. Background

Related Work While many methods could be used to identify ADEs in longitudinal data—ranging from
graphical Granger methods (Arnold et al., 2007) to computational epidemiology (Simpson et al., 2013)—BN
structure learning will be the focus here because of its potential to yield a SCM. Algorithms such as PC
and fast causal inference (Spirtes et al., 2000) measure conditional independence to detect provably causal
structures, but noise can affect independence tests and lead to a cascade of errors. Score-based BN structure
learners (e.g., Heckerman et al., 1995) avoid these problems but are not guaranteed to learn a causal structure
(although they may do so under certain conditions (Meek, 1997)). Local learners determine the neighborhood
or the Markov blanket of each node before stitching them together (Margaritis and Thrun, 1999; Tsamardinos
et al., 2003; Niinimäki and Parviainen, 2012). Aliferis et al. (2010) show that these “grow-shrink” algorithms
can be sound and complete and therefore causal. A related algorithm learns an undirected skeleton with a
local search method and then directs the edges in a greedy hill-climbing search (Brown et al., 2005).

Other, non-causal BN structure learning methods directly address the combinatorial optimization by using
dynamic programming (Koivisto and Sood, 2004) or any-time, branch-and-bound search (de Campos et al.,
2009). Similar linear programming approaches (Jaakkola et al., 2010; Cussens, 2011) operate in a continuous
optimization space, but finding an integral solution to the relaxation may require combinatorial search.

Learning undirected structures over temporal variables, as is possible in the DBN setting where the tempo-
ral order of variables is given, opens the door to non-combinatorial structure learning algorithms. The classic
example of such an algorithm is selection of Gaussian graphical models, where the zeros in the inverse co-
variance matrix indicate the absence of edges (Lauritzen, 1996). The same ideas have been developed for
discrete variables, including methods for nodewise structure learning using L1-regularized regression (Loh
and Wainwright, 2013). In contrast, our method directly uses the zero parameters to indicate conditional
independence, as in Liu and Page (2013) and Lee et al. (2006), but it is unbiased and also addresses the
recovery of directed models.

Probabilistic Graphical Models A probabilistic graphical model (PGM) is a model of a probability distri-
bution over a set of random variablesX = {X1, . . . ,Xn} that uses a fixed graphG to represent the conditional
independence relationships of the distribution. In a PGM, each variable corresponds to a vertex in G.

The structure of a distribution refers to its factorization and conditional independence properties, which
are related as follows (Lauritzen, 1996; Koller and Friedman, 2009; Loh and Wainwright, 2013). These
statements lay the foundation for Theorem 5, one of our main contributions.

Definition 1 (Factorization property) A distribution P (X ) factorizes according to an undirected graph G
if its density can be expressed as a product of non-negative potential functions on the cliques C of G.

P (X )∝∏
c∈C

ψc(Xc) (1)

Definition 2 (Global Markov property) XA áXB ∣XS if and only if S separates A from B in G.

Theorem 3 (Proposition 3.8 (Lauritzen, 1996)) For any undirected graph G and any probability distribu-
tion P on X , it holds that the factorization property implies the global Markov property.
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3. Temporal Markov Networks

This paper introduces temporal Markov networks (TMNs), a type of log-linear PGM with feature functions
for modeling timelines. TMNs are motivated by the need for a probabilistic causal model of EMR data,
which does not have (1) synchronized timing of a consistently-observed set of events, as assumed by DBNs
and other time series methods (e.g., Granger, 1969; Arnold et al., 2007), nor (2) detailed patient state and
reliable timing of events, as needed by continuous time Bayesian networks (Nodelman et al., 2002) and
piecewise-constant conditional intensity models (Gunawardana et al., 2011).

3.1 Timelines

A timeline (sequence) S is a set of random variables X = {X1, . . . ,Xn} that occur over a set of times T :
S = {Xi,t ∶ (Xi, t) ∈ X × T } as in Figure 2a. Each Xi,t is a point event, so a timeline is equivalently
a sequence of event tuples (t,Xi, x), where t is the time of occurrence, Xi is the event type, and x is its
observed value. This is the form of typical EMR data, with such a sequence for each patient. In this work, we
consider only discrete times T ⊆ Z0+ and binary variables (event occurrences) as in Figure 2b. A condensed
timeline (Figure 2c) includes only observed events as a sequence of timesteps. It is constructed by ignoring
empty timesteps, discarding durations between events, and treating the remaining timesteps in sequence.
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(a) Point events in continuous time (EMR)

1 2 3 4 5 6 7 8 9 10

(b) Fully-observed discrete time (DBN)

1 2 3 4 5

(c) Condensed

Figure 2: Various forms of a sequence of events (timeline) as might be observed from a process like Figure 1b.

3.2 Log-Linear Model

Definition 4 (Temporal Markov network (TMN)) A TMN is a tuple (X , F, θ), where X is a set of event
types (random variables), F is a set of binary feature functions fi(Xi ⊆ X ) ∶ Xi ↦ {0,1}, and θ ∈ R∣F ∣ is set
of weights corresponding to the features. A TMN defines a probability distribution over timelines S through
the log-linear model in Equations 2 and 3 (e.g., Koller and Friedman, 2009), where fi ∈ F and θi ∈ θ. The
features must be (1) hierarchical: the variables in each feature define a clique and the cliques induce a graph
G; in order to be hierarchical, F must contain a feature for each (sub-)clique in G (Lauritzen, 1996); and
(2) temporal: F must include at least some features for temporal order or succession (see §3.3).

P (S = s) =
1

Z
exp(∑

i

θifi(s)) (2) Z = ∑
s∈S

exp(∑
i

θifi(s)) (3)

While being a log-linear model ensures that a TMN always represents a well-defined probability distribution,
the additional semantics of a TMN depend on its features, as explained below.

3.3 Feature Functions

The following temporal indicator features model the most salient aspects of timelines as logical predicates.
They are designed to capture the main effects of the events and their interactions, both temporal and atempo-
ral. In the notation, S is a timeline, T is a timestep, X , Y , Z are events, uppercase indicates variables, and
lowercase indicates instantiated values. When used in a TMN, the features are instantiated (fS(⋅) ↦ fi(S))
for each non-redundant combination of events and times. For example, co-occurrence ignores order, so
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fS(w, b) and fS(b,w) are redundant, but fS(w → b) and fS(b → w) are ordered, so they are not redundant.
Note that both fS(w → b) and fS(b→ w) can be true of the same sequence as shown in Figure 2.

• event, fS(x): true if event x occurs in S (atemporal)
• event@, fS(xt): true if event x occurs at t in S (atemporal)
• co-occur, fS(x, y): true if events x and y occur in S (atemporal)
• co-occur@, fS(xt1 , yt2): true if x occurs at t1 and y occurs at t2 in S (temporal)
• before, fS(x→ y): true if x and y occur in S and x occurs before y (temporal)
• before-δ, fS(xT → yT+δ): true if x and y occur in S and x occurs δ timesteps before y (temporal)
• before3, fS({x, y}→ z): true if x, y, and z occur in S and both x and y occur before z (temporal)

The “@” features are anchored to specific timesteps, but the other features float. Floating, being less specific
than anchoring, ties parameters across timesteps and makes an assumption of stationarity. All the floating
features except before-δ span any number of timesteps, allowing them to capture short- and long-range effects.
The before3 feature exists to model temporal V-structures.

Depending on the choice of features and the parameter tying they induce, TMNs can represent undirected
analogs of BNs, DBNs, and event networks (Arroyo-Figueroa and Sucar, 1999; Galán and Dı́ez, 2002), and
the semantics of a TMN follow those of the analogous model. Examples of TMNs that imitate BNs and
DBNs are in §4.

3.4 Parameter Learning

The parameters are learned using standard maximum likelihood estimation. Finding the maximum of the log-
likelihood is a continuous, convex optimization problem, which can be solved by gradient ascent. Because
the maximum of the log-likelihood is global, it is reached when the gradient (Equation 4) is zero (e.g., Koller
and Friedman, 2009).

∂

∂θi

1

∣D∣
logL(θ;D) = ED(fi(s)) −Eθ(fi(s)) (4)

To compute the gradient, the expected statistics of the data (ED) must first be computed, but this needs to be
done only once. Then, the expected statistics given the TMN (Eθ) must be computed, and this must be done
every time the parameters change. Doing so requires inference, but inference is difficult because the graph
structure defined by the features is a single clique, and hence not amenable to inference algorithms for factor
graphs. This limits the inference options to sampling or, for small problems, exact inference. We chose exact
inference for the sake of precision, and implemented our TMNs in Julia using L-BFGS optimization.

3.5 Causal Structure Learning via Parameter Learning

TMNs are used to learn the directed structure of a distribution of timelines by (1) detecting conditional
independence between variables, (2) including only those edges that correspond to direct dependences, and
(3) directing edges with time. Detecting conditional independence is done by constructing a TMN, learning
the weights of its features, and comparing those weights to zero. A weight that is zero indicates the absence of
the relationship modeled by that feature, and if all the weights of all the features involving a pair of variables
are zero, then those variables are conditionally independent. This property allows weight learning in TMNs
to recover the conditional independence structure of the generating DBN as shown in the following theorem.

Theorem 5 (TMN Structure Learning) Given a DBN M that generates a true distribution P (S) over
timelines, the forward edges of the DAG G of M can be deduced from the weights of a TMN fit to P (S)
using maximum likelihood. Specifically, if the weights of fi(X → Y ) and all the other features containing X
and Y are zero, then X → Y is not an edge in G:

(∀(i ∶ fi ⊇ {X,Y }) θi = 0) Ô⇒ X → Y ∉ G (5)
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Proof If all of the weights of features involving X and Y are zero, then those weights contribute nothing to
the sum in Equation 2 and hence contribute nothing to the product in Equation 1. Since the factorization of
P does not include X and Y , they must be independent by Theorem 3, and there cannot be an edge between
X and Y in any graphical model consistent with P .

A TMN can only capture the undirected version of the generating DBN, but if it is a first-order, non-
isochronal DBN (it has no edges within a timestep that represent instantaneous relationships) (Plis et al.,
2015), then moralizing it adds no edges between timesteps, and the forward edges indicated by the TMN
weights are exactly the edges of the DBN.

In summary, Theorem 5 shows how weight learning in a TMN can recover the DBN structure given the
true distribution of timelines: include only those edges x → y that correspond to features fi(x → y) (or
fi({x, z}→ y), etc.) with nonzero weights θi. The edges are already directed with time.

Is such a structure a causal model? If one assumes the causal Markov and causal faithfulness conditions
(Spirtes et al., 2000), as is commonly done, then a DBN that has the correct independence structure is a causal
DBN. Theorem 5 shows that, given the true distribution of a first-order, non-isochronal DBN, the weights of
the learned TMN will indicate the correct independences and therefore describe a causal structure.

Of course, in practice the distribution is not the population one but an empirical one. The noise in such
a sample alters the learned weights and obscures the independences. Thus, it becomes necessary to employ
regularization or a threshold to determine the zeros. Regularization introduces bias, so we chose to threshold
the weight magnitudes. This approach provides an unbiased estimator that has a straightforward interpreta-
tion: as soon as the magnitude of the noise gets larger than the magnitude of the signal, the thresholding will
start to get edges wrong. This can be mitigated by choosing features that are expressive enough to accurately
model the distribution, that can diffuse or absorb the noise, and that isolate relationships of interest. For
example, one could use only f(x → y) and f(y → x) to model a temporal relationship, but also including
f(x, y) isolates their atemporal co-occurrence from their temporal precedence and splits the noise accord-
ingly. Choosing features that are expressive enough to accurately model the distribution means choosing
features that match the level of interactions (cliques) in the underlying process. At one extreme, the saturated
model (e.g., Wasserman, 2004, §19.4) makes no assumptions about independence or the level of interactions,
but is intractable due to the number of features involved. (The number of features in the saturated model is
2n − 1 for n binary variables, and there are ∣X ∣∣T ∣ binary variables.) At the other extreme, one can assume
only pairwise interactions, but this will almost certainly lead to inaccurate weights and an incorrect ranking
of edges. Note that using only pairwise features is similar to making an assumption that the conditional
probability distributions of the underlying process are noisy-ORs.

4. Experiments

To evaluate TMNs, experiments were conducted to compare them to other methods on DBN structure learn-
ing tasks using synthetic and real-world data. The experiments were designed to measure how accurately
the methods could recover the structure of dynamic causal networks in a variety of scenarios. With the syn-
thetic data, the methods sought to recover known, complete causal networks having observed all the relevant
variables. With the real-world EMR data, they sought to recover the causal structure among the variables in
Figure 1a having observed only those same variables. This is the OMOP ADE task, which involves only a
small, known subset of the causal structure in EMR data.

For comparison methods, we chose the PC algorithm and BNFinder to represent the two major BN struc-
ture learning paradigms. The causal, constraint-based paradigm was represented by the PC algorithm (Spirtes
et al., 2000). It only works for static data, but it was applied to timelines by using separate variables for each
timestep, unrolling the model as in Figure 1c, and by reversing edges that went backwards in time. The com-
parison TMN, TMN-PC, equivalently used anchored features (f(xt), f(xt1 , yt2)). The score-based paradigm
was represented by BNFinder (Wilczyński and Dojer, 2009; Dojer, 2006). It finds the optimal-scoring BN
structure in polynomial time given a partial order of the variables and a maximum number of parents. Being

18



CAUSAL STRUCTURE LEARNING VIA TEMPORAL MARKOV NETWORKS

Plain Cnfdr MisTs Noisy OMOP
Dataset

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e 
PR

 A
re

a

PC
TMN-PC
BNF-DBN
TMN-DBN
TMN-Bf3

(a) Average PR areas of the methods across data regimes

Name People PoI EoI Years

GE 11.2M 4.1M 7.1M 1995–2009
CCAE 46.5M 25.6M 47.7M 2003–2009
MDCD 10.8M 7.3M 14.0M 2002–2007
MDCR 4.6M 3.9M 12.7M 2003–2009
MSLR 1.2M 1.1M 2.1M 2003–2008

(b) GE Centricity (EMR), MarketScan Commercial
Claims and Encounters (claims), MarketScan Medicaid
(claims), MarketScan Medicare (claims), MarketScan
Lab (claims). EoI: events of interest. PoI: people with
EoI.

Figure 3: (a) Summary of results. (b) Summary statistics of the five OMOP data sets.

optimal, BNFinder subsumes GES (Meek, 1997; Chickering, 2002) and other score-based structure learners
on the task of learning DBNs. The comparison TMN, TMN-DBN, used features to represent the initial and
transition distributions of a first-order DBN (f(xt=0), f(xt=0, yt=0), f(x), f(xT , yT ), f(xT → yT+1)). A
third TMN, TMN-Bf3, extended the TMN-DBN approach with long-range temporal features and three-way
interactions (f(xt=0), f(xt=0, yt=0), f(x), f(x, y), f(x → y), f({x, z} → y)). While higher-order inter-
actions would be necessary to represent distributions in general, tuning indicated three-way features were
sufficiently rich.

Both the synthetic and real-world experiments shared the same setup and analysis. The data was timelines
of events (§3.1). Based on the timelines, the methods scored each possible forward edge in a first-order DBN
to produce a weighted, bipartite graph. The edge score was the weight magnitude of the corresponding
temporal feature for TMNs, aggregate posterior edge probability for BNF-DBN, and edge existence {0,1}
for PC. The weighted graphs were evaluated as (soft) binary classification tasks: which of the edges belong
to the true DBN graph. To do this, the edges were ranked by their score, and then classification accuracy
was assessed with precision-recall (PR) analysis because class skew (edge density of the true graph) varied
widely. The methods were developed and tuned using a separate set of hand-crafted and randomly-generated
test cases prior to running any experiments. The specific parameters are in the supplement.

4.1 Synthetic DBN Experiments

In the synthetic data experiments, the goal was to recover the structure of 1k random DBNs given data sets
of 10k timelines sampled from each DBN. The first 100, 1k, and 10k timelines of each data set were used
to assess statistical efficiency. Each data set received four data treatments designed to test the methods in
the face of noise, missing timesteps, and confounding. For each of the four data treatments the data was
represented in two ways: fully-observed and condensed, as illustrated in Figures 2b and 2c. The condensed
data imitates real EMR data where negatives are typically not recorded and absolute times are not reliable,
but it also simplifies the problem of modeling events that occur over widely-varying time scales. The details
of the DBN generation, data generation, and data treatments are in the supplement.

To assess how well the methods recovered DBNs from the synthetic data, the PR areas of their structure
recovery were compared. Figure 3a shows the average PR area achieved by each method on each data regime.
Overall, BNF-DBN scored the best on average, followed by TMN-PC, PC, TMN-Bf3, and TMN-DBN. We
believe that BNF-DBN did so well because its assumptions exactly match the data generating model.

Behind the averages in Figure 3a, the performance of the methods varied substantially by data regime and
other characteristics of the DBN structure learning problems. To assess the influence of these characteristics
on the achieved PR areas, a linear regression was performed using PR area as the dependent variable and
method, data regime, data size, etc. as the independent variables. Selected results are in Figure 4a and the
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X β̂ P-Value

1 BNF-DBN? * cnfdr -0.713 0
2 density, e/n2 0.663 0
6 TMN-Bf3? * cnfdr -0.454 3.16e-232
7 BNF-DBN? * noise -0.414 0
8 BNF-DBN? 0.400 0
9 TMN-PC? 0.309 0

10 BNF-DBN? * mists -0.305 0
15 PC? 0.245 0
16 TMN-DBN? * noise -0.225 0
17 TMN-DBN? 0.217 0
19 TMN-Bf3? 0.209 0
21 TMN-Bf3? * mists -0.157 1.26e-186
22 # cnfdr /n 0.130 3.99e-39
23 log # data 0.0747 0
24 missingness -0.0227 2.16e-09
25 noise level -0.0213 3.79e-08
32 condensed? 0.000733 0.296

(a) Selected results from a linear regression of PR areas
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(d) TMN-Bf3, MSLR

Figure 4: (a) Selected results from a linear regression of PR areas on attributes of synthetic DBN experiments,
ranked by β̂ magnitude. R2

= 0.699. The method indicators contrast with random guessing. (b–d) Ground
truth and selected learned networks for the OMOP task showing the top 20 edges from an ensemble of that
method’s MSLR runs. Figure 1a lists the variables.

full list of coefficients is in Table 2 in the supplement. Each coefficient is interpreted as the change in PR
area attributable to a unit change in X , everything else held constant. They show that BNF-DBN suffered the
most in the face of confounding, noise, and missing timesteps, and that TMN-DBN was the most robust to
noise while TMN-Bf3 was the most robust to confounding and missing timesteps. Data size was important
but condensing the data had almost no effect. Of the data treatments, missingness was the least detrimental
of the three in terms of its interactions with the methods. These results suggest that treating missing data as
false and condensing it is reasonable to do with EMR data (where the majority of data is not observed).

Perhaps counterintuitively, increasing the network density or increasing the number of confounders helps
performance. In the case of confounders, hiding variables removes them from the problem, leaving a smaller,
easier problem. In the case of density, having more of the possible edges be true reduces the chance that
misranking a single edge will affect the PR area.

4.2 OMOP Experiments

In the OMOP experiments, the goal was to discover ADEs in real-world EMR and claims databases. This
was formulated as a DBN structure learning task rather than a causal effect size estimation task as is the case
with many other methods for causal discovery. The DBN structure learning task was based on the OMOP
ADE task, which defines 9 true ADEs and 44 non-ADEs among the same events (Figure 1a). OMOP selected
these positives and negatives based on drug labeling and evidence in the literature. For our purposes, the
positives defined the edges of the ground truth graph (Figure 4b). The methods learned DBNs over all of the
drugs and conditions, but only edges corresponding to pairs in the OMOP task were used in the evaluation.

The five methods learned DBNs from data sets of timelines extracted from the five OMOP databases
(Figure 3b). The OMOP databases contained dated event tuples (§3.1), which can be viewed as timelines
discretized by day (Figure 2a). To create a data set from each database, a timeline for each patient was
extracted and then condensed as in Figure 2c. Variables not observed were assumed to be false. Twenty
samples of 100k timelines were drawn without replacement from each data set. These replicates were drawn
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Figure 5: Distributions of PR areas from the 20 replicates drawn from each OMOP data set.

because PC and BNF-DBN could not scale to the full data size. (TMNs, needing only sufficient statistics,
have no direct data size limitations.)

Figure 5 shows the results of the experiments on the OMOP data sets in terms of PR area distributions
of replicates. The TMNs do especially well on the GE EMR data, but the performance on the claims data is
mixed. Looking at the medians, TMN-PC beats PC on 3 data sets, TMN-DBN beats BNF-DBN on 2 data
sets, and TMN-Bf3 is the best on all 5 data sets. The significance results in Table 3 in the supplement lead to
a similar ranking of the methods by wins in a pairwise tournament: TMN-Bf3, TMN-PC, BNF-DBN, TMN-
DBN, PC. We hypothesize that the success of TMN-Bf3 on the OMOP task is due to its ability to effectively
model higher-order interactions and detect independence in the presence of noise.

The (min, avg, max) run times, in hours, on the OMOP task were BNF-DBN (0.6, 0.8, 0.9), TMNs (0.5,
1.3, 2.8), and PC (0.1, 2.9, 9.9). While this makes BNF-DBN look fast, the experiments had to be limited
to 100k timelines to make BNF-DBN and PC tractable (whereas the TMNs were able to run on the millions
of timelines in the full-size OMOP data sets (Figure 3b)). Furthermore, TMN weight learning could run
faster by stopping as soon as the ranking of weights is settled (because PR area only depends on the ranking
of edges), but this was not implemented. Perhaps this explains why TMNs were successful even though
in many cases they did not converge within their allotted 1000 iterations. On the other hand, the lack of
convergence is likely a large factor in the variation of the TMN results.

The success of BNF-DBN on both the synthetic and OMOP tasks demonstrates that DBNs may be ap-
plicable to modeling EMR data despite its sparseness and irregularity, and suggests that condensed data may
also work for other discrete-time models that assume fully-observed, regularly-sampled data.

In a qualitative view of performance, additive ensembles of the networks learned by PC and TMN-Bf3 on
MSLR are shown in Figure 4 along with ground truth. Both methods have six correct edges among the top
20, but TMN-Bf3’s six are higher in its ranking. (The other methods have four or fewer correct edges in the
top 20.) PC and TMN-Bf3 agree on four correct edges. PC concentrates many relationships on renal and liver
failure, while TMN-Bf3 spreads out its edges more evenly. These results demonstrate that causal structure
learning methods are applicable and relevant to problems in epidemiology despite not estimating effect sizes.

5. Discussion

There are many advantages to treating structure learning as a smooth, convex optimization problem rather
than a combinatorial one. Convexity guarantees that there is a global optimum and that there are no imped-
iments to getting there, like plateaus or local optima. This guarantees progress with every iteration, and the
optimization can be stopped at any time to yield an approximate solution with the gradient giving a sense
of how close the current model is to the optimum. Furthermore, the optimization focuses first on the most
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important features, which are those with the largest gradients. Framing the problem as an optimization means
that all the edges are estimated jointly, avoiding sequential decisions and multiple testing. This framing
also removes the need for greedy or heuristic search as the optimization space is tractable and amenable to
well-understood approximation (e.g. stochastic gradient descent). All these advantages combine to make our
approach faster, more robust, and better able to handle noise than approaches based on combinatorial search.

The formulation as a log-linear model also comes with advantages and disadvantages. In terms of ad-
vantages, it allows arbitrary features, which can be used to handle irregular events and model short- and
long-range dependencies. The data can be completely summarized by the sufficient statistics of the features,
which allows scaling to very large data sets by separating the data processing from the optimization. By
comparison, updating a BN structure score requires a pass over the data even if it only involves a few of the
variables. The sufficient statistics, being aggregates, are also robust to noise. In terms of disadvantages, there
is now a modeling problem as one must choose the right features. Part of this relates to choosing the level
of interactions that the features can express. Depending on how many features are chosen, their complexity,
and how many combinations of events they are instantiated for, there can be a very large number of features
and a correspondingly large optimization space, which may be challenging for optimization algorithms. The
optimization challenges are amplified by the inference difficulties of an extremely large, unfactorable PGM.

Unfortunately, due to the inability of undirected PGMs to express the independence in a V-structure,
exact recovery of DBN edges by TMNs is limited to first-order, non-isochronal DBNs. However, assuming
a first-order DBN is relatively innocuous because any higher-order DBN can be converted to an equivalent
first-order DBN. Assuming a non-isochronal DBN is reasonable in cases where the timescale of the DBN is
smaller than that of the system (Plis et al., 2015). This is the case for EMR data where data is available on
the same scale as disease progression in both inpatient and outpatient settings.

This work represents an alternative approach to the OMOP task, one that uses structure learning instead of
causal effect estimation (as would be done in epidemiology). Structure learning and effect estimation are not
directly comparable because they handle direct and indirect effects differently. Effect estimation doesn’t care
about the path, only its overall effect, whereas structure learning cares only about the direct effects that make
up the path, not its overall effect. Unfortunately, this mismatch means that the OMOP task is not necessarily
a suitable evaluation for structure learning methods; it depends on how many of the OMOP pairs are direct
effects in terms of the observable variables in the data. Investigating this and determining how to better apply
structure learning to epidemiological tasks is ongoing work.

6. Conclusion

In learning the relationships among events, TMNs avoid the combinatorial nature of classical BN structure
learning algorithms by reformulating structure learning as a smooth, convex optimization problem in a log-
linear model. As shown in Theorem 5, TMNs learn the correct structure given enough data and sufficiently
expressive features, and the learned structure corresponds to a causal DBN. This enables TMNs to do causal
discovery, and their flexible, expressive features enable them to handle the irregularity, sparsity, and noise of
EMR data. Therefore, TMNs have the characteristics necessary to address the challenges of the OMOP ADE
task. In practice, they demonstrate their effectiveness by performing as well or better than representative
methods for DBN structure learning. Thus, with characteristics and performance that complement existing
methods, TMNs establish an alternative to DBNs for causal discovery from observational time series data.
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Supplement to Causal Structure Learning via Temporal Markov Networks

A. Experiments
A.1 Method Parameters

Here are the specific parameters of the methods and their rationales. We used the Center for Causal Discov-
ery’s Java implementation of the PC algorithm which is based on the Tetrad implementation from Carnegie
Mellon University.

• PC

– α: 0.01. Decided to ensure approximately one Type 1 error per 10-node graph.

– depth: 10. Decided to correspond with the maximum number of nodes in the synthetic data and
the maximum number of parents (drugs) in the OMOP data.

• BNFinder

– score: BDe. Tuned, but the Bayesian Dirichlet equivalence score performs no differently than the
minimum description length score.

– maximum parents: 10. Decided to correspond with the maximum number of nodes in the syn-
thetic data and the maximum number of parents (drugs) in the OMOP data.

• Temporal Markov networks using Optim.jl

– maximum optimization iterations: 1000. Software default.

– gradient infinity-norm bound: 1e-8. Software default.

– L-BFGS approximation vectors: 10. Software default.

A.2 Synthetic DBN Experiments

In the synthetic data experiments, the goal was to recover the structure of random DBNs given datasets of
timelines sampled from those DBNs. Each dataset received four data treatments designed to test the methods
in the face of noise, missing timesteps, and confounding. The plain treatment left the data unaltered. The
noisy treatment selected Xi,t IID if Bernoulli(ε) and replaced selected values with xi,t ∼ Bernoulli(1/2).
Each dataset had its own noise level ε ∼ Uniform(0.1,0.9). The missing treatment selected timesteps IID if
Bernoulli(η) and hid their values. This was meant to imitate how patients are unobserved in real EMR data
and to measure the influence of assuming unobserved values to be false. Each dataset had its own missingness
level η ∼ Uniform(0.1,0.9). The confounding treatment randomly selected a subset of confounders (variables
with at least two children) and removed them from the data and the ground truth graph. Specifically, the DBN
graph was compressed (rolled up) (Plis et al., 2015), confounders were randomly selected so that no more than
2/5 of the variables would be hidden and so that the class proportion remained in [0.1,0.9], the confounding
variables were removed from the graph by summing them out, and the graph was uncompressed to become
the new ground truth graph. For each of the four data treatments the data was represented in two ways:
fully-observed and condensed, as illustrated in Figures 2b and 2c. The condensed data imitates real EMR
data where negatives are typically not recorded and absolute times are not reliable, but it also simplifies the
problem of modeling events that occur over widely-varying time scales.

Each DBN was generated by (1) drawing a number of variables n ∈ 2 ∶10 from a distribution that favors
numbers in proportion to their size, (2) drawing an edge probability pe ∼ Uniform(0,1) and drawing each
of the n2 possible forward DBN edges IID as Bernoulli(pe) to create a bipartite graph representing two
timesteps, (3) creating conditional probability tables by sampling a probability p ∼ Uniform(0,1) for each
setting of a node’s parents, and (4) rejecting any DBN with edge density (∣E∣/n2) not in [0.1,0.9] (which
kept the class skew less than 9 ∶ 1).
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The synthetic data consisted of datasets sampled from 1k random DBNs. Each dataset had 10k timelines;
each timeline had 10 timesteps. Experiments were performed on the first 100, 1k, and 10k timelines of each
dataset to assess statistical efficiency. The number of DBNs was determined by a power calculation for a
0.9 probability of detecting a PR area difference of 0.01 at α = 0.01 with a two-tailed paired t-test. In total,
there were 120k experiments: 1k random DBNs, 4 data treatments, 2 data representations, 3 data sizes, and 5
methods (PC, TMN-PC, BNF-DBN, TMN-DBN, TMN-Bf3).

A.3 OMOP Experiments

The number of replicates was determined by a power calculation for a 0.9 probability of detecting a PR area
difference of 0.05 at α = 0.01 with a two-tailed paired t-test.

B. Results
The following tables and figures include additional analysis of the experimental results. Table 2 contains a
linear regression on the synthetic data results that includes interactions between methods and data regimes,
and Table 3 contains the detailed results of the pairwise comparisons and their statistical significance. The
names and descriptions of the experimental data regimes are in Table 1.

Name Data Regime

Plain unaltered synthetic timelines
Noisy synthetic timelines with noise
MisTs synthetic timelines with missing timesteps
Cnfdr synthetic timelines with hidden confounders
OMOP condensed OMOP timelines

Table 1: Experimental data regimes
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Rank X β̂ se(β̂) TStat P-Value

1 BNF-DBN? * cnfdr -0.713 0.0139 -51.2 0
2 density, e/n2 0.663 0.0117 56.9 0
3 TMN-PC? * cnfdr -0.553 0.0139 -39.7 0
4 PC? * cnfdr -0.499 0.0139 -35.9 1.69e-280
5 TMN-DBN? * cnfdr -0.475 0.0139 -34.1 7.15e-254
6 TMN-Bf3? * cnfdr -0.454 0.0139 -32.6 3.16e-232
7 BNF-DBN? * noise -0.414 0.00547 -75.7 0
8 BNF-DBN? 0.400 0.00188 213 0
9 TMN-PC? 0.309 0.00188 165 0

10 BNF-DBN? * mists -0.305 0.00537 -56.8 0
11 PC? * noise -0.287 0.00547 -52.5 0
12 TMN-PC? * noise -0.281 0.00547 -51.4 0
13 TMN-Bf3? * noise -0.251 0.00547 -45.8 0
14 PC? * mists -0.248 0.00537 -46.1 0
15 PC? 0.245 0.00188 131 0
16 TMN-DBN? * noise -0.225 0.00547 -41.1 0
17 TMN-DBN? 0.217 0.00188 115 0
18 TMN-PC? * mists -0.216 0.00537 -40.2 0
19 TMN-Bf3? 0.209 0.00188 111 0
20 TMN-DBN? * mists -0.169 0.00537 -31.5 2.11e-216
21 TMN-Bf3? * mists -0.157 0.00537 -29.2 1.26e-186
22 # cnfdr /n 0.130 0.00996 13.1 3.99e-39
23 log # data 0.0747 0.000430 174 0
24 missingness -0.0227 0.00380 -5.99 2.16e-09
25 noise level -0.0213 0.00387 -5.50 3.79e-08
26 intercept -0.0121 0.00698 -1.73 0.0833
27 avg in-deg -0.0109 0.00820 -1.33 0.184
28 max in-deg -0.00795 0.000607 -13.1 3.39e-39
29 # edges, e 0.00533 0.000421 12.7 1.07e-36
30 # nodes, 2n -0.00167 0.00117 -1.42 0.156
31 # V-structures -0.00138 6.06e-05 -22.7 1.06e-113
32 condensed? 0.000733 0.000702 1.04 0.296
33 max edges, n2 -0.000375 0.000184 -2.04 0.0417
34 max out-deg -0.000243 0.000638 -0.381 0.703
35 # CPT θs 3.11e-05 1.86e-06 16.7 1.75e-62

Table 2: Linear regression of PR area on attributes of synthetic DBN experiments, including interactions
between method and data regime, ranked by β̂ magnitude. R2

= 0.699. The method indicators contrast with
random guessing.
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Rank Better Worse DiffMeans TStatistic P-Value

1 BNF-DBN-Plain Random-Plain 0.480 92.2 0
2 TMN-PC-Plain Random-Plain 0.447 89.5 0
3 TMN-Bf3-Plain Random-Plain 0.362 83.4 0
4 TMN-DBN-Plain Random-Plain 0.304 81.0 0
5 PC-Plain Random-Plain 0.398 77.4 0
6 BNF-DBN-MisTs Random-MisTs 0.367 68.5 0
7 TMN-PC-MisTs Random-MisTs 0.313 65.5 0
8 BNF-DBN-Noisy Random-Noisy 0.319 60.2 0
9 BNF-DBN-Cnfdr Random-Cnfdr 0.260 59.2 0

10 TMN-PC-Noisy Random-Noisy 0.308 59.1 0
11 TMN-PC-Cnfdr Random-Cnfdr 0.246 56.8 0
12 TMN-DBN-MisTs Random-MisTs 0.191 53.1 0
13 TMN-Bf3-MisTs Random-MisTs 0.228 52.9 0
14 BNF-DBN-Plain TMN-DBN-Plain 0.176 50.0 0
15 TMN-Bf3-Cnfdr Random-Cnfdr 0.167 49.9 0
16 BNF-DBN-Noisy PC-Noisy 0.107 49.8 0
17 TMN-DBN-Noisy Random-Noisy 0.172 48.6 0
18 TMN-PC-Noisy PC-Noisy 0.0963 47.1 0
19 BNF-DBN-MisTs PC-MisTs 0.151 47.0 0
20 PC-Cnfdr Random-Cnfdr 0.194 46.6 7.41e-322
21 PC-MisTs Random-MisTs 0.216 46.6 7.91e-322
22 BNF-DBN-Plain PC-Plain 0.0821 45.2 8.61e-308
23 PC-Noisy Random-Noisy 0.212 44.1 1.15e-297
24 TMN-PC-Plain TMN-DBN-Plain 0.143 43.6 5.15e-292
25 TMN-DBN-Cnfdr Random-Cnfdr 0.140 41.9 2.36e-276
26 BNF-DBN-MisTs TMN-DBN-MisTs 0.176 41.6 5.19e-273
27 TMN-Bf3-Noisy Random-Noisy 0.162 40.9 6.11e-266
28 TMN-PC-MisTs PC-MisTs 0.0973 40.0 1.39e-257
29 BNF-DBN-Noisy TMN-DBN-Noisy 0.147 37.5 9.95e-234
30 BNF-DBN-Noisy TMN-Bf3-Noisy 0.157 36.5 1.20e-223
31 TMN-PC-Noisy TMN-DBN-Noisy 0.136 35.2 2.64e-211
32 BNF-DBN-Cnfdr PC-Cnfdr 0.0657 34.3 5.39e-203
33 BNF-DBN-Cnfdr TMN-DBN-Cnfdr 0.120 33.5 1.93e-195
34 TMN-PC-Noisy TMN-Bf3-Noisy 0.146 33.2 6.38e-193
35 TMN-PC-Plain PC-Plain 0.0495 33.2 1.45e-192
36 TMN-PC-MisTs TMN-DBN-MisTs 0.122 32.3 2.95e-184
37 BNF-DBN-MisTs TMN-Bf3-MisTs 0.139 31.8 9.87e-180
38 TMN-PC-Cnfdr TMN-DBN-Cnfdr 0.106 30.9 3.77e-172
39 BNF-DBN-Plain TMN-Bf3-Plain 0.118 30.4 1.65e-167
40 TMN-PC-Cnfdr PC-Cnfdr 0.0515 29.5 3.56e-159

Table 3: Pairwise comparisons between methods within the five data regimes (Table 1) using two-tailed
paired t-tests, ranked by p-value. The row with the lines indicates the significance cutoff of a paper-wise false
discovery rate controlled at 0.01 with the Benjamini-Hochberg procedure.
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Rank Better Worse DiffMeans TStatistic P-Value

41 PC-Plain TMN-DBN-Plain 0.0934 26.5 1.30e-132
42 BNF-DBN-Cnfdr TMN-Bf3-Cnfdr 0.0933 24.4 2.49e-115
43 TMN-PC-Plain TMN-Bf3-Plain 0.0851 22.8 2.17e-102
44 BNF-DBN-Plain TMN-PC-Plain 0.0327 21.3 8.01e-91
45 TMN-PC-Cnfdr TMN-Bf3-Cnfdr 0.0790 21.1 1.05e-89
46 TMN-Bf3-Plain TMN-DBN-Plain 0.0578 20.2 4.54e-83
47 TMN-PC-MisTs TMN-Bf3-MisTs 0.0855 20.1 5.41e-82
48 BNF-DBN-MisTs TMN-PC-MisTs 0.0538 17.8 4.57e-66
49 PC-Cnfdr TMN-DBN-Cnfdr 0.0546 15.8 3.29e-53
50 PC-Noisy TMN-Bf3-Noisy 0.0493 12.6 7.45e-35
51 BNF-DBN-OMOP Random-OMOP 0.0580 18.1 3.05e-33
52 TMN-Bf3-MisTs TMN-DBN-MisTs 0.0368 10.9 5.90e-27
53 PC-Noisy TMN-DBN-Noisy 0.0396 10.8 2.61e-26
54 TMN-Bf3-Cnfdr TMN-DBN-Cnfdr 0.0270 10.4 1.19e-24
55 TMN-Bf3-OMOP Random-OMOP 0.114 12.2 1.70e-21
56 BNF-DBN-Noisy TMN-PC-Noisy 0.0110 9.11 2.01e-19
57 PC-Plain TMN-Bf3-Plain 0.0356 8.79 3.29e-18
58 PC-OMOP Random-OMOP 0.0353 10.4 1.68e-17
59 TMN-PC-OMOP Random-OMOP 0.0655 10.3 2.73e-17
60 BNF-DBN-Cnfdr TMN-PC-Cnfdr 0.0142 7.91 4.18e-15
61 TMN-DBN-OMOP Random-OMOP 0.0524 8.77 5.14e-14
62 PC-Cnfdr TMN-Bf3-Cnfdr 0.0275 7.45 1.37e-13
63 TMN-Bf3-OMOP PC-OMOP 0.0783 8.11 1.40e-12
64 BNF-DBN-OMOP PC-OMOP 0.0227 7.86 4.70e-12
65 PC-MisTs TMN-DBN-MisTs 0.0249 6.80 1.39e-11
66 TMN-Bf3-OMOP BNF-DBN-OMOP 0.0556 5.93 4.47e-08
67 TMN-Bf3-OMOP TMN-DBN-OMOP 0.0612 5.45 3.76e-07
68 TMN-Bf3-OMOP TMN-PC-OMOP 0.0481 4.40 2.78e-05
69 TMN-DBN-Noisy TMN-Bf3-Noisy 0.00977 4.06 5.00e-05
70 TMN-PC-OMOP PC-OMOP 0.0303 4.21 5.59e-05

— — — — — BH 0.01
71 TMN-Bf3-MisTs PC-MisTs 0.0119 2.81 0.00494
72 TMN-DBN-OMOP PC-OMOP 0.0171 2.52 0.0132
73 TMN-PC-OMOP TMN-DBN-OMOP 0.0131 1.97 0.0513
74 TMN-PC-OMOP BNF-DBN-OMOP 0.00755 1.04 0.300
75 BNF-DBN-OMOP TMN-DBN-OMOP 0.00559 0.822 0.413

Table 4: Pairwise comparisons, part 2 of Table 3
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