Return Value Testing of Linux Applications
Keith Funkhouser, Malcolm Reid Jr., and Colin Samplawski

Abstract

We used fuzz testing methods to investigate the robustness of various Linux applications. We used the
LD PRELOAD environment variable to perform library interposition for interception of system and
library calls. Erroneous return values were injected into the calling applications probabilistically. In a
suite of 88 small-scale utilities and large-scale programs, crashes (unintentional core dumps or hangs)
were observed for at least one of the 19 intercepted calls in 31 of the 88 applications tested (35.2%). We
found a greater incidence of crashes in large-scale applications as compared to small-scale
utilities. Memory allocation library calls accounted for the majority of crashes, and small-scale
applications crashed exclusively by core dump. Failure to check return values continues to lead to
unexpected program behavior, even in some of the most popular open source projects (e.g. Firefox, VLC,

and gcc).

Mechanisms

(probability 1 — P
wrapper.so:
call(){

3

a.out: a.out:

L LD_PRELOAD=wrapper . so L
line_n: call() line_n: call()

i 2) a.out preloaded
1)Initiala.out with shared library

We used the LD PRELOAD environment variable to do library interposition, as shown above.
1. Program makes call to function
2. Call is intercepted by a shared library wrapper for that call
3. With probability p, an error value is returned. Otherwise, the actual call is made, allowing the
application to continue as normal

We created a wrapper for each individual call. Within this wrapper, we get the handle of the actual
function using the dlsym function. dlsym scans through the dynamically loaded libraries for a
function that has the same name as the argument passed to it.

We used static analysis to auto-generate wrappers. First, we programmatically parsed the abstract syntax
tree to discover method name, return type, and argument types. Second, we manually inspected the man
page for error return values and errno (if applicable). This process is illustrated below:

Header file (std1ib.h) Man Page (malloc (3))

RETURN VALUE
...0n error, these functions return NULL...

extern void *malloc

Generated Wrapper

define GNU SOURCE //
include 1fcn.h>
include <stdlib.h>

o compile as PIC

// function pointer for real malloc
static void *(*real malloc) (size t size) = NULL ;

// malloc wr
void *malloc Ze
real malloc = dlsym(RTLD NEXT, "malloc");
if(rand() > 0.5) {
return real malloc(size);
} else {
return NULL;
}

// get handle of real malloc

// call real malloc

Results

We used our library interposition method to test the robustness of small utilities and large-scale
applications. We primarily focused on finding crashes, which we defined as unintentional core dumps or
hangs. The tables below show the calls and applications we tested and which applications crashed.

Calls Tested

e

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Large-scale Applications (9/10 = 90%)

Chrome [gvim Thunderbird |[Firefox LibreOffice |VirtualBox

malloc H

open

read

write

close

mmap

pthread create N/A

calloc

execvp

malloc

pipe

read

pthread mutex init N/A

fork N/A

close

fopen

mmap

poll

realloc

pipe N/A

fopen C C Cc

creat

fork

open

pthread create

write

exXecCv

fstat

opendir

pthread mutex 1init

GNU Core Utilities (13/51 = 25.5%)

baseo64

dirname

logname (m)

sort

uniqg

basename

du (cm)

1ls

stat (m)

unlink

cat

echo

mdbsum

S uln

uptime

chmod

expr (m)

mkdir

touch

users

cksum

factor

(mr)

mktemp

Tr

wec (m)

comim

fold

mv (C)

TLrue

who (m)

cp (c)

groups

nproc

TLruncate

whoami (m)

cut

head

printenv

TLsort

date

hostid

(m)

pwd

tty

df (r)

id (m)

seq

uname

dircolors

1link

shred

unexpand

c = crashed with calloc, m=malloc,r=realloc

net-tools (4/11 = 36.4%)

dnsdomainname (m)

domainname

hostname

ifconfig

(m)

ipmaddr

(m)

mil—-tool

netstat

(m)

nisdomailinname

rarp

route

ypdomalnname

Other Utilities (5/16 = 31.3%)

ctags

man

finger

(m)

sdiff

grep

gunzip

gz1p

ip (m)

last

Z1p

make

(COR, c¢)

zipinfo

C = crashed with close, O = open, R = read

H = hang, C = core dump, CH = hang and core dump (in separate runs), N/A = not called,
empty = called, but no crash or hang

Crash Analysis

for (ns = 0; ns < statp->nscount; ns++) {
EXT(statp).nssocks [as] = -1;
if (statp-*nsaddr_list[ns].sin_family == 0)

pn = (struct add r *) malloc(sizeof (struct addr));
if (pn == NULL) {
perror ("netstat");

continue;
return (-1);

" if (EXT(statp).mnsaddrs[ns] == NULL)
} 131 EXT(statp) .nsaddrs[ns] =
pn->addr *sin; malloc{sizeof {struct sockaddr_imn6));
if (EXT{=statp).nsaddrs[ns] != NULL) {
EXT(statp).nscount++;

pn->next INET _nn;
pn->host host; "
pn->name = (char *) malloc(strlen(name) + 1); s }
if (pn->name == NULL) A{ if (EXT(statp).nsaddrs[ms] != NULL)
perror ("netstat"); memset (mempcpy(EXT(statp).nsaddrs[ns],
return (-1); kstatp->nsaddr_list[ns],
¥ w0 sizeof (struct sockaddr_in)),
strcpy (pn—->name, name); L O,
sizeof (struct sockaddr_iné)
- sizeof (struct sockaddr_in));

netstat: two calls to malloc were unchecked L

EXT(statp).nscount = statp->*nscount;

(lines beginning with ‘+” indicate our changes)
hostid: one call to malloc was unchecked

Anecdotes

RTc, Treeeeeesea—e—————————e T e |

Firefox tab bar with open

[samplawski@rockhopper-89] . unseeded_run.sh nmap gvim test.c

(gvim:18616): GLib-GObject-WARNING **: Attempt to add property GnomeProgram::sm-connect after class was initialised

Prog
(gvim:18616): GLib-GObject-WARNING **: Attempt to add property GnomeProgram::show-crash-dialog after c
Prog

(gvim:18610): GLib-GObject-WARNING **: empt to add property GnomeProgram::display after class was i

(gvim:18610): GLib-GObject-WARNING **: empt to add property GnomeProgram::default-icon after class was initialised

(gvim:18610): GLib-ERROR **: file /build/buildd/glib2.0-2.40.2/./glib/gthread-posix.c: line 1175 (g_system_thread_new): error 'Permission denie
"“during 'pthread_create’
E852: The child process failed to start the GUI
Press ENTER or type command to continueICE default 10 error handler doing an exit(), pid = 18608, errno = 32
[samplawski@rockhopper-09]
(gv S R 3 A 2] D Tl
im:18619): GLib-GObject-WARNING **: Attempt to add property GnomeProgram::sm-connect after class was initialised = = R ' _:';_‘3'"1"' s R 3 8 G s 1 ‘»l

(gvim:18619): GLib-GObject-WARNI
NG **: Attempt to add property GnomeProgram::show-crash-dialog after class was initialise

(gvim:18619): GLib-GObject-WARNING **: Attempt to add
property GnomeProgram::display after class was initialised

f i S R s Py S
alks 2 e
i duck.mpdt
(gvim:18619): GLib-GObject-WARNING **: Attempt to add property GnomePregram::default-1i] ‘f'_ o R, o p < L, e
con after class was initialised Rl o B e @R - =
[samplawski@rockhopper-09] [samplawski@rockhopper-09] [samplawski@rockhopper-09] [samplawski@rg " - &
ckhnppei-w] [samplawski@rockhopper-09] [samplawski@rockhopper-09] [samplawski@rockhopper-09] [samplawski@rockhopper-09]

gvim with mmap VLC with read

Conclusions

We found that large-scale applications were more prone to crashes

* Large-scale applications accounted for 11.4% of our applications, but 29% of crashes
Memory allocation functions (calloc, malloc, realloc) accounted for the most crashes,
especially in the smaller utilities
We found that utilities have become more robust since 1995 [1]
Even the most mature codebases fail to check return values

References

Barton P Miller, David Koski, Cjin Pheow Lee, Vivekananda Maganty, Ravi Murthy, Ajitkumar Natarajan, and Jeff Steidl. Fuzz
revisited: A re-examination of the reliability of UNIX utilities and services. Technical report, 1995.

