
© 2021 Barton P. Miller 10 October 2021 Dynamically Evolving Kernels

Adaptive Operating Systems: An
Architecture for Evolving Systems

Barton P. Miller
Alex Mirgorodskii Ariel Tamches

Michael Brim Igor Grobman
bart@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street

Madison, WI 53706-1685
USA

– 2 –© 2021 Barton P. Miller Dynamically Evolving Kernels

The Vision
The OS as a dynamically evolving entity:
• Annotations (orthogonal changes):

– Performance profiling
– Debugging, tracing
– Testing (e.g., code coverage)
– Security audits

• Adaptations:
– Install patches
– Optimizations: specialization, outlining, custom algs.

• Safety: Validating dynamic code

– 3 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Enabling Technology
Fine-grained dynamic kernel instrumentation
• Inserts runtime-generated code into kernel
• Dynamic: everything at runtime

– no recompile, reboot, or pause
• Fine-grained: insert (almost) anywhere
• Commodity kernel w/no modifications (Solaris)

– Code does not need to be in a special form
• General: insert anything

– Safety & security delegated to higher-level tool

– 4 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Motivation: Code Annotations

Performance Monitoring
– Increment counter
– Start a timer on entry; stop the timer on exit
– Number of icache misses, FLOPS, etc.

On-line debugging
– Breakpoint if argument equals NULL
– Dynamically inserted assertions

• e.g. Purify-type memory access checks

– 5 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Code Annotations (2)

Tracing / auditing

Testing: fine-grained code coverage
– Instrument each basic block: set flag to true
– Remove coverage instrumentation once reached

– 6 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Motivation: Code Adaptations
Optimizations (kernel code evolves)

– Specialization (partial evaluation)
• First annotate desired function to find common parameters
• Analyze results (remove annotation)
• Generate specialized version & install

– Outlining (move seldom-referenced code away)
• Annotate function: is I-Cache performance bad?
• Annotate function: find cold basic blocks
• Generate outlined version of function & install

– 7 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Code Adaptations (2)
Extensibility (process-customized policies)

– Generate customized function, put in kernel
– Insert code at policy function: “if pid is pid then jump to custom version”

• e.g. customize disk block prefetch strategy
– Like extensible kernels but:

• Unmodified commodity kernel
• Any kernel function can be customized
• Fine-grained: can customize parts of functions

– 8 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Example of Instrumentation

• Two annotations: count # of calls to copen; accumulate latency
• Can insert multiple instrumentation at one point

Kernel CodeKernel Code Code Patch AreaCode Patch Area Timers & Counters
Area

Timers & Counters
Area

copen()copen()
numcalls++
start timer
displaced code

numcalls++
start timer
displaced code

numcalls
timer
numcalls
timer

stop timer
displaced code
stop timer
displaced code

– 9 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Web Proxy Server Measurement

– 10 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Mechanisms: How KernInst Works

kerninstd

/dev/kerninst

Patch Area Heap Data Heap

Kerninst Tool

Kernel
Address Space

Kernel
Address Space

– 11 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Bootstrapping
Kerninstd (a user-level process) must:

– Allocate patch area heap
– Get the kernel’s symbol table
– Get permission to write to all kernel code

(/dev/kmem only a partial solution)
By using a driver (/dev/kerninst):

– Installed on-the-fly (common OS feature)
– Communicate with kerninstd via file operations
– Special functions (segkmem_mapin) to write to nucleus

– 12 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Structural Analysis
Create control-flow graph

– Get function addresses from kernel symbol table
– Parse machine code into basic blocks
– Fast: 20 seconds

Use free registers at instrumentation points
– For jumping to dynamically inserted code.
– For executing dynamically inserted code.
– Run interprocedural live register analysis algorithm

– 13 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Splicing in Code…Safely
To splice in code at a point:

– Allocate & write code and data space in kernel.
– Modify kernel code at instrumentation site with a jump to allocated code.

But there is a potential safety hazard...
– Cannot pause kernel during splicing.
– A kernel thread might be executing in or around code while it is being

changed.

– 14 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Code Splicing Hazard #1

Moral: splicing must be atomic
– On SPARC, this limits splices to (at most) two instructions.

ORIG 1
ORIG 2
ORIG 3

ORIG 1
ORIG 2
ORIG 3

NEW 1
NEW 2
ORIG 3

NEW 1
NEW 2
ORIG 3 crash!

will be written “real soon”will be written “real soon”

Atomically written
already
Atomically written
already

– 15 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Code Splicing Hazard #2

Moral: splicing must replace only one instruction.

ORIG 1
ORIG 2
ORIG 1
ORIG 2

Thread is
executing

here

Thread is
executing

here

NEW 1
NEW 2
NEW 1
NEW 2

Thread is
(still)

executing
here

Thread is
(still)

executing
here

crash!

– 16 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Code Splicing: Reach Problem

Tough to reach patch with just 1 instruction!
– The patch space is usually too far from code.
– On SPARC, e.g., can jump only +/- 8MB in a single instruction (ba,a

<offset>)
General solution: springboards

ORIG ORIG branch branch

springboardspringboard

J1
J2
J3

J1
J2
J3

Code Patch, as usualCode Patch, as usual

– 17 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Springboard Heap
Any scratch space located close to the splice point is suitable for a
springboard.

– Must be reachable by the 1-instruction splice.
– SVR4 modules have initialization and termination routines that can be

overwritten (_init and _fini).
– Other places are available (_start and main).
– At boot-time, we cause large patch areas to be allocated.

– 18 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Performance Measurement
Hundreds of important kernel routines make great metrics

– Scheduling: preempt, disp, swtch
– Process creation: fork
– VM management: hat_chgprot, hat_swapin
– Network activity: tcp_lookup, tcp_wput, ip_csum_hdr, ip_rput, hmeintr

– 19 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Kernel Metrics
Number of preemptions

preempt()preempt()
num_preempt++
displaced code
num_preempt++
displaced code num_preemptnum_preempt

Kernel CodeKernel Code Code Patch AreaCode Patch Area Timers & Counters
Area

Timers & Counters
Area

– 20 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Kernel Metrics
Number of preemptions of process foo

preempt()preempt()
if curthread->

t_procp == foo
num_preempt++
displaced code

if curthread->
t_procp == foo

num_preempt++
displaced code

num_preemptnum_preempt

Kernel CodeKernel Code Code Patch AreaCode Patch Area Timers & Counters
Area

Timers & Counters
Area

– 21 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Kernel Metrics
Time spent filtering incoming TCP packets

tcp_lookup()tcp_lookup()

Start timer
displaced code

time_tcp_lookuptime_tcp_lookup

stop timer
displaced code
stop timer
displaced code

start timer
displaced code
start timer
displaced code

Kernel CodeKernel Code Code Patch AreaCode Patch Area Timers & Counters
Area

Timers & Counters
Area

– 22 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Kernel Metrics
Virtual time spent allocating kernel memory

kmem_alloc()kmem_alloc()
if in_proc_P
start timer
displaced code

if in_proc_P
start timer
displaced code

swtch()swtch()

if in_proc_P
stop timer
displaced code

if in_proc_P
stop timer
displaced code

if leaving P
stop timer
if starting P
start timer
displaced code

if leaving P
stop timer
if starting P
start timer
displaced code

timertimer

– 23 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Web Proxy Server Measurement

• Performance profiling tool using KernInst
• Metrics used

– Number of calls made to
– Concurrency (average number of kernel threads executing in code at a

given time)
• Squid http proxy server
• Wisconsin Proxy Benchmark
• Identified both kernel and application fixes!

– 24 –© 2021 Barton P. Miller Dynamically Evolving Kernels

copen handles file opens & creates

– 25 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Web Proxy Server Measurement
copen major calls: falloc, vn_open

– falloc (surprisingly) not a bottleneck (0.2%) despite linear search

vn_open spending its time in vn_create
So proxy is creating files, not reading them

– calling open with O_TRUNC flag

– 26 –© 2021 Barton P. Miller Dynamically Evolving Kernels

vn_create calls lookuppn and ufs_create

– 27 –© 2021 Barton P. Miller Dynamically Evolving Kernels

ufs_create: mostly ufs_itrunc
– Bottleneck: Truncating cache file to 0 size
– Fix: overwrite file and only trunc if new size less

– 28 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Directory Name Lookup Cache (DNLC):
– Bottleneck: Not all name → vnode mappings fit
– Fix: Make the cache bigger!

– 29 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Optimization
Use dynamic instrumentation to optimize kernel functions on-the-fly.

– Specialization
• generate partially evaluated function for a fixed value of one or more parameters

– Outlining
• can move infrequently accessed code blocks out of line (to patch space), improving

icache performance.

Works best combined with performance-measurement annotations.

– 30 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Measurement-Based Optimization: Steps

• Dynamically insert profile annotations
– for specialization: histogram of input values
– for outlining: basic block profile

• Analyze annotation, decide on optimization
• Generate optimized version of function
• Splice in optimized version of function

– 31 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Example: Specialization
Profile:

kmem_alloc()kmem_alloc()
get size parameter
numcalls[size]++;
displaced code

get size parameter
numcalls[size]++;
displaced code

Decision: examine hash table
Generate specialized version:

– choose fixed value & run constant propagation
– expect unconditional branches & dead code

numcalls[]
hash tab le
numcalls[]
hash tab le

– 32 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Example: Specialization
Splice in the specialized version:

kmem_alloc()kmem_alloc()
if size==value then
displaced code
if size==value then
displaced code

specialized
version

specialized
version

Patch calls to kmem_alloc
– Detect constant values for size, where possible
– If specialized version appropriate, patch call

• No overhead in this case

– 33 –© 2021 Barton P. Miller

Run-time I-Cache Optimization
Code positioning [Pettis & Hansen 90]

– An example of an evolving kernel algorithm
– Reorder basic blocks to improve I-$ performance

• What’s new: at run-time, and on a kernel
– Procedure splitting

• Segregate hot vs. cold basic blocks
– Basic block positioning

• Reorder blocks to facilitate straight-lined execution
• Try to make hottest branches untaken
• Requires edge counts

– 34 –© 2021 Barton P. Miller

Code Positioning Steps
Measure root function

– Is there poor I-cache performance?
Measure block counts

– Of the root function and its descendants
• A traversal of the call graph

– Weed out descendants with no “hot” basic blocks
• Hot: executed > 5% as often as root function is invoked

Emit optimized group of functions

– 35 –© 2021 Barton P. Miller

The Optimized Function Group
Hot basic blocks of ufs_createHot basic blocks of ufs_create

Hot basic blocks of dnlc_lookup (if any)Hot basic blocks of dnlc_lookup (if any)

Hot basic blocks of ufs_lockfs_begin (if any)Hot basic blocks of ufs_lockfs_begin (if any)

Hot basic blocks of ufs_lockfs_end (if any)Hot basic blocks of ufs_lockfs_end (if any)

Cold basic blocks of ufs_create (if any)Cold basic blocks of ufs_create (if any)

Cold basic blocks of dnlc_lookup (if any)Cold basic blocks of dnlc_lookup (if any)

Cold basic blocks of ufs_lockfs_begin (if any)Cold basic blocks of ufs_lockfs_begin (if any)

Cold basic blocks of ufs_lockfs_end (if any)Cold basic blocks of ufs_lockfs_end (if any)

Use code replacement on root function to install

Root function
is ufs_create
Root function
is ufs_create

Other functions
are the hot subset

of ufs_create’s
call graph

descendants

Other functions
are the hot subset

of ufs_create’s
call graph

descendants

– 36 –© 2021 Barton P. Miller

Case Study of Code Positioning
Benchmark: mirror Paradyn papers Web page

– 10 simultaneous connections
– Perform code positioning on tcp_rput_data

• Forwards data from IP to socket (on the hot path)
• A large function (12K+ excluding callees)

– So a good candidate for code positioning

Macro results
– Before optimization: 36.0 seconds
– After optimization: 33.6 seconds
– About 7% end-to-end speedup

– 37 –© 2021 Barton P. Miller

Results (cont’d)
22 functions in the group

– 4260 bytes of hot code, 14624 bytes of cold code
– Most functions had all hot blocks covered in 1 path

Micro-results (per invocation of tcp_rput_data)
– Virtual time per invocation

• From 6.6 µs to 5.4 µs (reduction of 17.6%)
– I-cache stall time per invocation

• From 2.4 µs to 1.55 µs (reduction of 35%)
– Branch mispredict stall time per invocation

• From 0.38 µs to 0.20 µs (reduction of 47%)
– IPC: from 0.28 to 0.38

– 38 –© 2021 Barton P. Miller

I-Cache Footprint: Before

0 1 2 3 4

– 39 –© 2021 Barton P. Miller

I-Cache Footprint: After

0 1

– 40 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Current Work
• x86 / Linux port

– Variable-length and short instructions
• Power / Linux port

– 41 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Conclusion
Operating Systems are not static entities anymore

Annotate for debug, profile, test, etc.

Adapt for customization of kernels.

Forms the foundation for an evolving OS...
...constantly changing in response to load and use.

http://www.cs.wisc.edu/paradyn

– 42 –© 2021 Barton P. Miller Dynamically Evolving Kernels

Evolving Kernels: The Big Picture

