roceedings of Sixth ACM Symposium on Operating Systems Principles (November 1977) 23-31.

#*
Task Communication in DEMOS3

Forest Baskett NOTICE: Thi
John H. Howard - Tnis MA
ohn o owar BE PROTECTED gf/RlAL MAY

John T. Montague opyright [3w (Titia 17 US Co-)
v 032

Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

This paper describes the fundamentals and some of the de&ails' of task
communication in DEMOS, the operating system for the CRAY-1 computer being
developed at the Los Alamos Scientific Laboratory. The communication mechan-
ism 1is a message system with several novel features. Messages are sent from
one task to another over links. Links are the primary protected objects in
the system; they provide both message paths and optional data sharing between
tasks. They can be used to represent other objects with capability-like ac-
cess controls. Links point to the tasks that created them. A task that
creates a link determines its contents and possibly restricts its use. A link
may be passed from one task to another along with a message sent over some
other link subject to the restrictions imposed by the creator of the link be-
ing passed. The link based message and data sharing system is an attractive
alternative to the semaphore or monitor type of shared variable based operat-
ing system on machines with only very simple memory protection mechanisms or
on machines connected together in a network.

1. Introduction

This paper describes the fundamentals and some of the details of task communication
in DEMOS, the operating system for the CRAY-1 computer being developed at the Los Alamos
Scientific Laboratory. The communication mechanism is a message system with several
novel features. In this section we discuss the purpose of task communication and why a
message system is an appropriate mechanism on the CRAY-1. 1In later sections we discuss
the features of the message system.

A task consists of a program and its associated state information, including regis-
ter contents, a memory area, and a link table. A task can be manipulated in certain
ways; for example, it may be suspended, swapped out, swapped in, or resumed. We "~ have
chosen the term task instead of the term process because it seems less loaded with unre-
lated or contrary meanings. A task is what might be called a job or a program in simple
cases. In less simple cases a job or a program will be a (time varying) collection of
related tasks.

The first function of the task communication mechanism 1is to implement system
calls. We think of the system as a collection of permanent tasks with which user tasks
communicate. The system calls, i.e., the information that 1is communicated, we call
messages. The mechanism of task communication provides an appropriate link or path
between a user task and a particular system task that is to act on a given system call.’
For example, a user task will typically need links to the file system tasks if the user
task is to perform I/0. Such standard links ordinarily will be provided to user tasks
in an automatic and transparent way.

¥ Work performed under the auspices of the USERDA.

23

The next function of the task communication mechanism is to provide a way for arbi-
trary and unrelated tasks to communicate with mutual consent. Since communication is via
links, we must have a way of exchanging links between tasks. If tasks can exchange
links dynamically, then we can have a flexible intercommunication facility. We have de-
fined a standard way of passing links along with messges over existing 1links. One of
the standard 1links that a task will usually receive when it is created is a link to a

Switchboard task that can arrange to get two or more cooperating tasks together.

The last function of the task communication mechanism is to provide a method by
which one task can encapsulate another task or group of tasks. An easy and transparent
encapsulation facility is desirable for debugging, performance monitoring, and simula-
tion of other operating system environments.

We classify operating system communication mechanisms in two basic types: shared
variables and messages. The shared variables approach is typified by semaphores [Dijks-
tra 68] or monitors [Hoare T41. Brinch Hansen [73] developed the best-known pure mes-
sage system. Capability systems [Fabry 74] attempt to control memory sharing but do not
imply either of these two types of communication mechanisms. The communication mechan-
ism in DEMOS is mainly a message system.

The CRAY-1 has only one pair of base and 1limit memory protection registers for
tasks; it does not have hardware segmentation or paging. Thus tasks cannot be physical-
ly segmented in memory. The message approach seems best if the hardware memory protec-
tion mechanism is to be used to isolate any given part of the operating system from oth-
er parts [Lampson 76]. Different modules of the operating system can be constructed as
separate tasks that communicate with messages. Since each task is isolated by the base
and limit hardware registers, tasks are protected from each other. This type of organi-
zation also naturally inherits the advantages obtained from minimizing global variables
and using value type parameters and results. Furthermore, a message orientation is com-
patible with more types of distributed processing architectures than a shared variable
orientation.

On the other hand, we do not see messages as sufficient for all forms of intertask
communication just as value type parameters and results would not be sufficient in a
programming language without global variables. We have provided a method of sharing
data areas via the same links that are used to route messages. A link with such an as-
sociated data area is then like a pointer or reference parameter in a programming
language. This data sharing can be used for the intertask communication needs for which
messages are inappropriate or inadequate.

With this organization the only part of the operating system that needs hardware
access to the memory of more than one task at a time is the kernel, that part of the
system which is used to move both messages and data from one task to another. The two
types of communication are unified in the link concept. We consider this to be a novel
arrangement and we will now show how the two fit together in a harmonious way and give
examples of link usage that illustrate the utility of the arrangement.

2. Links

A link permits a task to send messages to another task and possibly to read or
write part of the memory of the task to which the message would be sent. For messages,
it is a one-way (simplex) communication path. If two tasks wish to send messages to each
other in full duplex communication, each must have a link to the other. A link is
created by the task to which it points and then passed to the potential sender task.

Links are associated with but maintained outside of the address space of their
sender tasks. They may be manipulated only by use of link ID's, which are indexes into
a task's Link Table. Figure 1 illustrates this arrangement. Kernel calls which operate
on links take 1link ID's as parameters. All operations on links are per formed by the
kernel of the operating system; requests to the kernel are made via the CRAY-1 supervi-
sor call instruction.

A newly created task is given an initial set of links by its parent. . These links
define the environment in which the new task runs. In the case of tasks created by the
job initiator the environment consists of standard links to system tasks such as the
file system, the task manager, and the Switchboard.

24

Main Memory Link TABLE ForR Task A

1
OTHER STATE INFOR- 2
MATION FOR Task A 3
Link TABLE Link To Task B
FOR Task A X
BASE T R
REGISTERT ™
K
Task A
PROGRAM Link ID For LINK TO
AND
DATA Task B = 4
LIMIT
REGISTER[
Link To Task B
Task B Data
D Cope |CHANNEL [SEGMENT | FLAGS
SPECIFI-
CATION
FIGURE 1

Basic Task AND Link LAvour

25

A link may contain permission to move data to or from a specified area in the ad-
dress space of the task which created the link. For example, when a task issues a Read
request for a file, it sends a message to the file system containing the request and a
link which permits the file system to move the requested data into the appropriate place
in the requestor's address space. Figure 2 illustrates this example. This mechanism al-
lows messages to be limited in size (since they are buffered by the kernel, this is
desirable) while allowing the transmission of large blocks of data from one task to
another efficiently in the absence of hardware supported memory sharing.

REQUEST LINK To B

MESSAGE PATH FOR
Task A REQUESTS Task B

MESSAGE PATH FOR REPLY

DATA . |/ DATA PATH

()
SEGMENT — 7

REPLY LINK TO A

FIGURE 2

NorMAL MessAGe & DATA SEGMENT LINK

A task may specify several attributes of each link it creates in order to 1identify
incoming messages and to protect against unexpected or unauthorized messages. Messages
are identified by means of a code which is simply a name specified by the task when it
creates the link. The code from the link on which a message was sent is passed to a re-
ceiving task along with each message [Morris 73]1. Permission flags in the link specify

-whether the task which holds the link may duplicate it, pass it to other tasks, or use

it more than once.

26

The set of links held by a task defines its environment. A task may send messages
using any 1link it holds, and in some cases can move data to or from the memory area of
other tasks. Passing links between tasks allows programs to be divided into multiple
tasks in a convenient manner which is transparent to the tasks which might receive mes-
sages from such programs. A link may be duplicated (with certain restrictions) so that
a link may be passed to another task without loss of the original communication path. A
message is sent to the task which created a link each time the link 1is duplicated or
destroyed, so that an accurate count of outstanding links can be kept by the link crea-
tor. A variant of link passing allows duplicating the data area pointer of an. existing
link in a newly created link. This allows one task to monitor the messages of a subtask
without having to move large amounts of data through intermediate buffers; the data con-
. nection but not the message connection bypasses the monitoring task. Figure 3 illus-
trates such a monitoring task.

Task A REQUEST PATH Task C REQUEST PATH _ Task B
(MONITORING
TASK,
DATA - N
SEGMENT E.G.,, DEBUGGER)

DATA PATH REPLY LINK TO
RIGINAL REPLY C & DATA LINK
LINK TO A 10 A (CREATED

BY C witH BYPASS)

FIGURE 3

Use oF BYPASS Links

3. Object Descriptions

This section provides more detailed descriptions of tasks, links, messages, and
channels, the primary objects defined by the DEMOS communication mechanism.

3.3. Tasks

A task consists of a program and its associated state information, including regis-
ter contents, a memory area, and a l1ink table. It has a parent task which created it,
and is usually allowed to create child tasks. Task creation and termination are the
responsibility of the Task Manager, discussed later. A task may be suspended, inspected,
modified, and restarted by its parent. When a task terminates, it is suspended and its
parent is notified if the parent has asked to be notified. Tasks which are not suspend-
ed and are not waiting for messages are given the CPU periodically.

27

3.2. Links

A link appearing in the link table of a task gives that task permission to send
selected messages to another task. The recipient task originally created the link and
specified its contents, namely, the type of operations that can be performed on the
link, a code for use by the recipient, a channel, the type of links that can be passed
over the link, and the address and size of a portion of the recipient's memory for
direct data transfers. Links may be used to send messages and move data, may be passed
along with messages, and may be created, duplicated, and destroyed.

In order to allow the kernel to check standard or common operations on links for
consistancy and thus catch errors at their source, we have introduced the concept of a
link type. There are four types of links: request, resource, reply, and general. Re-
quest and resource links are used for request messages, differing only in that a request
link may be destroyed or duplicated by its possessor without notifying the task to which
the 1link points. Resource links may be duplicated or destroyed by their possessor but
such operations cause messages to be sent to the task to which such a 1link points.
Resource links may not be passed to a task with a different user ID from the posessor of
the link unless the posessor is also the creator. Reply links are used only for reply
messages and are only used one, i.e., they are destroyed by their use. A link may be
passed with a message across another link. A general link, request link, or a resource
link may be passed across a reply link. Only a reply link may be passed across a re-
quest or resource link. Any type of link may be passed across a general link.. No other
possibilities are allowed. ' :

3.3. Messages

Messages are small packets of information which can be transmitted across links.
Messages are buffered by the kernel (up to some limit on the number of buffered messages
for any one task). Messages are classified into requests, replies, and general messages
depending on the type of link they are sent across. ’ :

A request message, sent across a fequest or resource link, is a request for some
action by another task. Most request messages require replies, 50 a request message may
be accompanied by a reply link back to the requesting task.

A reply message, sent across a reply link, is used only to reply to a previous re-
quest. The reply link is destroyed when the reply is sent. A reply may carry with it a
general, request, or resource link, typically representing some abstract object Dbeing
obtained in response to the original request.

General messages which use general links, give users an escape from the restric-
tions imposed on requests and replies. A general link can pass any kind of link, thus
avoiding the asymmetry of requests and replies. With the exception of the Switchboard,
no component of DEMOS uses general links.

3.4. Channels

Channels provide a way for a task to select classes of potential incoming messages.
When ~a process creates a link, it specifies a channel on which messages associated with
that link will be received. The RECEIVE operation specifies one or more channels. The
oldest message whose 1link uses one of the specified channels will be returned to the
task. If there is no such message, the task blocks until such a message arrives. Un-
like 1ink 1ID's which are determined by the kernel, channels are specified by the task
and may be assigned in any manner desired (up to the maximum allowed number).

If a task wishes to operate in a completely synchronous manner, it should wuse a
different channel for each outstanding link and specify only one channel in each RE-
CEIVE. 1If a task wishes to operate in an asynchronous manner it can either perform con-
ditional receive operations on channels and thus not block if no messages are available
or it.can ENABLE interrupts on a set of channels and be notified by the kernel when a
message arrives on one of those channels.

4. Link Usage

, The primary communication operations are CALL, REQUEST, REPLY, SEND, MOVE, and ~RE-
CEIVE. SEND specified a message and an optional link to be passed with the message. ‘It
has two variants: DESTROY, which destroys the link used by the message, and DUPLICATE,
which requests a second copy of that link. The recipient is notified if one of the
variants was used unless the link is of type request. The DESTROY and DUPLICATE por-
tions of the SEND operation are actually performed by the kernel. REQUEST sends a mes-

28

sage and an implicitly created reply link on a request or resource link. REPLY sends a
message -and an optional link on a reply link held by a task. MOVE reads or writes data
through a link. RECEIVE accepts the next incoming message. CALL is a composite of RE-
QUEST and RECEIVE and is expected to be the operation most heavily used by user programs
since it combines three kernel operations (CREATE, SEND, and RECEIVE) that would other-
wise commonly be done in a tight sequence. Other operations on links are CREATE and
BYPASS. CREATE creates a new link to the creating task, specifying a code, a channel,
restrictions on how the 1link may be‘used, and (optionally) the address and size of a
segment of the creating task's memory for direct data MOVEs. BYPASS also creates such a
link, but uses the data pointer from a link possessed by the creator rather than a
pointer into the creator's own memory.

The following example interaction with the file system is intended to provide an
intuitive understanding of these basic operations. Suppose our example task, taska,
wishes to read file FILEX. It must open the file, do some read operations, then close
the file. Each of these involves a message to the file system requesting an action and
a reply saying that the action is done.

To open the file, taskA performs a CALL operation on its standard link to the file
system, sending a message containing the file name and other required parameters. The
kernel creates a reply link, specifying the standard reply channel, and sends the mes-
sage and the reply link to the file system. When the file system receives the message,
it interprets it, opens FILEX, and in turn CREATEs a resource link to itself. The code
field of the resource link contains the internal index into the file system's open file
table entry for FILEX. The file system then does a REPLY operation on the reply 1link
sent by taskA, passing the resource link representing FILEX back along the reply link to
taskA. The completion message and the link ID for the resource link representing FILEX
are returned to taskA (which becomes ready because the implicit RECEIVE operation is sa-
tisfied). The reply link is destroyed by the kernel after it is used. TaskA now has
two links to the file system, its standard request link and a resource link representing
FILEX. The file system has no links to taskA.

Reading data from the file requires a similar series of steps. This time, however,
taskA uses the resource link representing FILEX and specifies the address and size of
its buffer on the CALL operation. The file system uses MOVE to transfer the data
through the data segment descriptor of the reply link. When the data transfers are com-
plete, the file system does a REPLY operation to return status information such as the
number of bytes read or whether end of file was reached. This time the file system's
reply specifies no new link. Having received the reply, taskA can safely process the
data in the buffer.

When taskA is done with the file, it DESTROYs its link for FILEX. The resulting
message to the file system tells it to close the file. TaskA is left with only its
standard 1link to the file system.

5. Link Management

Links resemble capabilities, so their management must take into account many of the
well known difficulties of managing capabilities. This section discusses a management
scheme which addresses some of these difficulties.

One problem with capabilities is the possibility that they may continue to exist
after the object they point to is destroyed. 1In the case of links, the objects are
tasks. We use the standard technique of not reusing task identifiers to solve this prob-

lem.

Sometimes it is desirable to account for outstanding links to a task. For example,
the file system will need to keep track of open file links in order to close files when
their last link is destroyed. We allow this by notifying the creating task whenever a
resource or general link is duplicated or destroyed. A task may restrict its links so
that they may not be duplicated, in which case an explicit request for another link must
be made to obtain a second copy. -

Yet another problem with capabilities is the lack of control over their being given
away to an unauthorized third party. Classifying links into types and restricting
specific operations to specific types provides a partial solution to this problem. For
example, resource links may only be passed to tasks with the same user ID. Reply links,
which can be used only once, reduce the problem of uncontrolled passing of links.

Perhaps the thorniest problem is that of deadlocks. In DEMOS, a deadlock is a set
of tasks each of which is waiting to RECEIVE messages from other tasks in the deadlock.

23

[WL

While such circular wait conditions can in principle be detected, we plan at present to
use a hybrid approach to deadlock control, organizing the system-defined tasks hierarch-
ically to prevent deadlocks [Howard 73] and timing out blocked user tasks.

6. Task Management

Tasks are created and destroyed by the Task Manager, which is itself a system task
accessible by a standard link. When a task wishes to create a child task, it sends a
message to the Task Manager specifying the initial size of the child's memory. The Task
Manager allocates the memory and creates a suspended task with no links and zero regis-
ters and memory, then it returns .a reply containing a link to itself. This child link
has a bypass data segment pointer which allows the parent to read and write the child's
memory. Using it, the parent can read and modify the child's registers, give it 1links
and take them back, and suspend and resume the child.

When a task terminates, it is placed in a suspended state. The parent may ask to
be notified when the child terminates; upon notification it can retrieve links and
status information from the child. Destroying the child link destroys the child; the
Task Manager suspends the child, destroys any links it has, and frees its memory. . To
give a child a lifetime independent of the parent's, the parent must pass the child link
to some other task, for example the Job Initiator, which is willing to adopt such chil-
dren, accept their termination messages, and produce a post-mortem if they terminate ab-
normally.

7. Other System Facilities

Several other system tasks will exist in DEMOS to complete the task communication
structure. These include the Switchboard and the timer task.

The Switchboard task is provided to allow mutually consenting arbitrary tasks to
communicate. A task willing to communicate with any arbitrary task (for example, a MAIL
facility) creates a general or request link, and sends a message to the Switchboard, in-
cluding this 1link and a name. A task wishing to communicate with another named task
would send a message to the Switchboard requesting a link. The Switchboard task matches
pairs of tasks based on the names specified and passes the link from the other task to
the requesting task. Since reply links cannot be sent on reply links, and only reply
1inks can be sent on request links, the standard link to the Switchboard task is a gen-
eral link. '

The timer task provides clocks for other tasks. It accepts requests from tasks
which specify a time interval (either real time or task CPU time) and at the end of the
requested interval the timer task sends a reply message to the requesting task. If the
receiving task has enabled interrupts on the channel it specified in the link, it will
be interrupted.

8. Remarks

This communication mechanism is not pure in several ways. The data segment that
can be associated with a link allows an escape from communication via messages. The
general link type allows an escape from the request-reply regime. The conditional re-
ceive operation and the interrupt mechanism allow an escape from the regime of synchro-
nous tasks with all the asynchrony of the system captured in messages. While we Dbelieve
these escapes should be avoided as much as possible, we believe they are necessary for a
production operating system. If we were designing our own hardware we might be more
tempted by purity.

We have attempted to provide a set of primitive operations in this communication
mechanism that will support a wide variety of operating system structures. We think .
that the operations are general and flexible but sufficiently simple to be implemented
efficiently. We have consciously attempted to avoid what John Cocke has called over-
powerful operators. If a task is to perform read or write operations on a file, it must
send messages to the file system task. If a task is to per form suspend or resume opera-
tions on another task, it must send messages to the task manager. While these require-
ments may seem obvious and natural, we have seen systems where such operations were made
to appear as primitives. Proving that these operations can be done efficiently without
being primitives is a challenge we have ahead of us.

We see the link concept as an especially nice vehicle for intertask communication
in several environments. A network of processors with private primary memory is an ap-
pealing application for this communication mechanism. The CRAY-1 with its limited form
of memory protection inspired this design and is our first application.

30

This communication mechanism does not imply a preferred organization for the rest
of the operating system. A hierarchical or layered approach is as suitable as a more
distributed and independent task approach as far as this communication mechanism is con-
cerned. The 1link mechanism allows the construction of abstract objects, capabilities,
domains, and other protection structures but it does not require any of these.

9. Acknowledgments

We gratefully acknowledge the many helpful suggestions and remarks from J. C.
Browne, David Folger, Susan Owicki, Michael Powell, and R. W. Watson.

10. References

Brinch Hansen, P. Operating System Principles. Prentice-Hall, Englewood Cliffs,
N.J., 1973. '

Dijkstra, E. W. Cooperating sequential processes. in Programming Languages (F.
Genuys, ed.). Academic Press (1968), 43-112.

Fabry, R. S. Capability-based addressing. Communications of the ACM 17, 7 (July
1974), 403-412.

Hoare, C. A. R. Monitors: an operating system structuring concept. Communications
of the ACM 17, 10 (Oct. 1974), 549-557. Corrigendum, Communications of the ACM 18, 2
TFeb. 1975), 95.

Howard. J. H. Mixed Solutions to the Deadlock Problem. Communications of the Adg\

16, 7 (July 1973), 427-430.

Lampson, B. W. and Sturgis, H. E. Reflection on an, Operating System Design. |
Communications of the ACM 19, 5 (May 1976), 251-265. l

i
j

Morris, J. H. Protection in programming languages Communications of the ACM 16, 1/
(Jan. 1973), 15-21. :

31

