
-- --

DEMOS/MP:
The Development of a Distributed Operating System

Barton P. Miller David L. Presotto

Computer Sciences Department Bell Laboratories
University of Wisconsin MH 2C-523
1210 West Dayton Street 600 Mountain Avenue

Madison, Wisconsin 53706 Murray Hill, New Jersey 07974

Michael L. Powell

DEC Western Research Laboratory
100 Hamilton Avenue

Palo Alto, California 94301



-- --

DEMOS/MP:
The Development of a Distributed Operating System

Summary
The DEMOS/MP operating system has moved from a super computer with a simple addressing

structure to a network of microcomputers. This transformation was done without significant changes
to the semantics of the original DEMOS, i.e., existing DEMOS programs should run on
DEMOS/MP.

The changes to DEMOS were simplified by the structure of its primitive objects and the func-
tions over those objects. The structure of DEMOS links and processes were the major contributors
to the simplicity. The changes made to produce DEMOS/MP involved the internal structure of link,
modification to parts of the kernel, and limited changes to the various system processes.

Keywords
Distributed operating system, message-base, DEMOS, links, network.

INTRODUCTION

The DEMOS operating system began on a Cray 1 computer and has since transitioned several com-
puting environments. Its current home is a collection of Z8000 processors connected by a network. This
distributed version of DEMOS is known as DEMOS/MP. DEMOS has successfully moved between sub-
stantially different architectures, while providing a consistent programming environment to the user. The
basic DEMOS system has been described in [1] and [10] . This paper concentrates on the details of
DEMOS/MP that are relevant to DEMOS’s operation in a distributed environment.

The semantics of the user interface of DEMOS/MP have not changed significantly from those of the
original DEMOS system. DEMOS/MP runs on a collection of loosely coupled processors whose processor
speed, memory architecture, and I/O architecture differ substantially from the Cray 1. In spite of these
differences, a program that runs in the DEMOS environment will run under DEMOS/MP.

There are two goals of the DEMOS/MP project. The first goal is to provide the software base for the
OSMOSIS† distributed systems project. DEMOS/MP provides a clean message interface, and a well struc-
tured system that can be modified easily. This system is the base for various experiments in operating sys-
tems and distributed systems, such as process migration, reliable computing, and distributed program meas-
urement.

The second goal is to experiment with the design of a distributed operating system. Our goal is to
see what mechanisms would adapt easily to a distributed environment, while maintaining a high degree of
network transparency.

Three areas are important in describing the development of DEMOS/MP. The first area is the collec-
tion of semantic structures in DEMOS that allow it to survive the transitions in environments (reasonably)
unscathed. The semantic structures are those that are visible to the users of the system. DEMOS uses a
simple and uniform communication model. The communications model, based on links , provides resource
naming, abstraction, and management. DEMOS processes use links as their only means of interaction.

The second area is in the changes made to the system mechanisms to reflect the new hardware
environments. These mechanisms are at the lowest level of the kernel and are responsible for the hardware
resource management. The two major changes for DEMOS/MP are the network and the virtual
memory/addressing structure. The network interface was added to DEMOS as a natural extension of the
link-based communications. The goal is to make the presence of the network visible to as little of the
hhhhhhhhhhhhhhhhhh
Research was supported by the National Science Foundation grant MCS-8010686, the State of California MICRO program,
and the Defense Advance Research Projects Agency (DoD) Arpa Order No. 4031 monitored by Naval Electronic System
Command under Contract No. N00039-82-C-0235.
† OSMOSIS stands for Operating System for Making Operating System Implementation Studies.



-- --

- 2 -

system as possible (and not at all to the users). The original DEMOS was implemented in a memory space
with base and bounds registers and used swapping, whereas DEMOS/MP is implemented on a collection of
machines with paged, segmented address space using demand paging.

The third area is in the changes to the system services (server processes) so that they function in the
distributed environment. These changes may take the form of replication of a service for performance and
reliability reasons.

The DEMOS/MP project involved a progression of activities leading to running in the distributed
environment. It was first moved to a DEC VAX, running under simulation on the UNIX operating system.
This involved writing a code generator for the VAX instruction set for our Model compiler . model morris
manual Initial work on the intermachine communications was started on the VAX version of DEMOS/MP.
A Z8000 code generator was also written and testing began on a network of dual processor machines.
Over the next 2 years, the network subsystem, virtual memory, and process migration was added. Given
the basic functioning system, experiments were started in fault tolerant computing and distributed program
measurement tools.

LINKS AND PROCESSES

The basic units from which a program is constructed are the computational elements (processes), and
the communications paths that join the elements (links). Link-based communication forms the lowest level
of the operating system. If the semantics of links can be distributed, then many parts of DEMOS will
operate in the distributed environment without change.

Links

A link is a one-way message channel to a user process, system process, or kernel. Each process has
a table of links associated with it, and this table is maintained by its kernel. The link table identifies the
complete set of communications paths available to a process, and thus provides a single interface to the
remainder of the system. Links are protected objects and can be used as the naming mechanism for
resources controlled by a centralized resource manager. In this role, links provide much of the same func-
tion as capabilities.

There are several features of DEMOS/MP links that facilitate their implementation in a distributed
environment. These features are one-way communication paths, the process address structure, the
DELIVERTOKERNEL attribute, and link data areas.

There are many variables in the specification of a communication mechanism, such as synchronous
vs. asynchronous operations, buffered vs. unbuffered messages, and unidirectional vs. bidirectional com-
munication paths. The decision whether to have unidirectional or bidirectional paths is a significant issue
in a distributed environment.

A one-way communication path requires state information to be kept only on the sender’s end of the
link. This results in needing a potentially smaller amount of needed link table space. The reduction in link
table space is a result of asymmetry in the client/server relationship. A client must possess a link for ser-
vices that it wishes to request, but the servers need to hold a link to a client only for the period of time from
when the request is received until a reply is sent. For example, every process might have a link to the name
server, but the size of the name server’s link table can be considerably smaller than the total number of
processes.

The interprocess communication routines (including the link table data structures) of the kernel
require information only about the sender’s end of a link connection. The network protocol routines must
keep information about both ends of a network connection, but on a machine-to-machine basis (as opposed
to a process-to-process basis).

The one-way communication paths require the creation of reply links for each request to a server.
This extra performance cost is avoided by using the CALL kernel call, which is a composite of the three
operations, CREATELINK, SEND, and RECEIVE. The CALL kernel call reduces the number of context switches
to the kernel from three to one (the performance cost of kernel calls is described below in the Performance
section).



-- --

- 3 -

The CALL kernel call is commonly used by both client and server processes. Almost all short mes-
sages are part of a synchronous exchange using the CALL. Longer data transfers are handled by a special
function (see the description of the MOVEDATA kernel call below).

One-way communication paths also simplify the moving (migration) of a process. When a process
moves, the links that it holds require no updating, and the links held by other processes that point to the
moving process can be updated the first time they are referenced after the move (see [11]).

A link can be considered as a global address to a process (in the same sense as capabilities in [6] ).
The global address is implemented by providing each process with a unique identifier (see Figure 1). The
unique identifier only solves part of the addressing problem; it identifies the process but does not help to
locate it. A ‘‘last known machine’’ field is included in each address within a link. This machine address is
initially set to the process’s current location, and when a process is moved it is updated when the next mes-
sage is sent on the link. [11] discusses the effectiveness of the ‘‘last known machine’’ field for process
location.

Links are the only mechanism needed to locate a process. Communications are performed via links
and control functions on a process are also performed using links. The control functions are done using
links with the DELIVERTOKERNEL attribute. Messages sent on these links use the normal message delivery
mechanism, but on arrival at the destination machine, are passed to the kernel on that machine. This
insures that control messages are delivered to the correct kernel, and will follow a process through its
movements from machine to machine.

DEMOS/MP incorporates the idea of an intermachine address and intermachine communications at
the lowest level of the kernel. This allows the operating system, above the communications level, to ignore
machine boundaries when desired. Ignoring machine boundaries simplifies the implementation of func-
tions such as remote paging (described in the Virtual Memory section). The DEMOS/MP design is in con-
trast to the Accent [13] system, which provides only local naming in the kernel. Remote messages must be
interpreted by an agent (process) outside the kernel.

When a process creates a link (pointing to itself), it can specify an area of its memory that may be
read or written by the holder of the link. Data is transferred to or from a link data area by use of the MOVE-

DATA kernel call.

Link data areas provide a potential performance optimization for both local and remote large data
transfers. The local data transfers can be done quickly by mapping a part of a process’s address space into
that of another process. Given a paged virtual memory architecture and the alignment of the link data area
on a page boundary, a read transfer is done by mapping the memory page(s) into the reading process’s
address space. If either process then tries to modify the page, a copy is then made. This copy-on-write
idea was used in the TENEX [3] operating system. The page mapping is an implementation optimization
that has no effect on the DEMOS/MP semantics.

Remote transfers of large data blocks can also be done more efficiently using the link data areas. A
special protocol is used that does not need intermediate acknowledgments, transfers data in large blocks,
and has no restrictions on the order of delivery of the sections of the data area being transferred†. The V
kernel [5] uses data segments associated with their fixed length messages to achieve this same effect.

Message SEND and RECEIVE are used, both locally and remotely, for control functions (for example,
initiating a file read operation), and MOVEDATA is used for large data transfers (such as copying the data
being read from the file).

Processes

A DEMOS/MP process is encapsulated by its link table. A process’s abilities are determined by the
links that it holds. There are no distinctions between ‘‘system’’ or ‘‘privileged’’ processes and standard
user processes other than the links that each process possesses. A process’s privileges are determined only
by the links that it holds.

hhhhhhhhhhhhhhhhhh
† Each section of data area is labeled with its offset into the data area. The sections arrive and are put into the proper place.



-- --

- 4 -

DEMOS/MP also supports a form of lightweight process within the kernels (called kernel
processes ). These processes lie entirely within a kernel’s address space and have a minimum of state. The
kernel processes are used for the long term or asynchronous activities performed by the DEMOS/MP ker-
nels, such as large data transfers, device interfacing, and process migration.

Kernel processes remain dormant until a message is received by the kernel. There can be a kernel
process for each of the kernel’s message channels. Kernel processes have no state other than the static glo-
cal variables maintained in the kernel. Kernel processes have no private stack or local variables. A kernel
process determines its functions by the contents of the message and the state of selected variables. Kernel
processes can be thought of as transactions that are performed by the kernel in response to messages. A
more flexible structure would be to have real processes that reside in the kernel’s address space. This
would allow kernel processes to maintain local state and be dynamically created and destroyed.

NETWORK

Messages sent over links in the original DEMOS obey the following properties: messages sent from
one process to another arrive in the same order as they are sent, no messages are lost, no messages are
duplicated. We extended DEMOS to work across a network environment without changing the communi-
cation semantics. Therefore, we had to maintain the above properties while adding one more: links may
address processes on other machines. This section describes the changes to the original DEMOS and the
network protocols used to support the extension.

Extensions to DEMOS

Associated with each process, in single processor DEMOS, is a unique identifier. In DEMOS/MP,
this identifier is made unique, network wide, by appending to it the unique ID of the machine on which the
process is created. A process retains this identifier, even if it should migrate to other machines. Process
ID’s are not visible to processes but exist within the links that processes use to name other processes.
Since these links are manipulated only by the message kernel, the processes do not have to be changed to
support the new name space.

Network-wide process names are sufficient to identify the target of a message. However, because
processes can migrate across machines, these names may not describe the location of the target process.
Therefore, the ‘‘last known machine’’ field, was added to the process ID contained in a link. This field is
used as a hint when routing messages. If the target process is not on the same machine as the sender, the
hint field is used as the destination machine. The only time that the last known machine field changes is
when a process migrates. Processes do not migrate frequently or else thrashing could easily result. After a
process has migrated, the first message sent to it by a remote process causes an update sent back to the
sender informing it of the migrated process’s new location. This updates all the last known machine fields
on the sender’s machine. The result is a slight delay in one or two messages. A complete description of
the method for updating this field is described in [11] .

Network Protocol

We implemented a special-purpose, light-weight protocol based on the DEMOS model of interpro-
cess communication. This is similar to the approach taken by the Locus distributed operating system [14] .
The protocol derives much of its simplicity from the use of type abstractions in the Model programming
language [9] and abstractions take the place of what is normally thought of as layers in network protocols.
The interface between abstractions is the procedure call. Data passes between abstractions using the stan-
dard Model parameter passing. This method avoids the wrapping and unwrapping of data with layers of
protocol header.

The three abstractions that are used to interface network media to DEMOS/MP are physical device
abstractions, network FSM abstractions, and remote processor object abstractions. Figure 2 illustrates
these abstractions.

Each abstraction may have many instances. In this paper we call these instances objects. It should
be noted that an object is passive, that is, its actions are initiated by ‘calls’ made by an executing process to
the functions that the abstraction exports.



-- --

- 5 -

The device abstraction hides the idiosyncrasies of I/O devices from the rest of the system by provid-
ing a uniform interface to all devices. A device object exists for each device attached to a DEMOS/MP
processor. The functions exported by the device abstraction are write a block, read a block, return device
status, and return a list of pending interrupts.

Device abstractions currently exist for 8-bit parallel interfaces (Z8000 to Z8000), RS232 serial lines
(19200 baud to VAX host machines), and a simulated acknowledging ethernet.

The network finite-state machine (NFSM) abstraction adds network semantics to a physical device.
An NFSM exists for each device used for network communications. Each NFSM has associated with it a
circular list of remote processor objects. This list represents the processors that are accessible via that
interface.

The NFSM is really two finite-state machines, one for input and one for output. The input FSM
reads blocks from the devices. It assembles these blocks into network messages, and calls the appropriate
remote processor object to act on any uncorrupted network messages. The output FSM calls each remote
processor object on its list for a message to send and, if one exists, writes it to the device.

NFSM transitions are effected by calls from processes to a NFSM object (instance of an NFSM
abstraction). The kernel process continuously scans the devices and clock for interrupts and calls the
NFSM objects to notify them of these events. The remote processor objects call the NFSM objects to
notify them of network messages waiting to be sent.

The remote processor (RP) abstraction guarantees the invariance of DEMOS communication seman-
tics across the network. A remote processor object exists in each processor for all other processors in the
network. Whenever the message kernel encounters a message destined for a remote processor, it calls an
RP object to pass the message. The RP uses an end-to-end acknowledged window protocol to ensure the
ordered delivery of messages at the destination machine.

Reconfiguration and Failure

The only binding between network NFSM objects and RP objects consists of the list of RP objects
held by the NFSM’s. In the event of failure or network reconfiguration, these lists are updated by a kernel
network process. This rebinding is completely transparent to the conversations between RP objects
because the protocol between RP objects is end-to-end acknowledged. Therefore, given enough redun-
dancy in the connectivity of the network (i.e., as long as there is always at least one path between the mes-
sage source and destination), DEMOS/MP communications will survive any network failure without
human intervention. Node failures are described below.

Performance Enhancement

As a performance enhancement, we identified two types of messages, guaranteed and unguaranteed.
Unguaranteed messages are timely messages for which it would be pointless to resend or are messages
containing information that is inherently redundant (such as message traffic statistics or routing informa-
tion). These messages form a moderately large percentage of our normal message traffic. Such messages
bypass all the checks that guarantee the properties of DEMOS messages (except for corruption detection)
and are handed directly to the target processes. In general, these messages correspond to the messages that
are broadcast to all processors in an Ethernet-based system such as routing information and time of day.

VIRTUAL MEMORY

The first implementation of the DEMOS virtual memory used base and bounds registers and swap-
ping. This simple design was driven largely by the Cray 1 architecture. DEMOS/MP was modified to sup-
port more complex memory management architectures making use of segmentation, paging, and network
communications.

Machine Architecture

DEMOS/MP runs on a dual processor system using the Zilog Z8000 processor running at 2
megahertz. This system supports a virtual address space of 128 64K-byte segments. One processor runs
the DEMOS/MP kernel (and access the memory using 24-bit unmapped addresses) and the other processor



-- --

- 6 -

runs DEMOS/MP processes.

The dual processor system is used because the Z8000 CPU cannot recover from a page fault. There-
fore, when the user processor causes a fault, its activity is suspended until the kernel processor services the
fault and allows the user processor to continue execution. The kernel processor accesses memory directly
and is assumed to never have an address fault (this would indicate incorrect operation of the system). This
design was first described in [2] . A complete description of the handshake between the processors is
described in [4] .

The address translation maps (see Figure 3) for the user processor are all contained in special
hardware registers. These registers contain the segment maps for 8 processes and page maps for 16 seg-
ments. These maps can be set only by the kernel processor. The memory maps can be considered a scarce
resource (i.e, there are more processes executing than there are maps to support them) so the maps are allo-
cated according to an LRU policy. The translation hardware does not contain either reference or dirty bits,
thus restricting the page replacement algorithms that can be easily implemented.

The dual processor configuration has some performance advantages and disadvantages. The advan-
tages come from the ability of the kernel and user processors to compute independently. While the user
processor is running, the kernel processor can be performing I/O operations, and doing network communi-
cations. If the machines are using store-and-forward communications, the receipt of a through packet need
not disturb the user’s computation.

The disadvantage of the DEMOS/MP dual architecture is that, during a page fault, activity on the
user processor is suspended. This means that even if there are other runable processes, they cannot be run.
Our simulation studies of the DEMOS/MP system have shown (given current CPU, memory, and disk
speeds) that typical utilization of the user processor on a heavily loaded system is about 65-68%. A faster
CPU or slower paging devices (such as remote paging) might substantially reduce this value. Fortunately,
the microprocessor industry is now producing processors that can recover from page faults.

Page Fault Handling

The page fault handler within the DEMOS/MP kernel uses links and link data areas to transfer pages
to and from the disk driver. To service a page fault, the kernel creates a link whose data area points to the
page that is to be read from or written to the disk. The data area address is in the kernel’s address space
and therefore is a physical memory address. The size of the data area is the page size. The actual transfer
is done by requesting service from the disk driver, which would performs the MOVEDATA operation.

Since page transfers use the link data areas and the MOVEDATA function works across machine boun-
daries, remote demand paging is a simple addition. This permits DEMOS/MP to have multiple machines
sharing a paging device. The location of the paging area for a machine is established at the time that
machine is booted. Remote paging was implemented because not all the Z8000 machines had disks.

SYSTEM TASKS

DEMOS/MP uses system server processes for process management, memory management, file ser-
vices, clock services, and naming and connection services. The initial version of DEMOS/MP required
almost no changes to the system processes to be operational. The one significant change is that the low-
level process manager needs to communicate with multiple kernels.

Resource Naming and the Switchboard

DEMOS/MP provides a two level version of the flat name space provided by the original DEMOS.
In DEMOS, a single name server, the switchboard, aids in establishing connections between processes in
much the same way a telephone operator sets up a call between two people. Any process with a link to the
switchboard may either announce itself to the world or request a link to another process that has already
announced itself. To announce itself, a process sends a message to the switchboard containing a link to
itself and a name to assign to the link. When another process sends a request message to the switchboard
containing that name, the switchboard returns the link to the announced process. Since the switchboard is
one of the first processes started, it is simple to provide a link to the switchboard to each new process that
needs it.



-- --

- 7 -

There are two types of switchboard processes, global and local. There is only one global switch-
board. Its location is broadcast across the network as part of the network’s routing protocol. As new pro-
cessors are added to the network, they are told of the switchboard’s location. Local switchboards may exist
on each processor in the network. Their locations are not broadcast.

When a process sends a message using a switchboard link, the message kernel sends that message to
the local switchboard if one exists or to the global switchboard if there is no local one. Switchboard
requests from the local switchboards are sent to the global switchboard. This effectively implements a two
level naming hierarchy.

The hierarchical design solves two problems, scaling the name space and locating the switchboard.
The scaling problem is caused by the potentially larger number of names and resources in a multiple
machine environment. The locating problem is caused by not having a switchboard process on every
machine.

The hierarchy was especially useful in the implementation of Publishing (described below). In this
experiment it was necessary to create a separate instance of all system programs on the recording node so
that a recording node could act independently from the rest of the system. This was done by giving it its
own local switchboard that was an exact copy of the standard global switchboard.

Process and Memory Management

The DEMOS/MP memory manager performs the low-level memory policy and process management
decisions. The memory manager has a link to the process and memory kernel process in each DEMOS/MP
kernel. At this level, the existence of multiple machines is visible.

Each time a new machine is booted, it posts a link to the switchboard. The memory manager always
has an outstanding request to the switchboard for these links, and in this way becomes aware of machines
entering or re-entering the network. Multiple memory managers can exist by partitioning the machines,
with one memory manager to each partition. These partitions correspond to the allocation of switchboards.

High-level process management functions are performed in the process manager process. Each pro-
cess manager can talk with one or more memory manager processes. The number of memory managers to
which a process manager talks is a function of the number of machines over which it can control, the repli-
cation level for fault tolerance, and administrative divisions.

File System

The DEMOS/MP file system ran with little change from the DEMOS version. The four file system
processes can be distributed over many machines. For performance reasons, the buffer manager and disk
interface processes are typically on the same machine as the device that they control. Multiple disk
interface/buffer manager pairs can be used if there are multiple disks connected to different machines. It is
possible, though, to have all disks controlled from a single pair.

PERFORMANCE

While performance is not a major design issue for DEMOS/MP, it is important to report some meas-
ure of the system’s performance. These results help in evaluating both the hardware and the software.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Operation Cost
Null kernel call 1 ms
Create/destroy link 3 ms
Disk block read or write (512 bytes) 110 ms

Operation Local Cost Remote Cost
Send/receive 0-byte message 10 ms 63 ms
Send/receive 1024-byte message 25 ms 280 msiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

Table 1: Basic Performance Measures



-- --

- 8 -

Table 1 summarizes basic performance results from the Z8000 DEMOS/MP implementation. The
first result is the time for a null kernel call. This is the elapsed time from the user’s request to the kernel
(trap instruction) until the kernel returns control to the user process. This interval includes only the time to
enter and exit the kernel. Most of the 1 ms goes to the synchronization between the User and Kernel pro-
cessors. Part of this synchronization time is due to at least three machine interrupts: the kernel call trap
instruction, User-to-Kernel processor interrupt, and Kernel-to-User processor interrupt.

The second result in Table 1 is the cost of a pair of simple kernel calls: create and destroy link. This
result reflects the cost of the two calls to the kernel and the associated time to create and destroy the link.
The cost is dominated by the User-Kernel processor synchronization time.

The third result in Table 1 is the cost of reading or writing a 512-byte disk block. This is the time
needed for the kernel processor to access and transfer the data to or from the disk. The disk read/write time
is controlled by the speed of the parallel I/O interface (used both for disk I/O and network connections).
This interface has a maximum speed of 5K bytes/second (40K bits/second).

The last two results in Table 1 describe the communication performance of DEMOS/MP. These
results show the cost of send/receive pairs of kernel calls. Local times were measured by a process repeat-
edly sending a message to itself and then receiving it. The process was run alone on a machine and the
elapsed time was measured for many iterations. Remote times were measured by a process on one
machine sending a message to a process on a second machine and then having the message returned.
Again, these processes were run alone on their respective machines and the elapsed time was measured for
many iterations. The 10 ms for the local cost of sending a null message reflects the general non-network
overhead of transmitting a message. The cost of a remote message is dominated by the data transfer time
over the parallel interface.

There are several points that determine the DEMOS/MP performance. First, the Z8000 processors
run on a 2 megahertz clock, compared to processors today running at more than 10 megahertz. Second, the
Kernel-User processor synchronization is needed because a separate processor is required to handle page
faults. The interprocessor handshaking increases the time to enter and exit the kernel and increases the
time to process kernel calls and page faults. Third, the parallel interfaces operate at 40K bit/second, com-
pared to current 10 megabit/second ethernets. The speed of the parallel interfaces affects both the com-
munication and I/O performance. Last, no special effort was made to tune the DEMOS/MP kernel perfor-
mance. Our informal code inspections identified several areas where such optimizations as in-line pro-
cedure expansion might substantially improve performance.

OTHER AREAS

Publishing: Distributed Recovery

DEMOS/MP was used to test a new idea in process recovery, Publishing. Publishing [12] is a model
for crash recovery in a distributed computing environment. It provides a recovery mechanism that can be
completely transparent to the failed process and all processes interacting with it. Publishing is intended for
message-based systems, preferably those using a centralized communications medium such as a bus, ring,
or Ethernet.

A centralized recorder reliably stores all messages that are transmitted, as well as checkpoint and
recovery information. When it detects a failure, the recorder may restart affected processes from check-
points. The recorder subsequently resends to the process all messages that were sent to it since the time the
checkpoint was taken, while ignoring duplicate messages sent by it.

DEMOS/MP provided an excellent environment to test Publishing. First, because the state of
processes in DEMOS/MP is well defined, checkpointing and restarting of processes is a simple operation.
Second, unlike many other systems that support message passing, all communication between processes in
DEMOS/MP is message based. Even requests to the kernel (other than those necessary for sending and
receiving messages) are messages. Therefore, all inter-process communications can be ‘captured’ by the
recorder.

The prototype version implemented in DEMOS/MP demonstrates that an error recovery can be tran-
sparent to the user processes and can be centralized in the network.



-- --

- 9 -

Distributed Program Performance Tools

The DEMOS/MP operating system provides a test bed for a set of distributed program performance
tools. The message semantics of DEMOS/MP provides a natural environment for the construction of mul-
tiple process programs (which can be spread across several machines). Performance tools designed to
measure such things as parallelism, program structure, and communications levels are described in [7] and
[8] .

CONCLUSION

The success of the DEMOS/MP implementation is due to the simplicity of the organization of the
system. DEMOS/MP uses message passing as the basic structuring tool for both the operating system and
the users. Message passing is implemented at the lowest level of the system and therefore is available for
use by both the system and users.

Several features of the DEMOS/MP design prove noteworthy. The first feature is the link data area.
At first glance, these data areas appear to be an escape mechanism to allow processes to share memory.
These are better viewed as separating the two common forms of communications: short control messages
and bulk data transfers. Messages are used for short, control functions, and link data areas are used for
large data transfers. The data areas contribute to the ease in implementing process migration and remote
paging.

The second feature is the use of DELIVERTOKERNEL links. These links provide control of processes
across machine boundaries, while requiring a minimum of additional mechanism. In all cases, control mes-
sages for a process are directed to the correct machine by using the standard message routing.

The third feature is the structure of the intermachine protocols. Through the use of type abstractions
in a strongly typed language, layers of protocol were constructed with small performance penalty for
interactions between the abstractions (layers) of the protocol.

It is not difficult to design an operating system that will run in a distributed environment. The main
point is to avoid uncontrolled sharing of data between components of the operating system. In
DEMOS/MP, each component (kernel, system processes) of the operating system only maintains state that
is local to that component and uses links as the only means to reference state that is maintained by another
component. For example, when a process opens a file, it receives a link that represents the resource of the
open file. All of the state regarding the state of the open file is maintained in the file server process(es). If
a user process moves, the only requirement is that the link still be valid at the process’s new location; no
other changes are needed to local system state.

It is not difficult to distribute an operating system, but to make a reliable distributed system is
difficult. Even given a reliable network communication protocol, a system must still handle machine
crashes, network failures, and the resulting loss of system function. It is not difficult to place different
parts of the file service on different machines, but this placement increases the probability of losing part of
the file service. The design of a service that can survive failures is difficult. Our solution is to provide a
system-wide recovery mechanism − publishing − that all process can use. This solves the recovery prob-
lem, but does not help the system to continue (if possible) during the failure.

REFERENCES

1. F. Baskett, J. H. Howard and J. T. Montague, Task Communcations in DEMOS, Proc. of the Sixth
Symp. on Operating Sys. Principles, November 1977.

2. F. Baskett, Pascal and Virtual Memory in a Z8000 or MC68000 based Design Station, Proc. of
Spring COMPCON, 1980, 456-459.

3. D. G. Bobrow, J. D. Burchfiel, D. L. Murphy and R. S. Tomlinson, TENEX, a Paged Time Sharing
System for the PDP-10, Communications of the ACM 15, 3 (March 1972), 135-143.

4. F. H. Carter, The OSMOSIS Project: A Control System for the Dual Processor Architecture, M.S.
Report, University of California, Berkeley, December 1981.



-- --

- 10 -

5. D. R. Cheriton and W. Zwaenepoel, The Distributed V Kernel and its Performance for Diskless
Workstations, Proc. of the Ninth Symp. on Operating Sys. Principles, October 1983, 128-139.

6. R. S. Fabry, Capability-Based Addressing, Communications of the ACM 17, 7 (July 1974), 403-412.

7. B. P. Miller, Performance Characterization of Distributed Programs, Ph.D. Dissertation, Technical
Report UCB/Computer Science Dpt. 84/197, University of California, Berkeley, May 1984.

8. B. P. Miller, S. Sechrest and C. Macrander, A Distributed Program Monitor for Berkeley Unix,
Software - Practice & Experience 16, 2 (February 1986), 183-200.

9. J. B. Morris, A Manual for the Model Programming Language, Los Alamos Scientific Laboratory,
Los Alamos, New Mexico, February 1980.

10. M. L. Powell, The DEMOS File System, Proc. of the Sixth Symp. on Operating Sys. Principles,
November 1977, 33-42.

11. M. L. Powell and B. P. Miller, Process Migration in DEMOS/MP, Proc. of the Ninth Symp. on
Operating Sys. Principles, October 1983, 110-119.

12. M. L. Powell and D. L. Presotto, PUBLISHING: A Reliable Broadcast Communication Mechanism,
Proc. of the Ninth Symp. on Operating Sys. Principles, October 1983, 100-109.

13. R. F. Rashid and G. G. Robertson, Accent: A communication oriented network operating system
kernel, Proc. of the Eighth Symp. on Operating Sys. Principles, December 1981, 64-75.

14. B. Walker, G. Popek, R. English, C. Kline and G. Thiel, The LOCUS Distributed Operating System,
Proceedings of the 9th Symp. on Operating System Prin., Operating Systems Review 17, 5
(November 1983), 49-70.



-- --

- 11 -

process location
Changes with

Does not change
Set on process creation.

Local
Unique ID

Creating
Machine

Unique Process ID

Known
Machine

Last

Figure 1: Link Process Address



-- --

- 12 -

(FSM)

abstraction
device

abstraction
network

kernel

abstraction
processor

B
Process

A
Process

physical

remote

abstraction

remote
processor

Figure 2: DEMOS/MP Message Paths in the Network



-- --

- 13 -

ID
Process

128 entries
8 maps x

128 entries
16 maps x

9

Page Frame Offset

PHYSICAL ADDRESS

VIRTUAL ADDRESS

4

Page
Map

7 7 9
Seg Page OffsetWord

Status

3

Segment

Map

Figure 3: Address Translation Maps


