
DTHREADS: Efficient Deterministic Multithreading

Tongping Liu Charlie Curtsinger
Emery D. Berger

Dept. of Computer Science
University of Massachusetts, Amherst

Amherst, MA 01003
{tonyliu,charlie,emery}@cs.umass.edu

Abstract

Multithreaded programming is notoriously difficult to get
right. A key problem is non-determinism, which com-
plicates debugging, testing, and reproducing errors. One
way to simplify multithreaded programming is to enforce
deterministic execution, but current deterministic systems
for C/C++ are incomplete or impractical. These systems
require program modification, do not ensure determinism
in the presence of data races, do not work with general-
purpose multithreaded programs, or run up to 8× slower
than pthreads.

This paper presents DTHREADS, an efficient determin-
istic multithreading system for unmodified C/C++ appli-
cations that replaces the pthreads library. DTHREADS
enforces determinism in the face of data races and elim-
inates deadlocks. DTHREADS works by exploding mul-
tithreaded applications into multiple processes, with pri-
vate, copy-on-write mappings to shared memory. It uses
standard virtual memory protection to track writes, and
deterministically orders updates by each thread. By sep-
arating updates from different threads, DTHREADS has
the additional benefit of eliminating false sharing. Exper-
imental results show that DTHREADS substantially out-
performs a state-of-the-art deterministic runtime system,
and for a majority of the benchmarks evaluated here,
matches and occasionally exceeds the performance of
pthreads.

1 Introduction

The advent of multicore architectures has increased the
demand for multithreaded programs, but writing them re-
mains painful. It is notoriously far more challenging to
write concurrent programs than sequential ones because
of the wide range of concurrency errors, including dead-
locks and race conditions [16, 20, 21]. Because thread
interleavings are non-deterministic, different runs of the
same multithreaded program can unexpectedly produce
different results. These “Heisenbugs” greatly complicate
debugging, and eliminating them requires extensive test-
ing to account for possible thread interleavings [2, 11].

Instead of testing, one promising alternative approach
is to attack the problem of concurrency bugs by elimi-
nating its source: non-determinism. A fully deterministic
multithreaded system would prevent Heisenbugs by en-
suring that executions of the same program with the same
inputs always yield the same results, even in the face of
race conditions in the code. Such a system would not
only dramatically simplify debugging of concurrent pro-
grams [13] and reduce testing overhead, but would also
enable a number of other applications. For example, a de-
terministic multithreaded system would greatly simplify
record and replay for multithreaded programs by elimi-
nating the need to track memory operations [14, 19], and
it would enable the execution of multiple replicas of mul-
tithreaded applications for fault tolerance [4, 7, 10, 23].

Several recent software-only proposals aim at provid-
ing deterministic multithreading for C/C++ programs, but
these suffer from a variety of disadvantages. Kendo en-

1

sures determinism of synchronization operations with low
overhead, but does not guarantee determinism in the pres-
ence of data races [22]. Grace prevents all concurrency
errors but is limited to fork-join programs. Although it
can be efficient, it often requires code modifications to
avoid large runtime overheads [6]. CoreDet, a compiler
and runtime system, enforces deterministic execution for
arbitrary multithreaded C/C++ programs [3]. However,
it exhibits prohibitively high overhead, running up to 8×
slower than pthreads (see Section 6) and generates
thread interleavings at arbitrary points in the code, com-
plicating program debugging and testing.

Contributions
This paper presents DTHREADS, a runtime system with
the following features:

• DTHREADS guarantees deterministic execution of
multithreaded programs even in the presence of data
races. Given the same sequence of inputs or OS
events, a program using DTHREADS always pro-
duces the same output.

• DTHREADS is straightforward to deploy: it di-
rectly replaces the pthreads library, requiring no
changes to existing C/C++ code.

• DTHREADS is robust to changes in inputs, archi-
tectures, and code, enabling printf debugging of
concurrent programs.

• DTHREADS not only prevents race conditions but
also eliminates mutex-based deadlocks.

• DTHREADS eliminates cache-line false sharing, a
notorious performance problem for multithreaded
applications.

• DTHREADS is efficient. It nearly matches or even
exceed the performance of pthreads for the ma-
jority of the benchmarks examined here.

DTHREADS works by exploding multithreaded appli-
cations into multiple processes, with private, copy-on-
write mappings to shared memory. It uses standard vir-
tual memory protection to track writes, and deterministi-
cally orders updates by each thread. By separating up-

dates from different threads, DTHREADS has the addi-
tional benefit of eliminating false sharing.

Our key insight is counterintuitive: the runtime costs
and benefits of DTHREADS’ mechanisms (processes, pro-
tection faults, copying and diffing, and false sharing elim-
ination) balance out, for the majority of applications
we evaluate here, the costs and benefits of pthreads
(threads, no protection faults, and false sharing).

By committing changes only when needed,
DTHREADS amortizes most of its costs. For exam-
ple, because it only uses virtual memory protection to
track the first write to a page, DTHREADS amortizes the
cost of a fault over the lifetime of each thread, during
which protection is disabled.

For the majority of applications examined here, in-
cluding most of the PARSEC benchmark suite (designed
to be representative of next-generation shared-memory
programs for chip-multiprocessors), DTHREADS provides
deterministic execution while performing as well as or
even better than pthreads. DTHREADS is unable to
maintain high performance for some applications whose
characteristics prevent it from amortizing its costs, but it
still outperforms the previous state-of-the-art determinis-
tic system by between 20% and 11.2×.

DTHREADS marks a significant advance over the state
of the art in deployability and performance, and provides
promising evidence that fully deterministic multithreaded
programming may be practical.

2 Related Work
The area of deterministic multithreading has seen consid-
erable recent activity. Due to space limitations, we focus
here on software-only, non language-based approaches.

Grace prevents a wide range of concurrency errors, in-
cluding deadlocks, race conditions, and atomicity viola-
tions, by imposing sequential semantics on speculatively-
executed threads [6]. DTHREADS borrows Grace’s
threads-as-processes paradigm to provide memory isola-
tion (see Section 4), but differs from Grace in terms of
semantics, generality, and performance.

Because it provides the effect of a serial execution of all
threads, one by one, Grace rules out all interthread com-
munication, including updates to shared memory, condi-
tion variables, and barriers. Grace supports only a re-

2

stricted class of multithreaded programs: fork-join pro-
grams (limited to thread create and join). Unlike Grace,
DTHREADS can run most general-purpose multithreaded
programs while guaranteeing deterministic execution.

DTHREADS enables far higher performance than Grace
for several reasons: (1) it deterministically resolves con-
flicts, while Grace must rollback and re-execute threads
that update any shared pages (requiring code modi-
fications to avoid serialization); (2) DTHREADS pre-
vents false sharing while Grace exacerbates it; and (3)
DTHREADS imposes no overhead on reads.

Determinator is a microkernel-based operating system
that enforces system-wide determinism [1]. Processes on
Determinator run in isolation, and are able to communi-
cate only at explicit synchronization points. Currently,
Determinator is a proof-of-concept system, and cannot be
used for general multithreaded applications without modi-
fications (e.g., it does not currently support condition vari-
ables). DTHREADS also isolates threads by running them
in separate processes, but supports communication. Also
unlike Determinator, DTHREADS is a drop-in replacement
for pthreads that needs no special operating system
support.

CoreDet is a compiler and runtime system that repre-
sents the current state-of-the-art in deterministic, general-
purpose software multithreading [3]. It uses alternating
parallel and serial phases, and a token-based global or-
dering that we adapt for DTHREADS. Like DTHREADS,
CoreDet guarantees deterministic execution in the pres-
ence of races, but with different mechanisms that impose
a far higher cost: on average 2× slower and as much as
8× slower than DTHREADS (see Section 6). The Core-
Det compiler instruments all reads and writes to memory
that it cannot prove by static analysis to be thread-local.
CoreDet also serializes all external library calls, except
for specific variants provided by the CoreDet runtime.

CoreDet and DTHREADS also differ semantically.
DTHREADS only allows interleavings at synchronization
points, but CoreDet relies on the count of instructions re-
tired to form quanta. This approach makes it impossi-
ble to understand a program’s behavior by examining the
source code—the only way to know what a program does
in CoreDet (or dOS and Kendo, which rely on the same
mechanism) is to execute it on the target machine. This
instruction-based commit schedule is also brittle: even
small changes to the input or program can cause a pro-

Shared
State

Thread 1

Thread 2

Initial State Parallel Serial

Twin

Diff

Final State

Page

Read-Only
Page

Shared
Mapping

Copy

Time

Figure 1: An overview of DTHREADS execution.

gram to behave differently, effectively ruling out printf
debugging. DTHREADS uses synchronization operations
as boundaries for transactions, so changing the code or in-
put does not affect the schedule as long as the sequence of
synchronization operations remains unchanged.

dOS [4] is an extension to CoreDet that uses the
same deterministic scheduling framework. dOS pro-
vides deterministic process groups (DPGs), which elim-
inate all internal non-determinism and control external
non-determinism by recording and replaying interactions
across DPG boundaries. dOS is orthogonal and comple-
mentary to DTHREADS, and in principle, the two could be
combined.

Finally, some recent proposals provide limited deter-
minism. Kendo guarantees a deterministic order of lock
acquisitions on commodity hardware (“weak determin-
ism”); Kendo only enforces full (“strong”) determinism
for race-free programs [22]. TERN [15] uses code in-
strumentation to memoize safe thread schedules for ap-
plications, and uses these memoized schedules for future
runs on the same input. Unlike these systems, DTHREADS
guarantees full determinism even in the presence of races.

3 DTHREADS Overview
We begin our discussion of how DTHREADS works with
an example execution of a simple, racy multithreaded pro-
gram, and explain at a high level how DTHREADS en-
forces deterministic execution.

Figure 2 shows a simple multithreaded program that,
because of data races, non-deterministically produces the
outputs “1,0,” “0,1” and “1,1.” With pthreads, the or-
der in which these modifications occur can change from
run to run, resulting in non-deterministic output.

3

With DTHREADS, however, this program always pro-
duces the same output, (“1,1”), which corresponds to ex-
actly one possible thread interleaving. DTHREADS en-
sures determinism using the following key approaches, il-
lustrated in Figure 1:

Isolated memory access: In DTHREADS, threads are
implemented using separate processes with private and
shared views of memory, an idea introduced by Grace [6].
Because processes have separate address spaces, they are
a convenient mechanism to isolate memory accesses be-
tween threads. DTHREADS uses this isolation control the
visibility of updates to shared memory, so each “thread”
operates independently until it reaches a synchronization
point (see below). Section 4.1 discusses the implementa-
tion of this mechanism in depth.

Deterministic memory commit: Because multi-
threaded programs frequently use updates to shared mem-
ory to communicate, DTHREADS must provide a way to
expose one thread’s updates to all other threads. To ensure
deterministic execution, these updates must be applied at
deterministic times, and in a deterministic order.

DTHREADS updates shared state in sequence at syn-
chronization points. These include thread create and exit;
mutex lock and unlock; condition variable wait and sig-
nal; and barrier waits. Between synchronization points,
all code effectively executes within an atomic transaction.
This combination of memory isolation between synchro-
nization points with a deterministic commit protocol guar-
antees deterministic execution even in the presence of data
races.

Deterministic Synchronization: DTHREADS supports
the full array of pthreads synchronization primitives.
Because current operating systems make no guarantees
about the order in which threads will acquire locks,
wake from condition variables, or pass through barriers,
DTHREADS re-implements these primitives to guarantee
a deterministic ordering. Details on the DTHREADS im-
plementations of these primitives are given in Section 4.3.

Twinning and diffing: Before committing updates,
DTHREADS first compares each modified page to a “twin”
(copy) of the original shared page, and then writes only
the modified bytes (diffs) into shared state (see Section 5
for optimizations that avoid copying and diffing). This
algorithm is adapted from the distributed shared mem-
ory systems TreadMarks and Munin [12, 17]. The or-
der in which threads write their updates to shared state

is enforced by a single global token passed from thread to
thread; see Section 4.2 for full details.

Fixing the Data Race Example: Returning to the
example program in Figure 2, we can now see how
DTHREADS’ memory isolation and a deterministic com-
mit order ensure deterministic output. DTHREADS effec-
tively isolates each thread from each other until it com-
pletes, and then orders updates by thread creation time
using a deterministic last-writer-wins protocol.

At the start of execution, thread 1 and thread 2 have the
same view of shared state, with a = 0 and b = 0. Because
changes by one thread to the value of a or b will not be
made visible to the other until thread exit, both threads’
checks on line 2 will be true. Thread 1 sets the value of a
to 1, and thread 2 sets the value of b to 1. These threads
then commit their updates to shared state and exit, with
thread 1 always committing before thread 2. The main
thread then has an updated view of shared memory, and
prints “1, 1” on every execution.

This determinism not only enables record-and-replay
and replicated execution, but also effectively converts
Heisenbugs into “Bohr” bugs, making them reproducible.
In addition, DTHREADS optionally reports any conflicting
updates due to racy writes, further simplifying debugging.

4 DTHREADS Architecture

This section describes in detail DTHREADS’ key
algorithms—memory isolation, deterministic (diff-based)
memory commit, deterministic synchronization, and de-
terministic memory allocation—as well as other imple-
mentation details.

4.1 Isolated Memory Access

To achieve deterministic memory access, DTHREADS iso-
lates memory accesses among different threads between
commit points, and commits the updates of each thread
deterministically.

DTHREADS achieves cross-thread memory isolation by
replacing threads by processes. In a multithreaded pro-
gram running with pthreads, threads share all memory
except for the stack. Changes to memory immediately
become visible to all other threads. Threads share the

4

int a = b = 0;
main() {
pthread_create(&p1, NULL, t1, NULL);
pthread_create(&p2, NULL, t2, NULL);
pthread_join(&p1, NULL);
pthread_join(&p2, NULL);
printf ("%d,%d\n", a, b);

}

void * t1 (void *) {
if (b == 0) {

a = 1;
}
return NULL;

}

void * t2 (void *) {
if (a == 0) {

b = 1;
}
return NULL;

}

Figure 2: A simple multithreaded program with data races on a and b. With pthreads, the output is non-
deterministic, but DTHREADS guarantees the same output on every execution.

same file descriptors, sockets, device handles, and win-
dows. By contrast, because DTHREADS runs threads in
separate processes, it must manage these shared resources
explicitly.

4.1.1 Thread Creation

DTHREADS replaces the pthread_create() func-
tion with the clone system call provided by Linux.
DTHREADS uses the CLONE_FILES flag to create pro-
cesses that have disjoint address spaces but share the same
file descriptor table. DTHREADS shims the getpid()
function to return a single, globally-shared identifier.

4.1.2 Deterministic Thread Index

POSIX does not guarantee deterministic process or thread
identifiers; that is, the value of a process id or thread
id is not deterministic. To avoid exposing this non-
determinism to threads running as processes, DTHREADS
shims pthread_self() to return an internal thread in-
dex. The internal thread index is managed using a sin-
gle global variable that is incremented on thread creation.
This unique thread index is also used to manage per-
thread heaps and as an offset into an array of thread en-
tries.

4.1.3 Shared Memory

To create the illusion of different threads sharing the same
address space, DTHREADS uses memory mapped files to
share memory across processes (globals and the heap, but
not the stack; see Section 7).

DTHREADS creates two different mappings for both
the heap and the globals. One is a shared mapping,

Serial Phase Parallel Phase

Thread 1

Thread 2

Thread 3

token
passing

trans start

commit

sync

time

Figure 3: An overview of DTHREADS phases. Program
execution with DTHREADS alternates between parallel
and serial phases.

which is used to hold shared state. The other is a private,
copy-on-write (COW) per-process mapping that each pro-
cess works on directly. Private mappings are linked to
the shared mapping through a single fixed-size memory-
mapped file. Reads initially go directly to the shared map-
ping, but after the first write operation, both reads and
writes are entirely private.

Memory allocations from the shared heap memory use
a scalable per-thread heap organization loosely based on
Hoard [5] and built using HeapLayers [8]. DTHREADS
divides the heap into a fixed number of sub-heaps (cur-
rently 16). Each thread uses a hash of its thread index to
find the appropriate sub-heap.

4.2 Deterministic Memory Commit

Figure 3 illustrates the progression of parallel and serial
phases. To guarantee determinism, DTHREADS isolates
memory accesses in the parallel phase. Those memory
accesses in the parallel phase work on their own private

5

copies of memory; that is, updates are not shared while
in the parallel phase. When a synchronization point is
reached, updates are applied (and made visible) in a deter-
ministic order. This section describes the mechanism used
to alternate between parallel and serial execution phases
and guarantee deterministic commit order, and the details
of commits to shared memory.

4.2.1 Fence and Token

The boundary between the parallel and serial phase is the
internal fence. We implement this fence with a custom
barrier, since the standard pthreads barrier does not
support a dynamic thread count (see Section 4.3).

Threads wait at the internal fence until all threads from
the previous fence have departed. Those waiting threads
must block until the departure phase. If the thread is the
last to enter the fence, it initiates the departure phase and
wakes the waiting threads. As threads leave the fence,
they decrement the waiting thread count. The last thread
to leave sets the fence to the arrival phase and wakes any
waiting threads.

To reduce overhead, whenever the number of run-
ning threads is smaller than the number of cores, wait-
ing threads block by spinning rather than by invoking
relatively expensive cross-process pthreads mutexes.
When the number of threads exceeds the number of cores,
DTHREADS falls back to using pthreads mutexes.

A key mechanism used by DTHREADS is its global to-
ken. To guarantee determinism, each thread must wait for
the token before it can communicate with other threads.
The token is a shared pointer that points to the next
runnable thread entry. Since the token is unique in the
entire system, waiting for the token guarantees a global
order for all operations in the serial phase.

DTHREADS uses two internal subroutines to manage
tokens. waitToken first waits at the internal fence and
then waits to acquire the global token before entering se-
rial mode. putToken passes the token to the next wait-
ing thread.

To achieve determinism (see Figure 3), those threads
leaving the parallel phase must wait at the internal fence
before they can enter into the serial phase (by calling
waitToken). Note that it is crucial that threads wait
at the fence even for a thread which is guaranteed to ob-
tain the token next, since one thread’s commits can affect

another threads’ behavior if there is no fence.

4.2.2 Commit Protocol

Figure 1 shows the steps taken by DTHREADS to capture
modifications to shared state and expose them in a de-
terministic order. At the beginning of the parallel phase,
threads have a read-only mapping for all shared pages. If
a thread writes to a shared page during the parallel phase,
this write is trapped and re-issued on a private copy of the
shared page. Reads go directly to shared memory and are
not trapped. In the serial phase, threads commit their up-
dates one at a time. The first thread to commit to a page
can directly copy its private copy to the shared state, but
subsequent commits must copy only the modified bytes.
DTHREADS computes diffs from a twin page, an unmodi-
fied copy of the shared page created at the beginning of the
serial phase. At the end of the serial phase, private copies
are released and these addresses are restored to read-only
mappings of the shared memory.

At the start of every transaction (that is, right after
a synchronization point), DTHREADS starts by write-
protecting all previously-written pages. The old working
copies of these pages are then discarded, and mappings
are then updated to reference the shared state.

Just before every synchronization point, DTHREADS
first waits for the global token (see below), and then com-
mits all changes from the current transaction to the shared
pages in order. DTHREADS maintains a “twin” page (a
snapshot of the original) for every modified page with
more than one writer. If the version number of this pri-
vate copy matches the shared page, then the current thread
must be the first thread to commit. In this case, the twin
page can be copied directly to the shared state. If the
version numbers do not match, then another thread has
already committed changes to the page and a diff-based
commit must be used.

Once changes have been committed, the number of
writers to the page is decremented, and if there are no
writers left to commit, the twin page is freed. Finally, the
shared page’s version number is incremented.

4.3 Deterministic Synchronization
DTHREADS enforces determinism for the full range of
synchronizations in the pthreads API, including locks,

6

conditional variables, barriers and various flavors of
thread exit.

4.3.1 Locks

DTHREADS uses a single global token to guarantee atom-
icity in the serial phase. When running with DTHREADS,
all of a program’s locks are turned into a single global
lock to impose a total order on updates to shared state. As
a side effect, this single global lock also eliminates any
possibility of deadlock.

Lock acquisition proceeds as follows. First,
DTHREADS checks to see if the current thread is al-
ready holding any locks. If not, the thread first waits
for the token, commits changes to shared state by calling
atomicEnd, and begins a new atomic section. Finally,
the thread increments the number of locks it is currently
holding. The lock count ensures that a thread does not
pass the token on until it has released all of the locks it
acquired in the serial phase.
pthread_mutex_unlock’s implementation is

similar. First, the thread decrements its lock count. If
no more locks are held, any local modifications are
committed to shared state, the token is passed, and a new
atomic section is started. Finally, the thread waits on the
internal fence until the start of the next round’s parallel
phase. If other locks are still held, the lock count is just
decreased and the running thread continues execution
with the global token.

4.3.2 Condition Variables

Guaranteeing determinism for condition variables is more
complex than for mutexes because the operating system
does not guarantee processes wake up in the order they
wait for a condition variable.

When a thread calls pthread_cond_wait, it first
acquires the token and commits local modifications. It
then removes itself from the token queue, because threads
waiting on a condition variable do not participate in
the serial phase until they are awakened. The thread
decrements the live thread count (used for the fence be-
tween parallel and serial phases), adds itself to the con-
dition variable’s queue, and passes the token. While
threads are waiting on DTHREADS condition variables,
they are suspended on a pthreads condition variable.

Once a thread is awakened (signalled), it busy-waits on
the token and eventually begins the next transaction.
Threads must acquire the token before proceeding be-
cause pthread_cond_wait is called within a mutex’s
critical section.

In the DTHREADS implementation of
pthread_cond_signal, the calling thread first
waits for the token, and then commits any local mod-
ifications. If no threads are waiting on the condition
variable, this function returns immediately. Otherwise,
the first thread in the condition variable queue is moved
to the head of the token queue and the live thread count
is incremented. This thread is then marked as ready and
woken up from the real condition variable, and the calling
thread begins another transaction.

To impose an order on signal wakeup, DTHREADS
signals actually call pthread_cond_broadcast to
wake all waiting threads, but then marks only the logi-
cally next one as ready. The threads not marked as ready
will wait on the condition variable again.

4.3.3 Barriers

As with condition variables, DTHREADS must ensure that
threads waiting on a barrier do not disrupt token passing
among running threads. DTHREADS removes threads en-
tering into the barrier from the token queue and places
them on the corresponding barrier queue.

In pthread_barrier_wait, the calling thread
first waits for the token to commit any local modifica-
tions. If the current thread is the last to enter the bar-
rier, then DTHREADS moves the entire list of threads on
the barrier queue to the token queue, increases the fence’s
thread count, and passes the token to the first thread in the
barrier queue. Otherwise, DTHREADS removes the cur-
rent thread from the token queue, places it on the barrier
queue, and releases token. Finally, the thread waits on the
actual barrier.

4.3.4 Thread Creation and Exit

To guarantee determinism, thread creation and exit are
performed in the serial phase. Newly-created threads are
immediately added to the token queue. Creating a thread
does not immediately release the token; this approach
allows a single thread to quickly create multiple child

7

threads without having to wait for a new serial phase for
each creation.

When creating a thread, the caller first waits for the to-
ken. It then creates a new process with shared file descrip-
tors but a distinct address space using the clone system
call. The newly created child obtains the global thread
index , places itself in the token queue, and notifies the
parent that child has registered itself in the active list. The
child thread then waits for the parent to reach a synchro-
nization point before proceeding.

Similarly, DTHREADS’ pthread_exit first waits
for the token and then commits any local modifications
to memory. It then removes itself from the token queue
and decreases the number of threads required to proceed
to the next phase. Finally, the thread passes its token to
the next thread in the token queue and exits.

4.3.5 Thread Cancellation

DTHREADS implements thread cancellation in the serial
phase. pthread_cancel can only be called while
holding the token. If the thread being cancelled is wait-
ing on a condition variable or barrier, it is removed
from the queue. Finally, to cancel the corresponding
“thread”, DTHREADS kills the target process with a call
to kill(tid, SIGKILL).

4.4 Deterministic Memory Allocation

Programs can rely on the addresses of objects returned
by the memory allocator intentionally (for example, by
hashing objects based on their addresses), or accidentally.
A program with a memory error like a buffer overflow will
yield different results for different memory layouts.

This reliance on memory addresses can undermine
other efforts to provide determinism. For example, Core-
Det is unable to fully enforce determinism because it re-
lies on the Hoard scalable memory allocator [5]. Hoard
was not designed to provide determinism and several
of its mechanisms, thread id based hashing and non-
deterministic assignment of memory to threads, lead to
non-deterministic execution in CoreDet for the canneal
PARSEC benchmark.

To preserve determinism in the face of intentional or
inadvertent reliance on memory addresses, we designed

DTHREADS memory allocator to be fully determinis-
tic. DTHREADS assigns subheaps to each thread based
on its thread index (deterministically assigned; see Sec-
tion 4.1.2). In addition to guaranteeing the same mapping
of threads to threads on repeated executions, DTHREADS
allocates superblocks (large chunks of memory) deter-
ministically by acquiring a lock (and the global token)
on each superblock allocation. Thus, threads always use
the same subheaps, and these subheaps always contain
the same superblocks on each execution. The remainder
of the memory allocator is entirely deterministic. The
superblocks themselves are allocated via mmap: while
DTHREADS could use a fixed address mapping for the
heap, we currently simply disable ASLR to provide de-
terministic mmap calls.

4.5 OS Support
DTHREADS provides shims for a number of system calls
both for correctness and determinism (although it does not
enforce deterministic arrival of I/O events; see Section 7).

System calls that write to or read from buffers on the
heap (such as read and write) will fail if the buffers
contain protected pages. DTHREADS intercepts these
calls and touches each page passed in as an argument be-
fore issuing the real system call. DTHREADS conserva-
tively marks all of these pages as modified so that any
updates made by the system will be committed properly.

DTHREADS also intercepts other system calls that af-
fect program execution. For example, when a thread calls
sigwait, DTHREADS behaves much like it does for
condition variables. It removes the calling thread from
the token queue before issuing the system call, and after
being awakened, the thread must acquire the token and
re-insert itself into the token queue before proceeding.

5 Optimizations
DTHREADS employs a number of optimizations that im-
prove its performance.

Lazy commit: DTHREADS reduces copying overhead
and the time spent in the serial phase by lazily commit-
ting pages. When only one thread has ever modified a
page, DTHREADS considers that thread to be the page’s
owner. An owned page is committed to shared state only

8

when another thread attempts to read or write this page,
or after the owning thread modifies it. DTHREADS tracks
reads with page protection and signals the owning thread
to commit pages on demand. To reduce the number of
read faults, pages holding global variables (which we ex-
pect to be shared) and any pages in the heap that have had
multiple writers are all considered unowned and are not
read-protected.

Lazy twin creation and diff elimination: To fur-
ther reduce copying and memory overhead, twin pages
are only created when a page has multiple writers during
the same transaction. In the commit phase, a single writer
can directly copy its working copy to shared state without
performing a diff. DTHREADS does this by comparing
the local version number to the global page version num-
ber for each dirtied page. At commit time, DTHREADS
directly copies its working copy for each page whenever
its local version number equals its global version number.
This optimization reduces overhead in the common case
where just one thread is the exclusive writer of a page.

Single-threaded execution: Whenever only one
thread is running, DTHREADS stops using memory
protection and treats certain synchronization operations
(locks and barriers) as no-ops. In addition, when all other
threads are waiting on conditional variables, DTHREADS
does not commit local changes to the shared mapping or
discard private dirty pages. Updates are only committed
when the thread issues a pthread_cond_signal or
pthread_cond_broadcast call, which wakes up at
least one thread and thus requires a commit of all updates.

Parallelization: DTHREADS attempts to expose as
much parallelism as possible in the runtime system itself.
One optimization takes place at the start of trasactions,
where DTHREADS performs a variety of cleanup tasks.
These include releasing private page frames, and reset-
ting pages to read-only mode by calling the madvise
and mprotect system calls. If all this cleanup work is
done simultaneously for all threads in the beginning of
parallel phase (Figure 3), this can hurt performance for
some benchmarks.

Since these operations do not affect other the behav-
ior of other threads, most of this work can be parallelized
with other threads’ commit operations without holding the
global token. With this optimization, the token is passed
to the next thread as soon as possible, saving time in the
serial phase. Before passing the token, any local copies

of pages that have been modified by other threads must be
discarded, and the shared read-only mapping is restored.
This ensures all threads have a complete image of this
page which later transactions may refer to. In the actual
implementation, this cleanup occurs at the end of each
transaction.

6 Evaluation
We perform our evaluation on an Intel Core 2 dual-
processor CPU system equipped with 16GB of RAM.
Each processor is a 4-core 64-bit Xeon running on at
2.33GHZ with a 4MB L2 cache. The operating system
is an unmodified CentOS 5.5, running with Linux kernel
version 2.6.18-194.17.1.el5.

6.1 Methodology
We evaluate the performance and scalability of
DTHREADS versus CoreDet and pthreads across the
PARSEC [9] and Phoenix [24] benchmark suites. We do
not include results for bodytrack, fluidanimate,
x.264, facesim, vips, and raytrace benchmarks
from PARSEC, since they do not currently work with
DTHREADS (note that many of these also do not work for
CoreDet).

In order to compare performance directly against Core-
Det, which relies on the LLVM infrastructure [18], all
benchmarks are compiled with the LLVM compiler at the
“-O5” optimization level [18]. Since DTHREADS does not
currently support 64-bit binaries, all benchmarks are com-
piled for 32 bit environments (using the “-m32” compiler
flag). Each benchmark is executed ten times on a quies-
cent machine. To reduce the effect of outliers, the low-
est and highest execution times for each benchmark are
discarded, so each result represents the average of the re-
maining eight runs.

Tuning CoreDet: The performance of CoreDet [3]
is extremely sensitive to three parameters: the granularity
for the ownership table (in bytes), the quantum size (in
number of instructions retired), and the choice between
full serial mode and reduced serial mode. We performed
an extensive search of the parameter space to find the
one that yielded the lowest average normalized runtimes
(six possible granularities and eight possible quanta, for

9

!"

#"

$"

%"

&"

'!"

!
"
#
$
%
&
'#
(
)%

*
+,
-&
.
'

/(
'0
/1
)&
*
.
2'

34&)1&*.'425'0/1)&*.2'

()*+,+-" .-/*+0.1" 2-/*+0.1"

Figure 4: Normalized execution time with respect to pthreads (lower is better). For 9 of the 14 benchmarks,
DTHREADS runs nearly as fast or faster than pthreads, while providing deterministic behavior.

each benchmark), and found that the best settings on our
system were 64-byte granularity and a quantum size of
100,000 instructions, in full serial mode.

For all scalability experiments, we logically dis-
able CPUs using Linux’s CPU hotplug mechanism,
which allows us to disable or enable individual CPUs
by writing “0” (or “1”) to a special pseudo-file
(/sys/devices/system/cpu/cpuN/online).

6.2 Determinism
We first experimentally verify DTHREADS’ ability to en-
sure determinism by executing the racey determinism
tester [22]. This stress test is extremely sensitive to
memory-level non-determinism. DTHREADS reports the
same results for 2,000 runs.

6.3 Performance
We next compare the performance of DTHREADS to Core-
Det and pthreads. Figure 4 presents these results
graphically (normalized to pthreads).

DTHREADS outperforms CoreDet on 12 out of 14
benchmarks (between 20% and 11.2× faster); for 9
benchmarks, DTHREADS matches or runs faster than
pthreads. Because DTHREADS isolates updates in sep-
arate processes, it can improve performance by eliminat-

ing false sharing—since concurrent “threads” actually ex-
ecute in different address spaces, there is no coherence
traffic between synchronization points.

DTHREADS eliminates catastrophic false sharing
present in the linear_regression benchmark, run-
ning 7× faster than pthreads and 11× faster than Core-
Det. The string_match benchmark exhibits a similar,
if less dramatic, false sharing problem: with DTHREADS,
it run almost 60% faster than pthreads and 9× faster
than CoreDet. Two benchmarks also run faster with
DTHREADS than with pthreads (histogram, 2×
and swaptions, 6%; respectively 2.7× and 9× faster
than with CoreDet). We believe but have not yet verified
that the reason is false sharing.

For some benchmarks, DTHREADS incurs modest over-
head. For example, unlike most benchmarks exam-
ined here, which create long-lived threads, the kmeans
benchmark creates and destroys over 1,000 threads in
the course of its execution. While Linux processes are
relatively lightweight, creating and tearing down a pro-
cess is still more expensive than the same operations for
threads, accounting for a 14% performance degradation of
DTHREADS over pthreads (though it runs 4.6× faster
than CoreDet).

DTHREADS runs substantially slower than pthreads
for 4 of the 14 benchmarks examined here. The ferret
benchmark relies on an external library to analyze im-

10

age files during the first stage in its pipelined execution
model; this library makes intensive (and in the case of
DTHREADS, unnecessary) use of locks. Lock acquisi-
tion and release in DTHREADS imposes higher overhead
than ordinary pthreads mutex operations. More im-
portantly in this case, the intensive use of locks in one
stage forces DTHREADS to effectively serialize the other
stages in the pipeline, which must repeatedly wait on
these locks to enforce a deterministic lock acquisition or-
der. The other three benchmarks (canneal, dedup,
and reverse_index) modify a large number of pages.
With DTHREADS, each page modification triggers a seg-
mentation violation, a system call to change memory
protection, the creation of a private copy of the page,
and a subsequent copy into the shared space on commit.
We note that CoreDet also substantially degrades perfor-
mance for these benchmarks, so much of this slowdown
may be inherent to any deterministic runtime system.

6.4 Scalability
To measure the scalability cost of running DTHREADS,
we ran our benchmark suite (excluding canneal) on the
same machine with eight cores and again with two cores
enabled. Whenever possible without source code modifi-
cations, the number of threads was matched to the number
of CPUs enabled. We have found that DTHREADS scales
at least as well as pthreads for 9 of 13 benchmarks,
and scales as well or better than CoreDet for all but one
benchmark where DTHREADS outperforms CoreDet by
2×. Detailed results of this experiment are presented in
Figure 5 and discussed below.
canneal was excluded from the scalability exper-

iment because this benchmark does more work when
more threads are present, making the comparison be-
tween eight and two threads invalid. DTHREADS
hurts scalability relative to pthreads for four of the
benchmarks: kmeans, word_count, dedup, and
streamcluster although only marginally in most
cases. In all of these cases, DTHREADS scales better than
CoreDet.

DTHREADS is able to match the scala-
bility of pthreads for three benchmarks:
matrix_multiply, pca, and blackscholes.
With DTHREADS, scalability actually improves over
pthreads for 6 out of 13 benchmarks.

6.5 Performance Analysis

The data presented in Table 1 are obtained from the exe-
cutions running on all 8 cores. Column 2 shows the per-
centage of time spent in the serial phase. In DTHREADS,
all memory commits and actual synchronization opera-
tions are performed in the serial phase. The percentage
of time spent in the serial phase thus can affect perfor-
mance and scalability. Applications with higher overhead
in DTHREADS often spend a higher percentage of time
in the serial phase, primarily because they modify a large
number of pages that are committed during that phase.

Column 3 shows the number of transactions in each
application and Column 4 provides the average length of
each transaction (ms). Every synchronization operation,
including locks, conditional variable, barriers, and thread
exits, demarcate transaction boundaries in DTHREADS.
For example, reverse_index, dedup, ferret
and streamcluster perform numerous transactions
whose execution time is less than 1ms, imposing a perfor-
mance penalty for these applications. Benchmarks with
longer (or fewer) transactions run almost the same speed
as or faster than pthreads, including histogram or
pca. In DTHREADS, longer transactions amortize the
overhead of memory protection and copying.

Column 5 provides more detail on the costs associ-
ated with memory updates (the number and total volume
of dirtied pages). From the table, it becomes clear why
canneal (the most notable outlier) runs much slower
with DTHREADS than with pthreads. This bench-
mark updates over 3 million pages, leading to the creation
of private copies, protection faults, and commits to the
shared memory space. Copying alone is quite expensive:
we found that copying one gigabyte of memory takes
approximately 0.8 seconds when using memcpy, so for
canneal, copying overhead alone accounts for at least
20 seconds of time spent in DTHREADS (out of a total of
39 seconds).

Conclusion: For the few benchmarks that perform nu-
merous short-lived transactions, or modify a large amount
of pages, DTHREADS can exhibit substantial overhead.
However, most benchmarks examined here contain either
a small number or long running transactions, and modify
a modest number of pages during execution. For these
applications, DTHREADS is able to amortize its various
overheads; by eliminating false sharing, it can even run

11

!"!#

!"$#

%"!#

%"$#

&"!#

&"$#

'"!#

'"$#

("!#

!
"
#
$
%
&
'(
#
')
'*
(
+&
,'
'

!
"
#
$
%
&
'(
#
'-
'*
(
+&
,'

.*/0/120234'

)*+,-,.# /.0+,1/2# 3.0+,1/2#

Figure 5: Speedup of eight cores versus two cores (higher is better). DTHREADS generally scales nearly as well or
even better than pthreads, and almost always (with one exception) scales as well as or better than CoreDet.

Serial Transactions Dirtied
Benchmark (% time) Count Time Pages
histogram 0 23 15.47 29
kmeans 0 3929 3.82 9466
linear_reg. 0 24 23.92 17
matrix_mult. 0 24 841.2 3945
pca 0 48 443 11471
reverseindex 17% 61009 1.04 451876
string_match 0 24 82 41
word_count 1% 90 26.5 5261
blackscholes 0 24 386.9 991
canneal 26.4% 1062 43 3606413
dedup 31% 45689 0.1 356589
ferret 12.3% 11282 1.49 147027
streamcluster 18.4% 130001 0.04 131992
swaptions 0 24 163 867

Table 1: Benchmark characteristics.

faster than pthreads.

7 Discussion

This section analyzes aspects of DTHREADS that restrict
its ability to run certain programs or limit the extent of
determinism it can guarantee.

External determinism: DTHREADS provides only

internal determinism. It does not itself guarantee deter-
minism when a program’s behavior depends on external
sources of non-determinism, such as system time or the
arrival time of I/O events. Incorporation of DTHREADS in
the dOS framework, an OS proposal that enforces system-
level determinism, would provide both internally and ex-
ternally deterministic execution [4].

Unsupported programs: DTHREADS supports pro-
grams that use the pthreads library, but does not sup-
port programs that bypass it, e.g., by rolling their own
ad hoc synchronization operations in assembly. While
ad hoc synchronization is common, it is also a notorious
source of bugs; Xiong et al. show that 22–67% of the uses
of ad hoc synchronization lead to bugs or severe perfor-
mance issues [25].

DTHREADS also currently does not write-share the
stack across threads, so that updates made by a thread to
a stack variable would not be reflected back to the parent,
which could cause a program to fail. Passing stack vari-
ables to a thread for modification is extremely error-prone
and generally deprecated, making this (fortunately) a rare
coding practice.

Memory consumption: Because DTHREADS creates
private, per-process copies of modified pages between
commits, it can increase a program’s memory footprint
by the number of modified pages between synchroniza-
tion operations. This increased footprint does not pose a

12

problem in practice, both because the number of modified
pages is generally far smaller than the number of pages
read, and because it is transitory: all private pages are re-
linquished to the operating system (via madvise) at the
end of every commit operation.

8 Conclusion

DTHREADS is a deterministic replacement for the
pthreads library that supports general-purpose mul-
tithreaded applications. DTHREADS is straightforward
to deploy, requiring no source code, and operates on
commodity hardware. By converting threads into pro-
cesses, DTHREADS leverages process isolation and vir-
tual memory protection to track and isolate concurrent
memory updates with low overhead. By committing
these changes deterministically at natural synchroniza-
tion points in the code, rather than at boundaries based
on hardware performance counters, DTHREADS not only
ensures full internal determinism—eliminating data races
as well as deadlocks—but does so in a way that is
portable and easy to understand. Its software architec-
ture prevents false sharing, a notorious performance prob-
lem for multithreaded applications running on multiple,
cache-coherent processors. The combination of these ap-
proaches enables DTHREADS to match or even exceed the
performance of pthreads for the majority of the bench-
marks examined here, making DTHREADS a safe and ef-
ficient alternative to pthreads for some applications.

References

[1] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Effi-
cient system-enforced deterministic parallelism. In
OSDI’10: Proceedings of the 9th Conference on
Symposium on Opearting Systems Design & Im-
plementation, pages 193–206, Berkeley, CA, USA,
2010. USENIX Association.

[2] T. Ball, S. Burckhardt, J. de Halleux, M. Musuvathi,
and S. Qadeer. Deconstructing concurrency heisen-
bugs. In ICSE Companion, pages 403–404. IEEE,
2009.

[3] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and
D. Grossman. CoreDet: a compiler and runtime sys-
tem for deterministic multithreaded execution. In
Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages
and operating systems, ASPLOS ’10, pages 53–64,
New York, NY, USA, 2010. ACM.

[4] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble.
Deterministic process groups in dOS. In OSDI’10:
Proceedings of the 9th Conference on Symposium on
Opearting Systems Design & Implementation, pages
177–192, Berkeley, CA, USA, 2010. USENIX As-
sociation.

[5] E. D. Berger, K. S. McKinley, R. D. Blumofe, and
P. R. Wilson. Hoard: A scalable memory allocator
for multithreaded applications. In Proceedings of
the International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS-IX), pages 117–128, Cambridge,
MA, Nov. 2000.

[6] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace:
safe multithreaded programming for C/C++. In
OOPSLA ’09: Proceeding of the 24th ACM SIG-
PLAN conference on Object oriented programming
systems languages and applications, pages 81–96,
New York, NY, USA, 2009. ACM.

[7] E. D. Berger and B. G. Zorn. DieHard: Probabilis-
tic memory safety for unsafe languages. In Pro-
ceedings of the 2006 ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation (PLDI), pages 158–168, New York, NY, USA,
2006. ACM Press.

[8] E. D. Berger, B. G. Zorn, and K. S. McKinley. Com-
posing high-performance memory allocators. In
Proceedings of the 2001 ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation (PLDI), Snowbird, Utah, June 2001.

[9] C. Bienia and K. Li. Parsec 2.0: A new benchmark
suite for chip-multiprocessors. In Proceedings of the
5th Annual Workshop on Modeling, Benchmarking
and Simulation, June 2009.

13

[10] T. C. Bressoud and F. B. Schneider. Hypervisor-
based fault tolerance. In SOSP ’95: Proceedings of
the fifteenth ACM symposium on Operating systems
principles, pages 1–11, New York, NY, USA, 1995.
ACM Press.

[11] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Na-
garakatte. A randomized scheduler with probabilis-
tic guarantees of finding bugs. In J. C. Hoe and V. S.
Adve, editors, ASPLOS, ASPLOS ’10, pages 167–
178, New York, NY, USA, 2010. ACM.

[12] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Im-
plementation and performance of Munin. In SOSP
’91: Proceedings of the thirteenth ACM symposium
on Operating systems principles, pages 152–164,
New York, NY, USA, 1991. ACM.

[13] R. H. Carver and K.-C. Tai. Replay and testing for
concurrent programs. IEEE Softw., 8:66–74, March
1991.

[14] J.-D. Choi and H. Srinivasan. Deterministic replay
of Java multithreaded applications. In Proceedings
of the SIGMETRICS symposium on Parallel and dis-
tributed tools, SPDT ’98, pages 48–59, New York,
NY, USA, 1998. ACM.

[15] H. Cui, J. Wu, C. Tsa, and J. Yang. Stable deter-
ministic multithreaded through schedule memoiza-
tion. In OSDI’10: Proceedings of the 9th Confer-
ence on Symposium on Opearting Systems Design
& Implementation, pages 207–222, Berkeley, CA,
USA, 2010. USENIX Association.

[16] J. W. Havender. Avoiding deadlock in multitasking
systems. IBM Systems Journal, 7(2):74–84, 1968.

[17] P. Keleher, A. L. Cox, S. Dwarkadas, and
W. Zwaenepoel. Treadmarks: distributed shared
memory on standard workstations and operating
systems. In Proceedings of the USENIX Winter
1994 Technical Conference on USENIX Winter 1994
Technical Conference, pages 10–10, Berkeley, CA,
USA, 1994. USENIX Association.

[18] C. Lattner and V. Adve. LLVM: A Compilation
Framework for Lifelong Program Analysis & Trans-
formation. In Proceedings of the 2004 International

Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[19] T. J. LeBlanc and J. M. Mellor-Crummey. Debug-
ging parallel programs with instant replay. IEEE
Trans. Comput., 36:471–482, April 1987.

[20] C. E. McDowell and D. P. Helmbold. Debug-
ging concurrent programs. ACM Comput. Surv.,
21(4):593–622, 1989.

[21] R. H. B. Netzer and B. P. Miller. What are race con-
ditions?: Some issues and formalizations. ACM Lett.
Program. Lang. Syst., 1(1):74–88, 1992.

[22] M. Olszewski, J. Ansel, and S. Amarasinghe.
Kendo: efficient deterministic multithreading in
software. In ASPLOS ’09: Proceedings of the 14th
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, pages 97–108, New York, NY, USA, 2009.
ACM.

[23] J. Pool, I. Sin, and D. Lie. Relaxed determin-
ism: Making redundant execution on multiproces-
sors practical. In Proceedings of the 11th Workshop
on Hot Topics in Operating Systems (HotOS 2007),
May 2007.

[24] C. Ranger, R. Raghuraman, A. Penmetsa, G. Brad-
ski, and C. Kozyrakis. Evaluating MapReduce for
multi-core and multiprocessor systems. In HPCA
’07: Proceedings of the 2007 IEEE 13th Interna-
tional Symposium on High Performance Computer
Architecture, pages 13–24, Washington, DC, USA,
2007. IEEE Computer Society.

[25] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma.
Ad hoc synchronization considered harmful. In
OSDI’10: Proceedings of the 9th Conference on
Symposium on Opearting Systems Design & Im-
plementation, pages 163–176, Berkeley, CA, USA,
2010. USENIX Association.

14

	Introduction
	Related Work
	Dthreads Overview
	Dthreads Architecture
	Isolated Memory Access
	Thread Creation
	Deterministic Thread Index
	Shared Memory

	Deterministic Memory Commit
	Fence and Token
	Commit Protocol

	Deterministic Synchronization
	Locks
	Condition Variables
	Barriers
	Thread Creation and Exit
	Thread Cancellation

	Deterministic Memory Allocation
	OS Support

	Optimizations
	Evaluation
	Methodology
	Determinism
	Performance
	Scalability
	Performance Analysis

	Discussion
	Conclusion

