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Protection of computations and information is an 
important aspect of a computer utility. In a system 
which uses segmentation as a memory addressing 
scheme, protection can be achieved in part by 
associating concentric rings of decreasing access 
privilege with a computation. This paper describes 
hardware processor mechanisms for implementing 
these rings of protection. The mechanisms allow 
cross-ring calls and subsequent returns to occur 
without trapping to the supervisor. Automatic 
hardware validation of references across ring 
boundaries is also performed. Thus, a call by a user 
procedure to a protected subsystem (including the 
the supervisor) is identical to a call to a companion 
user procedure. The mechanisms of passing and 
referencing arguments are the same in both cases as 
well. 
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Introduction 

The topic  o f  this paper  is the control  o f  access to 
stored informat ion in a computer  utility. The  paper 
describes a set o f  processor access control  mechanisms 
that  were devised as part  of  the second i teration o f  the 
hardware  base for the Multics system. These mecha-  
nisms provide a hardware implementat ion of  protect ion 
rings which limit the access privileges o f  an executing 
program.  

°Mult ics  is a general purpose,  multiple user, inter- 
active computer  system developed at Project  MAC of  
MIT in a joint  effort with the Cambridge  In format ion  
Systems Labora to ry  of  Honeywell  In fo rmat ion  Systems 
Inc. and, until 1969, the Bell Telephone Laborator ies .  It  
was built and is being run as an experiment in designing, 
implementing,  operating,  and evaluating a p ro to type  
computer  utility. (Reference [14] contains  a bibliog- 
raphy of  publications on Multics.) 

Multics is currently implemented on a Honeywel l  
645 computer  system. The 645 represents a first a t tempt  
to define a suitable hardware base for a computer  utility. 
While containing special logic to support  a segmented 
virtual memory,  the 645 processor [10] provides only a 
limited set of  access control  mechanisms, forcing soft- 
ware intervention to implement  protect ion rings. In  the 
course of  Multics development  a second i teration o f  the 
design of  the hardware  base has been undertaken.  The 
resulting new hardware  system is being built as a re- 
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placement for the 645 using the technology of the 
Honeywell 6000 series computer systems. The new proc- 
essor includes an improved set of access control mecha- 
nisms, described here, which implement rings almost 
completely in hardware. These mechanisms were devel- 
oped from a scheme described in [16]. Although specifi- 
cally designed for Multics, the mechanisms are appli- 
cable to any computer system which uses segmentation 
as a memory addressing scheme. 

This paper begins by establishing the general need 
to control access to stored information in a computer 
utility and by presenting several criteria for comparing 
different sets of  access control mechanisms. Relevant 
aspects of the organization of segmented memories are 
then sketched, and the processor mechanisms for imple- 
menting protection rings are described. The paper con- 
cludes by illustrating how rings can be used and by 
evaluating the impact of a hardware system design. 

Access Control in a Computer Utility 

Protection of computations and information is an 
important  aspect of a computer utility. The multiple 
users of a computer utility have different goals and are 
responsible to different authorities. Such a diverse group 
will use the same system only if it is possible for them to 
achieve independence from one another. On the other 
hand, a great potential benefit of  a computer utility is 
its ability to allow users to easily communicate, coop- 
erate, and build upon one another 's work. The role of 
protection in a computer utility is to control user inter- 
action--guaranteeing total user separation when de- 
sired, allowing unrestricted user cooperation when 
desired, and providing as many intermediate degrees of 
control as will be useful. 

While there are many manifestations of protection 
in a computer utility, most may be related to controlling 
access to stored information. Because stored informa- 
tion represents both data and executable procedure, 
control of access to stored information serves to regulate 
information processing as well. 

Four  criteria can be applied to a set of access control 
mechanisms to judge its Usefulness in a computer utility: 
functional capability, economy, simplicity, and pro- 
gramming generality. The first means that a set of access 
control mechanisms should be able to meet an inter- 
esting set of user protection needs in a natural way. The 
ability to meet interesting protection needs must be a 
quality of the basic mechanisms, while the ability to do 
so in a natural way is a quality of their user interface. 
An obvious goal in designing new protection mecha- 
nisms is to maximize functional capability. 

The second criterion, economy, means that the cost 
of specifying and enforcing a particular kind of access 
constraint with a set of mechanisms should be so low 
that it is not an important consideration in determining 
the type of access control to be used in a particular appli- 
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cation. In addition, cost should be proportional to the 
functional capability actually used. The existence of 
access control mechanisms with sophisticated capabil- 
ities should cost no extra to those with unsophisticated 
needs. Cost includes the subsystem complexity and user 
inconvenience that result from use of the access control 
mechanisms, as well as any associated extra storage 
space and execution time. 

Simplicity is the third criterion. While it is true that 
simplicity often leads to economy, something more is at 
stake. For  a set of access control mechanisms to be ac- 
cepted there must be confidence that no way exists to 
circumvent it. The best way to achieve confidence is to 
keep the mechanisms so simple that they may be com- 
pletely understood. With respect to access control 
mechanisms, lack of simplicity often implies lack of 
security. 

The fourth criterion, programming generality, is 
often neglected. It means that individual procedures 
may be combined easily into larger units without under- 
standing or altering their internal organizations. Pro- 
gramming generality allows sharing to be effective in 
encouraging users to build upon one another 's work. 
An implication of programming generality of relevance 
to access control mechanisms is that it should be pos- 
sible to change the protection environment of proce- 
dures and collections of  procedures without altering 
their internal structure. 

It clearly is difficult to design access control mecha- 
nisms which satisfy all four of these criteria simultane- 
ously. Increases in functional capability come at the 
expense of economy, simplicity, and programming gen- 
erality. The challenge in designing a set of access control 
mechanisms is to maximize functional capability within 
the constraints of the other three criteria. In the fol- 
lowing sections a set of hardware access control mecha- 
nisms that was devised in the course of Multics develop- 
ment is described. These mechanisms appear to provide 
a significant improvement in the simultaneous satisfac- 
tion of the four criteria as compared with the mecha- 
nisms in the initial Multics implementation. 

Segmented Virtual Memory Environment 

The processor access control mechanisms described 
here regulate the ability of an executing program to 
reference information in a segmented virtual memory. 
As a basis for understanding these access control mecha- 
nisms this section briefly reviews the structure of a typ- 
ical segmented virtual memory. (See [1-3] for detailed 
descriptions of several segmented virtual memories.) 

A machine language program for a segmented envi- 
ronment does not reference memory by absolute ad- 
dress. Rather, its memory consists of independent seg- 
ments identified by number. Each segment is a separate 
array of words. A two-part address (s, w) identifies 
word w of the segment numbered s. 
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The collection of segments in the virtual memory is 
defined by a descriptor segment containing an array of 
segment descriptor words (SDW'S). Each SDW can de- 
scribe a single segment in the virtual memory.  The num- 
ber of a segment is just the index of the corresponding 
SDW in the descriptor segment. Among other things, an 
sDw contains the absolute address of  the beginning of 
the corresponding segment in memory.  The absolute 
address of  the beginning of the descriptor segment is 
contained in the descriptor base register (DBR) of a proc- 
essor. Each processor contains logic for automatically 
translating two-part  addresses into the corresponding 
absolute addresses. Address translation, done with an 
indexed retrieval of  the appropriate  sDw from the de- 
scriptor segment, occurs each time a word in the virtual 
memory is referenced, i.e. each time an instruction, in- 
direct word, or instruction operand reference is made by 
an executing program. 

Storage for segments is usually allocated with a 
paging scheme in scattered fixed-length blocks. I f  used, 
paging is also taken into account by the address transla- 
tion logic, but is totally transparent  to an executing 
machine language program. Paging, if appropriately 
implemented, need not affect access control;  it will be 
ignored in the remainder of this paper. 

Changing the absolute address in the DBR of a proc- 
essor will cause the address translation logic to interpret 
two-part  addresses relative to a different descriptor seg- 
ment. This facility can be used to provide each user of  
the system with a separate virtual memory.  A single 
segment may be part  of several virtual memories at the 
same time, allowing straightforward sharing of segments 
among users. 

Controlling Access in a Segmented Virtual Memory 

To provide a framework for discussion, three specific 
assumptions true of  Multics are introduced. First, a 
process with a new virtual memory is created for each 
user when he logs in to the system, and the name of the 
user is associated with the process. The process is the 
active agent of  the user, and is his only means of refer- 
encing and manipulating information stored on-line. 
Second, on-line storage is organized as a collection of 
segments of  information. A process can reference a seg- 
ment of  on-line storage only if the segment is first added 
to the virtual memory of the process. Third, the users 
that are permitted to access each segment are named by 
an access control list associated with each segment. As 
will be seen, any system providing access control of  the 
type under discussion will probably have analogous as- 
sumptions. The application of the rest of the discussion 
to other systems with segmented virtual memories is 
straightforward. 

Adding a segment to a virtual memory,  an operation 
performed by supervisor programs, provides the initial 
opportunity for controlling access to information stored 
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on-line. The name of the user associated with a process 
must match some entry on the access control list of  a seg- 
ment before the supervisor will add that segment to the 
the virtual memory of the process. 

Once a segment is included in the virtual memory,  
however, finer control on access is required. (If  a process 
could, say, write in any segment to which it had access, 
little sharing of information among users would occur.) 
I f  this finer control is to be effective against arbitrary 
machine language programs constructed by users, it 
must be implemented as hardware access validation on 
each reference. The structure of  the virtual memory 
makes it natural to record these finer constraints in the 
SDW associated with each segment. Since the processor 
must examine the SDW for a segment each time that  seg- 
ment is referenced by two-part  address anyway, there is 
little effort added to validate the intended access against 
constraints recorded there. With this structure it is also 
possible to change the allowed access to a segment by 
changing the finer constraints recorded in the sDw, and 
to expect the change to be immediately effective, al- 
though the need for such dynamic changes is rare. 

Flags which enable a segment to be read, written, 
and executed are natural constraints to record in each 
sDw. The value for each flag comes from the access con- 
trol list entry which matched the name of the user asso- 
ciated with the process. An at tempt  by a process to 
change the contents of  a word of a segment, for example, 
would be allowed by the processor only if the write flag 
were o n  in the m w  for the segment. This mechanism 
provides individual control on the ability of  each user's 
process to read, write, and execute the words in each 
segment stored on-line. It  also makes a segment the 
smallest unit of  information that  can be separately pro- 
tected. 

With the access control mechanisms described so far, 
all programs executed as part  of some process have the 
same information accessing capabilities. However, there 
seems to be an intrinsic need in many computat ions for 
the access capabilities of  a process to vary as the exe- 
cution point passes through the various programs that  
direct the computation.  The most  obvious examples of  
this need are explicit invocations of  supervisor programs 
during the course of  a computat ion.  The execution point 
may pass from a user program to a supervisor program 
to initiate an input /ou tpu t  operation or change the ac- 
cess control list of  a segment, and then pass back to the 
user program. Presumably the executing supervisor pro- 
gram can access information in some way that  the user 
program cannot. In a system that allows and encourages 
sharing of information among users, other examples 
appear. For  instance, user A may wish to allow user B 
to access a sensitive data segment, but only through 
a special program, provided by A, that audits references 
to the segment. During the course of  a computat ion in 
a process of user B, access to the sensitive data segment 
should be allowed only when the execution point is in 
the special program provided by A. 
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The word "domain"  is frequently associated with a 
set of  access capabilities. The examples above point to 
an intrinsic need for multiple domains to be associated 
with a process and for the domain in which the process 
is executing to occasionally change as the execution 
point passes from one program to another. A descriptor 
segment with read, write, and execute flags in the SDW'S 
defines a single domain. Additional mechanisms are 
required to allow multiple domains to be associated 
with a single process. 

A very general set of  access control mechanisms 
would place no restriction on the number  of  domains 
which could be associated with a process, and would 
force no restrictive relationships to exist among the sets 
of  access capabilities included in the domains. Unfortu-  
nately, devising such a set of access control mechanisms 
that  also meets the criteria of  economy, simplicity, and 
programming generality is a difficult research problem. 
(See [5, 7, 8, 12, 13, 17] for several approaches that  have 
been explored.) In Multics the strategy was adopted of 
limiting the number of  domains which may be associated 
with a process, and of forcing certain relationships to 
exist among the sets of  access capabilities included in 
the domains. The result is protection rings. 

The characterization of rings as a restricted imple- 
mentat ion of domains is the result of  hindsight. When 
developed, rings were viewed as a natural generalization 
of the supervisor/user modes that  provided protection 
in many computers.  This path of  development was 
chosen because it solved the most  pressing problems of 
access control involved in the prototype computer  
utility and, due to the inherent simplicity of  the idea, it 
was a path that  the Multics designers felt confident they 
could successfully complete. Even today rings appear  to 
provide an effective trade-off among the criteria men- 
tioned above. 

flags must be extended to indicate which rings include 
each access capability. Because of the nested subset 
property of rings, the capability, say, to write a particu- 
lar segment, if available to a process at all, is included in 
all rings numbered less than or equal to some value w. 
The range of rings over which this write permission 
applies is called the write bracket of  the segment for the 
process. Read and execute brackets for each segment 
can be established in the same way. A process is per- 
mitted to read, write, or execute a segment in its virtual 
memory  only if the ring of execution of  the process is 
within the proper bracket. 

A partial hardware implementat ion of rings places 
numbers indicating the top of each bracket of  a segment 
in the SDW of the segment, along with the read, write, 
and execute flags. I f  a flag is on, then the number  spec- 
ifies the extent of  the corresponding bracket. Turning a 
flag of f  indicates that  the corresponding access capability 
is not included in any ring of the process. For  example, 
a data segment might have its execute flag turned of f  or 
a pure procedure segment might have its write flag 
turned off. A register is added to the processor to record 
the current ring of execution of the process. The proc- 
essor can then validate each reference to a segment by 
making the obvious comparisons when the SDW for the 
segment is examined for address translation. 

Figure 1 illustrates the flags and brackets that  might 
be associated with a writable data segment for some 
process. (In Multics, eight was chosen as the appropriate  
number  of  rings. Eight rings are shown in the examples, 
al though more or fewer rings might be appropriate  in 
another system.) 

Fig. 1. Example access indicators for a writable data segment. 

0 I 2 3 4 5 6 7 r i n g  
P I r I I I I 

w r i t e  b r a c k e t  read f l o g  ~ on 

w r i t e  f l a g  : on 
read  b r a c k e t  execu te  f l a g  t o f f  

Protection Rings 

Associated with each process are a fixed number  of  
domains called protection rings. These r rings are named 
by the integers 0 through r -- 1. The access capabilities 
included in ring rn are constrained to be a subset of those 
in ring n whenever m > n. Put another way, the sets of 
access capabilities represented by the various rings of  a 
process form a collection of nested subsets, with ring 0 
the largest set and ring r - 1 the smallest set in the collec- 
tion. Thus, a process has the greatest access privilege 
when executing in ring 0, and the least access privilege 
when executing in ring r - 1. The total ordering of the 
sets of  access capabilities defined by the consecutively 
numbered rings of a process is the property which allows 
a straightforward implementat ion of rings in hardware. 

As described earlier, the permission flags for each 
segment in the virtual memory of a process simply indi- 
cate that  the segment can or cannot  be read, written, or 
executed by the process. With the addition of rings, the 

The association of multiple domains of  protection 
with a process generates the need for a new kind of ac- 
cess capabi l i ty-- the  capability to change the domain of 
execution of a process. Since changing the domain of 
execution has the potential to make additional access 
capabilities available to a process, it is an operation that  
must be carefully controlled. An understanding of the 
sort of  control required can be gained by reviewing the 
purpose of domains. A domain provides the means to 
protect procedure and data segments from other proce- 
dures that are part  of  the same computat ion.  Using 
domains, it should be possible to make certain access 
capabilities available to a process only when particular 
programs are being executed. Restricting the start of  
execution in a particular domain to certain program 
locations, called gates, provides this ability, for it gives 
the program sections that  begin at those locations cam- 
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plete control over the use made of the access capabilities 
included in the domain. Thus, changing the domain of 
execution must be restricted to occur only as the result 
of  a transfer of  control to one of these gate locations of 
another  domain. 

With a completely general implementat ion of do- 
mains, each domain could provide protection against 
the procedures executing in all other domains of a pro- 
cess. The corresponding property of  rings is that  the 
protection provided by a given ring of a process is ef- 
fective against procedures executing in higher numbered 
rings. Switching the ring of execution to a lower number  
makes additional access capabilities available to a pro- 
cess, while switching the ring to a higher number reduces 
the available access capabilities. Thus, the downward 
ring switching capability must be coupled to a transfer 
of control to a gate into the lower numbered ring. Gates  
are specified by associating a (possibly empty) list of 
gate locations with each segment in the virtual memory 
of a process. I f  the execution point of  the process is 
transferred to a segment while the ring of execution is 
above the top of the execute bracket for the segment, 
then the transfer must be directed to one of the gate 
locations in the segment. I f  the transfer is to a gate, then 
the ring of execution of the process will switch down to 
the top of the execute bracket of the segment as the 
transfer occurs. I f  the transfer is not directed to one of 
the gate locations, then the transfer is not allowed. 

To provide control of  this downward ring switching 
capability which is consistent with the subset property 
of  rings, a gate extension to the execute bracket of  a 
segment is defined. The gate extension specifies the con- 
secutively numbered rings above the execute bracket of  
the segment that  include the "transfer to a gate and 
change ring" capability for the segment. The gate list 
and the gate extension to the execute bracket can both 
be specified with additional fields in each SDW. 

In contrast  to downward ring changes, switching the 
ring of execution to a higher-numbered ring can only 
decrease the available access cat'abilities of  a process. 
Thus, an upward ring switch is an unrestricted operation 
that  can be performed by any executing procedure. (The 
instruction to be executed immediately following an 
upward ring switch must come from a segment that is 
executable in the new, higher-numbered ring.) For  
programming convenience, the upward ring switch may 
be coupled to a special transfer instruction. 

The abstract description of rings is now one step 
from completion. The last step comes from the observa- 
tion that  for each procedure segment in the virtual mem- 
ory of each process there is a lowest-numbered ring in 
which that  procedure is intended to execute. In order 
to provide the means for preventing the accidental 
transfer to and execution of a procedure in a ring lower 
than intended, the requirement that execute brackets 
have a lower limit at ring 0 is relaxed and instead an 
arbitrary lower limit is allowed. For  many procedure 
segments the execute bracket will include exactly one 

r ing-- the  ring in which the procedure is intended to exe- 
cute. Procedure segments with wider execute brackets 
normally will contain commonly  used library subrou- 
tines that are certified as acceptable for execution in any 
of several rings. 

The arbitrary lower limit on the execute bracket of  a 
segment can be implemented by using the field of  an 
SDW which specifies the top of the write bracket  to spec- 
ify the bot tom of the execute bracket as well. The double 
use of  this field does not appear  to remove any inter- 
esting functional capability. In fact, it eliminates an 
unwanted degree of freedom in access specification, 
thereby removing the potential to make certain types of  
errors, such as allowing both writing and execution of a 
segment in more than one ring of a process. 

Figure 2 shows example access indicators for a pure 
procedure segment containing gates, and illustrates how 

Fig. 2. Example access indicators for a pure procedure segment 
which contains gates. 

0 
J 

I 2 3 4 5 6 7 r i ng  
I I J [ I I I q 

read bracket 

execu te  gate 
bracket  e x t e n s i o n  

J r e a d  f l a g  : o n  
wri te  bracket  i f  w r i t e  f l a g  = o f f  

w r i t e  f l a g  o n  e x e c u t e  f l a g  = o n  

g a t e  l i s t  ~ 0 ,1 ,  2 

the execute and write brackets specified in an SDW must 
be related. 

The gate list and the numbers specifying the read, 
write, and execute brackets and gate extension in each 
SDW all come from the access control list entry which 
permitted the process to include the corresponding seg- 
ment in its virtual memory,  as did the values for the 
read, write, and execute flags. 

Call and Return 

As argued above, a change in the domain of execu- 
tion of a process can occur only when the executing 
procedure transfers control to a gate of another domain. 
In the context of  most programming languages, an inter- 
procedure transfer represents a subroutine call, a return 
following a call, or a nonlocal goto. Linguistically, all 
three operations produce a change in the environment 
of  the execution point; this change affects the binding of 
variable names to virtual storage locations. The call 
operation has the additional function of transmitting 
arguments and recording a return point. Performing 
these functions generally requires the cooperation of 
both the procedure initiating the operation and the 
procedure receiving control. I f  a call, return, or gala  
changes the domain of execution because it happens to 
be directed to a gate location of another domain, then 
the situation becomes more complicated, for neither 
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procedure can depend upon the other to cooperate. An 
important simplification introduced by restricting do- 
mains to a ring structure is that a procedure may assume 
the cooperation of procedures in lower-numbered rings. 

When procedures are shared among different pro- 
cesses and different domains, the addressing environ- 
ment is usually defined via processor registers, for the 
procedures must be pure and it is not convenient to 
embed addresses within them. Part of the function of the 
call, return, and goto operations is to properly update 
this environment pointer. In Multics, pure procedures 
are used with a per process stack, and a stack pointer 
register provides the required environment definition. 
The stack of a process is implemented with a separate 
segment for each ring being used. The stack segment for 
procedures executing in ring n has read and write brack- 
ets that end at ring n. Thus, stack areas for these proce- 
dures are not accessible to procedures executing in any 
ring m > n. In the following discussion the stack pointer 
register is used as a typical example of the required 
environment pointer. 

The most common ways of changing the ring of exe- 
cution of a process are a call to a gate of a lower-num- 
bered ring and the subsequent upward return. A down- 
ward call represents the invocation of a user-provided 
protected subsystem or a supervisor procedure. Because 
the Honeywell 645 was designed around the usual super- 
visor/user protection method, the version of Multics for 
this machine implements rings by trapping to a super- 
visor procedure when downward calls and upward re- 
turns are performed. The hardware mechanisms detailed 
in the next section eliminate the need to trap in these 
cases. Using these improved hardware access control 
mechanisms, downward calls and upward returns occur 
without the intervention of a supervisor procedure and 
are performed by the same object code sequences that 
perform all calls and returns. 

It is the nested subset property of rings that makes a 
straightforward hardware implementation of downward 
calls and upward returns possible. Because of this prop- 
erty, the called procedure automatically has all access 
capabilities required to reference any arguments that 
the calling procedure can legitimately specify and to 
return to the calling procedure in the ring from which it 
called. However, three problems remain. First, the called 
procedure must have a way of finding a new stack area 
without depending upon information provided by the 
calling procedure. Second, the called procedure must 
have a way of validating references to arguments, so that 
it cannot be tricked into reading or writing an argument 
that the caller could not also read or write. Finally, the 
called procedure must have a way of knowing for certain 
the ring in which the calling procedure was executing, 
so that the called procedure cannot be tricked into re- 
turning control to a ring not as high as that of the calling 
procedure. 

The key to solving the first problem, finding a new 
stack area, is a rule relating the segment number of the 
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stack segment for a ring to the ring number. Using this 
rule, the processor automatically calculates the segment 
number of the proper stack segment for the called proce- 
dure's ring of execution. By convention, a fixed word of 
each stack segment can point to the beginning of the 
next available stack area. Thus, the stack segment num- 
ber alone can provide the called procedure with enough 
information from which to construct its own stack 
pointer. Because the processor provides the stack seg- 
ment number, no procedure executing in a higher-num- 
bered ring, e.g. the calling procedure, can affect the value 
of the stack pointer for the called procedure. 

The second problem, validating argument references, 
is solved by providing processor mechanisms which al- 
low a procedure to assume the more restricted access 
capabilities of any higher-numbered ring for particular 
operand references. Using these mechanisms, the called 
procedure can validate access when referencing argu- 
ments as though execution were occurring in the (higher- 
numbered) ring of the calling procedure. Thus, the 
called procedure, even though it is executing in a ring 
with more access capabilities than the ring of the calling 
procedure, can prevent itself from reading or writing 
any argument that the calling procedure could not also 
read or write. 

The final problem, knowing the ring of the caller, is 
solved by having the processor leave in a program acces- 
sible register the number of the ring in which execution 
was occurring before the downward call was made. The 
subsequent return is made to that ring. Thus the calling 
procedure has no opportunity to lower the number of 
the ring to which the return is made. 

The next two sections describe in more detail how 
downward calls, argument referencing and validation, 
and upward returns are implemented. Before proceeding 
to that description, however, there are two other possi- 
bilities to consider: a call and return that do not change 
the ring of execution, and an upward call and the subse- 
quent downward return. The first presents no protection 
problem, as both the calling and the called procedures 
have available the same set of access capabilities. The 
hardware mechanisms for downward calls and upward 
returns also work when no change of ring is needed. 

The last possibility is more difficult to handle. An 
upward call occurs when a procedure executing in ring 
n calls an entry point in another procedure segment 
whose execute bracket bottom is m > n. When the call 
occurs, the ring of execution will change to m. The sub- 
sequent return is downward, resetting the ring of execu- 
tion to n. These cases exhibit two unpleasant character- 
istics of a general cross-domain call and return that were 
not present in the other cases. 

The first is that the calling procedure may specify 
arguments that cannot be referenced from the ring of the 
called procedure. (For a downward call, the nested sub- 
set property of rings guaranteed that this could not 
happen.) There are at least three possible solutions to 
this problem. One is to require that the calling procedure 
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Fig. 3. Schematic description of relevant storage formats and 
processor registers. 
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specify only arguments that  are accessible in the higher- 
numbered ring of the called procedure. This solution 
compromises programming generality by forcing the 
calling procedure to take special precautions in the case 
of  an upward call. Another possible solution is to dy- 
namically include in the ring of the called procedure the 
capabilities to reference the argumenfs. Because a seg- 
ment is the smallest unit of  information for which access 
can be individually controlled, this forces segments 
which contain arguments to contain no other informa- 
tion that should be protected differently, again compro-  
mising programming generality, unless segments are in- 
expensive enough that, as a matter  of  course, every data 
item is placed in its own segment. It may also be expen- 
sive to dynamically include and remove the argument 
referencing capabilities from the called ring. The third 
possible solution is copying arguments into segments 
that are accessible in the called ring, and then copying 
them back to their original locations on return. This so- 
lution restricts the possibility of  sharing arguments with 
parallel processes. None of the three solutions lends 
itself to a straightforward hardware implementation. 

The second unpleasant characteristic is that a gate 
must be provided for the downward return. (For an 
upward return the nested subset property of  rings made 
a return gate unnecessary.) The return gate must be 
created at the time of the upward call and be destroyed 
when the subsequent return occurs. I f  recursive calls 
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into a ring are allowed, then this gate must behave as 
though it were stored in a push-down stack, so that only 
the gate at the top of the stack can be used. The gates 
specified in SDW'S seem poorly suited to this sort of dy- 
namic behavior. Processor mechanisms to provide dy- 
namic, stacked return gates are not obvious at this time. 

Because of these two problems, the hardware de- 
scribed in the next section does not implement upward 
calls and downward returns without software interven- 
tion. Although the same object code sequences that  
perform all calls and returns are used in these cases as 
well, the hardware responds to each at tempted upward 
call or downward return by generating a trap to a super- 
visor procedure which performs the necessary environ- 
ment adjustments. 

The manner in which the stack pointer register value 
of the calling procedure is saved when a call occurs and 
restored when the subsequent return occurs has not yet 
been discussed. For  a same-ring or downward call, it is 
reasonable to trust the called procedure to save the value 
left in the stack pointer register by the calling procedure 
and then restore it before the subsequent return, since in 
these cases the called procedure has access capabilities 
which allow it to cause the calling procedure to malfunc- 
tion in other ways anyway. For  an upward call and the 
subsequent downward return, the same convention can 
be used without violating the protection provided by the 
lower ring if the intervening software verifies the re- 
stored stack pointer register value when performing the 
downward return. 

Hardware Implementation of Rings 

In this section the ideas presented in the previous sec- 
tions are gathered into a description of a design for 
processor hardware to implement rings. The description 
touches upon only those aspects of  the processor orga- 
nization that  are relevant to access control. The seg- 
mented addressing hardware described earlier serves as 
the foundation of the ring implementation mechanisms. 

Figure 3 presents a schematic description of storage 
formats and processor registers that  are relevant to the 
discussion which follows. The DBR and SDW'S have al- 
ready been mentioned. The three 3-bit ring numbers in 
an SDW (SDW.R1, SDW.R2, and SDW.R3) delimit the read, 
write, and execute brackets and the gate extension. The 
write bracket is rings 0 through SDW.R1, the execute 
bracket SDW.R1 through SDW.R2, and the gate extension 
SDW.R2+I through SDW.R3. Rather than providing a 
fourth number to specify the top of the read bracket, 
SDW.R2 is reused for this purpose. Thus the read bracket 
is rings 0 through SDW.R2. Forcing the top of the read 
and execute brackets to coincide in this manner does not 
seem to preclude any important  cases, and saves one 
ring number in the SDW. Supervisor code for con- 
structing sDw's must guarantee that SDW.R1 ~ SDW.R2 
< SDW.R3 is true. The single-bit read, write, and execute 
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flags (SOW.R, SOW.W, and SDW.E) also appear. Finally, 
the list of gate locations of a segment is compressed to 
a single fixed-length field (SOW.GATE) by requiring all 
gate locations to be gathered together, beginning at 
location 0 of a segment. SOW.GATE contains the number 
of gate locations present. 

The instruction pointer register (IPR) specifies the 
current ring of execution and the two-part address of 
the next instruction to be executed. The general format 
of an instruction word in memory (INST) is also shown 
for later reference. 

The program accessible pointer registers (PRO, PR1, 
...) each contain a two-part address and a ring number. 
Because segment numbers are not generally known at 
the time a procedure segment is compiled, machine 
instructions specify two-part operand addresses by 
giving an offset (in INST.OFFSEa') relative to one of the 
PR'S (specified by INST.PRNUM) or IPR. The ring number 
in a pointer register (PRn.RING) is used to specify a vali- 
dation level for the address, and is part of the mecha- 
nism that allows an executing procedure to assume the 
access capabilities of a higher-numbered ring for refer- 
encing arguments. One of the PR'S is intended to serve 
as the stack pointer register mentioned earlier. 

Indirect addressing may be specified in an instruction 
by setting the indirect flag (INST.I). Indirect words (IND) 
contain the same information as PR'S, and may also 
indicate further indirection with an indirect flag (INO.I). 

The final item in Figure 3 is the temporary pointer 
register (TPR). The TPR is an internal processor register 
that is not program accessible. It is used to form the 
two-part address of each virtual memory reference 
made. The ring number (TPR.RING) provides the value 
with respect to which permission to reference the virtual 
memory location is validated. 

There are two aspects to the implementation of rings 
in hardware. The first is access checking logic, integrated 
with the segmented addressing hardware, that validates 
each virtual memory reference. The second is special 
instructions for changing the ring of execution. The best 
way to describe the first aspect is to trace the processor 
instruction cycle, paying particular attention to the 
places where operations related to access validation oc- 
cur. The second aspect will be discussed when the de- 
scription of the instruction cycle reaches the point where 
the instruction is actually performed. 

The first phase of the instruction cycle, retrieving the 
next instruction to be executed, is described in Figure 4. 
At the point during address translation that the sow for 
the segment containing the instruction becomes avail- 
able, the ring of execution (now TPR.RING) is matched 
against the execute bracket defined in the SOW and the 
execute flag is checked. If the segment may be executed 
from the current ring of execution the instruction fetch 
is completed. The access violations and other conditions 
requiring software intervention shown in this and fol- 
lowing figures generate traps, derailing the instruction 
cycle. A traps action is described later in this section. 
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Fig. 4. Retrieval of next instruction to be executed. 
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The next phase of the instruction cycle, calculating 
in TVR the effective address of the instruction's operand, 
is described in Figure 5. This phase occurs only if the 
instruction has an operand in memory. The effective 
address is the final two-part address of the operand 
(after all address modifications and indirections have 
taken place) together with an effective ring number 
which is used to validate the actual reference to the 
operand. 

The formation of a two-part address in TPR.SEGNO 
and TPR.WORDNO is very straightforward and is de- 
scribed by Figure 5. The calculation of the ring number 
portion of the effective address in TPR.RING and the ac- 
cess validation performed before retrieving indirect 
words, also shown in Figure 5, need further comment.  

The effective ring portion of the effective address 
provides a procedure with the means of voluntarily as- 
suming the access capabilities of a higher-numbered 
ring when making an instruction operand reference. The 
effective ring number also records the highest-numbered 
ring from which a procedure (in the same process) pos- 
sibly could have influenced the effective address calcula- 
tion. The first opportunity for the value of TPR.RING to 
change during effective address calculation occurs if the 
instruction contains an address that is an offset relative 
to some PRn. In this case TPR.RING is updated with the 
larger of its current values (still the current ring of execu- 
tion) and the ring number in the specified pointer regis- 
ter (VRn.RING). Thus, if PRn.RING contains a value that is 
greater than the current ring of execution, validation of 
the operand reference will be as though execution were 
occurring in this higher-numbered ring. 
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Fig. 5. Formation in TPR of effective address 
operand. 
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The remaining opportunities to change the value of  
TPR.RING occur in conjunction with the processing of 
indirect words involved in the effective address calcula- 
tion. Each time an indirect word is retrieved, TaR.raNG 
is updated with the larger of  its current values, the ring 
number in the indirect word 0ND.RING), and the top of 
the write bracket for the segment containing the indirect 
word (SDW.R1). The ring number  in the indirect word 
has the same purpose as the ring number in a pointer 
register--forcing validation of the operand reference 
relative to some higher-numbered ring. Including in the 
calculation the top of the write bracket of the segment 
containing the indirect word, however, has another pur- 
pose. The top of the write bracket represents the highest- 
numbered ring from which a procedure in the same 
process could have altered the indirect word and thereby 
influenced the result of the effective address calculation. 
Taking into account SDW.RI when updating TaR.RING 
guarantees that the operand reference will be validated 
with respect to the highest-numbered ring which could 
have influenced the effective address. 

The capability to read an indirect word during effec- 
tive address formation must be validated before the 
indirect word is retrieved. Validation is with respect to 
the value in TPR.RING at the time the indirect word is 
encountered. At the conclusion of the effective address 
calculation described in Figure 5, TPR contains the effec- 
tive address of  the instruction operand, including the 
effective ring number with respect to which the reference 
to the operand will be validated. 

The next phase of the instruction cycle is to perform 
the instruction. For  the purpose of access validation, 
the possible instructions may be broken into three 
groups, according to the type of reference made to the 
operand. Figure 6 shows the access validation for the 
straightforward cases of  instructions which read their 

Fig. 6. Access validation for instructions which read or write their 
operands. 
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operands and instructions which write their operands. 
The third group, instructions which do not reference 
their operands, is illustrated in Figure 7. One set in this 
group is the "Effective Address to Pointer Register"- 
type (LAP-type) instructions which load the RING, SEGNO, 
and WORDNO fields of PRF/ with the corresponding fields 
of TPR. The operand is not referenced, so no access val- 
idation is required. Instructions of this type are impor- 
tant, as will be seen later, for they are the only way to 
load PR'S. 

The remaining instructions illustrated in Figure 7 are 
transfer instructions. To provide some protection 
against changing the ring of execution by accident, all 
transfer instructions except two, CALL and RETURN, are 
constrained from doing so. Since a transfer instruction 
does not reference its operand, but just loads the address 
of its operand into the instruction counter, no access 
validation is really required. However, an advance check 
on whether reloading IPR from TPR will result in an ac- 
cess violation when the next instruction is retrieved is 
very useful from the standpoint of debugging, for it 
catches the access violation while it is still possible to 
identify the instruction which made the illegal transfer. 
Figure 7 describes the advance check for transfer in- 
structions other than CALL and RETURN. 

The two instructions that remain to be considered 
are the instructions which can change the ring of execu- 
tion: CALL and RETURN. They are intended to be used to 
implement the same-named linguistic operations} CALL 
will automatically switch the ring of execution to a 
lower number and RETURN to a higher number if the oc- 
casion requires it. These instructions also function 
properly for calls and returns within the same ring. 
When used to perform an upward call or a downward 
return, the instructions cause traps which allow software 
intervention. 

Figure 8 describes the access validation and perform- 
ance of the CALL instruction. Several points require 
further explanation. The first concerns gates. From Fig- 
ure 8 it is apparent that a CALL must be directed at a 
gate location even when the called procedure will exe- 
cute in the same ring as the calling procedure. The ra- 
tionale for this use of the gate list of a segment is that 
it can provide protection against accidental calls to 
locations that are not entry points, even when the call 
comes from within the same ring. Thus, SDW.GATE for a 
procedure segment usually specifies the number of ex- 
ternally defined entry points in the procedure segment. 
These become gates for higher-numbered rings in the 
sense described in the previous sections only if the top 
of the gate extension of the segment is above the top of 
the execute bracket, i.e. only if SDW.R3 > SDW.R2 for 
the segment. The price paid for this error detection abil- 
ity is that if any externally defined entry point in a pro- 
cedure segment is a gate for a higher-numbered ring, 

RETURN may also be used to implement the nonlocal goto 
operation. 
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Fig. 7. AcCess validation for instructions which do not reference 
their operands. 
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Fig. 9. Access validation and performance of the RETURN 
instruction. 
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then all are. On intersegment transfers of control within 
the same ring, the gate restriction can be bypassed by 
using a normal transfer instruction rather than a CALL. 
The only exception to having the CALL instruction re- 
spect the gate list of the operand segment occurs if the 
operand is in the same segment as the instruction. Al- 
lowing a CALL instruction to ignore the gate list of the 
segment containing the instruction permits it to be used 
to implement calls to internal procedures. 

The access validation for the CALL instruction is 
made relative to the ring number computed as part of 
the effective address. Since, as a result of PR-relative 
addressing and indirection, the effective ring value 
(TPmRIN6) can be higher than the current ring of 
execution (IPR.RING), what would appear to be a call 
within the same ring or to a lower ring with respect to 
TPR.RING can in fact be an upward call with respect 
to IPR.RING. Because in normal circumstances this 
situation represents an error, the decision is made to 
generate an access violation when it occurs, even if the 
current ring of execution is within the execute bracket 
of  the called procedure segment. 

CALL generates in PRO a pointer to word 0 of the 
stack segment for the new ring of execution. (The PR to 
use as this stack base pointer is chosen arbitrarily.) The 
stack segment selection rule illustrated in Figure 8 is 
that the segment number of the appropriate stack seg- 

ment is the same as the new ring number7 The final 
transfer of control is achieved by reloading IPR.RING, 
IPR.SEGNO, and IPR.WORDNO from the corresponding 
fields of "rPR. 

The RETURN instruction is described by Figure 9. 
The access validation is the same as for other transfer 
instructions. The ring to which the return is made is 
specified by the effective ring portion of the effective 
address generated by the RETURN instruction. In the case 
that the return is upward, the ring number fields in all 
pointer registers are replaced with the larger of their 
current values and the new ring of execution. This re- 
placement, together with the fact that PR'S can only be 
loaded with LAP-type instructions, guarantees that PRn.- 
RING can never contain a value that is less than IPR.RING, 
a fact which proves very useful when passing arguments 
on a downward call and which makes it easy to perform 
an upward return to the proper ring. (See the next sec- 
tion for details.) 

Two items remain to be considered to complete the 
description of the processor hardware for implementing 
rings. One is the action of a trap. Traps are generated by 
a variety of conditions in Figures 4-9, as well as by 
missing segments and pages, I /O  completions, etc. When 
the processor detects such a condition, it changes the 
ring of execution to zero and transfers control to a fixed 
location in the supervisor. A special instruction allows 
the state of the processor at the time of the trap to be 
restored later if appropriate, resuming the disrupted 
instruction . . . .  

The other item concerns privileged instructions. 
Certain instructions, if executable by all procedure seg- 
ments, could invalidate the protection provided by the 
ring mechanisms. Among these are the instructions to 
load the DBR, start I /O,  and restore the processor state 
after a trap. Such instructions are designated as privi- 
leged and will be executed by the processor only in ring 
0. This convention restricts their use to supervisor pro- 
cedures. 

Call and Return Revisited 

The intended use of the hardware mechanisms just 
described is illustrated by considering again two key 
aspects of the linguistic meaning of the operations call 
and return. 

2 Two subtle features may be included at this point by using a 
more sophisticated stack segment selection rule. If the CALL in- 
struction does not change the ring of execution, then the segment 
number for the stack base pointer is taken directly from the stack 
pointer register, allowing the continued use of a nonstandard stack 
segment for procedures executing in the same ring. If the CALL in- 
struction does change the ring of execution then the new stack seg- 
ment number is calculated by adding the new ring number to an 
additional DBR field that specifies the eight consecutively numbered 
segments that are the standard stack segments of the process. The 
use of the additional DBR field allows more flexibility in stack seg- 
ment assignment, facilitating the preservation of stack history fol- 
lowing an error and the implementation of forked stacks. 
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The first aspect to be reconsidered is the way argu- 
ments are passed and referenced. A procedure making a 
call constructs an array of indirect words containing the 
addresses of  the various arguments to be passed with 
the call. To inform the called procedure of the location 
of this argument  list, the calling procedure loads a spe- 
cific l'R designated by software convention (call it PRa) 
with the address of the beginning of the argument list. 
An instruction of the called procedure can reference the 
nth argument as its operand by using an indirect ad- 
dress. The location of the indirect word is specified in 
the instruction as PRa offset by n. I f  this operand refer- 
ence constitutes an upward cross-ring argument refer- 
ence then the proper validation is automatic,  for PRa.- 
RING, as set by the calling procedure, must contain a 
number that is greater than or equal to the number of 
the ring in which the calling procedure was executing 
when the call was made. Thus, validation of all argu- 
ment references by the called procedure will be with 
respect to an effective ring that is at least as high as the 
ring of the caller. 

The ring number in PRa, then, allows the called pro- 
cedure to automatically assume the fewer access capabil- 
ities of  the calling procedure in the case of  an upward 
cross-ring argument  reference via PRa and the argument 
list. Not  all argument references, however, will be made 
in this way. For  example, if an argument is an array, 
then the corresponding argument list indirect word will 
address the first element. The called procedure may find 
it convenient to load some free PR, say PR1, with the 
actual two-part  address of  the beginning of that array 
argument  so that array indexing can be more easily ac- 
complished. IfPR1 is loaded with an EaP-type instruction 
whose operand address is specified via PRa and the argu- 
ment list, then the proper effective ring number will 
automatically be put in PR1.RING, and subsequent refer- 
ences to the argument  via t'R1 will also be validated 
with respect to an effective ring that is at least as high as 
the ring of the caller. I f  PR1 is then stored as an indirect 
word, this effective ring is put into the RING field of the 
indirect word. In fact, as long as the called procedure 
does not make an explicit effort to lower the effective 
ring associated with an argument  address, e.g. by 
zeroing the RING field of  an indirect word, then all ma- 
nipulations of  the argument  address are safe, and all 
argument references will be validated with respect to an 
effective ring that  is at least as high as the ring of the 
caller? 

The second aspect to be reconsidered with respect to 

3 This property allows the correct argument validation to occur 
naturally when an argument is passed along a chain of downward 
calls. The RING field of an argument list indirect word will specify 
the ring which originally provided the argument. If this value is 
higher than the value of PRa.RING, then the indirect word ring 
number will become the effective ring for validation of references to 
the corresponding argument. 
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call and return is the way in which a return to the proper 
ring is accomplished. As described earlier, the hardware 
guarantees that the RING fields in all PR'S always contain 
values greater than or equal to the current ring of exe- 
cution. Thus, after a call all PR'S except PRO, which is 
altered by the CALL instruction, initially contain the ring 
of the caller (or some higher number) in their RING 
fields. It  follows that  any scheme for returning which 
depends upon one of these values is secure. For  example, 
the convention described earlier for restoring the stack 
pointer register value of the caller before a return makes 
it natural to address the operand of the RETURN instruc- 
tion via this restored PR. (For this scheme to work, the 
return point must have been saved by the caller at a 
standard position in its stack area before the call oc- 
curred.) The RZTURN instruction is thus guaranteed to 
generate an effective ring number no lower than the ring 
of the calling procedure and therefore will return control 
to the ring of the caller or some higher-numbered ring. 

Use of Rings 

Some insight into the functional capabilities of  rings 
can be gained by considering briefly the way the basic 
mechanisms described in the previou~ sections are used 
in Multics. 

The ring protection scheme allows a layered super- 
visor to be included in the virtual memory of each 
process. In Multics, the lowest-level supervisor pro- 
cedures, such as those implementing the primitive 
operations of access control, I /O ,  memory multiplexing, 
and processor multiplexing, execute in ring 0. The 
remaining supervisor procedures execute in ring 1. Ex- 
amples of ring 1 supervisor procedures are those 
performing accounting, input /ou tpu t  stream manage- 
ment, and file system search direction. (Deciding how 
many layers to use and which procedures should execute 
in each layer is an interesting engineering design 
problem.) Supervisor data segments have read and write 
brackets that  end at ring 0 or ring 1, depending on which 
layer of  the supervisor needs to access each. 

Implicit  invocation of certain ring 0 supervisor 
procedures occurs as a result of  a trap. Explicit invoca- 
tion of selected ring 0 and ring 1 supervisor procedures 
by procedures executing in rings 2-5 of a process is by 
standard subroutine calls to gates. Procedures executing 
in rings 6 and 7 are not given access to supervisor gates. 

Because separate access control lists for each seg- 
ment and separate descriptor segments for each process 
provide the means to control separately the use of  each 
segment by each user's process, not all gates into super- 
visor rings need be available to the processes of  all users, 
and not all gates need have the same gate extension 
associated with them. For  example, some gates into 
ring 0 are accessible to the processes of  all users, but only 
to procedures executing in ring 1. Such gates provide the 
internal interfaces between the two layers of  the super- 
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visor. Some gates into ring 1 are accessible to procedures 
executing in rings 2-5 in the processes of selected users, 
but are not accessible at all from the processes of other 
users. An example of the latter kind is a gate for regis- 
tering new users that is available only from the processes 
of system administrators. 

As pointed out by Dijkstra [6], a layered supervisor 
has several advantages. Constructing the supervisor in 
layers enforced by ring protection reinforces these ad- 
vantages. It limits the propagation of errors, thereby 
making the supervisor easier to modify correctly and 
increasing the level of confidence that the supervisor 
functions correctly. For  example, changes can be made 
in ring 1 without having to recertify the correct oper- 
ation of the procedures in ring 0. 

By arranging for standard user procedures to execute 
in ring 4, rings 2 and 3 become available for the protec- 
tion of user-constructed subsystems. Subsystems 
executing in rings 2 and 3 of a process can be protected 
from procedures executing in rings 4-7 in the same way 
that the supervisor is protected from procedures exe- 
cuting in rings 2-7. All comments made about a super- 
visor implemented in rings 0 and 1 of each process apply 
to protected subsystems implemented in rings 2 and 3. 
Different protected subsystems may be operated simul- 
taneously in rings 2 and 3 of different processes and 
several processes may share the use of the same 
protected subsystem simultaneously. The ring protection 
scheme allows the operation of user-constructed pro- 
tected subsystems without auditing them for inclusion 
in the supervisor. (The software facility that forces 
standard user procedures to execute in ring 4, and yet 
allows all users to freely provide ring 3 protected sub- 
systems for one another, is not discussed here.) 
Examples of protected subsystems that might be 
provided by various users are a proprietary compiler or 
a subsystem to provide interpretive access to some sen- 
sitive data base and safely log each request for infor- 
mation. 

With most user procedures executing in ring 4, rings 
5, 6, and 7 are available for user self-protection. For  
example, a user may debug a program by executing it 
in ring 5, where only procedure and data segments in- 
tended to be referenced by the program would be made 
accessible. The ring protection mechanisms would detect 
many of the addressing errors that could be made by 
the program and would prevent the untested program 
from accidently damaging other segments accessible 
from ring 4. In the same way ring 5 can be used for the 
execution of an untrusted program borrowed from an- 
other user. 

Because supervisor gates are not accessible from 
rings 6 and 7 of any process in Multics, procedures exe- 
cuted in these rings have no explicit access to supervisor 
functions; they may, however, be given permission to 
call user-provided gates into rings 4 or 5. Ring 6 of a 
process might be used, for example, to provide a suit- 
ably isolated environment for student programs being 

evaluted by a grading program executing'in ring 4. 
The complete description of a software access 

control facility based on rings that allows them to be 
used in the manner just outlined would require another 
paper. A fundamental constraint enforced by this soft- 
ware facility is that a program executing in ring n cannot 
specify R1, R2, or R3 values of less than n in an access 
control list entry of any segment. Although a given ring 
may simultaneously protect different subsystems in dif- 
ferent processes, each ring of each process can protect 
only one subsystem at a time. A usable software access 
control facility must constrain each user's ability to 
dynamically set and modify access control specifi6ations 
so that this sole occupant property can be verified and 
enforced when necessary. 

Conclusions 

The hardware mechanisms derived and described in 
this paper implement a methodical generalization of the 
traditional supervisor/user protection scheme that is 
compatible with a shared virtual memory based on seg- 
mentation. This generalization solves three significant 
kinds of problems of a general purpose system to be 
used as a computer utility: 

• users can create arbitrary, but protected, subsystems 
for use by others; 
• the supervisor can be implemented in layers which 
are enforced; 
• the user can protect himself while debugging his own 
(or borrowed) programs. 

The subset access property of rings of protection does 
not provide for what may be called "mutually suspicious 
programs" operating under the control of a single proc- 
ess. On the other hand, it is just that subset property 
which imposes an organization which is easy to under- 
stand and thus allows a system or subsystem designer 
to convince himself that his implementation is complete. 
Also, it is just the subset property which is the basis for 
a hardware implementation that is integrated with seg- 
mentation mechanisms, requiring very small additional 
costs in hardware logic and processor speed. 

The long-range effect of hardware protection mech- 
anisms which permit calls to protected subsystems that 
use the same mechanisms as calls to other procedures 
is bound to be significant. In the interface to the super- 
visor of most systems there are many examples of 
facilities whose interface design is biased by the assump- 
tion that a call to the supervisor is relatively expensive; 
the usual result is to place several closely related 
functions together in the supervisor, even though only 
one of the group really needs protection. For  example, 
in the Multics typewriter I /O  package, only the func- 
tions of copying data in and out of shared buffer areas 
and of executing the privileged instruction to initiate 
I /O channel operation need to be protected. But, since 
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these two functions are deeply tangled with typewriter 
operation strategy and code conversion, the typewriter 
I /O  control package is currently implemented as a set 
of procedures all located in the lowest-numbered ring of 
the system, thus increasing the quantity of code which 
has maximum privilege. 

A similar example is found in many file system 
designs, where complex file search operations are carried 
out entirely by protected supervisor routines rather than 
by unprotected library packages, primarily because a 
complex file search requires many individual file access 
operations, each of which would require transfer to a 
protected service routine, which transfer is presumed 
costly. 

The initial version of Multics used software imple- 
mented rings of protection. The result was a very 
conservative use of the rings: originally just two super- 
visor rings and one user ring were employed, and the 
two supervisor rings were temporarily collapsed into 
one (thus exploiting the programming generality objec- 
tive referred to before) while the software ring crossing 
mechanisms were tuned up. Today, although there are 
many obvious applications waiting, the ability to use 
more than two rings in a computation is just beginning 
to be exploited. The availability with the new Multics 
processor of hardware implemented rings which make 
downward calls and upward returns no more complex 
than calls and returns in the same ring should signifi- 
cantly increase such exploitation. 

A c k n o w l e d g m e n t s .  The concepts embodied in the 
mechanisms described here were the result of seven years 
of maturing of ideas suggested by many workers. The 
original idea of generalizing the supervisor/user 
relationship to a multiple ring structure was suggested 
by R.M. Graham, E.L. Glaser and F.J. Corbat6. An 
initial software implementation of rings using multiple 
descriptor segments [14] was worked out by Graham 
and R.C. Daley, and constructed by members of the 
Multics system programming team. That implementa- 
tion makes use of hardware access mode indicators 
stored in the segment descriptor word of the Honeywell 
645 computer. Graham [9], in 1967, proposed a partial 
hardware implementation of rings of protection which 
included three ring numbers embedded in segment de- 
scriptor words, and a processor ring register, but which 
still required software intervention on all ring crossings. 
Though a related scheme was implemented in the Hitac 
5020 time-sharing system [15], this hardware scheme was 
never implemented in Multics, which today (1971) still 

uses a version of the software implementation of rings. 
The complete automation of downward calls and up- 
ward returns was proposed in a thesis in 1969 [16]; the 
description in this paper extends that thesis slightly with 
the addition of ring numbers to indirect words and the 
processor pointer registers, as suggested by Daley. The 
CALL and RETURN instructions proposed there have also 
been simplified. 

The hardware implemented call and return, and 
automatically managed stacks, were at least partly in- 
spired by similar mechanisms which have long been used 
on computer systems of the Burroughs Corporation 
[4, l l] .  

In addition to those named above, D.D. Clark, C.T. 
Clingen, R.J. Feiertag, J.M. Grochow, N.I. Morris, 
M.A. Padlipsky, M.R. Thompson, V.L. Voydock, and 
V.A. Vyssotsky contributed significant help in under- 
standing and implementing rings of protection. 
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