
A Hardware
Architecture for
Implementing
Protection Rings
Michael D. Schroeder and Jerome H. Salt zer
Massachusetts Institute of Technology*

Protection of computations and information is an
important aspect of a computer utility. In a system
which uses segmentation as a memory addressing
scheme, protection can be achieved in part by
associating concentric rings of decreasing access
privilege with a computation. This paper describes
hardware processor mechanisms for implementing
these rings of protection. The mechanisms allow
cross-ring calls and subsequent returns to occur
without trapping to the supervisor. Automatic
hardware validation of references across ring
boundaries is also performed. Thus, a call by a user
procedure to a protected subsystem (including the
the supervisor) is identical to a call to a companion
user procedure. The mechanisms of passing and
referencing arguments are the same in both cases as
well.

Key Words and Phrases: protection, protection
rings, protection hardware, access control, hardware
access control, computer utility, time-sharing, shared
information, segmentation, virtual memory, Multics

CR Categories: 4.32, 6.21

Copyright © 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

Introduction

The topic o f this paper is the control o f access to
stored informat ion in a computer utility. The paper
describes a set o f processor access control mechanisms
that were devised as part of the second i teration o f the
hardware base for the Multics system. These mecha-
nisms provide a hardware implementat ion of protect ion
rings which limit the access privileges o f an executing
program.

°Mult ics is a general purpose, multiple user, inter-
active computer system developed at Project MAC of
MIT in a joint effort with the Cambridge In format ion
Systems Labora to ry of Honeywell In fo rmat ion Systems
Inc. and, until 1969, the Bell Telephone Laborator ies . It
was built and is being run as an experiment in designing,
implementing, operating, and evaluating a p ro to type
computer utility. (Reference [14] contains a bibliog-
raphy of publications on Multics.)

Multics is currently implemented on a Honeywel l
645 computer system. The 645 represents a first a t tempt
to define a suitable hardware base for a computer utility.
While containing special logic to support a segmented
virtual memory, the 645 processor [10] provides only a
limited set of access control mechanisms, forcing soft-
ware intervention to implement protect ion rings. In the
course of Multics development a second i teration o f the
design of the hardware base has been undertaken. The
resulting new hardware system is being built as a re-

* Project MAC and Department of Electrical Engineering, 545
Technology Square, Cambridge, MA 02139. Work reported herein
was supported in part by Project MAC, an MIT research program
sponscred by the Advanced Research Projects Agency, Department
of Defense, under Office of Naval Research Contract N00014-70-
A-0362-0001.

Presented at the Third ACM Symposium on Operating Systems
Principles, Palo Alto, California, October 18-20, 1971.

157 Communications March 1972
of Volume 15
the ACM Number 3

placement for the 645 using the technology of the
Honeywell 6000 series computer systems. The new proc-
essor includes an improved set of access control mecha-
nisms, described here, which implement rings almost
completely in hardware. These mechanisms were devel-
oped from a scheme described in [16]. Although specifi-
cally designed for Multics, the mechanisms are appli-
cable to any computer system which uses segmentation
as a memory addressing scheme.

This paper begins by establishing the general need
to control access to stored information in a computer
utility and by presenting several criteria for comparing
different sets of access control mechanisms. Relevant
aspects of the organization of segmented memories are
then sketched, and the processor mechanisms for imple-
menting protection rings are described. The paper con-
cludes by illustrating how rings can be used and by
evaluating the impact of a hardware system design.

Access Control in a Computer Utility

Protection of computations and information is an
important aspect of a computer utility. The multiple
users of a computer utility have different goals and are
responsible to different authorities. Such a diverse group
will use the same system only if it is possible for them to
achieve independence from one another. On the other
hand, a great potential benefit of a computer utility is
its ability to allow users to easily communicate, coop-
erate, and build upon one another 's work. The role of
protection in a computer utility is to control user inter-
action--guaranteeing total user separation when de-
sired, allowing unrestricted user cooperation when
desired, and providing as many intermediate degrees of
control as will be useful.

While there are many manifestations of protection
in a computer utility, most may be related to controlling
access to stored information. Because stored informa-
tion represents both data and executable procedure,
control of access to stored information serves to regulate
information processing as well.

Four criteria can be applied to a set of access control
mechanisms to judge its Usefulness in a computer utility:
functional capability, economy, simplicity, and pro-
gramming generality. The first means that a set of access
control mechanisms should be able to meet an inter-
esting set of user protection needs in a natural way. The
ability to meet interesting protection needs must be a
quality of the basic mechanisms, while the ability to do
so in a natural way is a quality of their user interface.
An obvious goal in designing new protection mecha-
nisms is to maximize functional capability.

The second criterion, economy, means that the cost
of specifying and enforcing a particular kind of access
constraint with a set of mechanisms should be so low
that it is not an important consideration in determining
the type of access control to be used in a particular appli-

158

cation. In addition, cost should be proportional to the
functional capability actually used. The existence of
access control mechanisms with sophisticated capabil-
ities should cost no extra to those with unsophisticated
needs. Cost includes the subsystem complexity and user
inconvenience that result from use of the access control
mechanisms, as well as any associated extra storage
space and execution time.

Simplicity is the third criterion. While it is true that
simplicity often leads to economy, something more is at
stake. For a set of access control mechanisms to be ac-
cepted there must be confidence that no way exists to
circumvent it. The best way to achieve confidence is to
keep the mechanisms so simple that they may be com-
pletely understood. With respect to access control
mechanisms, lack of simplicity often implies lack of
security.

The fourth criterion, programming generality, is
often neglected. It means that individual procedures
may be combined easily into larger units without under-
standing or altering their internal organizations. Pro-
gramming generality allows sharing to be effective in
encouraging users to build upon one another 's work.
An implication of programming generality of relevance
to access control mechanisms is that it should be pos-
sible to change the protection environment of proce-
dures and collections of procedures without altering
their internal structure.

It clearly is difficult to design access control mecha-
nisms which satisfy all four of these criteria simultane-
ously. Increases in functional capability come at the
expense of economy, simplicity, and programming gen-
erality. The challenge in designing a set of access control
mechanisms is to maximize functional capability within
the constraints of the other three criteria. In the fol-
lowing sections a set of hardware access control mecha-
nisms that was devised in the course of Multics develop-
ment is described. These mechanisms appear to provide
a significant improvement in the simultaneous satisfac-
tion of the four criteria as compared with the mecha-
nisms in the initial Multics implementation.

Segmented Virtual Memory Environment

The processor access control mechanisms described
here regulate the ability of an executing program to
reference information in a segmented virtual memory.
As a basis for understanding these access control mecha-
nisms this section briefly reviews the structure of a typ-
ical segmented virtual memory. (See [1-3] for detailed
descriptions of several segmented virtual memories.)

A machine language program for a segmented envi-
ronment does not reference memory by absolute ad-
dress. Rather, its memory consists of independent seg-
ments identified by number. Each segment is a separate
array of words. A two-part address (s, w) identifies
word w of the segment numbered s.

Communications March 1972
of Volume 15
the ACM Number 3

The collection of segments in the virtual memory is
defined by a descriptor segment containing an array of
segment descriptor words (SDW'S). Each SDW can de-
scribe a single segment in the virtual memory. The num-
ber of a segment is just the index of the corresponding
SDW in the descriptor segment. Among other things, an
sDw contains the absolute address of the beginning of
the corresponding segment in memory. The absolute
address of the beginning of the descriptor segment is
contained in the descriptor base register (DBR) of a proc-
essor. Each processor contains logic for automatically
translating two-part addresses into the corresponding
absolute addresses. Address translation, done with an
indexed retrieval of the appropriate sDw from the de-
scriptor segment, occurs each time a word in the virtual
memory is referenced, i.e. each time an instruction, in-
direct word, or instruction operand reference is made by
an executing program.

Storage for segments is usually allocated with a
paging scheme in scattered fixed-length blocks. I f used,
paging is also taken into account by the address transla-
tion logic, but is totally transparent to an executing
machine language program. Paging, if appropriately
implemented, need not affect access control; it will be
ignored in the remainder of this paper.

Changing the absolute address in the DBR of a proc-
essor will cause the address translation logic to interpret
two-part addresses relative to a different descriptor seg-
ment. This facility can be used to provide each user of
the system with a separate virtual memory. A single
segment may be part of several virtual memories at the
same time, allowing straightforward sharing of segments
among users.

Controlling Access in a Segmented Virtual Memory

To provide a framework for discussion, three specific
assumptions true of Multics are introduced. First, a
process with a new virtual memory is created for each
user when he logs in to the system, and the name of the
user is associated with the process. The process is the
active agent of the user, and is his only means of refer-
encing and manipulating information stored on-line.
Second, on-line storage is organized as a collection of
segments of information. A process can reference a seg-
ment of on-line storage only if the segment is first added
to the virtual memory of the process. Third, the users
that are permitted to access each segment are named by
an access control list associated with each segment. As
will be seen, any system providing access control of the
type under discussion will probably have analogous as-
sumptions. The application of the rest of the discussion
to other systems with segmented virtual memories is
straightforward.

Adding a segment to a virtual memory, an operation
performed by supervisor programs, provides the initial
opportunity for controlling access to information stored

159

on-line. The name of the user associated with a process
must match some entry on the access control list of a seg-
ment before the supervisor will add that segment to the
the virtual memory of the process.

Once a segment is included in the virtual memory,
however, finer control on access is required. (If a process
could, say, write in any segment to which it had access,
little sharing of information among users would occur.)
I f this finer control is to be effective against arbitrary
machine language programs constructed by users, it
must be implemented as hardware access validation on
each reference. The structure of the virtual memory
makes it natural to record these finer constraints in the
SDW associated with each segment. Since the processor
must examine the SDW for a segment each time that seg-
ment is referenced by two-part address anyway, there is
little effort added to validate the intended access against
constraints recorded there. With this structure it is also
possible to change the allowed access to a segment by
changing the finer constraints recorded in the sDw, and
to expect the change to be immediately effective, al-
though the need for such dynamic changes is rare.

Flags which enable a segment to be read, written,
and executed are natural constraints to record in each
sDw. The value for each flag comes from the access con-
trol list entry which matched the name of the user asso-
ciated with the process. An at tempt by a process to
change the contents of a word of a segment, for example,
would be allowed by the processor only if the write flag
were o n in the m w for the segment. This mechanism
provides individual control on the ability of each user's
process to read, write, and execute the words in each
segment stored on-line. It also makes a segment the
smallest unit of information that can be separately pro-
tected.

With the access control mechanisms described so far,
all programs executed as part of some process have the
same information accessing capabilities. However, there
seems to be an intrinsic need in many computat ions for
the access capabilities of a process to vary as the exe-
cution point passes through the various programs that
direct the computation. The most obvious examples of
this need are explicit invocations of supervisor programs
during the course of a computat ion. The execution point
may pass from a user program to a supervisor program
to initiate an input /ou tpu t operation or change the ac-
cess control list of a segment, and then pass back to the
user program. Presumably the executing supervisor pro-
gram can access information in some way that the user
program cannot. In a system that allows and encourages
sharing of information among users, other examples
appear. For instance, user A may wish to allow user B
to access a sensitive data segment, but only through
a special program, provided by A, that audits references
to the segment. During the course of a computat ion in
a process of user B, access to the sensitive data segment
should be allowed only when the execution point is in
the special program provided by A.

Communications March 1972
of Volume 15
the ACM Number 3

The word "domain" is frequently associated with a
set of access capabilities. The examples above point to
an intrinsic need for multiple domains to be associated
with a process and for the domain in which the process
is executing to occasionally change as the execution
point passes from one program to another. A descriptor
segment with read, write, and execute flags in the SDW'S
defines a single domain. Additional mechanisms are
required to allow multiple domains to be associated
with a single process.

A very general set of access control mechanisms
would place no restriction on the number of domains
which could be associated with a process, and would
force no restrictive relationships to exist among the sets
of access capabilities included in the domains. Unfortu-
nately, devising such a set of access control mechanisms
that also meets the criteria of economy, simplicity, and
programming generality is a difficult research problem.
(See [5, 7, 8, 12, 13, 17] for several approaches that have
been explored.) In Multics the strategy was adopted of
limiting the number of domains which may be associated
with a process, and of forcing certain relationships to
exist among the sets of access capabilities included in
the domains. The result is protection rings.

The characterization of rings as a restricted imple-
mentat ion of domains is the result of hindsight. When
developed, rings were viewed as a natural generalization
of the supervisor/user modes that provided protection
in many computers. This path of development was
chosen because it solved the most pressing problems of
access control involved in the prototype computer
utility and, due to the inherent simplicity of the idea, it
was a path that the Multics designers felt confident they
could successfully complete. Even today rings appear to
provide an effective trade-off among the criteria men-
tioned above.

flags must be extended to indicate which rings include
each access capability. Because of the nested subset
property of rings, the capability, say, to write a particu-
lar segment, if available to a process at all, is included in
all rings numbered less than or equal to some value w.
The range of rings over which this write permission
applies is called the write bracket of the segment for the
process. Read and execute brackets for each segment
can be established in the same way. A process is per-
mitted to read, write, or execute a segment in its virtual
memory only if the ring of execution of the process is
within the proper bracket.

A partial hardware implementat ion of rings places
numbers indicating the top of each bracket of a segment
in the SDW of the segment, along with the read, write,
and execute flags. I f a flag is on, then the number spec-
ifies the extent of the corresponding bracket. Turning a
flag of f indicates that the corresponding access capability
is not included in any ring of the process. For example,
a data segment might have its execute flag turned of f or
a pure procedure segment might have its write flag
turned off. A register is added to the processor to record
the current ring of execution of the process. The proc-
essor can then validate each reference to a segment by
making the obvious comparisons when the SDW for the
segment is examined for address translation.

Figure 1 illustrates the flags and brackets that might
be associated with a writable data segment for some
process. (In Multics, eight was chosen as the appropriate
number of rings. Eight rings are shown in the examples,
al though more or fewer rings might be appropriate in
another system.)

Fig. 1. Example access indicators for a writable data segment.

0 I 2 3 4 5 6 7 r i n g
P I r I I I I

w r i t e b r a c k e t read f l o g ~ on

w r i t e f l a g : on
read b r a c k e t execu te f l a g t o f f

Protection Rings

Associated with each process are a fixed number of
domains called protection rings. These r rings are named
by the integers 0 through r -- 1. The access capabilities
included in ring rn are constrained to be a subset of those
in ring n whenever m > n. Put another way, the sets of
access capabilities represented by the various rings of a
process form a collection of nested subsets, with ring 0
the largest set and ring r - 1 the smallest set in the collec-
tion. Thus, a process has the greatest access privilege
when executing in ring 0, and the least access privilege
when executing in ring r - 1. The total ordering of the
sets of access capabilities defined by the consecutively
numbered rings of a process is the property which allows
a straightforward implementat ion of rings in hardware.

As described earlier, the permission flags for each
segment in the virtual memory of a process simply indi-
cate that the segment can or cannot be read, written, or
executed by the process. With the addition of rings, the

The association of multiple domains of protection
with a process generates the need for a new kind of ac-
cess capabi l i ty-- the capability to change the domain of
execution of a process. Since changing the domain of
execution has the potential to make additional access
capabilities available to a process, it is an operation that
must be carefully controlled. An understanding of the
sort of control required can be gained by reviewing the
purpose of domains. A domain provides the means to
protect procedure and data segments from other proce-
dures that are part of the same computat ion. Using
domains, it should be possible to make certain access
capabilities available to a process only when particular
programs are being executed. Restricting the start of
execution in a particular domain to certain program
locations, called gates, provides this ability, for it gives
the program sections that begin at those locations cam-

160 Communications March 1972
of Volume 15
the ACM Number 3

plete control over the use made of the access capabilities
included in the domain. Thus, changing the domain of
execution must be restricted to occur only as the result
of a transfer of control to one of these gate locations of
another domain.

With a completely general implementat ion of do-
mains, each domain could provide protection against
the procedures executing in all other domains of a pro-
cess. The corresponding property of rings is that the
protection provided by a given ring of a process is ef-
fective against procedures executing in higher numbered
rings. Switching the ring of execution to a lower number
makes additional access capabilities available to a pro-
cess, while switching the ring to a higher number reduces
the available access capabilities. Thus, the downward
ring switching capability must be coupled to a transfer
of control to a gate into the lower numbered ring. Gates
are specified by associating a (possibly empty) list of
gate locations with each segment in the virtual memory
of a process. I f the execution point of the process is
transferred to a segment while the ring of execution is
above the top of the execute bracket for the segment,
then the transfer must be directed to one of the gate
locations in the segment. I f the transfer is to a gate, then
the ring of execution of the process will switch down to
the top of the execute bracket of the segment as the
transfer occurs. I f the transfer is not directed to one of
the gate locations, then the transfer is not allowed.

To provide control of this downward ring switching
capability which is consistent with the subset property
of rings, a gate extension to the execute bracket of a
segment is defined. The gate extension specifies the con-
secutively numbered rings above the execute bracket of
the segment that include the "transfer to a gate and
change ring" capability for the segment. The gate list
and the gate extension to the execute bracket can both
be specified with additional fields in each SDW.

In contrast to downward ring changes, switching the
ring of execution to a higher-numbered ring can only
decrease the available access cat'abilities of a process.
Thus, an upward ring switch is an unrestricted operation
that can be performed by any executing procedure. (The
instruction to be executed immediately following an
upward ring switch must come from a segment that is
executable in the new, higher-numbered ring.) For
programming convenience, the upward ring switch may
be coupled to a special transfer instruction.

The abstract description of rings is now one step
from completion. The last step comes from the observa-
tion that for each procedure segment in the virtual mem-
ory of each process there is a lowest-numbered ring in
which that procedure is intended to execute. In order
to provide the means for preventing the accidental
transfer to and execution of a procedure in a ring lower
than intended, the requirement that execute brackets
have a lower limit at ring 0 is relaxed and instead an
arbitrary lower limit is allowed. For many procedure
segments the execute bracket will include exactly one

r ing-- the ring in which the procedure is intended to exe-
cute. Procedure segments with wider execute brackets
normally will contain commonly used library subrou-
tines that are certified as acceptable for execution in any
of several rings.

The arbitrary lower limit on the execute bracket of a
segment can be implemented by using the field of an
SDW which specifies the top of the write bracket to spec-
ify the bot tom of the execute bracket as well. The double
use of this field does not appear to remove any inter-
esting functional capability. In fact, it eliminates an
unwanted degree of freedom in access specification,
thereby removing the potential to make certain types of
errors, such as allowing both writing and execution of a
segment in more than one ring of a process.

Figure 2 shows example access indicators for a pure
procedure segment containing gates, and illustrates how

Fig. 2. Example access indicators for a pure procedure segment
which contains gates.

0
J

I 2 3 4 5 6 7 r i ng
I I J [I I I q

read bracket

execu te gate
bracket e x t e n s i o n

J r e a d f l a g : o n
wri te bracket i f w r i t e f l a g = o f f

w r i t e f l a g o n e x e c u t e f l a g = o n

g a t e l i s t ~ 0 ,1 , 2

the execute and write brackets specified in an SDW must
be related.

The gate list and the numbers specifying the read,
write, and execute brackets and gate extension in each
SDW all come from the access control list entry which
permitted the process to include the corresponding seg-
ment in its virtual memory, as did the values for the
read, write, and execute flags.

Call and Return

As argued above, a change in the domain of execu-
tion of a process can occur only when the executing
procedure transfers control to a gate of another domain.
In the context of most programming languages, an inter-
procedure transfer represents a subroutine call, a return
following a call, or a nonlocal goto. Linguistically, all
three operations produce a change in the environment
of the execution point; this change affects the binding of
variable names to virtual storage locations. The call
operation has the additional function of transmitting
arguments and recording a return point. Performing
these functions generally requires the cooperation of
both the procedure initiating the operation and the
procedure receiving control. I f a call, return, or gala
changes the domain of execution because it happens to
be directed to a gate location of another domain, then
the situation becomes more complicated, for neither

161 Communications March 1972
of Volume 15
the ACM Number 3

procedure can depend upon the other to cooperate. An
important simplification introduced by restricting do-
mains to a ring structure is that a procedure may assume
the cooperation of procedures in lower-numbered rings.

When procedures are shared among different pro-
cesses and different domains, the addressing environ-
ment is usually defined via processor registers, for the
procedures must be pure and it is not convenient to
embed addresses within them. Part of the function of the
call, return, and goto operations is to properly update
this environment pointer. In Multics, pure procedures
are used with a per process stack, and a stack pointer
register provides the required environment definition.
The stack of a process is implemented with a separate
segment for each ring being used. The stack segment for
procedures executing in ring n has read and write brack-
ets that end at ring n. Thus, stack areas for these proce-
dures are not accessible to procedures executing in any
ring m > n. In the following discussion the stack pointer
register is used as a typical example of the required
environment pointer.

The most common ways of changing the ring of exe-
cution of a process are a call to a gate of a lower-num-
bered ring and the subsequent upward return. A down-
ward call represents the invocation of a user-provided
protected subsystem or a supervisor procedure. Because
the Honeywell 645 was designed around the usual super-
visor/user protection method, the version of Multics for
this machine implements rings by trapping to a super-
visor procedure when downward calls and upward re-
turns are performed. The hardware mechanisms detailed
in the next section eliminate the need to trap in these
cases. Using these improved hardware access control
mechanisms, downward calls and upward returns occur
without the intervention of a supervisor procedure and
are performed by the same object code sequences that
perform all calls and returns.

It is the nested subset property of rings that makes a
straightforward hardware implementation of downward
calls and upward returns possible. Because of this prop-
erty, the called procedure automatically has all access
capabilities required to reference any arguments that
the calling procedure can legitimately specify and to
return to the calling procedure in the ring from which it
called. However, three problems remain. First, the called
procedure must have a way of finding a new stack area
without depending upon information provided by the
calling procedure. Second, the called procedure must
have a way of validating references to arguments, so that
it cannot be tricked into reading or writing an argument
that the caller could not also read or write. Finally, the
called procedure must have a way of knowing for certain
the ring in which the calling procedure was executing,
so that the called procedure cannot be tricked into re-
turning control to a ring not as high as that of the calling
procedure.

The key to solving the first problem, finding a new
stack area, is a rule relating the segment number of the

162

stack segment for a ring to the ring number. Using this
rule, the processor automatically calculates the segment
number of the proper stack segment for the called proce-
dure's ring of execution. By convention, a fixed word of
each stack segment can point to the beginning of the
next available stack area. Thus, the stack segment num-
ber alone can provide the called procedure with enough
information from which to construct its own stack
pointer. Because the processor provides the stack seg-
ment number, no procedure executing in a higher-num-
bered ring, e.g. the calling procedure, can affect the value
of the stack pointer for the called procedure.

The second problem, validating argument references,
is solved by providing processor mechanisms which al-
low a procedure to assume the more restricted access
capabilities of any higher-numbered ring for particular
operand references. Using these mechanisms, the called
procedure can validate access when referencing argu-
ments as though execution were occurring in the (higher-
numbered) ring of the calling procedure. Thus, the
called procedure, even though it is executing in a ring
with more access capabilities than the ring of the calling
procedure, can prevent itself from reading or writing
any argument that the calling procedure could not also
read or write.

The final problem, knowing the ring of the caller, is
solved by having the processor leave in a program acces-
sible register the number of the ring in which execution
was occurring before the downward call was made. The
subsequent return is made to that ring. Thus the calling
procedure has no opportunity to lower the number of
the ring to which the return is made.

The next two sections describe in more detail how
downward calls, argument referencing and validation,
and upward returns are implemented. Before proceeding
to that description, however, there are two other possi-
bilities to consider: a call and return that do not change
the ring of execution, and an upward call and the subse-
quent downward return. The first presents no protection
problem, as both the calling and the called procedures
have available the same set of access capabilities. The
hardware mechanisms for downward calls and upward
returns also work when no change of ring is needed.

The last possibility is more difficult to handle. An
upward call occurs when a procedure executing in ring
n calls an entry point in another procedure segment
whose execute bracket bottom is m > n. When the call
occurs, the ring of execution will change to m. The sub-
sequent return is downward, resetting the ring of execu-
tion to n. These cases exhibit two unpleasant character-
istics of a general cross-domain call and return that were
not present in the other cases.

The first is that the calling procedure may specify
arguments that cannot be referenced from the ring of the
called procedure. (For a downward call, the nested sub-
set property of rings guaranteed that this could not
happen.) There are at least three possible solutions to
this problem. One is to require that the calling procedure

Communications March 1972
of Volume 15
the ACM Number 3

Fig. 3. Schematic description of relevant storage formats and
processor registers.

Descriptor base register

DBR I ADDRESS]LENGTH~

Segment descriptor word (stored in memory)

SDW [ADDRESS i LENGTH IRIIR21R3F~E~
access indicator

Instruct ion pointer register

IPR I RING I SEGNO I WORDNO

Instruct ion word (stored in memory)

INST {--PRNUM I OFFSET I OPDODE r ~ , ~

Program accessible pointer regis lers

PRI

RING S E G N O WORDNO

Indirect word (stored in memory)

,NO I R,NG r SEGNO r WORDNO I ~

Temporary pointer register

TPR ~RING I SEGNo I WORDNO j

specify only arguments that are accessible in the higher-
numbered ring of the called procedure. This solution
compromises programming generality by forcing the
calling procedure to take special precautions in the case
of an upward call. Another possible solution is to dy-
namically include in the ring of the called procedure the
capabilities to reference the argumenfs. Because a seg-
ment is the smallest unit of information for which access
can be individually controlled, this forces segments
which contain arguments to contain no other informa-
tion that should be protected differently, again compro-
mising programming generality, unless segments are in-
expensive enough that, as a matter of course, every data
item is placed in its own segment. It may also be expen-
sive to dynamically include and remove the argument
referencing capabilities from the called ring. The third
possible solution is copying arguments into segments
that are accessible in the called ring, and then copying
them back to their original locations on return. This so-
lution restricts the possibility of sharing arguments with
parallel processes. None of the three solutions lends
itself to a straightforward hardware implementation.

The second unpleasant characteristic is that a gate
must be provided for the downward return. (For an
upward return the nested subset property of rings made
a return gate unnecessary.) The return gate must be
created at the time of the upward call and be destroyed
when the subsequent return occurs. I f recursive calls

163

into a ring are allowed, then this gate must behave as
though it were stored in a push-down stack, so that only
the gate at the top of the stack can be used. The gates
specified in SDW'S seem poorly suited to this sort of dy-
namic behavior. Processor mechanisms to provide dy-
namic, stacked return gates are not obvious at this time.

Because of these two problems, the hardware de-
scribed in the next section does not implement upward
calls and downward returns without software interven-
tion. Although the same object code sequences that
perform all calls and returns are used in these cases as
well, the hardware responds to each at tempted upward
call or downward return by generating a trap to a super-
visor procedure which performs the necessary environ-
ment adjustments.

The manner in which the stack pointer register value
of the calling procedure is saved when a call occurs and
restored when the subsequent return occurs has not yet
been discussed. For a same-ring or downward call, it is
reasonable to trust the called procedure to save the value
left in the stack pointer register by the calling procedure
and then restore it before the subsequent return, since in
these cases the called procedure has access capabilities
which allow it to cause the calling procedure to malfunc-
tion in other ways anyway. For an upward call and the
subsequent downward return, the same convention can
be used without violating the protection provided by the
lower ring if the intervening software verifies the re-
stored stack pointer register value when performing the
downward return.

Hardware Implementation of Rings

In this section the ideas presented in the previous sec-
tions are gathered into a description of a design for
processor hardware to implement rings. The description
touches upon only those aspects of the processor orga-
nization that are relevant to access control. The seg-
mented addressing hardware described earlier serves as
the foundation of the ring implementation mechanisms.

Figure 3 presents a schematic description of storage
formats and processor registers that are relevant to the
discussion which follows. The DBR and SDW'S have al-
ready been mentioned. The three 3-bit ring numbers in
an SDW (SDW.R1, SDW.R2, and SDW.R3) delimit the read,
write, and execute brackets and the gate extension. The
write bracket is rings 0 through SDW.R1, the execute
bracket SDW.R1 through SDW.R2, and the gate extension
SDW.R2+I through SDW.R3. Rather than providing a
fourth number to specify the top of the read bracket,
SDW.R2 is reused for this purpose. Thus the read bracket
is rings 0 through SDW.R2. Forcing the top of the read
and execute brackets to coincide in this manner does not
seem to preclude any important cases, and saves one
ring number in the SDW. Supervisor code for con-
structing sDw's must guarantee that SDW.R1 ~ SDW.R2
< SDW.R3 is true. The single-bit read, write, and execute

Communications March 1972
of Volume 15
the ACM Number 3

flags (SOW.R, SOW.W, and SDW.E) also appear. Finally,
the list of gate locations of a segment is compressed to
a single fixed-length field (SOW.GATE) by requiring all
gate locations to be gathered together, beginning at
location 0 of a segment. SOW.GATE contains the number
of gate locations present.

The instruction pointer register (IPR) specifies the
current ring of execution and the two-part address of
the next instruction to be executed. The general format
of an instruction word in memory (INST) is also shown
for later reference.

The program accessible pointer registers (PRO, PR1,
...) each contain a two-part address and a ring number.
Because segment numbers are not generally known at
the time a procedure segment is compiled, machine
instructions specify two-part operand addresses by
giving an offset (in INST.OFFSEa') relative to one of the
PR'S (specified by INST.PRNUM) or IPR. The ring number
in a pointer register (PRn.RING) is used to specify a vali-
dation level for the address, and is part of the mecha-
nism that allows an executing procedure to assume the
access capabilities of a higher-numbered ring for refer-
encing arguments. One of the PR'S is intended to serve
as the stack pointer register mentioned earlier.

Indirect addressing may be specified in an instruction
by setting the indirect flag (INST.I). Indirect words (IND)
contain the same information as PR'S, and may also
indicate further indirection with an indirect flag (INO.I).

The final item in Figure 3 is the temporary pointer
register (TPR). The TPR is an internal processor register
that is not program accessible. It is used to form the
two-part address of each virtual memory reference
made. The ring number (TPR.RING) provides the value
with respect to which permission to reference the virtual
memory location is validated.

There are two aspects to the implementation of rings
in hardware. The first is access checking logic, integrated
with the segmented addressing hardware, that validates
each virtual memory reference. The second is special
instructions for changing the ring of execution. The best
way to describe the first aspect is to trace the processor
instruction cycle, paying particular attention to the
places where operations related to access validation oc-
cur. The second aspect will be discussed when the de-
scription of the instruction cycle reaches the point where
the instruction is actually performed.

The first phase of the instruction cycle, retrieving the
next instruction to be executed, is described in Figure 4.
At the point during address translation that the sow for
the segment containing the instruction becomes avail-
able, the ring of execution (now TPR.RING) is matched
against the execute bracket defined in the SOW and the
execute flag is checked. If the segment may be executed
from the current ring of execution the instruction fetch
is completed. The access violations and other conditions
requiring software intervention shown in this and fol-
lowing figures generate traps, derailing the instruction
cycle. A traps action is described later in this section.

164

Fig. 4. Retrieval of next instruction to be executed.

I I
Fetch SOW for segment

containing next instruc-
t ion. (Segment number is

TPR.SEGNO)

Access v io la t ion
<SDW" R I-< TPR" RING-< SDW" R 2~--"--n ° ~ 1 - : ° ' - - m e xecu t e l

I b racke t J
yes

 eo;oot on:
no execute f lag not

o,7

Fin ish i n s t r u c t i o n f e t c h .
(Word number is

TPR.WORDNO)

The next phase of the instruction cycle, calculating
in TVR the effective address of the instruction's operand,
is described in Figure 5. This phase occurs only if the
instruction has an operand in memory. The effective
address is the final two-part address of the operand
(after all address modifications and indirections have
taken place) together with an effective ring number
which is used to validate the actual reference to the
operand.

The formation of a two-part address in TPR.SEGNO
and TPR.WORDNO is very straightforward and is de-
scribed by Figure 5. The calculation of the ring number
portion of the effective address in TPR.RING and the ac-
cess validation performed before retrieving indirect
words, also shown in Figure 5, need further comment.

The effective ring portion of the effective address
provides a procedure with the means of voluntarily as-
suming the access capabilities of a higher-numbered
ring when making an instruction operand reference. The
effective ring number also records the highest-numbered
ring from which a procedure (in the same process) pos-
sibly could have influenced the effective address calcula-
tion. The first opportunity for the value of TPR.RING to
change during effective address calculation occurs if the
instruction contains an address that is an offset relative
to some PRn. In this case TPR.RING is updated with the
larger of its current values (still the current ring of execu-
tion) and the ring number in the specified pointer regis-
ter (VRn.RING). Thus, if PRn.RING contains a value that is
greater than the current ring of execution, validation of
the operand reference will be as though execution were
occurring in this higher-numbered ring.

Communications March 1972
of Volume 15
the ACM Number 3

Fig. 5. Formation in TPR of effective address
operand.

I (n = INST,PRNUM)
TPR .SEGNO<3= PRn. SEG NO
TPR. WORDNO<3- PRn.WORDNO + INST. OFFSE"
TPR. RING<~ = max (TPR,RING, PRn, RING)

l
specify oberand address no-

indirectly
yes 1~

Fetch SDW for segment
I ,nln ,°o, I word. (Segment number
I is TPR'SEGNO) I

i thi d b rac ke t l.,,-n o~TPR.RING ~ SOW.R 2)

[:~;,ns 2, : i i ::n~OO;s 1- yes la

TPR.SEGNO<~ = IND. SEGNO
TPR.WORDNO <1= IND ; WORDNO
TPR.RING<3= mox(TPR.RING,SDW, RI, IND. FtlNG)

~Further indirection?~-yes--
n o I J n o J

(At th is point TPR
contains e f fec t i ve
address of instruc- . j . d ~
t ion operand.)

of instruction

The remaining opportunities to change the value of
TPR.RING occur in conjunction with the processing of
indirect words involved in the effective address calcula-
tion. Each time an indirect word is retrieved, TaR.raNG
is updated with the larger of its current values, the ring
number in the indirect word 0ND.RING), and the top of
the write bracket for the segment containing the indirect
word (SDW.R1). The ring number in the indirect word
has the same purpose as the ring number in a pointer
register--forcing validation of the operand reference
relative to some higher-numbered ring. Including in the
calculation the top of the write bracket of the segment
containing the indirect word, however, has another pur-
pose. The top of the write bracket represents the highest-
numbered ring from which a procedure in the same
process could have altered the indirect word and thereby
influenced the result of the effective address calculation.
Taking into account SDW.RI when updating TaR.RING
guarantees that the operand reference will be validated
with respect to the highest-numbered ring which could
have influenced the effective address.

The capability to read an indirect word during effec-
tive address formation must be validated before the
indirect word is retrieved. Validation is with respect to
the value in TPR.RING at the time the indirect word is
encountered. At the conclusion of the effective address
calculation described in Figure 5, TPR contains the effec-
tive address of the instruction operand, including the
effective ring number with respect to which the reference
to the operand will be validated.

The next phase of the instruction cycle is to perform
the instruction. For the purpose of access validation,
the possible instructions may be broken into three
groups, according to the type of reference made to the
operand. Figure 6 shows the access validation for the
straightforward cases of instructions which read their

Fig. 6. Access validation for instructions which read or write their
operands.

f f rom

Branch on type of
reference to

reads ~ [~ w r l l e s instruction operond, instruction
°beran d does not operond

TPR,SEGNO) Fetch SDW for segmen, Fetch SOW for segment (Segment number in contolning operand. containing operand.

(Segment number ~n TPR.SEGNO

SOW. RI no effective ring ef fect ive ring n o . ~ TpR. IRING < SOW. R2) <TPR,RIN , ~ ~ o t a
not in read c i n t w r i t e

racket yes yes

<TPR . SEGNO : IPR. SEGNO~] n° - - ~ r it e- f/ag--n~t-- !
nlo I ~ y e s yes I L _ o n ;

f A_cc_es s _v i 212 rio_n_
read f lag not on
and operand not in r

nstruct ion complete

1

165 Communications
of
the ACM

March 1972
Volume 15
Number 3

operands and instructions which write their operands.
The third group, instructions which do not reference
their operands, is illustrated in Figure 7. One set in this
group is the "Effective Address to Pointer Register"-
type (LAP-type) instructions which load the RING, SEGNO,
and WORDNO fields of PRF/ with the corresponding fields
of TPR. The operand is not referenced, so no access val-
idation is required. Instructions of this type are impor-
tant, as will be seen later, for they are the only way to
load PR'S.

The remaining instructions illustrated in Figure 7 are
transfer instructions. To provide some protection
against changing the ring of execution by accident, all
transfer instructions except two, CALL and RETURN, are
constrained from doing so. Since a transfer instruction
does not reference its operand, but just loads the address
of its operand into the instruction counter, no access
validation is really required. However, an advance check
on whether reloading IPR from TPR will result in an ac-
cess violation when the next instruction is retrieved is
very useful from the standpoint of debugging, for it
catches the access violation while it is still possible to
identify the instruction which made the illegal transfer.
Figure 7 describes the advance check for transfer in-
structions other than CALL and RETURN.

The two instructions that remain to be considered
are the instructions which can change the ring of execu-
tion: CALL and RETURN. They are intended to be used to
implement the same-named linguistic operations} CALL
will automatically switch the ring of execution to a
lower number and RETURN to a higher number if the oc-
casion requires it. These instructions also function
properly for calls and returns within the same ring.
When used to perform an upward call or a downward
return, the instructions cause traps which allow software
intervention.

Figure 8 describes the access validation and perform-
ance of the CALL instruction. Several points require
further explanation. The first concerns gates. From Fig-
ure 8 it is apparent that a CALL must be directed at a
gate location even when the called procedure will exe-
cute in the same ring as the calling procedure. The ra-
tionale for this use of the gate list of a segment is that
it can provide protection against accidental calls to
locations that are not entry points, even when the call
comes from within the same ring. Thus, SDW.GATE for a
procedure segment usually specifies the number of ex-
ternally defined entry points in the procedure segment.
These become gates for higher-numbered rings in the
sense described in the previous sections only if the top
of the gate extension of the segment is above the top of
the execute bracket, i.e. only if SDW.R3 > SDW.R2 for
the segment. The price paid for this error detection abil-
ity is that if any externally defined entry point in a pro-
cedure segment is a gate for a higher-numbered ring,

RETURN may also be used to implement the nonlocal goto
operation.

166

Fig. 7. AcCess validation for instructions which do not reference
their operands.

.Branch on

CALL ~ EAP-type
ins t ruct ion instruct ion instruction instruction

Fetch SOW for seg~l
ment contain ing f.I ~ a n d . (Seamen

Lnumber in TPR.SEGNC~
_Acc_ess v i o l a LiB n _ 1
ef fect ive ring not ~no~SDW.RI -< TPR. RING -< SOW.R2)
in execute bracket

~ y Y e e s S , yes _Access= vior o=t i o n _
execute f lag o f f ~ n o

_A_c c_ess_ v_i _o I_a f_i on_ _
attempt to change
ring with transfer ~no--~TPR.RING = I P R . R I ~
inst ruct ion other
than CALLor RETURN

Fig. 8. Access validation and performance of the CALL
instruction.

Fetch SDW for segment
containing operand
(Segment number in

TPR.SEGNO)

Access v I o/a t_io_n_ _ no

yes

TPR. SEGNO = IPR ,S EGNO/~-'---1

. ,o lat ion ~ ~ no ye i
tfempT t%~a~l--a-- -- no----~TPR.WORDNO , SDW. GATE>

~ n - g o t e locat ion] ~yes

~U~wor_~ _~o,_~_ _
software intervention no I ~ e q u i r e d r ~ j ~ ~TPR,RING Z SDW. R I~

yes

~,ccess violation
F~eTfe~t/ve r ing ~b~v~-'-no < TPR.RING-< SDW. R3>
Lgate e x t e n s i o n I ~ ~e,

TPiR.RING <!= rain
I (TPR, RING, S(~N. R 2) I ~ " ~

I (Calculate new
ring of execu-
t ion)

~ n o ~ ' T P R , R I N G <- IPR.RING~

AlCCeSS lVLOlatLon _ _
attempt to make an
upward cal l result-
ing from effect ive
ring being higher
than r ing of execu-
ion

Communications
of
the ACM

yes

PRO. SEGNO <~ TPR. RING
PRO. RING <3: TPR. RING
PRO.WORDNO '3- 0

(create~ stach
ase pon er)

March 1972
Volume 15
Number 3

Fig. 9. Access validation and performance of the RETURN
instruction.

Fetch SOW for segment
cant o i n i n g operand.

TPR.SEGNO)
(Segment number in

. o, on t
no 7 t~c t i ~ - - - - - - ring not

execute bracket pn !
yes

SDW. E = on ~ / ~ n o xecute - flag off

yes ~_D2w.wara r e t u , % t
s o f t w a r e i n t e r -

"r ventlon requ l ed

PRn. RING <3=-
"nox (PRn.RING, TPR.RING)

fo r n = 0

then all are. On intersegment transfers of control within
the same ring, the gate restriction can be bypassed by
using a normal transfer instruction rather than a CALL.
The only exception to having the CALL instruction re-
spect the gate list of the operand segment occurs if the
operand is in the same segment as the instruction. Al-
lowing a CALL instruction to ignore the gate list of the
segment containing the instruction permits it to be used
to implement calls to internal procedures.

The access validation for the CALL instruction is
made relative to the ring number computed as part of
the effective address. Since, as a result of PR-relative
addressing and indirection, the effective ring value
(TPmRIN6) can be higher than the current ring of
execution (IPR.RING), what would appear to be a call
within the same ring or to a lower ring with respect to
TPR.RING can in fact be an upward call with respect
to IPR.RING. Because in normal circumstances this
situation represents an error, the decision is made to
generate an access violation when it occurs, even if the
current ring of execution is within the execute bracket
of the called procedure segment.

CALL generates in PRO a pointer to word 0 of the
stack segment for the new ring of execution. (The PR to
use as this stack base pointer is chosen arbitrarily.) The
stack segment selection rule illustrated in Figure 8 is
that the segment number of the appropriate stack seg-

ment is the same as the new ring number7 The final
transfer of control is achieved by reloading IPR.RING,
IPR.SEGNO, and IPR.WORDNO from the corresponding
fields of "rPR.

The RETURN instruction is described by Figure 9.
The access validation is the same as for other transfer
instructions. The ring to which the return is made is
specified by the effective ring portion of the effective
address generated by the RETURN instruction. In the case
that the return is upward, the ring number fields in all
pointer registers are replaced with the larger of their
current values and the new ring of execution. This re-
placement, together with the fact that PR'S can only be
loaded with LAP-type instructions, guarantees that PRn.-
RING can never contain a value that is less than IPR.RING,
a fact which proves very useful when passing arguments
on a downward call and which makes it easy to perform
an upward return to the proper ring. (See the next sec-
tion for details.)

Two items remain to be considered to complete the
description of the processor hardware for implementing
rings. One is the action of a trap. Traps are generated by
a variety of conditions in Figures 4-9, as well as by
missing segments and pages, I /O completions, etc. When
the processor detects such a condition, it changes the
ring of execution to zero and transfers control to a fixed
location in the supervisor. A special instruction allows
the state of the processor at the time of the trap to be
restored later if appropriate, resuming the disrupted
instruction

The other item concerns privileged instructions.
Certain instructions, if executable by all procedure seg-
ments, could invalidate the protection provided by the
ring mechanisms. Among these are the instructions to
load the DBR, start I /O, and restore the processor state
after a trap. Such instructions are designated as privi-
leged and will be executed by the processor only in ring
0. This convention restricts their use to supervisor pro-
cedures.

Call and Return Revisited

The intended use of the hardware mechanisms just
described is illustrated by considering again two key
aspects of the linguistic meaning of the operations call
and return.

2 Two subtle features may be included at this point by using a
more sophisticated stack segment selection rule. If the CALL in-
struction does not change the ring of execution, then the segment
number for the stack base pointer is taken directly from the stack
pointer register, allowing the continued use of a nonstandard stack
segment for procedures executing in the same ring. If the CALL in-
struction does change the ring of execution then the new stack seg-
ment number is calculated by adding the new ring number to an
additional DBR field that specifies the eight consecutively numbered
segments that are the standard stack segments of the process. The
use of the additional DBR field allows more flexibility in stack seg-
ment assignment, facilitating the preservation of stack history fol-
lowing an error and the implementation of forked stacks.

167 Communications March 1972
of Volume 15
the ACM Number 3

The first aspect to be reconsidered is the way argu-
ments are passed and referenced. A procedure making a
call constructs an array of indirect words containing the
addresses of the various arguments to be passed with
the call. To inform the called procedure of the location
of this argument list, the calling procedure loads a spe-
cific l'R designated by software convention (call it PRa)
with the address of the beginning of the argument list.
An instruction of the called procedure can reference the
nth argument as its operand by using an indirect ad-
dress. The location of the indirect word is specified in
the instruction as PRa offset by n. I f this operand refer-
ence constitutes an upward cross-ring argument refer-
ence then the proper validation is automatic, for PRa.-
RING, as set by the calling procedure, must contain a
number that is greater than or equal to the number of
the ring in which the calling procedure was executing
when the call was made. Thus, validation of all argu-
ment references by the called procedure will be with
respect to an effective ring that is at least as high as the
ring of the caller.

The ring number in PRa, then, allows the called pro-
cedure to automatically assume the fewer access capabil-
ities of the calling procedure in the case of an upward
cross-ring argument reference via PRa and the argument
list. Not all argument references, however, will be made
in this way. For example, if an argument is an array,
then the corresponding argument list indirect word will
address the first element. The called procedure may find
it convenient to load some free PR, say PR1, with the
actual two-part address of the beginning of that array
argument so that array indexing can be more easily ac-
complished. IfPR1 is loaded with an EaP-type instruction
whose operand address is specified via PRa and the argu-
ment list, then the proper effective ring number will
automatically be put in PR1.RING, and subsequent refer-
ences to the argument via t'R1 will also be validated
with respect to an effective ring that is at least as high as
the ring of the caller. I f PR1 is then stored as an indirect
word, this effective ring is put into the RING field of the
indirect word. In fact, as long as the called procedure
does not make an explicit effort to lower the effective
ring associated with an argument address, e.g. by
zeroing the RING field of an indirect word, then all ma-
nipulations of the argument address are safe, and all
argument references will be validated with respect to an
effective ring that is at least as high as the ring of the
caller?

The second aspect to be reconsidered with respect to

3 This property allows the correct argument validation to occur
naturally when an argument is passed along a chain of downward
calls. The RING field of an argument list indirect word will specify
the ring which originally provided the argument. If this value is
higher than the value of PRa.RING, then the indirect word ring
number will become the effective ring for validation of references to
the corresponding argument.

168

call and return is the way in which a return to the proper
ring is accomplished. As described earlier, the hardware
guarantees that the RING fields in all PR'S always contain
values greater than or equal to the current ring of exe-
cution. Thus, after a call all PR'S except PRO, which is
altered by the CALL instruction, initially contain the ring
of the caller (or some higher number) in their RING
fields. It follows that any scheme for returning which
depends upon one of these values is secure. For example,
the convention described earlier for restoring the stack
pointer register value of the caller before a return makes
it natural to address the operand of the RETURN instruc-
tion via this restored PR. (For this scheme to work, the
return point must have been saved by the caller at a
standard position in its stack area before the call oc-
curred.) The RZTURN instruction is thus guaranteed to
generate an effective ring number no lower than the ring
of the calling procedure and therefore will return control
to the ring of the caller or some higher-numbered ring.

Use of Rings

Some insight into the functional capabilities of rings
can be gained by considering briefly the way the basic
mechanisms described in the previou~ sections are used
in Multics.

The ring protection scheme allows a layered super-
visor to be included in the virtual memory of each
process. In Multics, the lowest-level supervisor pro-
cedures, such as those implementing the primitive
operations of access control, I /O , memory multiplexing,
and processor multiplexing, execute in ring 0. The
remaining supervisor procedures execute in ring 1. Ex-
amples of ring 1 supervisor procedures are those
performing accounting, input /ou tpu t stream manage-
ment, and file system search direction. (Deciding how
many layers to use and which procedures should execute
in each layer is an interesting engineering design
problem.) Supervisor data segments have read and write
brackets that end at ring 0 or ring 1, depending on which
layer of the supervisor needs to access each.

Implicit invocation of certain ring 0 supervisor
procedures occurs as a result of a trap. Explicit invoca-
tion of selected ring 0 and ring 1 supervisor procedures
by procedures executing in rings 2-5 of a process is by
standard subroutine calls to gates. Procedures executing
in rings 6 and 7 are not given access to supervisor gates.

Because separate access control lists for each seg-
ment and separate descriptor segments for each process
provide the means to control separately the use of each
segment by each user's process, not all gates into super-
visor rings need be available to the processes of all users,
and not all gates need have the same gate extension
associated with them. For example, some gates into
ring 0 are accessible to the processes of all users, but only
to procedures executing in ring 1. Such gates provide the
internal interfaces between the two layers of the super-

Communications March 1972
of Volume 15
the ACM Number 3

visor. Some gates into ring 1 are accessible to procedures
executing in rings 2-5 in the processes of selected users,
but are not accessible at all from the processes of other
users. An example of the latter kind is a gate for regis-
tering new users that is available only from the processes
of system administrators.

As pointed out by Dijkstra [6], a layered supervisor
has several advantages. Constructing the supervisor in
layers enforced by ring protection reinforces these ad-
vantages. It limits the propagation of errors, thereby
making the supervisor easier to modify correctly and
increasing the level of confidence that the supervisor
functions correctly. For example, changes can be made
in ring 1 without having to recertify the correct oper-
ation of the procedures in ring 0.

By arranging for standard user procedures to execute
in ring 4, rings 2 and 3 become available for the protec-
tion of user-constructed subsystems. Subsystems
executing in rings 2 and 3 of a process can be protected
from procedures executing in rings 4-7 in the same way
that the supervisor is protected from procedures exe-
cuting in rings 2-7. All comments made about a super-
visor implemented in rings 0 and 1 of each process apply
to protected subsystems implemented in rings 2 and 3.
Different protected subsystems may be operated simul-
taneously in rings 2 and 3 of different processes and
several processes may share the use of the same
protected subsystem simultaneously. The ring protection
scheme allows the operation of user-constructed pro-
tected subsystems without auditing them for inclusion
in the supervisor. (The software facility that forces
standard user procedures to execute in ring 4, and yet
allows all users to freely provide ring 3 protected sub-
systems for one another, is not discussed here.)
Examples of protected subsystems that might be
provided by various users are a proprietary compiler or
a subsystem to provide interpretive access to some sen-
sitive data base and safely log each request for infor-
mation.

With most user procedures executing in ring 4, rings
5, 6, and 7 are available for user self-protection. For
example, a user may debug a program by executing it
in ring 5, where only procedure and data segments in-
tended to be referenced by the program would be made
accessible. The ring protection mechanisms would detect
many of the addressing errors that could be made by
the program and would prevent the untested program
from accidently damaging other segments accessible
from ring 4. In the same way ring 5 can be used for the
execution of an untrusted program borrowed from an-
other user.

Because supervisor gates are not accessible from
rings 6 and 7 of any process in Multics, procedures exe-
cuted in these rings have no explicit access to supervisor
functions; they may, however, be given permission to
call user-provided gates into rings 4 or 5. Ring 6 of a
process might be used, for example, to provide a suit-
ably isolated environment for student programs being

evaluted by a grading program executing'in ring 4.
The complete description of a software access

control facility based on rings that allows them to be
used in the manner just outlined would require another
paper. A fundamental constraint enforced by this soft-
ware facility is that a program executing in ring n cannot
specify R1, R2, or R3 values of less than n in an access
control list entry of any segment. Although a given ring
may simultaneously protect different subsystems in dif-
ferent processes, each ring of each process can protect
only one subsystem at a time. A usable software access
control facility must constrain each user's ability to
dynamically set and modify access control specifi6ations
so that this sole occupant property can be verified and
enforced when necessary.

Conclusions

The hardware mechanisms derived and described in
this paper implement a methodical generalization of the
traditional supervisor/user protection scheme that is
compatible with a shared virtual memory based on seg-
mentation. This generalization solves three significant
kinds of problems of a general purpose system to be
used as a computer utility:

• users can create arbitrary, but protected, subsystems
for use by others;
• the supervisor can be implemented in layers which
are enforced;
• the user can protect himself while debugging his own
(or borrowed) programs.

The subset access property of rings of protection does
not provide for what may be called "mutually suspicious
programs" operating under the control of a single proc-
ess. On the other hand, it is just that subset property
which imposes an organization which is easy to under-
stand and thus allows a system or subsystem designer
to convince himself that his implementation is complete.
Also, it is just the subset property which is the basis for
a hardware implementation that is integrated with seg-
mentation mechanisms, requiring very small additional
costs in hardware logic and processor speed.

The long-range effect of hardware protection mech-
anisms which permit calls to protected subsystems that
use the same mechanisms as calls to other procedures
is bound to be significant. In the interface to the super-
visor of most systems there are many examples of
facilities whose interface design is biased by the assump-
tion that a call to the supervisor is relatively expensive;
the usual result is to place several closely related
functions together in the supervisor, even though only
one of the group really needs protection. For example,
in the Multics typewriter I /O package, only the func-
tions of copying data in and out of shared buffer areas
and of executing the privileged instruction to initiate
I /O channel operation need to be protected. But, since

169 Communications March 1972
of Volume 15
the ACM Number 3

these two functions are deeply tangled with typewriter
operation strategy and code conversion, the typewriter
I /O control package is currently implemented as a set
of procedures all located in the lowest-numbered ring of
the system, thus increasing the quantity of code which
has maximum privilege.

A similar example is found in many file system
designs, where complex file search operations are carried
out entirely by protected supervisor routines rather than
by unprotected library packages, primarily because a
complex file search requires many individual file access
operations, each of which would require transfer to a
protected service routine, which transfer is presumed
costly.

The initial version of Multics used software imple-
mented rings of protection. The result was a very
conservative use of the rings: originally just two super-
visor rings and one user ring were employed, and the
two supervisor rings were temporarily collapsed into
one (thus exploiting the programming generality objec-
tive referred to before) while the software ring crossing
mechanisms were tuned up. Today, although there are
many obvious applications waiting, the ability to use
more than two rings in a computation is just beginning
to be exploited. The availability with the new Multics
processor of hardware implemented rings which make
downward calls and upward returns no more complex
than calls and returns in the same ring should signifi-
cantly increase such exploitation.

A c k n o w l e d g m e n t s . The concepts embodied in the
mechanisms described here were the result of seven years
of maturing of ideas suggested by many workers. The
original idea of generalizing the supervisor/user
relationship to a multiple ring structure was suggested
by R.M. Graham, E.L. Glaser and F.J. Corbat6. An
initial software implementation of rings using multiple
descriptor segments [14] was worked out by Graham
and R.C. Daley, and constructed by members of the
Multics system programming team. That implementa-
tion makes use of hardware access mode indicators
stored in the segment descriptor word of the Honeywell
645 computer. Graham [9], in 1967, proposed a partial
hardware implementation of rings of protection which
included three ring numbers embedded in segment de-
scriptor words, and a processor ring register, but which
still required software intervention on all ring crossings.
Though a related scheme was implemented in the Hitac
5020 time-sharing system [15], this hardware scheme was
never implemented in Multics, which today (1971) still

uses a version of the software implementation of rings.
The complete automation of downward calls and up-
ward returns was proposed in a thesis in 1969 [16]; the
description in this paper extends that thesis slightly with
the addition of ring numbers to indirect words and the
processor pointer registers, as suggested by Daley. The
CALL and RETURN instructions proposed there have also
been simplified.

The hardware implemented call and return, and
automatically managed stacks, were at least partly in-
spired by similar mechanisms which have long been used
on computer systems of the Burroughs Corporation
[4, l l] .

In addition to those named above, D.D. Clark, C.T.
Clingen, R.J. Feiertag, J.M. Grochow, N.I. Morris,
M.A. Padlipsky, M.R. Thompson, V.L. Voydock, and
V.A. Vyssotsky contributed significant help in under-
standing and implementing rings of protection.

References

1. Apfelbaum, H., and Oppenheimer, G. Design of virtual
memory systems. Proc. 1971 IEEE Internat. Comput. Soc: Conf.,
Boston, pp. 115-116.
2. Arden, B.W., et al. Program and addressing structure in a
time-sharing environment. J. A C M 13, l (Jan. 1966), 1-16.
3. Bensoussan, A., Clingen, C.T., and Daley, R.C. The Multics
virtual memory. Proc. Second ACM Symposium on Operating
Systems Principles. Princeton, N.J., 1969, ACM New York,
1971, pp. 30-42 Also Comm. A C M (to appear).
4. Burroughs Corporation. A Narrative Description of the
Burroughs B5500 Master Control Program. Detroit, Mich.
Oct. 1969.
5. Dennis, J.B., and VanHorn, E.C. Programming semantics
for multiprogrammed computations. Comm. A C M 9, 3 (Mar.
1966), 143-155.
6. Dijkstra, E.W. The structure of the "THE"- multiprogramming
system. Comm. A C M 11, 5 (May 1968), 341-346.
7. Evans, D.C., and LeClerc, J.Y. Address mapping and the
control of access in an interactive computer. Proc. AFIPS 1967
SJCC, Vol. 30, AFIPS Press, Montvale, N.J. pp. 23-30.
8. Fabry, R.S. Preliminary description of a supervisor for a
computer organized around capabilities. Quarterly Progress Rep.
No. 18, Institute of Computer Research, U. of Chicago, I-B
1-97.
9. Graham, R.M. Protection in an information processing
utility. Comm. A C M 11, 5 (May 1968), 365-369.
10. Honeywell Information Systems Inc., Model 645 Processor
Reference Manual. Cambridge Information Systems Laboratory,
Apr. 197i.
11. Hauck, E.A., and Dent, B.A. Burrough's B6500/B7500
stack mechanisms. Proc. AFIPS 1968 SJCC, Vol. 32, AFIPS
Press, Montvale, N.J. pp. 245-251.
12. Lampson, B.W. An Overview of the CAL Time-Sharing
System. Computation Center, U. of California, Berkeley, Sept.
1969.
13. Lampson, B.W. Dynamic protection structures. Proc.
AFIPS 1969 FJCC, Vol. 35, AFIPS Press, Montvale, N.J.,
27-38.
14. MIT Project MAC. Multics Programmer's Manual. 1969.
15. Motobayashi, S., Masuda, T., and Takahashi, N. The Hitac
5020 time-sharing system. Proc ACM 24th Nat. Conf. 1969,
ACM New York, pp. 419-429.
16. Schroeder, M.D. Classroom model of an information and
computing service. S.M. Th. MIT, Dep. Elec. Eng., Feb. 1969.
[Expanded version available as Proj. MAC Tech. Rep.
MAC-TR-80.]
17. Vanderbilt, D.H. Controlled information sharing in a
computer utility. MIT Project MAC, MAC-TR-67, 1969.

170 Communications March 1972
of Volume 15
the ACM Number 3

