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Context
Container terminals have a strong dependency 
on software.
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Problem
• Computer systems that control maritime 

shipping are at risk due to the software
they use.

• The software has vulnerabilities, and is 
therefore open to cyber-attacks.

• Terminal Operating Systems (TOS) and 
Port Community Systems (PCS) are 
especially critical.

• The cost of a disruption is at least $1 
billion/day and has a cascade effect.
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Good work in risk assessment, 
but …

• It’s only a start.
• We need to focus on the software systems 

themselves (TOS, PCS).
• Only through an in-depth assessment of 

the software, can we be confident in its 
security. 

We are addressing that challenge!
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Our Work

• We started an effort to perform an in-depth 
vulnerability assessment of a TOS/PCS.

• First and critical step:  have a software 
provider involved.
– Social and psychological challenges to 

recognize the problem.
– Surprisingly, we were given access to all their 

software technology.
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How Did It Happen?

• Our first observations, 
• … to false steps, 
• … to meetings with FEPORTS, Valencia,
• … to meetings with NOATUM, Valencia,
• … to contacts with a software provider 

and establishing trust,
• … to having access to the software and 

carrying out the actual assessment.
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What Did We Do?

Looked for vulnerabilities in the TOS/PCS

What is a vulnerability?

“A vulnerability is a defect or weakness in system 
security procedures, design, implementation, or 
internal controls that can be exercised and result 
in a security breach or violation of security 
policy.”

- Gary McGraw, Software Security
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What Did We Do?

We only cared about vulnerabilities we 
could exploit.

What is an exploit?

“The process of attacking a vulnerability in a 
program is called exploiting.”

The Art of Software Security Assessment
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• Assessed a couple of software modules 
providing: Terminal Monitoring, 
Electronic Document Interchange (EDI) 
services, and movement of containers in 
the yard.

• Web-based system providing interface to 
current operation details of entire port, 
including gates, yards, ships, preadvice, 
containers, dangerous cargo, and related 
schedules and statuses.

What Did We Do?
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• First Principles Vulnerability Assessment 
(FPVA).

• While this takes time and effort, it’s the 
only way to achieve strong security.

• FPVA Focuses on critical assets.
• Is not based on known vulnerabilities.

How Did We Do it?
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FPVA:
Step 1: Architectural Analysis 
Step 2: Resource Identification
Step 3: Trust & Privilege Analysis
Step 4: Component Evaluation
Step 5: Dissemination of Results

How Did We Do it?

16



How Did We Do it?

Request

Response

DB

Application ServerClient Browser
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How Did We Do it?

Request

Response

DB

Application ServerClient Browser
Intercepting

Proxy
Request

Response

to attack
server
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There were problems in the software:
1. HTTP traffic was not encrypted.  

• Session hijacking.
• Password sniffing. 
• Observing the network traffic to gain info 

of the port’s content without accessing 
the system.

2. Passwords were encrypted, not 
hashed.

What Did We Find?

19



Password/Traffic Sniffing

Login Request

Response

DB

Server

Client Browser

username=administrator
password=pa$$w0rD

Attacker

Unencrypted traffic
visible to anyone on
the network.
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Session Hijacking

Privileged Request

Successful Response

DB

Server

Client Browser

SESSION=99A44E8D531427

Attacker

Successful Response

Privileged Request

SESSION=99A44E8D531427

Unencrypted traffic
visible to anyone on
the network.
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There were problems in the software:
3. Improper access to  the database due 

to design issues, mostly validations 
only on the client side.

• As a consequence any user could 
change any other user’s password.

• Trust boundary problem.
• Design issues are expensive to fix.

What Did We Find?
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Trust Boundary Violation

DB

Server

Client

• Client is never to be trusted.
• Client is easy to replace or 

compromise.
• Any validation, authorization, or 

authentication on the client 
must be rechecked on the 
server.

Untrusted Client Trusted Server
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Trust Boundary Violation

...
request.addParameter(“username",

currentUser.getUserName());
request.addParameter("newPass“,

form.getNewPasswordField());
httpClient.executeMethod(request);
...

Client Requests Password Change for 
Currently Authenticated User

...
username = request.getAttribute("username");
newPass = request.getAttribute("newPass");
userDB.updateRowPassword(username, newPass);
...

Server Trusts the Username and Handles the Request

https://website.com/changePass

username realUser admin

newPass password1

Attacker Modifies Request Data
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There were problems in the software:
4. Use of vulnerable old version of some 

software frameworks.
• Software supply chain issues: libraries, 

underlying OS, compilers.
• Tools like OWASP Dependency Check, 

Dependabot, and Sonatype‘s Application 
Health Check can help.

• Dynamic dependences and updates 
make this more difficult. Very hard issue.

What Did We Find?
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There were problems in the software:
5. Users can modify and delete any files 

on the server machine.
• Intercept a legitimate file request, then 

modify the request.
• Improper validation allows path 

traversals.

What Did We Find?
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The client specifies the name of 
a file for the server to delete

Without proper sanitation, the string 
‘../’ will traverse out of the specified 

directory.

Directory Traversal

Delete File Request

Successful Response

DB

Server

Client

file="../Users/some_admin/important.doc"

The server restricts file access to a 
specific directory by prepending that 
directory to the requested filename.

C:\safedir\ ../Users/some_admin/important.doc
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Directory Traversal

C:/
Program Files/
ProgramData/
safedir/
temp01.txt
temp02.txt
(...)

Users/
some_admin/
important.doc

Windows/

C:\safedir\ ../Users/some_admin/important.doc
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1. Request: file="../Users/some_admin/important.doc"

2. Server deletes C:\Users\some_admin\important.doc

String path = request.getParameter("file");
// check for dir separators to prevent escape from safedir
if(path.contains(java.io.File.separator)){

throw new PathTraversalException(path + “ is invalid.”);
}
path = “C:\\safedir\\" + path;
File f = new File(path);
f.delete();

Separators predefined:
on Windows java.io.File.separator = "\\"
on Unix java.io.File.separator = "/"

Java File() constructor adapts pathname to underlying OS.

Directory Traversal



• We suggested remediations to the 
software provider.

• We reviewed the code after the 
remediations.

• Several rounds of interactions were 
needed to implement the right fixes.

• They had an urgent need for training in 
software assurance and secure 
programming. Accomplished. 

Then What?
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Closing Thoughts
• The TOS and PCS are large and complex pieces 

of software.
• No one has previously carried out an in-depth 

assessment of a TOS or PCS.
• An in-depth vulnerability assessment of the TOS 

and PCS is essential to prevent cyber-attacks.
• The vulnerabilities are there. Who will exploit 

them first?
• The involvement of software providers is 

essential.
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Questions?


