
Critical Infrastructure
Software Security:

A Maritime Shipping Study Case

Barton P. Miller
Computer Sciences Department

University of Wisconsin

bart@cs.wisc.edu

Elisa Heymann
Computer Sciences Department

University of Wisconsin
Universitat Autònoma de Barcelona

elisa@cs.wisc.edu

O’Reilly Velocity’18
Oct. 30-Nov. 2, 2018, London

2

Context
Container terminals have a strong dependency
on software.

3

Problem
• Computer systems that control maritime

shipping are at risk due to the software
they use.

• The software has vulnerabilities, and is
therefore open to cyber-attacks.

• Terminal Operating Systems (TOS) and
Port Community Systems (PCS) are
especially critical.

• The cost of a disruption is at least $1
billion/day and has a cascade effect.

4

Good work in risk assessment,
but …

• It’s only a start.
• We need to focus on the software systems

themselves (TOS, PCS).
• Only through an in-depth assessment of

the software, can we be confident in its
security.

We are addressing that challenge!

5

Our Work

• We started an effort to perform an in-depth
vulnerability assessment of a TOS/PCS.

• First and critical step: have a software
provider involved.
– Social and psychological challenges to

recognize the problem.
– Surprisingly, we were given access to all their

software technology.

6

How Did It Happen?

• Our first observations,

7

How Did It Happen?

• Our first observations,

8

How Did It Happen?

• Our first observations,
• … to false steps,
• … to meetings with FEPORTS, Valencia,
• … to meetings with NOATUM, Valencia,

9

How Did It Happen?

• … to meetings with NOATUM, Valencia,

10

How Did It Happen?

• Our first observations,
• … to false steps,
• … to meetings with FEPORTS, Valencia,
• … to meetings with NOATUM, Valencia,
• … to contacts with a software provider

and establishing trust,
• … to having access to the software and

carrying out the actual assessment.

11

What Did We Do?

Looked for vulnerabilities in the TOS/PCS

What is a vulnerability?

“A vulnerability is a defect or weakness in system
security procedures, design, implementation, or
internal controls that can be exercised and result
in a security breach or violation of security
policy.”

- Gary McGraw, Software Security

12

What Did We Do?

We only cared about vulnerabilities we
could exploit.

What is an exploit?

“The process of attacking a vulnerability in a
program is called exploiting.”

The Art of Software Security Assessment

13

• Assessed a couple of software modules
providing: Terminal Monitoring,
Electronic Document Interchange (EDI)
services, and movement of containers in
the yard.

• Web-based system providing interface to
current operation details of entire port,
including gates, yards, ships, preadvice,
containers, dangerous cargo, and related
schedules and statuses.

What Did We Do?

14

• First Principles Vulnerability Assessment
(FPVA).

• While this takes time and effort, it’s the
only way to achieve strong security.

• FPVA Focuses on critical assets.
• Is not based on known vulnerabilities.

How Did We Do it?

15

FPVA:
Step 1: Architectural Analysis
Step 2: Resource Identification
Step 3: Trust & Privilege Analysis
Step 4: Component Evaluation
Step 5: Dissemination of Results

How Did We Do it?

16

How Did We Do it?

Request

Response

DB

Application ServerClient Browser

17

How Did We Do it?

Request

Response

DB

Application ServerClient Browser
Intercepting

Proxy
Request

Response

to attack
server

18

There were problems in the software:
1. HTTP traffic was not encrypted.

• Session hijacking.
• Password sniffing.
• Observing the network traffic to gain info

of the port’s content without accessing
the system.

2. Passwords were encrypted, not
hashed.

What Did We Find?

19

Password/Traffic Sniffing

Login Request

Response

DB

Server

Client Browser

username=administrator
password=pa$$w0rD

Attacker

Unencrypted traffic
visible to anyone on
the network.

20

Session Hijacking

Privileged Request

Successful Response

DB

Server

Client Browser

SESSION=99A44E8D531427

Attacker

Successful Response

Privileged Request

SESSION=99A44E8D531427

Unencrypted traffic
visible to anyone on
the network.

21

There were problems in the software:
3. Improper access to the database due

to design issues, mostly validations
only on the client side.

• As a consequence any user could
change any other user’s password.

• Trust boundary problem.
• Design issues are expensive to fix.

What Did We Find?

22

Trust Boundary Violation

DB

Server

Client

• Client is never to be trusted.
• Client is easy to replace or

compromise.
• Any validation, authorization, or

authentication on the client
must be rechecked on the
server.

Untrusted Client Trusted Server

23

Trust Boundary Violation

...
request.addParameter(“username",

currentUser.getUserName());
request.addParameter("newPass“,

form.getNewPasswordField());
httpClient.executeMethod(request);
...

Client Requests Password Change for
Currently Authenticated User

...
username = request.getAttribute("username");
newPass = request.getAttribute("newPass");
userDB.updateRowPassword(username, newPass);
...

Server Trusts the Username and Handles the Request

https://website.com/changePass

username realUser admin

newPass password1

Attacker Modifies Request Data

24

There were problems in the software:
4. Use of vulnerable old version of some

software frameworks.
• Software supply chain issues: libraries,

underlying OS, compilers.
• Tools like OWASP Dependency Check,

Dependabot, and Sonatype‘s Application
Health Check can help.

• Dynamic dependences and updates
make this more difficult. Very hard issue.

What Did We Find?

25

There were problems in the software:
5. Users can modify and delete any files

on the server machine.
• Intercept a legitimate file request, then

modify the request.
• Improper validation allows path

traversals.

What Did We Find?

26

The client specifies the name of
a file for the server to delete

Without proper sanitation, the string
‘../’ will traverse out of the specified

directory.

Directory Traversal

Delete File Request

Successful Response

DB

Server

Client

file="../Users/some_admin/important.doc"

The server restricts file access to a
specific directory by prepending that
directory to the requested filename.

C:\safedir\ ../Users/some_admin/important.doc

27

Directory Traversal

C:/
Program Files/
ProgramData/
safedir/
temp01.txt
temp02.txt
(...)

Users/
some_admin/
important.doc

Windows/

C:\safedir\ ../Users/some_admin/important.doc

28

1. Request: file="../Users/some_admin/important.doc"

2. Server deletes C:\Users\some_admin\important.doc

String path = request.getParameter("file");
// check for dir separators to prevent escape from safedir
if(path.contains(java.io.File.separator)){

throw new PathTraversalException(path + “ is invalid.”);
}
path = “C:\\safedir\\" + path;
File f = new File(path);
f.delete();

Separators predefined:
on Windows java.io.File.separator = "\\"
on Unix java.io.File.separator = "/"

Java File() constructor adapts pathname to underlying OS.

Directory Traversal

• We suggested remediations to the
software provider.

• We reviewed the code after the
remediations.

• Several rounds of interactions were
needed to implement the right fixes.

• They had an urgent need for training in
software assurance and secure
programming. Accomplished.

Then What?

30

Closing Thoughts
• The TOS and PCS are large and complex pieces

of software.
• No one has previously carried out an in-depth

assessment of a TOS or PCS.
• An in-depth vulnerability assessment of the TOS

and PCS is essential to prevent cyber-attacks.
• The vulnerabilities are there. Who will exploit

them first?
• The involvement of software providers is

essential.

31

32

Questions?

