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WHAT THIS TUTORIAL WILL AND WILL NOT COVER

 Definition of “IO” or “Device” or “IO Device” :

‒ Traditional IO includes GPU for graphics, NIC, storage controller, USB controller, etc.

‒ New IO (accelerators) includes general-purpose computation on a GPU (GPGPU), 
encryption accelerators, digital signal processors, etc.

 Two Parts in Virtualizing an IO Device

‒ Device specific: Virtual instances of device

‒ Virtual functions and Physical function in devices (PCIE® SR-IOV, MR-IOV)

‒ System defined:  IO Memory Management Unit or IOMMU

‒ Virtualizing DMA accesses (Address Translation and Protection)

‒ Virtualizing Interrupts  (Interrupt Remapping and Virtualizing)
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AGENDA

USE CASES & 
DEMOSTRATION

Where can IOMMU help?  -- Paul Blinzer   

Research Opportunities and Discussion – Arka Basu

INTERNALS How does IOMMU work?   -- Arka Basu, Maggie Chan

RESEARCH

MOTIVATION & 
INTRODUCTION What is IOMMU?  -- Andy Kegel
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MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION

MMU MMU

IO DeviceIO DeviceCore Core

Memory
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Device Driver

MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION
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Side channel attack – leak information
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Device Driver

MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION

MMU MMU

Physical 
Addresses

IO DeviceIO DeviceCore Core

Memory

DMA 
Request

Virtual

Addresses
Physical 
Addresses

Protection

Check 

No protection from malicious devices

--> “DMA Attack” (e.g., FinSpy)

No protection from buggy device driver

Setup

Wrong 
location

Needs hardware enforced memory
protection 

Side channel attack – leak information
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MOTIVATION: VIRTUAL MACHINES ARE TRENDING 

Tremendous growth in virtualization in server

Efficient access to IO under virtualization is important

Source: IDC Server Virtualization, MCS 2012
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BACKGROUND: TRANSLATIONS IN VIRTUALIZED SYSTEM

Guest OS 0 Guest OS 1

Hypervisor (a.k.a. VMM)

Hardware – CPU, Memory, IO
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BACKGROUND: TRANSLATIONS IN VIRTUALIZED SYSTEM

Guest OS 0 Guest OS 1

Hypervisor (a.k.a. VMM)

Guest Virtual 
Address (GVA)

Guest Physical 
Address (GPA)

Guest Applications Guest Applications

System Physical 
Address(SPA)

Hardware – CPU, Memory, IO

Isolation across Guest OS => No access to (system) physical address from Guest OS

Managed by 
Guest OS

Managed by 
VMM
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MOTIVATION: TRADITIONAL DMA IN VIRTUAL MACHINES
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

*SPA == “Physical Address”
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INTRODUCTION OF IOMMU: THE LOGICAL VIEW

MMU MMU

IO DeviceIO Device
Core Core

Memory



IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201628

INTRODUCTION OF IOMMU: THE LOGICAL VIEW

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

Key capabilities:

1. Memory protection for DMA

2. Virtual address translation for DMA

Hardware that 
intercepts DMA 
transactions

IOMMU Driver Sets up IOMMU hardware
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MOTIVATION: TRADITIONAL IO INTERRUPT
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Device Driver

MOTIVATION: TRADITIONAL IO INTERRUPT
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VMM

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM
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INTRODUCTION OF IOMMU: THE LOGICAL VIEW
ADDING INTERRUPT HANDLING CAPABILITY
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IOMMU

Key capabilities:

1. Memory protection for DMA

2. Virtual address translation for DMA

Hardware that 
intercepts DMA 
transactions

IOMMU Driver Sets up IOMMU hardware
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INTRODUCTION OF IOMMU: THE LOGICAL VIEW
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Memory

MOTIVATION: EMERGENCE OF HETEROGENEOUS SYSTEMS
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MMU MMU

IO DeviceIO DeviceCore Core
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Shared virtual addressing is key to ease of programming
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Memory

MOTIVATION: EMERGENCE OF HETEROGENEOUS SYSTEMS
HETEROGENEOUS SYSTEM ARCHITECTURE (HSA)

MMU MMU

IO DeviceCore

Shared virtual addressing is key to ease of programming

VA0 VA0

“Pointer-is-a -Pointer” across CPU and devices

IO needs to share CPU page table*

*Data Structure that keeps VA to PA mapping 
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INTRODUCTION OF IOMMU: THE LOGICAL VIEW
ADDING ABILITY TO SHARE ADDRESS SPACE IN HETEROGENEOUS SYSTEM
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IOMMU Driver Sets up IOMMU hardware
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INTRODUCTION OF IOMMU: THE LOGICAL VIEW
ADDING ABILITY TO SHARE ADDRESS SPACE IN HETEROGENEOUS SYSTEM
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Key capabilities:

1. Memory protection for DMA

2. Virtual address translation for DMA

Hardware that 
intercepts DMA 
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and interrupts 
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Memory

IOMMU Driver Sets up IOMMU hardware
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INTRODUCTION OF IOMMU: (TYPICAL) PHYSICAL VIEW
IOMMU IS PART OF PROCESSOR COMPLEX
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IOMMU FROM THE PERSPECTIVE OF DEVICE (PCIE® SPEC)
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IOMMU FROM THE PERSPECTIVE OF DEVICE (PCIE® SPEC)
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IOMMU Translation Agent and uses the Address Translation and Protection Table
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COMPARING CPU MMU AND IOMMU

CPU MMU IOMMU

Address Translation
VA  PA and GVA 

GPA  SPA
VA  PA and GVA 
 GPA  SPA

Memory Protection Read/Write etc. Read/Write etc.

Interrupt Handling No 
Remapping and   

Virtualization Support

Parallelism Mostly Single Threaded Highly Multithreaded

Page Faults, Events, 
etc.

Synchronous Handling Asynchronous Handling
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HISTORY
A SIMPLIFIED VIEW

Interrupt remapping added for IO virtualization

Features added for full heterogeneous computing and 
further efficiencies

V2, c. 2008
Nested paging, interrupt virtualization, and improved 
management features added

V3, c. 2010

Technology created to translate and vet memory 
accesses by peripherals, replacing software

Whither next? 

V1, c. 2004

V1.2, c. 2006
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IOMMU TECHNOLOGY FAMILIES
REFERENCES

Intel VT-d® Virtualization Technology for Directed IO

Coherent Accelerator Processor Interface

ARM SMM® System Memory Management Unit

IBM CAPI®

AMD IOMMU® IO Memory Management Unit

http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www-304.ibm.com/webapp/set2/sas/f/capi/home.html
http://www.arm.com/products/system-ip/controllers/system-mmu.php
http://support.amd.com/TechDocs/48882_IOMMU.pdf
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SECURE BOOT

DIRECT I/O DEVICES

SECURITY AND 
PROTECTION

FIVE USE CASES OF IOMMU

Enforcing secure boot

Preventing uncontrolled memory access

Secure and efficient IO from Guest OS

HETEROGENEOUS
COMPUTING Enabling shared virtual memory

LEGACY I/O 
Supporting legacy devices –

Extending DMA “beyond reach”
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SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32-bit DMA devices operate in a 64-bit system 

‒ Older PCI cards (through PCI-PCIe bridges), special-purpose 
controllers, parallel ports (IEEE-1284), … 

0

232-1

Device

Physical Memory
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SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32-bit DMA devices operate in a 64-bit system 

‒ Older PCI cards (through PCI-PCIe bridges), special-purpose 
controllers, parallel ports (IEEE-1284), … 

 SW Solution: Bounce buffers

‒ Device does DMA to a region in 32bit physical address, CPU 
copies data from buffer to the final destination

‒ Slow, needs SW synchronization, ties up CPU core
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0x01020304  ->  
0x208090A0B0C

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32bit DMA devices operate in a 64bit system 

‒ older PCI cards (through PCI-PCIe bridges), special-purpose 
controllers, parallel ports (IEEE-1284), … 

0

232-1

264-1

Device

IOMMU

Translation

Physical Memory



IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201671

0x01020304  ->  
0x208090A0B0C

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32bit DMA devices operate in a 64bit system 

‒ older PCI cards (through PCI-PCIe bridges), special-purpose 
controllers, parallel ports (IEEE-1284), … 

 Better solution: IOMMU remaps 32bit device physical 
address to system physical address beyond 32bit
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 Many 32bit DMA devices operate in a 64bit system 

‒ older PCI cards (through PCI-PCIe bridges), special-purpose 
controllers, parallel ports (IEEE-1284), … 

 Better solution: IOMMU remaps 32bit device physical 
address to system physical address beyond 32bit
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0x01020304  ->  
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SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32bit DMA devices operate in a 64bit system 

‒ older PCI cards (through PCI-PCIe bridges), special-purpose 
controllers, parallel ports (IEEE-1284), … 

 Better solution: IOMMU remaps 32bit device physical 
address to system physical address beyond 32bit

‒ DMA goes directly into 64bit memory

‒ No CPU transfer

‒ More efficient

 Linux: DMA redirect feature
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SECURITY AND PROTECTION 
THE TRADITIONAL IOMMU USE

 DMA devices use physical addresses on the system bus to read 
and write memory based on SW driver or OS instructions
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SECURITY AND PROTECTION 
THE TRADITIONAL IOMMU USE

 DMA devices use physical addresses on the system bus to read 
and write memory based on SW driver or OS instructions

 SW bugs or attacks by malicious applications could access and 
modify important OS data (OS security policy, passwords,…)

‒ Without OS able  to detect or prevent the access as it can for CPU

‒ Latent problem until it shows unexpectedly possibly much later
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SECURITY AND PROTECTION 
THE TRADITIONAL IOMMU USE

 DMA devices use physical addresses on the system bus to read 
and write memory based on SW driver or OS instructions

 SW bugs or attacks by malicious applications could access and 
modify important OS data (OS security policy, passwords,…)

‒ Without OS able  to detect or prevent the access as it can for CPU

‒ Latent problem until it shows unexpectedly possibly much later

 This affects system stability, if just the right data is hit

‒ “Heisenbugs” are sometimes caused by bugs in system drivers

 Or it allows malicious driver attacks to take over the system
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SECURITY AND PROTECTION 
THE TRADITIONAL IOMMU USE

 DMA devices assert physical addresses on the system bus to 
read and write memory based on SW driver or OS settings

 SW bugs or attacks by malicious applications could access 
and modify important data (OS security policy, passwords,…)
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SECURITY AND PROTECTION 
THE TRADITIONAL IOMMU USE

 DMA devices assert physical addresses on the system bus to 
read and write memory based on SW driver or OS settings

 SW bugs or attacks by malicious applications could access 
and modify important data (OS security policy, passwords,…)

 The IOMMU allows OS to enforce DMA access policy for any 
DMA capable device accessing physical memory

‒ Memory state important to stability/security 

‒ If access occurs, OS gets notified and can shut the device & driver 
down and notifies the user or administrator
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SECURITY AND PROTECTION 
THE TRADITIONAL IOMMU USE

 DMA devices assert physical addresses on the system bus to 
read and write memory based on SW driver or OS settings

 SW bugs or attacks by malicious applications could access 
and modify important data (OS security policy, passwords,…)

 The IOMMU allows OS to enforce DMA access policy for any 
DMA capable device accessing physical memory
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‒ If access occurs, OS gets notified and can shut the device & driver 
down and notifies the user or administrator
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SECURE BOOT
YET ANOTHER USE FOR AN IOMMU

 Ensuring that a system is not doing more than it’s supposed to

‒ e.g., being part of a botnet, provide banking data or other personal 
info to impersonators or other attackers

‒ The earliest time for attack and defense is at firmware startup

‒ From there critical memory regions are protected from invalid access 
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SECURE BOOT
YET ANOTHER USE FOR AN IOMMU

 Ensuring that a system is not doing more than it’s supposed to

‒ e.g., being part of a botnet, provide banking data or other personal 
info to impersonators or other attackers

‒ The earliest time for attack and defense is at firmware startup

‒ From there critical memory regions are protected from invalid access 

 The Secure Boot architecture ensures that no non-vetted OS 
kernel code runs on the system, changing critical settings 

 Some I/O devices can issue DMA requests to system memory 
directly, without OS or Firmware intervention 

‒ e.g.,1394/Firewire, network cards, as part of network boot

‒ That allows attacks to modify memory before even the OS has a 
chance to protect against the attacks
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SECURE BOOT
YET ANOTHER USE FOR AN IOMMU

 Ensuring that a system is not doing more than it’s supposed to

‒ e.g., being part of a botnet, provide banking data or other personal 
info to impersonators or other attackers

‒ The earliest time for attack and defense is at firmware startup

‒ From there critical memory regions are protected from invalid access 

 The Secure Boot architecture ensures that no non-vetted OS 
kernel code runs on the system, changing critical settings 

 Some I/O devices can issue DMA requests to system memory 
directly, without OS or Firmware intervention 

‒ e.g.,1394/Firewire, network cards, as part of network boot

‒ That allows attacks to modify memory before even the OS has a 
chance to protect against the attacks

 As outlined earlier, using the IOMMU prevents DMA access to 
important memory regions
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IOMMU USECASE: EFFICIENT IO IN VIRTUALIZED 
ENVIRONMENT 
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BACKGROUND: TRADITIONAL DMA BY IO
(NO SYSTEM VIRTUALIZATION)
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BACKGROUND: TRADITIONAL DMA BY IO
(NO SYSTEM VIRTUALIZATION)
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Device Driver

Device drivers must program the true 
system physical memory address 

system crash by writing wrong memory

No protection from potentially malicious 
driver or system SW attacks

Setup

No protection from SW or hardware 
bugs in I/O devices and drivers



IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016102

VIRTUALIZATION OF A SYSTEM IN SOFTWARE
IT HAS TO LOOK REAL TO AN OPERATING SYSTEM

 Each OS assumes full access to the platform hardware

‒ Memory, Interrupts, Devices, CPU cores, etc.
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 A Virtual Machine Manager (VMM) or Hypervisor (HV) is tasked to manage 
the physical hardware and define a “virtual machine” (VM) that represents 
the resources an OS expects to find in the system
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 Each OS assumes full access to the platform hardware
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VIRTUALIZATION OF A SYSTEM IN SOFTWARE
IT HAS TO LOOK REAL TO AN OPERATING SYSTEM

 Each OS assumes full access to the platform hardware

‒ Memory, Interrupts, Devices, CPU cores, etc.

 A Virtual Machine Manager (VMM) or Hypervisor (HV) is tasked to manage 
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VIRTUALIZATION OF A SYSTEM IN SOFTWARE
IT HAS TO LOOK REAL TO AN OPERATING SYSTEM

 Each OS assumes full access to the platform hardware

‒ Memory, Interrupts, Devices, CPU cores, etc.

 A Virtual Machine Manager (VMM) or Hypervisor (HV) is tasked to manage 
the physical hardware and define a “virtual machine” (VM) that represents 
the resources an OS expects to find in the system

 Use cases: 

‒ System consolidation

‒ OS/application compatibility

‒ Security / Stability

‒ Cloud Infrastructure
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VIRTUALIZATION OF A SYSTEM

 Most CPUs today have support for system virtualization

‒ Nested page tables (HV & OS levels), allow VMM/HV to assign and manage system 
memory and interrupts to Virtual Machines
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VIRTUALIZATION OF A SYSTEM

 Most CPUs today have support for system virtualization

‒ Nested page tables (HV & OS levels), allow VMM/HV to assign and manage system 
memory and interrupts to Virtual Machines

 I/O devices are typically managed by HV/VMM software, either by…

Para-Virtualization

Guest device driver uses HV “hypercalls”
Hypervisor manages HW operation (DMA)

Hypervisor SW validates and redirects I/O 
requests from Guest OS (overhead, slow)

Hypervisor arbitrates and schedules requests 
from multiple guest OS, allows  VM migration

Most common operation for today’s 
virtualization Software 
Works well for CPU-heavy workloads
I/O, graphics or compute-heavy workloads
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VIRTUALIZATION OF A SYSTEM

 Most CPUs today have support for system virtualization

‒ Nested page tables (HV & OS levels), allow VMM/HV to assign and manage system 
memory and interrupts to Virtual Machines

 I/O devices are typically managed by HV/VMM software, either by…

Para-Virtualization

Guest device driver uses HV “hypercalls”
Hypervisor manages HW operation (DMA)

Hypervisor SW validates and redirects I/O 
requests from Guest OS (overhead, slow)

Hypervisor arbitrates and schedules requests 
from multiple guest OS, allows  VM migration

Most common operation for today’s 
virtualization Software 
Works well for CPU-heavy workloads
I/O, graphics or compute-heavy workloads

Direct-Mapped Device & SR-IOV

Device function is mapped to guest OS 
Guest OS uses native HW drivers

Physical Device DMA must be limited and 
redirected by Hypervisor (via IOMMU), 

One device function per guest OS, physical 
memory must be committed

I/O device must be resettable by HV when 
guest error puts it in undefined state
SR-IOV is a variant of direct mapped
I/O device provides 1 - n “virtual” devices in 
HW (PCI-SIG standard) 
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EFFICIENT I/O VIRTUALIZATION

 IOMMU validates DMA accesses and validates device interrupts 

HARDWARE IMPLEMENTED TECHNIQUE THROUGH IOMMU

MMU MMU

IO DeviceIO Device
Core Core
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EFFICIENT IO VIRTUALIZATION WITH IOMMU
WHAT ARE THE BENEFITS?

 Using the IOMMU allows a Hypervisor to assign a physical device exclusively 
to a Guest VM without danger of memory corruption to other VMs
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 Using the IOMMU allows a Hypervisor to assign a physical device exclusively 
to a Guest VM without danger of memory corruption to other VMs

‒ Beneficial if one VM requires near native performance 

‒ Or if OS needs to be “sandboxed” (because of suspected malware)

 Native driver can operate in the Guest OS

 IOMMU enforces Hypervisor policy on memory and system resource 
isolation for each of the Guest Virtual Machines
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EFFICIENT IO VIRTUALIZATION WITH IOMMU
WHAT ARE THE BENEFITS?

 Using the IOMMU allows a Hypervisor to assign a physical device exclusively 
to a Guest VM without danger of memory corruption to other VMs

‒ Beneficial if one VM requires near native performance 

‒ Or if OS needs to be “sandboxed” (because of suspected malware)

 Native driver can operate in the Guest OS

 IOMMU enforces Hypervisor policy on memory and system resource 
isolation for each of the Guest Virtual Machines

 IOMMU redirects device physical address set up by Guest OS driver (= Guest 
Physical Addresses) to the actual Host System Physical Address (SPA)

‒ Useful for platform resources that have “well-known” addresses like legacy devices 
or system resources like APIC (Advanced Programmable Interrupt Controller)

 Allows near-native device performance for high-performance devices with 
low system impact



IOMMU USECASE: ENABLING HETEROGENEOUS 
COMPUTING
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CU CU CU CU
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(Non-Coherent)

GPU

The limiters that need to be fixed to unleash programmers:

LEGACY GPU COMPUTE
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PCIe™

System Memory
(Coherent)

CPU CPU CPU
. . . CU CU CU CU

CU CU CU CU

GPU Memory
(Non-Coherent)

GPU
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The limiters that need to be fixed to unleash programmers:

 Multiple memory pools, multiple address spaces

 High overhead dispatch, data copies across PCIe

 New languages and APIs for GPU programming necessary (OpenCL, etc.)

‒ And sometimes proprietary environments

 Dual source development

 Expert programmers only

LEGACY GPU COMPUTE
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 Jobs are still queued through the OS driver chain and suffer from overhead
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 Jobs are still queued through the OS driver chain and suffer from overhead

 Still requires expert programmers to get performance 
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 Some memory copies are gone, because the same memory is accessed

‒ But the memory is not accessible concurrently, because of cache policies

 Two memory pools remain (cache coherent + non-coherent memory regions)

 Jobs are still queued through the OS driver chain and suffer from overhead

 Still requires expert programmers to get performance 

 This is only an intermediate step in the journey
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AN HSA ENABLED SOC
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 Unified Coherent Memory enables data sharing across all processors 
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 Unified Coherent Memory enables data sharing across all processors 

 Processors architected to operate cooperatively
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 Unified Coherent Memory enables data sharing across all processors 

 Processors architected to operate cooperatively

‒ Can exchange data “on the fly”, similar to what CPU threads do
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 Unified Coherent Memory enables data sharing across all processors 

 Processors architected to operate cooperatively

‒ Can exchange data “on the fly”, similar to what CPU threads do

‒ The lower job dispatch overhead allows tasks to be handled by the GPU that 
previously were “too costly” to transfer over

 Designed to enable the application running on different processors without 
substantially changing the programming logic
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IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:
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The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within 
the system
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The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within 
the system

‒ Unified process address space access across all processors 

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”
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The goals of the Heterogeneous System Architecture (HSA)
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 Use of accelerators as a first-class, peer processor within 
the system

‒ Unified process address space access across all processors 

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”

‒ Accelerator operates in pageable system memory*
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‒ Accelerator operates in pageable system memory*

*with OS support & ATS/PRI
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The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within 
the system

‒ Unified process address space access across all processors 

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”

‒ Accelerator operates in pageable system memory*

‒ Cache coherency between the CPU and accelerator caches

‒ User mode dispatch/scheduling reduces job-dispatch 
overhead

‒ QoS with preemption/context switch of GPU Compute Units

 The IOMMU enforces control of GPU access to memory

‒ OS can efficiently and safely share process page tables  with 
accelerators (requires ATS/PRI protocol support)

*with OS support & ATS/PRI



IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016152
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The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within 
the system

‒ Unified process address space access across all processors 

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”

‒ Accelerator operates in pageable system memory*

‒ Cache coherency between the CPU and accelerator caches

‒ User mode dispatch/scheduling reduces job-dispatch 
overhead

‒ QoS with preemption/context switch of GPU Compute Units

 The IOMMU enforces control of GPU access to memory

‒ OS can efficiently and safely share process page tables  with 
accelerators (requires ATS/PRI protocol support)

‒ Accelerators can’t step outside of the OS-set boundaries

*with OS support & ATS/PRI
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IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The benefits of the Heterogeneous System Architecture: 
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The benefits of the Heterogeneous System Architecture: 

 Pageable memory access is validated and handled 
directly by the OS memory manager via AMD IOMMU
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The benefits of the Heterogeneous System Architecture: 

 Pageable memory access is validated and handled 
directly by the OS memory manager via AMD IOMMU

 Application data structures can be directly parsed by the 
accelerator and pointer links followed without CPU help
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 Common high level languages and tools (compilers, 
runtimes, …) port easily to accelerators
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 Common high level languages and tools (compilers, 
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‒ C/C++, Python, Java, …  already have open source 
implementations

‒ Many more languages to follow
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IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The benefits of the Heterogeneous System Architecture: 

 Pageable memory access is validated and handled 
directly by the OS memory manager via AMD IOMMU

 Application data structures can be directly parsed by the 
accelerator and pointer links followed without CPU help

 Common high level languages and tools (compilers, 
runtimes, …) port easily to accelerators

‒ C/C++, Python, Java, …  already have open source 
implementations

‒ Many more languages to follow

 IOMMU making it easier for programmers to use GPUs 
and other accelerators safely and efficiently 
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EVOLUTION OF THE SOFTWARE STACK – A COMPARISON

© Copyright 2014 HSA Foundation.  All Rights Reserved.

Hardware - APUs, CPUs, GPUs

HSA Software Stack

User mode component Kernel mode component Components contributed by third parties

 Goal of the software stack is to focus on high-level language support
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 Goal of the software stack is to focus on high-level language support

‒ Allow to target the GPU directly by SW
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 Goal of the software stack is to focus on high-level language support

‒ Allow to target the GPU directly by SW

‒ Drivers are setting up the HW and policies, then go out of the way 
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 Goal of the software stack is to focus on high-level language support

‒ Allow to target the GPU directly by SW

‒ Drivers are setting up the HW and policies, then go out of the way 

‒ IOMMU support provide hardware enforced protections for Operating System
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IOMMU

Operating System
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© Copyright 2014 HSA Foundation.  All Rights Reserved.AMD A10-5800K APU with Radeon™ HD Graphics – CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM.
Software – Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta
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LINES-OF-CODE AND PERFORMANCE COMPARISONS
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ACCELERATORS: THE PORTABILITY CHALLENGE

 CPU ISAs

‒ ISA innovations added incrementally (i.e., NEON, AVX, etc)

‒ ISA retains backwards-compatibility with previous generation

‒ Two dominant instruction-set architectures:  ARM and x86

 GPU ISAs

‒ Massive diversity of architectures in the market

‒ Each vendor has its own ISA - and often several in the market at same time

‒ No commitment (or attempt!) to provide any backwards compatibility

‒ Traditionally graphics APIs (OpenGL, DirectX) provide necessary abstraction
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WHAT IS HSA INTERMEDIATE LANGUAGE (HSAIL)?

 Intermediate language for parallel compute in HSA

‒ Generated by a “High Level Compiler” (GCC, LLVM, Java VM, etc.)

‒ Expresses parallel regions of code

‒ Binary format of HSAIL is called “BRIG”

‒ Goal: Bring parallel acceleration to mainstream programming languages

 IOMMU based pointer translation is key to enabling an efficient IL 
Implementation

main() {

…

#pragma omp parallel for

for (int i=0;i<N; i++) {

}

…

}

High-Level 
Compiler 

BRIG Finalizer Component 
ISA

Host ISA

© Copyright 2014 HSA Foundation.  All Rights Reserved.
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MEMBERS DRIVING HAS FOUNDATION

Founders

Promoters

Supporters

Contributors

Academic

http://www.hsafoundation.com/
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 FIR is a memory-intensive streaming workload

 AES is a compute-intensive streaming workload

 CL12 – cl_mem buffer
‒ Copy to/from  the device

 CL20 – SVM buffer – Coarse Grain Sync
‒ Copy to/from SVM
‒ Data copy cannot be avoided, since the space for SVM is 

limited

 HSA – Unified Memory Space – Fine Grained Sync
‒ Regular pointer
‒ No explicit copy

 Results
‒ HSA compute abstraction
‒ NO performance penalty

 Not all algorithms run faster
‒ Measured on Kaveri (A pre-HSA 1.0 device)
‒ Limited Coherent throughput

Saoni Mukherjee, Yifan Sun, Paul Blinzer, Amir Kavyan Ziabari, David 

Kaeli,A Comprehensive Performance Analysis of HSA and OpenCL 2.0, 

Proceedings of the 2016 International Symposium on Program 

Analysis and System Software, April 2016, to appear.

GEN1: FIR & AES
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BLACKSCHOLES

 C++ on HSA

‒ Matches or outperforms OpenCL

 Course Grained SVM

‒ Matches OpenCL buffers for 
bandwidth

‒ More predictable performance

 Fine Grained SVM

‒ Faster kernel dispatch

‒ Larger allocations

‒ Shared data structure

 Results

‒ HSA compute abstraction

‒ NO performance penalty

SOURCE: RALPH POTTER – CODEPLAY. PRESENTATION MADE TO SG14 C++ WORKGROUP
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ENABLING HETEROGENEOUS COMPUTING
SUMMARY AND DEMONSTRATION

 Key Takeaways:

‒ To further scale up compute performance, software must take better advantage of 
system accelerators like GPUs and DSPs in high level languages

‒ Accelerators following the HSA Foundation specification requirements allow 
programmers to write or port programs easily using common high level languages

‒ AMD IOMMU is key to efficiently and safely access process virtual memory!

‒ Does translation of both process address space via PASID and device physical accesses

‒ Enforces OS allocation policy, deals with virtual memory page faults, and much more
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AGENDA

USE CASES & 
DEMOSTRATION

Where can IOMMU help?  

Research Opportunities and Tools

INTERNALS How does IOMMU work?   

RESEARCH

MOTIVATION & 
INTRODUCTION What is IOMMU?  
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RECAP: IOMMU AND ITS CAPABILITIES

MMU MMU

IO DeviceIO DeviceCore Core

IOMMU

Key capabilities:

1. Memory protection for DMA

2. Virtual address translation for DMA

Hardware that 
intercepts DMA 
transactions
and interrupts 

3. Interrupt remapping and virtualization

4. IO can share CPU page tables

Memory

IOMMU Driver Sets up IOMMU hardware
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AGENDA: WHAT IS COMING UP?

 DMA Address Translation

‒ Address translation and memory protection in un-virtualized System

‒ Making address translation faster through caching 

‒ Enabling shared address space in heterogeneous system

‒ Enabling pre-translation through IOMMU

‒ Enabling demand paging from devices (dynamic page fault)

‒ Nested address translation in virtualized system

‒ Invalidating IOMMU mappings

Address 
translation, 
memory 
protection, 
HSA
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AGENDA: WHAT IS COMING UP?

 DMA Address Translation

‒ Address translation and memory protection in un-virtualized System

‒ Making address translation faster through caching 

‒ Enabling shared address space in heterogeneous system

‒ Enabling pre-translation through IOMMU

‒ Enabling demand paging from devices (dynamic page fault)

‒ Nested address translation in virtualized system

‒ Invalidating IOMMU mappings

 Interrupt Handling

‒ Interrupt filtering and remapping

‒ Interrupt virtualization 

Address 
translation, 
memory 
protection, 
HSA

Interrupts 
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AGENDA: WHAT IS COMING UP?

 DMA Address Translation

‒ Address translation and memory protection in un-virtualized System

‒ Making address translation faster through caching 

‒ Enabling shared address space in heterogeneous system

‒ Enabling pre-translation through IOMMU

‒ Enabling demand paging from devices (dynamic page fault)

‒ Nested address translation in virtualized system

‒ Invalidating IOMMU mappings

 Interrupt Handling

‒ Interrupt filtering and remapping

‒ Interrupt virtualization 

 Summary

‒ A peek inside a typical IOMMU implementation

‒ Data structures and their Interactions

Address 
translation, 
memory 
protection, 
HSA

Interrupts 
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IOMMU Internals: 
Address Translation and Memory Protection 
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ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical 
Addresses

IO DeviceIO DeviceCore Core

Memory

Virtual

Addresses

IOMMU
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ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical 
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain 

Virtual

Addresses

IOMMU

(Defined by OS)
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ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical 
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain 

DMA 
Request DeviceIDVirtual 

Address

Virtual

Addresses

IOMMU

Device Table

DevID
DomID

(Defined by OS)
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ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical 
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain 

DMA 
Request DeviceIDVirtual 

Address

Virtual

Addresses

IOMMU

Device Table

DevID
DomID

Page Table

(Defined by OS)
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ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical 
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain 

DMA 
Request DeviceIDVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID
DomID

Page Table

(Defined by OS)
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ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical 
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain 

DMA 
Request DeviceIDVirtual 

Address

Virtual

Addresses

IOMMU

Device Table

DevID

Page Table

Abort request if not sufficient permission
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MAKING TRANSLATION FAST
CACHING TRANSLATION IN IOMMU

MMU MMU

Physical 
Addresses

IO DeviceIO DeviceCore Core

Memory

Virtual

Addresses

Device Table

DevID

Page Table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker
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IOMMU Internals: 
Enabling “Pointer-is-a-Pointer” in Heterogeneous  

Systems
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SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical 
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain 

DMA 
RequestVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID

Page Table
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SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical 
Addresses

IO DeviceCore Core

Memory

Domain 

DMA 
RequestVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID

GPU

Page Table
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SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical 
Addresses

IO DeviceCore

Memory

Domain 

DMA 
RequestVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID

GPU

Process

Page Table
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SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical 
Addresses

IO DeviceCore

Memory

Domain 

DMA 
RequestVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID

x86-64 Page Table

GPU

Process
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SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical 
Addresses

IO Device

Memory

Domain 

DMA 
RequestVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID

x86-64 Page Table

GPU

ProcessProcess 0 1
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SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical 
Addresses

IO Device

Memory

Domain 

DMA 
RequestVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID

x86-64 Page Table

GPU

Process

Needs ability to identify more than one address space

Process 0 1
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SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical 
Addresses

IO Device

Memory

Domain 

DMA 
RequestVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID

GPU

ProcessProcess 0 1

DeviceID



IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016194

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical 
Addresses

IO Device

Memory

Domain 

DMA 
RequestVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID

GPU

ProcessProcess 0 1

+ PASID

PASID 0 PASID 1

DeviceID
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SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical 
Addresses

IO Device

Memory

Domain 

DMA 
RequestVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID

GPU

ProcessProcess 0 1

+ PASID

PASID 0 PASID 1

DeviceID

PASID

gCR3 table
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SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical 
Addresses

IO Device

Memory

Domain 

DMA 
RequestVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID

GPU

ProcessProcess 0 1

+ PASID

PASID 0 PASID 1

DeviceID

PASID

gCR3 table
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SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical 
Addresses

IO Device

Memory

Domain 

DMA 
RequestVirtual 

Address

Virtual

Addresses

IOMMU

Physical 
Addresses

Device Table

DevID

GPU

ProcessProcess 0 1

+ PASID

PASID 0 PASID 1

DeviceID

PASID

gCR3 table



IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016198

IOMMU Internals: 
Enabling Translation Caching in Devices 
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CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

GPU
CoreCore
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CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walkerLocally caching address translation in device reduces 

trips to IOMMU

GPUTLBCoreCore
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CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walkerIOMMU driver assigns per-translation capability to devices

1

Pre-translation capable?

GPUTLBCoreCore
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CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

Pre-translation capable?

Introduce new message ype:

Address Translation Service (ATS) 

GPUTLBCoreCore
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CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

Pre-translation capable?

ATS Req

(DevID, 
PASID, VA, 
R/W)

GPUTLBCoreCore
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CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

Pre-translation capable?

ATS Resp
(PASID, VA, 
PA, Attr.)

GPUTLBCoreCore
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CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

DMA Req

(Physical 
Address)

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

Pre-translation capable?

Pre-translated Req

GPUTLBCoreCore
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CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

DMA Req

(Physical 
Address)

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

Pre-translation capable?

Pre-translated Req

GPUTLBCoreCore
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CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

DMA Req

(Physical 
Address)

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

Pre-translation capable?

Pre-translated Req

Abort if not pre-translation capable

GPUTLBCoreCore
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IOMMU Internals: 
Enabling Demand Paging from IO 

 No Need to Pin Memory
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

GPUTLBCoreCore

Device(s) access local TLB (ATC/IOTLB) first 
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

GPUTLBCoreCore

On a (IO)TLB hit no access to IOMMU 
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

GPUTLBCoreCore

(IO)TLB miss 
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

ATS Req

(DevID, 
PASID, VA, 
R/W)

GPUTLBCoreCore

(IO)TLB miss 
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

ATS Req

(DevID, 
PASID, VA, 
R/W)

GPUTLBCoreCore

Page fault-
No valid PTE

(IO)TLB miss 
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

GPUTLBCoreCore

ATS Resp
(NACK)

Page fault-
No valid PTE
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

GPUTLBCoreCore

PPR* request

(DevID, PASID, 
VA,R/W)

*PPR= Page Peripheral Request
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

GPUTLBCoreCore

PPR* request

(DevID, PASID, 
VA,R/W)

PPR Log 
(circular buffer)

*PPR= Page Peripheral Request
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID
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gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

GPUTLBCoreCore

PPR Log 
(circular buffer)

PASID dID Addr Flag

*PPR= Page Peripheral Request
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

Fault batching 
possible

GPUTLBCoreCore

PPR Log 
(circular buffer)

PASID dID Addr Flag

*PPR= Page Peripheral Request
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID
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gCR3 table

Device Table 
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Translation 
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walker

1
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*PPR= Page Peripheral Request
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT
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IO Device
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*PPR= Page Peripheral Request
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT
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IO Device
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*PPR= Page Peripheral Request
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT
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IO Device
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Device Table 
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Translation 
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Page Table 
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1

GPUTLBCore

PPR Log 
(circular buffer)

Work Queue

PASID dID Addr Flag

OS worker thread

*PPR= Page Peripheral Request
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device
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1
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*PPR= Page Peripheral Request
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table
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Device Table 
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Translation 
Lookaside Buffer

Page Table 
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GPUTLBCoreCore

PPR Log 
(circular buffer)

Work Queue

Command Buffer

Retry original request
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID
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Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
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(PASID, VA, 
PA, Attr.)

Retry original request
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ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

1

GPUTLBCoreCore

PPR Log 
(circular buffer)

Work Queue
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(Physical 
Address)

Retry original request
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IOMMU Internals: 
Nested (Two-Level) Address Translation
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RECAP: ADDRESS TRANSLATION IN VIRTUALIZED SYSTEMS

Guest OS 0 Guest OS 1

Hypervisor (a.k.a. VMM)

Guest Virtual Address 
(GVA)

Guest Physical Address

(GPA)

Guest Applications Guest Applications

System Physical Address

(SPA)
Hardware – CPU, Memory, IO

Guest OS does not have access to (system) physical address 

Guest Page 
Table (GPT)

Host Page 
Table (HPT)
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Guest OS 1Guest OS 0

VMM

NESTED ADDRESS TRANSLATION BY IOMMU

MMU MMU
SPA

IO Device

Memory

Domain 

GVA

IOMMU

Device Table

DevID

GPU

Guest Process

Core 0

Guest Process

Core 0GPA

GPT

HPT
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Guest OS 1Guest OS 0

VMM

NESTED ADDRESS TRANSLATION BY IOMMU

MMU MMU
SPA

IO Device

Memory

Domain 

DMA 
Request

Guest 
Virtual 
Address

GVA

IOMMU

Device Table

DevID

GPU

Guest Process

Core 0

+ PASIDDevice ID 

Guest Process

Core 0GPA

GPT

HPT
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Guest OS 1Guest OS 0

VMM

NESTED ADDRESS TRANSLATION BY IOMMU

MMU MMU
SPA

IO Device

Memory

Domain 

DMA 
Request

Guest 
Virtual 
Address

GVA

IOMMU

Physical 
Addresses

Device Table

DevID

GPU

Guest Process

Core 0

+ PASID

Identified by PASID

Device ID 

PASID

gCR3 table

Guest Process

Core 0GPA

Host Page Table

Guest Page 
Table(s)

GPT

HPT

Identified by DevID/DomID
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NESTED ADDRESS TRANSLATION BY IOMMU
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18
nL1

19
GL1

20
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GVA GCR3 table entry

SPA

Device Table EntryPASID

Device Table Entry
HPT

GPT

GVA
[47:39]

GVA
[38:30]

GVA
[29:21]

GVA
[20:12]

GVA
[11:0]

Nested/Host page table
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IOMMU Internals: 
Sending Commands to IOMMU
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COMMANDS TO IOMMU

 IOMMU Driver (running on CPU) issues commands to IOMMU

‒ e.g., Invalidate IOMMU TLB Entry, Invalidate IOTLB Entry 

‒ e.g., Invalidate Device Table Entry

‒ e.g., Complete PPR, Completion Wait , etc.

 Issued via Command Buffer 

‒ Memory resident circular buffer 

‒ MMIO registers: Base, Head, and Tail register     
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COMMANDS TO IOMMU

 IOMMU Driver (running on CPU) issues commands to IOMMU

‒ e.g., Invalidate IOMMU TLB Entry, Invalidate IOTLB Entry 

‒ e.g., Invalidate Device Table Entry

‒ e.g., Complete PPR, Completion Wait , etc.

 Issued via Command Buffer 

‒ Memory resident circular buffer 

‒ MMIO registers: Base, Head, and Tail register     

IOMMU Driver IOMMU Hardware

Tail 

Base

Head
Tail 

Base

Head

Write

Registers

Variable holding 

content of registers

Fetch
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EXAMPLE: IOMMU TLB SHOOTDOWN

 IOMMU TLB Shootdown

‒ Update page table information

‒ Flush TLB Entry(s) containing stale information 

 Three steps in IOMMU TLB shootdown

‒ Invalidating IOMMU TLB entry

‒ Invalidating IO TLB (Device TLB) entry 

‒ Wait for completion
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

GPUTLBCoreCore

Command Buffer
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

GPUTLBCoreCore

Command Buffer

128 bits

DomIDPASID Addr Misc.OpCode

invalidate iommu tlb entry
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

GPUTLBCoreCore

Command Buffer
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

GPUTLBCoreCore

Command Buffer

128 bits

DevIDPASID Addr Misc.OpCode

invalidate IO tlb entry
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

GPUTLBCoreCore

Command Buffer
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

GPUTLBCoreCore

Command Buffer

128 bits

Store 
Address

OpCode
Store 
Data

completion wait
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

GPUTLBCoreCore

Command Buffer
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
walker

GPUTLBCoreCore

Command Buffer

Update Tail pointer
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer

128 bits

DomIDPASID Addr Misc.OpCode

invalidate IOMMU tlb entry
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer

128 bits

DomIDPASID Addr Misc.OpCode

invalidate IOMMU tlb entry
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer

Update Head pointer
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer

128 bits

DevIDPASID Addr Misc.OpCode

invalidate IO tlb entry
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer

128 bits

DevIDPASID Addr Misc.OpCode

invalidate IO tlb entry
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer

Update Head pointer
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer

128 bits

Store 
Address

OpCode
Store 
Data

completion wait
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer Wait for previous commands to finish
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer Wait for previous commands to finish

ACK
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer

IOMMU Stores
Data to 
“Store Address” 
Or Raise Interrupt

Wait for previous commands to finish
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IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table 
Entry Cache

Translation 
Lookaside Buffer

Page Table 
Walker

GPUTLBCoreCore

Command Buffer

Update Head pointer

Wait for previous commands to finish



IOMMU INTERNALS: INTERRUPT REMAPPING AND 
VIRTUALIZATION 



IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016263

INTERRUPT REMAPPING

MMU MMU

IO DeviceIO Device
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INTERRUPT REMAPPING
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INTERRUPT REMAPPING
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INTERRUPT REMAPPING
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INTERRUPT REMAPPING

MMU MMU
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INTERRUPT REMAPPING

MMU MMU
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VMM

Guest OS 0

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

vAPIC
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VMM

Guest OS 0

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

vAPIC

Guest 
Virtualized
Interrupt
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VMM

Guest OS 0

INTERRUPT VIRTUALIZATION
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IO DeviceIO Device
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VMM

Guest OS 0

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core
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APIC APIC

vAPIC

Guest 
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Interrupt
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VMM

Guest OS 0

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

vAPIC

Guest 
Virtualized
Interrupt

Abort request if not sufficient permission
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VMM

Guest OS 0

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
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APIC APIC

vAPIC

Guest 
Virtualized
Interrupt
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Guest OS 0
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Guest OS 0
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Guest OS 0
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Guest OS 0
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Guest OS 0
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Guest OS 0
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IOMMU INTERNALS: A TYPICAL IOMMU HARDWARE 
DESIGN



IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016286

EXAMPLE OF IOMMU HARDWARE DESIGN

CPUDRAM

IOMMU

IOHUB

Memory Controller

Device Device Device

L1
TLB

L1
TLB

L1
TLB

Table
Walker

L2
gPDC

L2
gPTC

L2 
ITC

L2
DTC

L2
nPDC

L2
nPTC
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CACHE SIZING VS PRODUCT TYPE

 Typical Client Product

‒ Non-Virtualized

‒ I/O Isolation

‒ Small Working Set

L2
gPDC

L2
gPTC

L2 
ITC

L2
DTC L2

nPDC
L2

nPTC
L1

TLB
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CACHE SIZING VS PRODUCT TYPE

 Typical Server Product

‒ Virtualized

‒ Large Working Set
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gPDC

L2
gPTC

L2 
ITC

L2
DTC

L2
nPDC

L2
nPTC

L1
TLB



IOMMU INTERNALS: SUMMARY OF KEY DATA STRUCTURES
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IOMMU’S KEY DATA STRUCTURES

DRAMIOMMU

Command Buffer 
Base Register Command Buffer

Event Log
Base Register Event Log

Page Request 
Log Base Register Peripheral Page Request Log

Guest vAPIC Log 
Base Register Guest Virtual APIC Log

Device Table 
Base Register

Device Table

GCR3 Table
Guest Page Tables

Host Page Tables

Guest Virtual APIC Backing Page

Interrupt 
Remap 
Table
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DEVICE TABLE ENTRY

Each entry is 32B

valid entry

domainID

host translation Info

- Page Mode

- Host Page Table Root Pointer

guest translation Info
- GCR3 Table Root Pointer

- Guest Levels translated 

Interrupt info
- Interrupt Table Root Pointer

- Legacy Interrupt Permission

IOTLB Enable



IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016292

INTERRUPT REMAPPING TABLE ENTRY

Each entry is 128b.  Two modes:

Interrupt Remapping (guest mode=0)

Interrupt Virtualization (guest mode=1)

remap enabled

destination

1

vector

guest mode

Guest vAPIC info 
- Guest vAPIC Root Pointer

- Guest vAPIC Tag

- Guest Running

guest mode=1:
remap enabled

destination

0

vector

guest mode

guest mode=0:
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AGENDA

USE CASES & 
DEMOSTRATION

Where can IOMMU help?  

Research Opportunities and Tools

INTERNALS How does IOMMU work?   

RESEARCH

MOTIVATION & 
INTRODUCTION What is IOMMU?  
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RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?



IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016295

RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?

 Specializing IOMMU for performance and power

‒ Can IOMMU hardware exploit predictable access pattern of some accelerators?
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RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?

 Specializing IOMMU for performance and power

‒ Can IOMMU hardware exploit predictable access pattern of some accelerators?

 Trading memory protection for performance
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RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?

 Specializing IOMMU for performance and power

‒ Can IOMMU hardware exploit predictable access pattern of some accelerators?

 Trading memory protection for performance

‒ Can selectively lowering protection enable better performance?
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RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?

 Specializing IOMMU for performance and power

‒ Can IOMMU hardware exploit predictable access pattern of some accelerators?

 Trading memory protection for performance

‒ Can selectively lowering protection enable better performance?

 Extending (limited) virtual memory to embedded accelerators

‒ Can we design  for IOMMULITE embedded low-power accelerators?
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RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?

 Specializing IOMMU for performance and power

‒ Can IOMMU hardware exploit predictable access pattern of some accelerators?

 Trading memory protection for performance

‒ Can selectively lowering protection enable better performance?

 Extending (limited) virtual memory to embedded accelerators

‒ Can we design  for IOMMULITE embedded low-power accelerators?

 Avoiding interference in the IOMMU

‒ How to reduce interference among multiple devices accessing IOMMU?



IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016300

ISOLATION FROM THIRD PARTY ACCELERATORS
EMERGENCE OF 3RD PARTY ACCELERATORS
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ISOLATION FROM THIRD PARTY ACCELERATORS
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore Core

Memory

IOMMU

Accelerator

3rd Party
(Un-trusted)

Q: How to integrate third party accelerators efficiently and 
securely?

 How to determine if a device is trustworthy and remains 
trustworthy?

 May not be possible verify if 3rd party accelerator is not buggy.
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ISOLATION FROM THIRD PARTY ACCELERATORS (CNTD.)
EMERGENCE OF 3RD PARTY ACCELERATORS
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ISOLATION FROM THIRD PARTY ACCELERATORS (CNTD.)
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore

Memory

IOMMU

3rd Party
(Un-trusted)

TLB

Performance consideration:

1. TLBs in accelerator 
Possible to bypass IOMMU

Core Physical 
address
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ISOLATION FROM THIRD PARTY ACCELERATORS (CNTD.)
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore

Memory

IOMMU

3rd Party
(Un-trusted)

TLB

Performance consideration:

1. TLBs in accelerator 
Possible to bypass IOMMU

2. Coherent caches in accelerator 

Coherence traffic bypass IOMMU
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ISOLATION FROM THIRD PARTY ACCELERATORS (CNTD.)
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU
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Memory
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TLB

Related work:

Olson et al. “Border Control” in 
MICRO’15 [OLSON’15]
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ISOLATION FROM THIRD PARTY ACCELERATORS (CNTD.)
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore

Memory

IOMMU

3rd Party
(Un-trusted)

TLB

Related work:

Olson et al. “Border Control” in 
MICRO’15 [OLSON’15]

Idea: Check every access with physical 
address if valid.
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SPECIALIZING IOMMU FOR DEVICE/ ACCELERATOR

 IOMMU design(s) resembles CPU MMU design

‒ But device/accelerator access patterns differs from CPU’s

 IOMMU caters to disparate devices

‒ Single design point may not be optimal for all

‒ e.g., access pattern from GPU likely different from NIC’s
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SPECIALIZING IOMMU FOR DEVICE/ ACCELERATOR

 IOMMU design(s) resembles CPU MMU design

‒ But device/accelerator access patterns differs from CPU’s

 IOMMU caters to disparate devices

‒ Single design point may not be optimal for all

‒ e.g., access pattern from GPU likely different from NIC’s

 Related work: Malka et al. ’s “rIOMMU” in ASPLOS’15.

‒ Idea: Exploit predictable IOMMU accesses from devices using circular ring buffers 

Study traffic pattern to IOMMU and specialize for common patterns 
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SPECIALIZING IOMMU FOR DEVICE/ ACCELERATOR

 IOMMU design(s) resembles CPU MMU design

‒ But device/accelerator access patterns differs from CPU’s

 IOMMU caters to disparate devices

‒ Single design point may not be optimal for all

‒ e.g., access pattern from GPU likely different from NIC’s

 Related work: Malka et al. ’s “rIOMMU” in ASPLOS’15.

‒ Idea: Exploit predictable IOMMU accesses from devices using circular ring buffers 

‒ Replace page table with circular, flat table  Easy page walk

‒ Predictable access  single entry IOTLB with no TLB miss and less invalidation 

Study traffic pattern to IOMMU and specialize for common patterns 
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SPECIALIZING IOMMU FOR DEVICE/ ACCELERATOR

 IOMMU design(s) resembles CPU MMU design

‒ But device/accelerator access patterns differs from CPU’s

 IOMMU caters to disparate devices

‒ Single design point may not be optimal for all

‒ e.g., access pattern from GPU likely different from NIC’s

 Related work: Malka et al. ’s “rIOMMU” in ASPLOS’15.

‒ Idea: Exploit predictable IOMMU accesses from devices using circular ring buffers 

‒ Replace page table with circular, flat table  Easy page walk

‒ Predictable access  single entry IOTLB with no TLB miss and less invalidation 

 Possible to use device-specific knowledge to optimize performance

‒ IOMMU prefetching and TLB caching hints can be useful

‒ Replacement policy coordination between IOTLB (Device TLB) and IOMMU TLB

‒ Energy/power optimization in IOMMU

Study traffic pattern to IOMMU and specialize for common patterns 
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TRADING PROTECTION FOR PERFORMANCE

 IOMMU hardware allows lowering protection for performance 

‒ For example: pre-translated DMA transactions pass-through IOMMU

‒ A trusted IO device can manipulate any address, including interrupt storms 
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TRADING PROTECTION FOR PERFORMANCE

 IOMMU hardware allows lowering protection for performance 

‒ For example: pre-translated DMA transactions pass-through IOMMU

‒ A trusted IO device can manipulate any address, including interrupt storms 

 OS policies for trading off protection for security

‒ Should the sysadmin decide how much to trust a device/driver?

‒ Exposing software knobs for dialing performance vs. protection

‒ Related work: OS  policies for Strict vs Deferred  protection strategy 
[WILMANN’08, BEN-YEHUDA’07, AMIT’11]

‒ ASPLOS’16: Strict, sub-page grain protection through Shadow DMA-buffer 
[MARKUZE’16]
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IOMMULITE FOR EMBEDDED LOW-POWER ACCELERATORS

 Virtual memory eases programming (e.g., “pointer-is-pointer”)

‒ But comes at performance and energy cost

 Stripped-down IOMMU for ultra low-power accelerators

‒ Lower hardware, performance, power cost by stripping non-essential features

‒ Example “non-essential” features: IO virtualization support, Interrupt remapping, 
Page fault handling, Nested page table walker, etc.
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IOMMULITE FOR EMBEDDED LOW-POWER ACCELERATORS

 Virtual memory eases programming (e.g., “pointer-is-pointer”)

‒ But comes at performance and energy cost

 Stripped-down IOMMU for ultra low-power accelerators

‒ Lower hardware, performance, power cost by stripping non-essential features

‒ Example “non-essential” features: IO virtualization support, Interrupt remapping, 
Page fault handling, Nested page table walker, etc.

 Related work:

‒ Vogel et al.’s “Lightweight Virtual Memory” in CODES’15 [VOGEL’15]

‒ Idea: Software managed IOMMU for FPGA  No translation miss handling in hardware

‒ Simple design, high performance with effective software management
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AVOIDING (DESTRUCTIVE-) INTERFERENCE IN IOMMU

MMU MMU

Physical 
Addresses

IO DeviceIO DeviceCore Core
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AVOIDING (DESTRUCTIVE-) INTERFERENCE IN IOMMU
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AVOIDING (DESTRUCTIVE-) INTERFERENCE IN IOMMU

MMU MMU

Physical 
Addresses

Core Core

Memory

DMA 
Requests

Virtual 
Address

Virtual

Addresses

IOMMU
Physical 
Addresses

GPU NIC

IOMMU is a shared resource

How to model contention in IOMMU?

How to guarantee Quality-of-Service 
in IOMMU?
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RESEARCH: TOOLS  AND MODELING 

 Software research: IOMMU driver/OS policies

‒ Easy! Open source IOMMU Driver in Linux

 Hardware research: Modifying IOMMU hardware behavior

‒ Option 1: Hardware performance counter + Analytical models

‒ Option 2: Simulator with IOMMU model

‒ Work in progress to add IOMMU model in gem5

‒ Write down in attendance sheet your email if interested 

http://gem5.org/Main_Page
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SUMMARY

MMU MMU

IO DeviceIO Device
Core Core

IOMMU

Important roles:

1. Memory protection from rogue devices

2. Shared virtual memory to devices

Hardware that 
intercepts DMA 
transactions

IOMMU (kernel-mode) Driver:

Configuration/Setup IOMMU hardware

and interrupts 

3. I/O virtualization – direct I/O

4. Supporting legacy I/O, Secure boot

Memory
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QUESTIONS AND FEEDBACK

 Reachable @

‒ Arka Basu:  Arkaprava “dot” Basu “at” amd.com

‒ Andy Kegel: Andrew “dot” Kegel “at” amd.com

‒ Paul Blinzer: Paul “dot” Blinzer “at” amd.com

‒ Maggie Chan: Maggie “dot” Chan “at” amd.com
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