
VIRTUALIZING IO THROUGH
THE IO MEMORY MANAGEMENT UNIT (IOMMU)

ANDY KEGEL, PAUL BLINZER, ARKA BASU, MAGGIE CHAN
ASPLOS 2016

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 20162

WHAT THIS TUTORIAL WILL AND WILL NOT COVER

 Definition of “IO” or “Device” or “IO Device” :

‒ Traditional IO includes GPU for graphics, NIC, storage controller, USB controller, etc.

‒ New IO (accelerators) includes general-purpose computation on a GPU (GPGPU),
encryption accelerators, digital signal processors, etc.

 Two Parts in Virtualizing an IO Device

‒ Device specific: Virtual instances of device

‒ Virtual functions and Physical function in devices (PCIE® SR-IOV, MR-IOV)

‒ System defined: IO Memory Management Unit or IOMMU

‒ Virtualizing DMA accesses (Address Translation and Protection)

‒ Virtualizing Interrupts (Interrupt Remapping and Virtualizing)

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 20163

WHAT THIS TUTORIAL WILL AND WILL NOT COVER

 Definition of “IO” or “Device” or “IO Device” :

‒ Traditional IO includes GPU for graphics, NIC, storage controller, USB controller, etc.

‒ New IO (accelerators) includes general-purpose computation on a GPU (GPGPU),
encryption accelerators, digital signal processors, etc.

 Two Parts in Virtualizing an IO Device

‒ Device specific: Virtual instances of device

‒ Virtual functions and Physical function in devices (PCIE® SR-IOV, MR-IOV)

‒ System defined: IO Memory Management Unit or IOMMU

‒ Virtualizing DMA accesses (Address Translation and Protection)

‒ Virtualizing Interrupts (Interrupt Remapping and Virtualizing)
Focus

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 20164

AGENDA

USE CASES &
DEMOSTRATION

Where can IOMMU help? -- Paul Blinzer

Research Opportunities and Discussion – Arka Basu

INTERNALS How does IOMMU work? -- Arka Basu, Maggie Chan

RESEARCH

MOTIVATION &
INTRODUCTION What is IOMMU? -- Andy Kegel

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 20165

MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION

MMU MMU

IO DeviceIO DeviceCore Core

Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 20166

MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Virtual

Addresses

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 20167

MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Virtual

Addresses

Protection

Check

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 20168

Device Driver

MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Virtual

Addresses

Protection

Check

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 20169

Device Driver

MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Virtual

Addresses

Protection

Check

Setup

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201610

Device Driver

MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

DMA
Request

Virtual

Addresses
Physical
Addresses

Protection

Check

Setup

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201611

Device Driver

MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

DMA
Request

Virtual

Addresses
Physical
Addresses

Protection

Check

Setup

Wrong
location

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201612

Device Driver

MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

DMA
Request

Virtual

Addresses
Physical
Addresses

Protection

Check

No protection from malicious devices

--> “DMA Attack” (e.g., FinSpy)

No protection from buggy device driver

Setup

Wrong
location

Side channel attack – leak information

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201613

Device Driver

MOTIVATION: TRADITIONAL DMA BY IO
NO SYSTEM VIRTUALIZATION

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

DMA
Request

Virtual

Addresses
Physical
Addresses

Protection

Check

No protection from malicious devices

--> “DMA Attack” (e.g., FinSpy)

No protection from buggy device driver

Setup

Wrong
location

Needs hardware enforced memory
protection

Side channel attack – leak information

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201614

MOTIVATION: VIRTUAL MACHINES ARE TRENDING

Tremendous growth in virtualization in server

Efficient access to IO under virtualization is important

Source: IDC Server Virtualization, MCS 2012

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201615

BACKGROUND: TRANSLATIONS IN VIRTUALIZED SYSTEM

Guest OS 0 Guest OS 1

Hypervisor (a.k.a. VMM)

Hardware – CPU, Memory, IO

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201616

BACKGROUND: TRANSLATIONS IN VIRTUALIZED SYSTEM

Guest OS 0 Guest OS 1

Hypervisor (a.k.a. VMM)

Guest Virtual
Address (GVA)

Guest Applications Guest Applications

Hardware – CPU, Memory, IO

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201617

BACKGROUND: TRANSLATIONS IN VIRTUALIZED SYSTEM

Guest OS 0 Guest OS 1

Hypervisor (a.k.a. VMM)

Guest Virtual
Address (GVA)

Guest Physical
Address (GPA)

Guest Applications Guest Applications

Hardware – CPU, Memory, IO

Managed by
Guest OS

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201618

BACKGROUND: TRANSLATIONS IN VIRTUALIZED SYSTEM

Guest OS 0 Guest OS 1

Hypervisor (a.k.a. VMM)

Guest Virtual
Address (GVA)

Guest Physical
Address (GPA)

Guest Applications Guest Applications

System Physical
Address(SPA)

Hardware – CPU, Memory, IO

Managed by
Guest OS

Managed by
VMM

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201619

BACKGROUND: TRANSLATIONS IN VIRTUALIZED SYSTEM

Guest OS 0 Guest OS 1

Hypervisor (a.k.a. VMM)

Guest Virtual
Address (GVA)

Guest Physical
Address (GPA)

Guest Applications Guest Applications

System Physical
Address(SPA)

Hardware – CPU, Memory, IO

Isolation across Guest OS => No access to (system) physical address from Guest OS

Managed by
Guest OS

Managed by
VMM

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201620

MOTIVATION: TRADITIONAL DMA IN VIRTUAL MACHINES
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

*SPA == “Physical Address”

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201621

VMM

Guest OS 1Guest OS 0

MOTIVATION: TRADITIONAL DMA IN VIRTUAL MACHINES
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

GVA

GPA

SPA

*SPA == “Physical Address”

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201622

VMM

Guest OS 1Guest OS 0

MOTIVATION: TRADITIONAL DMA IN VIRTUAL MACHINES
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

GVA

Setup

GPA

SPA

*SPA == “Physical Address”

No access to Physical
Address

Device Driver

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201623

VMM

Guest OS 1Guest OS 0

MOTIVATION: TRADITIONAL DMA IN VIRTUAL MACHINES
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

GVA

Setup

GPA

SPA

*SPA == “Physical Address”

Setup

Every DMA operation mediated by VMM

Device Driver

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201624

VMM

Guest OS 1Guest OS 0

MOTIVATION: TRADITIONAL DMA IN VIRTUAL MACHINES
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

DMA
Operation

GVA

Physical
Addresses

Setup

GPA

SPA

*SPA == “Physical Address”

Setup

Every DMA operation mediated by VMM

Device Driver

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201625

VMM

Guest OS 1Guest OS 0

MOTIVATION: TRADITIONAL DMA IN VIRTUAL MACHINES
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

DMA
Operation

GVA

Physical
Addresses

Setup

GPA

SPA

*SPA == “Physical Address”

Setup

 Often ~30% performance overhead

Every DMA operation mediated by VMM

Device Driver

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201626

VMM

Guest OS 1Guest OS 0

MOTIVATION: TRADITIONAL DMA IN VIRTUAL MACHINES
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

DMA
Operation

GVA

Physical
Addresses

Setup

GPA

SPA

*SPA == “Physical Address”

Setup

 Often ~30% performance overhead

Every DMA operation mediated by VMM

Virtual address translation for DMA

Device Driver

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201627

INTRODUCTION OF IOMMU: THE LOGICAL VIEW

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201628

INTRODUCTION OF IOMMU: THE LOGICAL VIEW

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

Key capabilities:

1. Memory protection for DMA

2. Virtual address translation for DMA

Hardware that
intercepts DMA
transactions

IOMMU Driver Sets up IOMMU hardware

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201629

MOTIVATION: TRADITIONAL IO INTERRUPT
NON-VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201630

Device Driver

MOTIVATION: TRADITIONAL IO INTERRUPT
NON-VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Setup IRQ # + Core id

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201631

Device Driver

MOTIVATION: TRADITIONAL IO INTERRUPT
NON-VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Setup IRQ # + Core id

IRQ #
APIC APIC

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201632

VMM

Guest OS 0

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201633

VMM

Guest OS 0

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Setup

IRQ # + Core i

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201634

VMM

Guest OS 0

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Setup

IRQ # + Core i

Guest OS migration

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201635

VMM

Guest OS 0

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Setup

IRQ # + Core i

Guest OS migration

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201636

VMM

Guest OS 0

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Setup

IRQ # + Core i

Inter-Process
Interrupt

Guest OS migration

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201637

VMM

Guest OS 0

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Setup

Extraneous IPI adds overheads

=> Each extra interrupt can
add 5-10K cycles

Needs dynamic remapping of
interrupts

IRQ # + Core i

Inter-Process
Interrupt

Guest OS migration

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201638

VMM

Guest OS 0

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201639

VMM

Guest OS 0

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Setup

IRQ # + Core i

Performance overheads VMM exits on
each interrupt

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201640

VMM

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Setup

IRQ # + Core i

Guest OS de-scheduled

Performance overheads VMM exits on
each interrupt

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201641

VMM

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Setup

IRQ # + Core i

Guest OS de-scheduled

Performance overheads VMM exits on
each interrupt

Unnecessary VMM wakeup

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201642

VMM

MOTIVATION: TRADITIONAL IO INTERRUPT
VIRTUALIZED SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

Memory

Setup

Need to virtualize interrupt:

 Direct interrupt delivery to guest OS
and temporary queueing

IRQ # + Core i

Guest OS de-scheduled

Performance overheads VMM exits on
each interrupt

Unnecessary VMM wakeup

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201643

INTRODUCTION OF IOMMU: THE LOGICAL VIEW
ADDING INTERRUPT HANDLING CAPABILITY

MMU MMU

IO DeviceIO DeviceCore Core

Memory

IOMMU

Key capabilities:

1. Memory protection for DMA

2. Virtual address translation for DMA

Hardware that
intercepts DMA
transactions

IOMMU Driver Sets up IOMMU hardware

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201644

INTRODUCTION OF IOMMU: THE LOGICAL VIEW
ADDING INTERRUPT HANDLING CAPABILITY

MMU MMU

IO DeviceIO DeviceCore Core

Memory

IOMMU

Key capabilities:

1. Memory protection for DMA

2. Virtual address translation for DMA

Hardware that
intercepts DMA
transactions
and interrupts

3. Interrupt remapping and virtualization

IOMMU Driver Sets up IOMMU hardware

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201645

Memory

MOTIVATION: EMERGENCE OF HETEROGENEOUS SYSTEMS
HETEROGENEOUS SYSTEM ARCHITECTURE (HSA)

MMU MMU

IO DeviceIO DeviceCore Core

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201646

Memory

MOTIVATION: EMERGENCE OF HETEROGENEOUS SYSTEMS
HETEROGENEOUS SYSTEM ARCHITECTURE (HSA)

MMU MMU

IO DeviceCore Core GPU

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201647

Memory

MOTIVATION: EMERGENCE OF HETEROGENEOUS SYSTEMS
HETEROGENEOUS SYSTEM ARCHITECTURE (HSA)

MMU MMU

IO DeviceCore Core GPU

Shared virtual addressing is key to ease of programming

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201648

Memory

MOTIVATION: EMERGENCE OF HETEROGENEOUS SYSTEMS
HETEROGENEOUS SYSTEM ARCHITECTURE (HSA)

MMU MMU

IO DeviceCore

Shared virtual addressing is key to ease of programming

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201649

Memory

MOTIVATION: EMERGENCE OF HETEROGENEOUS SYSTEMS
HETEROGENEOUS SYSTEM ARCHITECTURE (HSA)

MMU MMU

IO DeviceCore

Shared virtual addressing is key to ease of programming

VA0 VA0

“Pointer-is-a -Pointer” across CPU and devices

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201650

Memory

MOTIVATION: EMERGENCE OF HETEROGENEOUS SYSTEMS
HETEROGENEOUS SYSTEM ARCHITECTURE (HSA)

MMU MMU

IO DeviceCore

Shared virtual addressing is key to ease of programming

VA0 VA0

“Pointer-is-a -Pointer” across CPU and devices

IO needs to share CPU page table*

*Data Structure that keeps VA to PA mapping

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201651

INTRODUCTION OF IOMMU: THE LOGICAL VIEW
ADDING ABILITY TO SHARE ADDRESS SPACE IN HETEROGENEOUS SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

IOMMU

Key capabilities:

1. Memory protection for DMA

2. Virtual address translation for DMA

Hardware that
intercepts DMA
transactions

and interrupts

3. Interrupt remapping and virtualization
Memory

IOMMU Driver Sets up IOMMU hardware

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201652

INTRODUCTION OF IOMMU: THE LOGICAL VIEW
ADDING ABILITY TO SHARE ADDRESS SPACE IN HETEROGENEOUS SYSTEM

MMU MMU

IO DeviceIO DeviceCore Core

IOMMU

Key capabilities:

1. Memory protection for DMA

2. Virtual address translation for DMA

Hardware that
intercepts DMA
transactions

and interrupts

3. Interrupt remapping and virtualization

4. IO can share CPU page tables

Memory

IOMMU Driver Sets up IOMMU hardware

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201653

INTRODUCTION OF IOMMU: (TYPICAL) PHYSICAL VIEW
IOMMU IS PART OF PROCESSOR COMPLEX

MMU MMU

Core Core

IO
 D

evice
IO

 D
eviceIO

M
M

U

Memory Controller

Root Complex/
“IOHUB”

Processor
/Chip

In
te

rco
n

n
ect

Memory

IO Device

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201654

IOMMU FROM THE PERSPECTIVE OF DEVICE (PCIE® SPEC)

Memory

Root Complex (RC)

Root Integrated
Endpoint

Device ATC
Switch

Device ATC Device

ATC

Root
Port

Root
Port

Translation
Agent

Addr. Translation and
Protection Table

ATC – Address Translation
Cache

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201655

IOMMU FROM THE PERSPECTIVE OF DEVICE (PCIE® SPEC)

Memory

Root Complex (RC)

Root Integrated
Endpoint

Device ATC
Switch

Device ATC Device

ATC

Root
Port

Root
Port

Translation
Agent

Addr. Translation and
Protection Table

IOMMU Translation Agent and uses the Address Translation and Protection Table

ATC – Address Translation
Cache

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201656

COMPARING CPU MMU AND IOMMU

CPU MMU IOMMU

Address Translation
VA  PA and GVA 

GPA  SPA
VA  PA and GVA
 GPA  SPA

Memory Protection Read/Write etc. Read/Write etc.

Interrupt Handling No
Remapping and

Virtualization Support

Parallelism Mostly Single Threaded Highly Multithreaded

Page Faults, Events,
etc.

Synchronous Handling Asynchronous Handling

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201657

HISTORY
A SIMPLIFIED VIEW

Interrupt remapping added for IO virtualization

Features added for full heterogeneous computing and
further efficiencies

V2, c. 2008
Nested paging, interrupt virtualization, and improved
management features added

V3, c. 2010

Technology created to translate and vet memory
accesses by peripherals, replacing software

Whither next?

V1, c. 2004

V1.2, c. 2006

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201658

IOMMU TECHNOLOGY FAMILIES
REFERENCES

Intel VT-d® Virtualization Technology for Directed IO

Coherent Accelerator Processor Interface

ARM SMM® System Memory Management Unit

IBM CAPI®

AMD IOMMU® IO Memory Management Unit

http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www-304.ibm.com/webapp/set2/sas/f/capi/home.html
http://www.arm.com/products/system-ip/controllers/system-mmu.php
http://support.amd.com/TechDocs/48882_IOMMU.pdf

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201660

AGENDA

USE CASES &
DEMOSTRATION

Where can IOMMU help?

Research Opportunities and Tools

INTERNALS How does IOMMU work?

RESEARCH

MOTIVATION &
INTRODUCTION What is IOMMU?

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201661

SECURE BOOT

DIRECT I/O DEVICES

SECURITY AND
PROTECTION

FIVE USE CASES OF IOMMU

Enforcing secure boot

Preventing uncontrolled memory access

Secure and efficient IO from Guest OS

HETEROGENEOUS
COMPUTING Enabling shared virtual memory

LEGACY I/O
Supporting legacy devices –

Extending DMA “beyond reach”

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201662

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32-bit DMA devices operate in a 64-bit system

‒ Older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

0

232-1

Device

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201663

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32-bit DMA devices operate in a 64-bit system

‒ Older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

0

232-1

264-1

Device

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201664

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32-bit DMA devices operate in a 64-bit system

‒ Older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 SW Solution: Bounce buffers

‒ Device does DMA to a region in 32bit physical address, CPU
copies data from buffer to the final destination

0

232-1

264-1

Device

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201665

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32-bit DMA devices operate in a 64-bit system

‒ Older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 SW Solution: Bounce buffers

‒ Device does DMA to a region in 32bit physical address, CPU
copies data from buffer to the final destination

0

232-1

264-1

Device

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201666

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32-bit DMA devices operate in a 64-bit system

‒ Older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 SW Solution: Bounce buffers

‒ Device does DMA to a region in 32bit physical address, CPU
copies data from buffer to the final destination

0

232-1

264-1

Device

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201667

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32-bit DMA devices operate in a 64-bit system

‒ Older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 SW Solution: Bounce buffers

‒ Device does DMA to a region in 32bit physical address, CPU
copies data from buffer to the final destination

0

232-1

264-1

Device

CPU

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201668

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32-bit DMA devices operate in a 64-bit system

‒ Older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 SW Solution: Bounce buffers

‒ Device does DMA to a region in 32bit physical address, CPU
copies data from buffer to the final destination

0

232-1

264-1

Device

CPU

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201669

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32-bit DMA devices operate in a 64-bit system

‒ Older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 SW Solution: Bounce buffers

‒ Device does DMA to a region in 32bit physical address, CPU
copies data from buffer to the final destination

‒ Slow, needs SW synchronization, ties up CPU core

0

232-1

264-1

Device

CPU

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201670

0x01020304 ->
0x208090A0B0C

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32bit DMA devices operate in a 64bit system

‒ older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

0

232-1

264-1

Device

IOMMU

Translation

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201671

0x01020304 ->
0x208090A0B0C

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32bit DMA devices operate in a 64bit system

‒ older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 Better solution: IOMMU remaps 32bit device physical
address to system physical address beyond 32bit

0

232-1

264-1

Device

IOMMU

Translation

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201672

0x01020304 ->
0x208090A0B0C

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32bit DMA devices operate in a 64bit system

‒ older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 Better solution: IOMMU remaps 32bit device physical
address to system physical address beyond 32bit

0

232-1

264-1

Device

IOMMU

Translation

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201673

0x01020304 ->
0x208090A0B0C

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32bit DMA devices operate in a 64bit system

‒ older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 Better solution: IOMMU remaps 32bit device physical
address to system physical address beyond 32bit

0

232-1

264-1

Device

IOMMU

Translation

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201674

0x01020304 ->
0x208090A0B0C

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32bit DMA devices operate in a 64bit system

‒ older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 Better solution: IOMMU remaps 32bit device physical
address to system physical address beyond 32bit

0

232-1

264-1

Device

IOMMU

Translation

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201675

0x01020304 ->
0x208090A0B0C

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32bit DMA devices operate in a 64bit system

‒ older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 Better solution: IOMMU remaps 32bit device physical
address to system physical address beyond 32bit

‒ DMA goes directly into 64bit memory

‒ No CPU transfer

‒ More efficient

0

232-1

264-1

Device

IOMMU

Translation

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201676

0x01020304 ->
0x208090A0B0C

SUPPORTING LEGACY DEVICES
HOW CAN AN IOMMU HELP?

 Many 32bit DMA devices operate in a 64bit system

‒ older PCI cards (through PCI-PCIe bridges), special-purpose
controllers, parallel ports (IEEE-1284), …

 Better solution: IOMMU remaps 32bit device physical
address to system physical address beyond 32bit

‒ DMA goes directly into 64bit memory

‒ No CPU transfer

‒ More efficient

 Linux: DMA redirect feature

0

232-1

264-1

Device

IOMMU

Translation

Physical Memory

IOMMU USECASE: SECURITY AND PROTECTION
SECURE BOOT

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201678

SECURITY AND PROTECTION
THE TRADITIONAL IOMMU USE

 DMA devices use physical addresses on the system bus to read
and write memory based on SW driver or OS instructions

Passwords,
Critical data

I/O buffer

Device

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201679

SECURITY AND PROTECTION
THE TRADITIONAL IOMMU USE

 DMA devices use physical addresses on the system bus to read
and write memory based on SW driver or OS instructions

Passwords,
Critical data

I/O buffer

Device

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201680

SECURITY AND PROTECTION
THE TRADITIONAL IOMMU USE

 DMA devices use physical addresses on the system bus to read
and write memory based on SW driver or OS instructions

 SW bugs or attacks by malicious applications could access and
modify important OS data (OS security policy, passwords,…)

‒ Without OS able to detect or prevent the access as it can for CPU

‒ Latent problem until it shows unexpectedly possibly much later

Passwords,
Critical data

I/O buffer

Device

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201681

SECURITY AND PROTECTION
THE TRADITIONAL IOMMU USE

 DMA devices use physical addresses on the system bus to read
and write memory based on SW driver or OS instructions

 SW bugs or attacks by malicious applications could access and
modify important OS data (OS security policy, passwords,…)

‒ Without OS able to detect or prevent the access as it can for CPU

‒ Latent problem until it shows unexpectedly possibly much later

Passwords,
Critical data

I/O buffer

Device

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201682

SECURITY AND PROTECTION
THE TRADITIONAL IOMMU USE

 DMA devices use physical addresses on the system bus to read
and write memory based on SW driver or OS instructions

 SW bugs or attacks by malicious applications could access and
modify important OS data (OS security policy, passwords,…)

‒ Without OS able to detect or prevent the access as it can for CPU

‒ Latent problem until it shows unexpectedly possibly much later

 This affects system stability, if just the right data is hit

‒ “Heisenbugs” are sometimes caused by bugs in system drivers

 Or it allows malicious driver attacks to take over the system
Passwords,
Critical data

I/O buffer

Device

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201683

SECURITY AND PROTECTION
THE TRADITIONAL IOMMU USE

 DMA devices assert physical addresses on the system bus to
read and write memory based on SW driver or OS settings

 SW bugs or attacks by malicious applications could access
and modify important data (OS security policy, passwords,…)

Passwords,
critical data

I/O buffer

Device

X
OK
IOMMU

Range check

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201684

SECURITY AND PROTECTION
THE TRADITIONAL IOMMU USE

 DMA devices assert physical addresses on the system bus to
read and write memory based on SW driver or OS settings

 SW bugs or attacks by malicious applications could access
and modify important data (OS security policy, passwords,…)

 The IOMMU allows OS to enforce DMA access policy for any
DMA capable device accessing physical memory

‒ Memory state important to stability/security

‒ If access occurs, OS gets notified and can shut the device & driver
down and notifies the user or administrator

Passwords,
critical data

I/O buffer

Device

X
OK
IOMMU

Range check

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201685

SECURITY AND PROTECTION
THE TRADITIONAL IOMMU USE

 DMA devices assert physical addresses on the system bus to
read and write memory based on SW driver or OS settings

 SW bugs or attacks by malicious applications could access
and modify important data (OS security policy, passwords,…)

 The IOMMU allows OS to enforce DMA access policy for any
DMA capable device accessing physical memory

‒ Memory state important to stability/security

‒ If access occurs, OS gets notified and can shut the device & driver
down and notifies the user or administrator

Passwords,
critical data

I/O buffer

Device

X
OK
IOMMU

Range check

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201686

SECURITY AND PROTECTION
THE TRADITIONAL IOMMU USE

 DMA devices assert physical addresses on the system bus to
read and write memory based on SW driver or OS settings

 SW bugs or attacks by malicious applications could access
and modify important data (OS security policy, passwords,…)

 The IOMMU allows OS to enforce DMA access policy for any
DMA capable device accessing physical memory

‒ Memory state important to stability/security

‒ If access occurs, OS gets notified and can shut the device & driver
down and notifies the user or administrator

Passwords,
critical data

I/O buffer

Device

X
OK
IOMMU

Range check

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201687

SECURITY AND PROTECTION
THE TRADITIONAL IOMMU USE

 DMA devices assert physical addresses on the system bus to
read and write memory based on SW driver or OS settings

 SW bugs or attacks by malicious applications could access
and modify important data (OS security policy, passwords,…)

 The IOMMU allows OS to enforce DMA access policy for any
DMA capable device accessing physical memory

‒ Memory state important to stability/security

‒ If access occurs, OS gets notified and can shut the device & driver
down and notifies the user or administrator

Passwords,
critical data

I/O buffer

Device

X
OK
IOMMU

Range check

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201688

SECURITY AND PROTECTION
THE TRADITIONAL IOMMU USE

 DMA devices assert physical addresses on the system bus to
read and write memory based on SW driver or OS settings

 SW bugs or attacks by malicious applications could access
and modify important data (OS security policy, passwords,…)

 The IOMMU allows OS to enforce DMA access policy for any
DMA capable device accessing physical memory

‒ Memory state important to stability/security

‒ If access occurs, OS gets notified and can shut the device & driver
down and notifies the user or administrator

Passwords,
critical data

I/O buffer

Device

X
OK
IOMMU

Range check

Physical Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201689

SECURE BOOT
YET ANOTHER USE FOR AN IOMMU

 Ensuring that a system is not doing more than it’s supposed to

‒ e.g., being part of a botnet, provide banking data or other personal
info to impersonators or other attackers

‒ The earliest time for attack and defense is at firmware startup

‒ From there critical memory regions are protected from invalid access

UEFI
Firmware

OS
Bootloader

OS kernel
drivers

Application

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201690

SECURE BOOT
YET ANOTHER USE FOR AN IOMMU

 Ensuring that a system is not doing more than it’s supposed to

‒ e.g., being part of a botnet, provide banking data or other personal
info to impersonators or other attackers

‒ The earliest time for attack and defense is at firmware startup

‒ From there critical memory regions are protected from invalid access

 The Secure Boot architecture ensures that no non-vetted OS
kernel code runs on the system, changing critical settings

UEFI
Firmware

OS
Bootloader

OS kernel
drivers

Application

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201691

SECURE BOOT
YET ANOTHER USE FOR AN IOMMU

 Ensuring that a system is not doing more than it’s supposed to

‒ e.g., being part of a botnet, provide banking data or other personal
info to impersonators or other attackers

‒ The earliest time for attack and defense is at firmware startup

‒ From there critical memory regions are protected from invalid access

 The Secure Boot architecture ensures that no non-vetted OS
kernel code runs on the system, changing critical settings

 Some I/O devices can issue DMA requests to system memory
directly, without OS or Firmware intervention

‒ e.g.,1394/Firewire, network cards, as part of network boot

‒ That allows attacks to modify memory before even the OS has a
chance to protect against the attacks

UEFI
Firmware

OS
Bootloader

OS kernel
drivers

Application

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201692

SECURE BOOT
YET ANOTHER USE FOR AN IOMMU

 Ensuring that a system is not doing more than it’s supposed to

‒ e.g., being part of a botnet, provide banking data or other personal
info to impersonators or other attackers

‒ The earliest time for attack and defense is at firmware startup

‒ From there critical memory regions are protected from invalid access

 The Secure Boot architecture ensures that no non-vetted OS
kernel code runs on the system, changing critical settings

 Some I/O devices can issue DMA requests to system memory
directly, without OS or Firmware intervention

‒ e.g.,1394/Firewire, network cards, as part of network boot

‒ That allows attacks to modify memory before even the OS has a
chance to protect against the attacks

 As outlined earlier, using the IOMMU prevents DMA access to
important memory regions

UEFI
Firmware

OS
Bootloader

OS kernel
drivers

Application

IOMMU USECASE: EFFICIENT IO IN VIRTUALIZED
ENVIRONMENT

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201694

BACKGROUND: TRADITIONAL DMA BY IO
(NO SYSTEM VIRTUALIZATION)

MMU MMU

IO DeviceIO DeviceCore Core

Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201695

BACKGROUND: TRADITIONAL DMA BY IO
(NO SYSTEM VIRTUALIZATION)

MMU MMU

IO DeviceIO DeviceCore Core

Virtual

Addresses

Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201696

BACKGROUND: TRADITIONAL DMA BY IO
(NO SYSTEM VIRTUALIZATION)

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Virtual

Addresses

Memory

Protection

Check

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201697

BACKGROUND: TRADITIONAL DMA BY IO
(NO SYSTEM VIRTUALIZATION)

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Virtual

Addresses

Memory

Protection

Check

Device Driver

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201698

BACKGROUND: TRADITIONAL DMA BY IO
(NO SYSTEM VIRTUALIZATION)

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Virtual

Addresses

Memory

Protection

Check

Device Driver
Setup

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 201699

BACKGROUND: TRADITIONAL DMA BY IO
(NO SYSTEM VIRTUALIZATION)

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

DMA
Request

Virtual

Addresses
Physical
Addresses

Memory

Protection

Check

Device Driver
Setup

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016100

BACKGROUND: TRADITIONAL DMA BY IO
(NO SYSTEM VIRTUALIZATION)

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

DMA
Request

Virtual

Addresses
Physical
Addresses

Memory

Protection

Check

Device Driver
Setup

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016101

BACKGROUND: TRADITIONAL DMA BY IO
(NO SYSTEM VIRTUALIZATION)

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

DMA
Request

Virtual

Addresses
Physical
Addresses

Memory

Protection

Check

Device Driver

Device drivers must program the true
system physical memory address

system crash by writing wrong memory

No protection from potentially malicious
driver or system SW attacks

Setup

No protection from SW or hardware
bugs in I/O devices and drivers

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016102

VIRTUALIZATION OF A SYSTEM IN SOFTWARE
IT HAS TO LOOK REAL TO AN OPERATING SYSTEM

 Each OS assumes full access to the platform hardware

‒ Memory, Interrupts, Devices, CPU cores, etc.

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016103

VIRTUALIZATION OF A SYSTEM IN SOFTWARE
IT HAS TO LOOK REAL TO AN OPERATING SYSTEM

 Each OS assumes full access to the platform hardware

‒ Memory, Interrupts, Devices, CPU cores, etc.

 A Virtual Machine Manager (VMM) or Hypervisor (HV) is tasked to manage
the physical hardware and define a “virtual machine” (VM) that represents
the resources an OS expects to find in the system

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016104

VIRTUALIZATION OF A SYSTEM IN SOFTWARE
IT HAS TO LOOK REAL TO AN OPERATING SYSTEM

 Each OS assumes full access to the platform hardware

‒ Memory, Interrupts, Devices, CPU cores, etc.

 A Virtual Machine Manager (VMM) or Hypervisor (HV) is tasked to manage
the physical hardware and define a “virtual machine” (VM) that represents
the resources an OS expects to find in the system

Hypervisor
VMM

Virtual
Machine3

Operating
System3

Application
Application

Application

Virtual
Machine2

Operating
System2

Application
Application

Application

Virtual
Machine1

Operating
System1

Application
Application

Application

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016105

VIRTUALIZATION OF A SYSTEM IN SOFTWARE
IT HAS TO LOOK REAL TO AN OPERATING SYSTEM

 Each OS assumes full access to the platform hardware

‒ Memory, Interrupts, Devices, CPU cores, etc.

 A Virtual Machine Manager (VMM) or Hypervisor (HV) is tasked to manage
the physical hardware and define a “virtual machine” (VM) that represents
the resources an OS expects to find in the system

 Use cases:
Hypervisor

VMM

Virtual
Machine3

Operating
System3

Application
Application

Application

Virtual
Machine2

Operating
System2

Application
Application

Application

Virtual
Machine1

Operating
System1

Application
Application

Application

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016106

VIRTUALIZATION OF A SYSTEM IN SOFTWARE
IT HAS TO LOOK REAL TO AN OPERATING SYSTEM

 Each OS assumes full access to the platform hardware

‒ Memory, Interrupts, Devices, CPU cores, etc.

 A Virtual Machine Manager (VMM) or Hypervisor (HV) is tasked to manage
the physical hardware and define a “virtual machine” (VM) that represents
the resources an OS expects to find in the system

 Use cases:

‒ System consolidation

Hypervisor
VMM

Virtual
Machine3

Operating
System3

Application
Application

Application

Virtual
Machine2

Operating
System2

Application
Application

Application

Virtual
Machine1

Operating
System1

Application
Application

Application

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016107

VIRTUALIZATION OF A SYSTEM IN SOFTWARE
IT HAS TO LOOK REAL TO AN OPERATING SYSTEM

 Each OS assumes full access to the platform hardware

‒ Memory, Interrupts, Devices, CPU cores, etc.

 A Virtual Machine Manager (VMM) or Hypervisor (HV) is tasked to manage
the physical hardware and define a “virtual machine” (VM) that represents
the resources an OS expects to find in the system

 Use cases:

‒ System consolidation

‒ OS/application compatibility

Hypervisor
VMM

Virtual
Machine3

Operating
System3

Application
Application

Application

Virtual
Machine2

Operating
System2

Application
Application

Application

Virtual
Machine1

Operating
System1

Application
Application

Application

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016108

VIRTUALIZATION OF A SYSTEM IN SOFTWARE
IT HAS TO LOOK REAL TO AN OPERATING SYSTEM

 Each OS assumes full access to the platform hardware

‒ Memory, Interrupts, Devices, CPU cores, etc.

 A Virtual Machine Manager (VMM) or Hypervisor (HV) is tasked to manage
the physical hardware and define a “virtual machine” (VM) that represents
the resources an OS expects to find in the system

 Use cases:

‒ System consolidation

‒ OS/application compatibility

‒ Security / Stability

Hypervisor
VMM

Virtual
Machine3

Operating
System3

Application
Application

Application

Virtual
Machine2

Operating
System2

Application
Application

Application

Virtual
Machine1

Operating
System1

Application
Application

Application

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016109

VIRTUALIZATION OF A SYSTEM IN SOFTWARE
IT HAS TO LOOK REAL TO AN OPERATING SYSTEM

 Each OS assumes full access to the platform hardware

‒ Memory, Interrupts, Devices, CPU cores, etc.

 A Virtual Machine Manager (VMM) or Hypervisor (HV) is tasked to manage
the physical hardware and define a “virtual machine” (VM) that represents
the resources an OS expects to find in the system

 Use cases:

‒ System consolidation

‒ OS/application compatibility

‒ Security / Stability

‒ Cloud Infrastructure

Hypervisor
VMM

Virtual
Machine3

Operating
System3

Application
Application

Application

Virtual
Machine2

Operating
System2

Application
Application

Application

Virtual
Machine1

Operating
System1

Application
Application

Application

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016110

VIRTUALIZATION OF A SYSTEM

 Most CPUs today have support for system virtualization

‒ Nested page tables (HV & OS levels), allow VMM/HV to assign and manage system
memory and interrupts to Virtual Machines

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016111

VIRTUALIZATION OF A SYSTEM

 Most CPUs today have support for system virtualization

‒ Nested page tables (HV & OS levels), allow VMM/HV to assign and manage system
memory and interrupts to Virtual Machines

 I/O devices are typically managed by HV/VMM software, either by…

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016112

VIRTUALIZATION OF A SYSTEM

 Most CPUs today have support for system virtualization

‒ Nested page tables (HV & OS levels), allow VMM/HV to assign and manage system
memory and interrupts to Virtual Machines

 I/O devices are typically managed by HV/VMM software, either by…

Para-Virtualization

Guest device driver uses HV “hypercalls”
Hypervisor manages HW operation (DMA)

Hypervisor SW validates and redirects I/O
requests from Guest OS (overhead, slow)

Hypervisor arbitrates and schedules requests
from multiple guest OS, allows VM migration

Most common operation for today’s
virtualization Software
Works well for CPU-heavy workloads
I/O, graphics or compute-heavy workloads

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016113

VIRTUALIZATION OF A SYSTEM

 Most CPUs today have support for system virtualization

‒ Nested page tables (HV & OS levels), allow VMM/HV to assign and manage system
memory and interrupts to Virtual Machines

 I/O devices are typically managed by HV/VMM software, either by…

Para-Virtualization

Guest device driver uses HV “hypercalls”
Hypervisor manages HW operation (DMA)

Hypervisor SW validates and redirects I/O
requests from Guest OS (overhead, slow)

Hypervisor arbitrates and schedules requests
from multiple guest OS, allows VM migration

Most common operation for today’s
virtualization Software
Works well for CPU-heavy workloads
I/O, graphics or compute-heavy workloads

Direct-Mapped Device & SR-IOV

Device function is mapped to guest OS
Guest OS uses native HW drivers

Physical Device DMA must be limited and
redirected by Hypervisor (via IOMMU),

One device function per guest OS, physical
memory must be committed

I/O device must be resettable by HV when
guest error puts it in undefined state
SR-IOV is a variant of direct mapped
I/O device provides 1 - n “virtual” devices in
HW (PCI-SIG standard)

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016114

EFFICIENT I/O VIRTUALIZATION

 IOMMU validates DMA accesses and validates device interrupts

HARDWARE IMPLEMENTED TECHNIQUE THROUGH IOMMU

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016115

EFFICIENT IO VIRTUALIZATION WITH IOMMU
WHAT ARE THE BENEFITS?

 Using the IOMMU allows a Hypervisor to assign a physical device exclusively
to a Guest VM without danger of memory corruption to other VMs

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016116

EFFICIENT IO VIRTUALIZATION WITH IOMMU
WHAT ARE THE BENEFITS?

 Using the IOMMU allows a Hypervisor to assign a physical device exclusively
to a Guest VM without danger of memory corruption to other VMs

‒ Beneficial if one VM requires near native performance

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016117

EFFICIENT IO VIRTUALIZATION WITH IOMMU
WHAT ARE THE BENEFITS?

 Using the IOMMU allows a Hypervisor to assign a physical device exclusively
to a Guest VM without danger of memory corruption to other VMs

‒ Beneficial if one VM requires near native performance

‒ Or if OS needs to be “sandboxed” (because of suspected malware)

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016118

EFFICIENT IO VIRTUALIZATION WITH IOMMU
WHAT ARE THE BENEFITS?

 Using the IOMMU allows a Hypervisor to assign a physical device exclusively
to a Guest VM without danger of memory corruption to other VMs

‒ Beneficial if one VM requires near native performance

‒ Or if OS needs to be “sandboxed” (because of suspected malware)

 Native driver can operate in the Guest OS

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016119

EFFICIENT IO VIRTUALIZATION WITH IOMMU
WHAT ARE THE BENEFITS?

 Using the IOMMU allows a Hypervisor to assign a physical device exclusively
to a Guest VM without danger of memory corruption to other VMs

‒ Beneficial if one VM requires near native performance

‒ Or if OS needs to be “sandboxed” (because of suspected malware)

 Native driver can operate in the Guest OS

 IOMMU enforces Hypervisor policy on memory and system resource
isolation for each of the Guest Virtual Machines

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016120

EFFICIENT IO VIRTUALIZATION WITH IOMMU
WHAT ARE THE BENEFITS?

 Using the IOMMU allows a Hypervisor to assign a physical device exclusively
to a Guest VM without danger of memory corruption to other VMs

‒ Beneficial if one VM requires near native performance

‒ Or if OS needs to be “sandboxed” (because of suspected malware)

 Native driver can operate in the Guest OS

 IOMMU enforces Hypervisor policy on memory and system resource
isolation for each of the Guest Virtual Machines

 IOMMU redirects device physical address set up by Guest OS driver (= Guest
Physical Addresses) to the actual Host System Physical Address (SPA)

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016121

EFFICIENT IO VIRTUALIZATION WITH IOMMU
WHAT ARE THE BENEFITS?

 Using the IOMMU allows a Hypervisor to assign a physical device exclusively
to a Guest VM without danger of memory corruption to other VMs

‒ Beneficial if one VM requires near native performance

‒ Or if OS needs to be “sandboxed” (because of suspected malware)

 Native driver can operate in the Guest OS

 IOMMU enforces Hypervisor policy on memory and system resource
isolation for each of the Guest Virtual Machines

 IOMMU redirects device physical address set up by Guest OS driver (= Guest
Physical Addresses) to the actual Host System Physical Address (SPA)

‒ Useful for platform resources that have “well-known” addresses like legacy devices
or system resources like APIC (Advanced Programmable Interrupt Controller)

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016122

EFFICIENT IO VIRTUALIZATION WITH IOMMU
WHAT ARE THE BENEFITS?

 Using the IOMMU allows a Hypervisor to assign a physical device exclusively
to a Guest VM without danger of memory corruption to other VMs

‒ Beneficial if one VM requires near native performance

‒ Or if OS needs to be “sandboxed” (because of suspected malware)

 Native driver can operate in the Guest OS

 IOMMU enforces Hypervisor policy on memory and system resource
isolation for each of the Guest Virtual Machines

 IOMMU redirects device physical address set up by Guest OS driver (= Guest
Physical Addresses) to the actual Host System Physical Address (SPA)

‒ Useful for platform resources that have “well-known” addresses like legacy devices
or system resources like APIC (Advanced Programmable Interrupt Controller)

 Allows near-native device performance for high-performance devices with
low system impact

IOMMU USECASE: ENABLING HETEROGENEOUS
COMPUTING

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016124

PCIe™

System Memory
(Coherent)

CPU CPU CPU
. . . CU CU CU CU

CU CU CU CU

GPU Memory
(Non-Coherent)

GPU

The limiters that need to be fixed to unleash programmers:

LEGACY GPU COMPUTE

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016125

PCIe™

System Memory
(Coherent)

CPU CPU CPU
. . . CU CU CU CU

CU CU CU CU

GPU Memory
(Non-Coherent)

GPU

The limiters that need to be fixed to unleash programmers:

 Multiple memory pools, multiple address spaces

LEGACY GPU COMPUTE

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016126

PCIe™

System Memory
(Coherent)

CPU CPU CPU
. . . CU CU CU CU

CU CU CU CU

GPU Memory
(Non-Coherent)

GPU

The limiters that need to be fixed to unleash programmers:

 Multiple memory pools, multiple address spaces

 High overhead dispatch, data copies across PCIe

LEGACY GPU COMPUTE

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016127

PCIe™

System Memory
(Coherent)

CPU CPU CPU
. . . CU CU CU CU

CU CU CU CU

GPU Memory
(Non-Coherent)

GPU

The limiters that need to be fixed to unleash programmers:

 Multiple memory pools, multiple address spaces

 High overhead dispatch, data copies across PCIe

 New languages and APIs for GPU programming necessary (OpenCL, etc.)

LEGACY GPU COMPUTE

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016128

PCIe™

System Memory
(Coherent)

CPU CPU CPU
. . . CU CU CU CU

CU CU CU CU

GPU Memory
(Non-Coherent)

GPU

The limiters that need to be fixed to unleash programmers:

 Multiple memory pools, multiple address spaces

 High overhead dispatch, data copies across PCIe

 New languages and APIs for GPU programming necessary (OpenCL, etc.)

‒ And sometimes proprietary environments

LEGACY GPU COMPUTE

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016129

PCIe™

System Memory
(Coherent)

CPU CPU CPU
. . . CU CU CU CU

CU CU CU CU

GPU Memory
(Non-Coherent)

GPU

The limiters that need to be fixed to unleash programmers:

 Multiple memory pools, multiple address spaces

 High overhead dispatch, data copies across PCIe

 New languages and APIs for GPU programming necessary (OpenCL, etc.)

‒ And sometimes proprietary environments

 Dual source development

LEGACY GPU COMPUTE

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016130

PCIe™

System Memory
(Coherent)

CPU CPU CPU
. . . CU CU CU CU

CU CU CU CU

GPU Memory
(Non-Coherent)

GPU

The limiters that need to be fixed to unleash programmers:

 Multiple memory pools, multiple address spaces

 High overhead dispatch, data copies across PCIe

 New languages and APIs for GPU programming necessary (OpenCL, etc.)

‒ And sometimes proprietary environments

 Dual source development

 Expert programmers only

LEGACY GPU COMPUTE

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016131

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

Physical Integration

CU

1

CU

1
…

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M

System Memory
(Coherent)

GPU Memory
(Non-Coherent)

GPU

 Some memory copies are gone, because the same memory is accessed

THE PREVIOUS APUS AND SOCS, PHYSICAL INTEGRATION

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016132

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

Physical Integration

CU

1

CU

1
…

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M

System Memory
(Coherent)

GPU Memory
(Non-Coherent)

GPU

 Some memory copies are gone, because the same memory is accessed

‒ But the memory is not accessible concurrently, because of cache policies

THE PREVIOUS APUS AND SOCS, PHYSICAL INTEGRATION

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016133

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

Physical Integration

CU

1

CU

1
…

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M

System Memory
(Coherent)

GPU Memory
(Non-Coherent)

GPU

 Some memory copies are gone, because the same memory is accessed

‒ But the memory is not accessible concurrently, because of cache policies

 Two memory pools remain (cache coherent + non-coherent memory regions)

THE PREVIOUS APUS AND SOCS, PHYSICAL INTEGRATION

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016134

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

Physical Integration

CU

1

CU

1
…

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M

System Memory
(Coherent)

GPU Memory
(Non-Coherent)

GPU

 Some memory copies are gone, because the same memory is accessed

‒ But the memory is not accessible concurrently, because of cache policies

 Two memory pools remain (cache coherent + non-coherent memory regions)

THE PREVIOUS APUS AND SOCS, PHYSICAL INTEGRATION

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016135

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

Physical Integration

CU

1

CU

1
…

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M

System Memory
(Coherent)

GPU Memory
(Non-Coherent)

GPU

 Some memory copies are gone, because the same memory is accessed

‒ But the memory is not accessible concurrently, because of cache policies

 Two memory pools remain (cache coherent + non-coherent memory regions)

 Jobs are still queued through the OS driver chain and suffer from overhead

THE PREVIOUS APUS AND SOCS, PHYSICAL INTEGRATION

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016136

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

Physical Integration

CU

1

CU

1
…

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M

System Memory
(Coherent)

GPU Memory
(Non-Coherent)

GPU

 Some memory copies are gone, because the same memory is accessed

‒ But the memory is not accessible concurrently, because of cache policies

 Two memory pools remain (cache coherent + non-coherent memory regions)

 Jobs are still queued through the OS driver chain and suffer from overhead

 Still requires expert programmers to get performance

THE PREVIOUS APUS AND SOCS, PHYSICAL INTEGRATION

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016137

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

Physical Integration

CU

1

CU

1
…

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M

System Memory
(Coherent)

GPU Memory
(Non-Coherent)

GPU

 Some memory copies are gone, because the same memory is accessed

‒ But the memory is not accessible concurrently, because of cache policies

 Two memory pools remain (cache coherent + non-coherent memory regions)

 Jobs are still queued through the OS driver chain and suffer from overhead

 Still requires expert programmers to get performance

 This is only an intermediate step in the journey

THE PREVIOUS APUS AND SOCS, PHYSICAL INTEGRATION

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016138

AN HSA ENABLED SOC

Unified Coherent MemoryUnified Coherent Memory

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

CU

1

CU

1

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M
…

 Unified Coherent Memory enables data sharing across all processors

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016139

AN HSA ENABLED SOC

Unified Coherent MemoryUnified Coherent Memory

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

CU

1

CU

1

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M
…

 Unified Coherent Memory enables data sharing across all processors

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016140

AN HSA ENABLED SOC

Unified Coherent MemoryUnified Coherent Memory

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

CU

1

CU

1

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M
…

 Unified Coherent Memory enables data sharing across all processors

 Processors architected to operate cooperatively

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016141

AN HSA ENABLED SOC

Unified Coherent MemoryUnified Coherent Memory

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

CU

1

CU

1

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M
…

 Unified Coherent Memory enables data sharing across all processors

 Processors architected to operate cooperatively

‒ Can exchange data “on the fly”, similar to what CPU threads do

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016142

AN HSA ENABLED SOC

Unified Coherent MemoryUnified Coherent Memory

CPU

1

CPU

1

CPU

N

CPU

N
…CPU

2

CPU

2

CU

1

CU

1

CU

2

CU

2

CU

3

CU

3

CU

M-2

CU

M-2

CU

M-1

CU

M-1

CU

M

CU

M
…

 Unified Coherent Memory enables data sharing across all processors

 Processors architected to operate cooperatively

‒ Can exchange data “on the fly”, similar to what CPU threads do

‒ The lower job dispatch overhead allows tasks to be handled by the GPU that
previously were “too costly” to transfer over

 Designed to enable the application running on different processors without
substantially changing the programming logic

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016143

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016144

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within
the system

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016145

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within
the system

‒ Unified process address space access across all processors

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016146

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within
the system

‒ Unified process address space access across all processors

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016147

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within
the system

‒ Unified process address space access across all processors

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”

‒ Accelerator operates in pageable system memory*

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016148

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within
the system

‒ Unified process address space access across all processors

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”

‒ Accelerator operates in pageable system memory*

*with OS support & ATS/PRI

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016149

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within
the system

‒ Unified process address space access across all processors

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”

‒ Accelerator operates in pageable system memory*

‒ Cache coherency between the CPU and accelerator caches

‒ User mode dispatch/scheduling reduces job-dispatch
overhead

‒ QoS with preemption/context switch of GPU Compute Units

*with OS support & ATS/PRI

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016150

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within
the system

‒ Unified process address space access across all processors

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”

‒ Accelerator operates in pageable system memory*

‒ Cache coherency between the CPU and accelerator caches

‒ User mode dispatch/scheduling reduces job-dispatch
overhead

‒ QoS with preemption/context switch of GPU Compute Units

 The IOMMU enforces control of GPU access to memory

*with OS support & ATS/PRI

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016151

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within
the system

‒ Unified process address space access across all processors

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”

‒ Accelerator operates in pageable system memory*

‒ Cache coherency between the CPU and accelerator caches

‒ User mode dispatch/scheduling reduces job-dispatch
overhead

‒ QoS with preemption/context switch of GPU Compute Units

 The IOMMU enforces control of GPU access to memory

‒ OS can efficiently and safely share process page tables with
accelerators (requires ATS/PRI protocol support)

*with OS support & ATS/PRI

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016152

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The goals of the Heterogeneous System Architecture (HSA)
and where the IOMMU helps:

 Use of accelerators as a first-class, peer processor within
the system

‒ Unified process address space access across all processors

‒ Shared Virtual Memory (SVM), “GPU ptr == CPU ptr”

‒ Accelerator operates in pageable system memory*

‒ Cache coherency between the CPU and accelerator caches

‒ User mode dispatch/scheduling reduces job-dispatch
overhead

‒ QoS with preemption/context switch of GPU Compute Units

 The IOMMU enforces control of GPU access to memory

‒ OS can efficiently and safely share process page tables with
accelerators (requires ATS/PRI protocol support)

‒ Accelerators can’t step outside of the OS-set boundaries

*with OS support & ATS/PRI

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016153

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The benefits of the Heterogeneous System Architecture:

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016154

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The benefits of the Heterogeneous System Architecture:

 Pageable memory access is validated and handled
directly by the OS memory manager via AMD IOMMU

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016155

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The benefits of the Heterogeneous System Architecture:

 Pageable memory access is validated and handled
directly by the OS memory manager via AMD IOMMU

 Application data structures can be directly parsed by the
accelerator and pointer links followed without CPU help

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016156

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The benefits of the Heterogeneous System Architecture:

 Pageable memory access is validated and handled
directly by the OS memory manager via AMD IOMMU

 Application data structures can be directly parsed by the
accelerator and pointer links followed without CPU help

 Common high level languages and tools (compilers,
runtimes, …) port easily to accelerators

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016157

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The benefits of the Heterogeneous System Architecture:

 Pageable memory access is validated and handled
directly by the OS memory manager via AMD IOMMU

 Application data structures can be directly parsed by the
accelerator and pointer links followed without CPU help

 Common high level languages and tools (compilers,
runtimes, …) port easily to accelerators

‒ C/C++, Python, Java, … already have open source
implementations

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016158

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The benefits of the Heterogeneous System Architecture:

 Pageable memory access is validated and handled
directly by the OS memory manager via AMD IOMMU

 Application data structures can be directly parsed by the
accelerator and pointer links followed without CPU help

 Common high level languages and tools (compilers,
runtimes, …) port easily to accelerators

‒ C/C++, Python, Java, … already have open source
implementations

‒ Many more languages to follow

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016159

IOMMU: A BUILDING BLOCK FOR HSA
REDUCING THE OVERHEAD TO CALL THE GPU OR OTHER ACCELERATORS

The benefits of the Heterogeneous System Architecture:

 Pageable memory access is validated and handled
directly by the OS memory manager via AMD IOMMU

 Application data structures can be directly parsed by the
accelerator and pointer links followed without CPU help

 Common high level languages and tools (compilers,
runtimes, …) port easily to accelerators

‒ C/C++, Python, Java, … already have open source
implementations

‒ Many more languages to follow

 IOMMU making it easier for programmers to use GPUs
and other accelerators safely and efficiently

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016160

EVOLUTION OF THE SOFTWARE STACK – A COMPARISON

© Copyright 2014 HSA Foundation. All Rights Reserved.

Hardware - APUs, CPUs, GPUs

HSA Software Stack

User mode component Kernel mode component Components contributed by third parties

 Goal of the software stack is to focus on high-level language support

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016161

EVOLUTION OF THE SOFTWARE STACK – A COMPARISON

© Copyright 2014 HSA Foundation. All Rights Reserved.

Hardware - APUs, CPUs, GPUs

Driver Stack

Domain Libraries

OpenCL™, DX Runtimes,

User Mode Drivers

Graphics Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

User mode component Kernel mode component Components contributed by third parties

 Goal of the software stack is to focus on high-level language support

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016162

EVOLUTION OF THE SOFTWARE STACK – A COMPARISON

© Copyright 2014 HSA Foundation. All Rights Reserved.

Hardware - APUs, CPUs, GPUs

Driver Stack

Domain Libraries

OpenCL™, DX Runtimes,

User Mode Drivers

Graphics Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

User mode component Kernel mode component Components contributed by third parties

 Goal of the software stack is to focus on high-level language support

‒ Allow to target the GPU directly by SW

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016163

EVOLUTION OF THE SOFTWARE STACK – A COMPARISON

© Copyright 2014 HSA Foundation. All Rights Reserved.

Hardware - APUs, CPUs, GPUs

Driver Stack

Domain Libraries

OpenCL™, DX Runtimes,

User Mode Drivers

Graphics Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

User mode component Kernel mode component Components contributed by third parties

 Goal of the software stack is to focus on high-level language support

‒ Allow to target the GPU directly by SW

‒ Drivers are setting up the HW and policies, then go out of the way

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016164

EVOLUTION OF THE SOFTWARE STACK – A COMPARISON

© Copyright 2014 HSA Foundation. All Rights Reserved.

Hardware - APUs, CPUs, GPUs

Driver Stack

Domain Libraries

OpenCL™, DX Runtimes,

User Mode Drivers

Graphics Kernel Mode Driver

Apps
Apps

Apps
Apps

Apps
Apps

HSA Software Stack

Task Queuing

Libraries

HSA Domain Libraries,

OpenCL ™ 2.x Runtime

HSA Kernel

Mode Driver

HSA Runtime

HSA JIT

Apps
Apps

Apps
Apps

Apps
Apps

User mode component Kernel mode component Components contributed by third parties

 Goal of the software stack is to focus on high-level language support

‒ Allow to target the GPU directly by SW

‒ Drivers are setting up the HW and policies, then go out of the way

‒ IOMMU support provide hardware enforced protections for Operating System

Hardware

IOMMU

Operating System

IOMMU

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016165

© Copyright 2014 HSA Foundation. All Rights Reserved.AMD A10-5800K APU with Radeon™ HD Graphics – CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM.
Software – Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta

0

50

100

150

200

250

300

350

L
O

C

Copy-back Algorithm Launch Copy Compile Init

Serial CPU TBB Intrinsics+TBB OpenCL™-C OpenCL™ -C++ C++ AMP HSA Bolt

Copy-
back

Algorithm

Launch

Copy

Compile

Init.

Copy-back

Algorithm

Launch

Copy

Compile

Copy-back

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

Algorithm

Launch

(Exemplary ISV “Hessian” Kernel)

LINES-OF-CODE AND PERFORMANCE COMPARISONS

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016166

© Copyright 2014 HSA Foundation. All Rights Reserved.AMD A10-5800K APU with Radeon™ HD Graphics – CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM.
Software – Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta

0

50

100

150

200

250

300

350

L
O

C

Performance

Serial CPU TBB Intrinsics+TBB OpenCL™-C OpenCL™ -C++ C++ AMP HSA Bolt

P
e

rfo
rm

an
ce

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0

(Exemplary ISV “Hessian” Kernel)

LINES-OF-CODE AND PERFORMANCE COMPARISONS

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016167

ACCELERATORS: THE PORTABILITY CHALLENGE

 CPU ISAs

‒ ISA innovations added incrementally (i.e., NEON, AVX, etc)

‒ ISA retains backwards-compatibility with previous generation

‒ Two dominant instruction-set architectures: ARM and x86

 GPU ISAs

‒ Massive diversity of architectures in the market

‒ Each vendor has its own ISA - and often several in the market at same time

‒ No commitment (or attempt!) to provide any backwards compatibility

‒ Traditionally graphics APIs (OpenGL, DirectX) provide necessary abstraction

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016168

WHAT IS HSA INTERMEDIATE LANGUAGE (HSAIL)?

 Intermediate language for parallel compute in HSA

‒ Generated by a “High Level Compiler” (GCC, LLVM, Java VM, etc.)

‒ Expresses parallel regions of code

‒ Binary format of HSAIL is called “BRIG”

‒ Goal: Bring parallel acceleration to mainstream programming languages

 IOMMU based pointer translation is key to enabling an efficient IL
Implementation

main() {

…

#pragma omp parallel for

for (int i=0;i<N; i++) {

}

…

}

High-Level
Compiler

BRIG Finalizer Component
ISA

Host ISA

© Copyright 2014 HSA Foundation. All Rights Reserved.

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016169

MEMBERS DRIVING HAS FOUNDATION

Founders

Promoters

Supporters

Contributors

Academic

http://www.hsafoundation.com/

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016170

 FIR is a memory-intensive streaming workload

 AES is a compute-intensive streaming workload

 CL12 – cl_mem buffer
‒ Copy to/from the device

 CL20 – SVM buffer – Coarse Grain Sync
‒ Copy to/from SVM
‒ Data copy cannot be avoided, since the space for SVM is

limited

 HSA – Unified Memory Space – Fine Grained Sync
‒ Regular pointer
‒ No explicit copy

 Results
‒ HSA compute abstraction
‒ NO performance penalty

 Not all algorithms run faster
‒ Measured on Kaveri (A pre-HSA 1.0 device)
‒ Limited Coherent throughput

Saoni Mukherjee, Yifan Sun, Paul Blinzer, Amir Kavyan Ziabari, David

Kaeli,A Comprehensive Performance Analysis of HSA and OpenCL 2.0,

Proceedings of the 2016 International Symposium on Program

Analysis and System Software, April 2016, to appear.

GEN1: FIR & AES

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016171

BLACKSCHOLES

 C++ on HSA

‒ Matches or outperforms OpenCL

 Course Grained SVM

‒ Matches OpenCL buffers for
bandwidth

‒ More predictable performance

 Fine Grained SVM

‒ Faster kernel dispatch

‒ Larger allocations

‒ Shared data structure

 Results

‒ HSA compute abstraction

‒ NO performance penalty

SOURCE: RALPH POTTER – CODEPLAY. PRESENTATION MADE TO SG14 C++ WORKGROUP

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016172

ENABLING HETEROGENEOUS COMPUTING
SUMMARY AND DEMONSTRATION

 Key Takeaways:

‒ To further scale up compute performance, software must take better advantage of
system accelerators like GPUs and DSPs in high level languages

‒ Accelerators following the HSA Foundation specification requirements allow
programmers to write or port programs easily using common high level languages

‒ AMD IOMMU is key to efficiently and safely access process virtual memory!

‒ Does translation of both process address space via PASID and device physical accesses

‒ Enforces OS allocation policy, deals with virtual memory page faults, and much more

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016173

AGENDA

USE CASES &
DEMOSTRATION

Where can IOMMU help?

Research Opportunities and Tools

INTERNALS How does IOMMU work?

RESEARCH

MOTIVATION &
INTRODUCTION What is IOMMU?

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016174

RECAP: IOMMU AND ITS CAPABILITIES

MMU MMU

IO DeviceIO DeviceCore Core

IOMMU

Key capabilities:

1. Memory protection for DMA

2. Virtual address translation for DMA

Hardware that
intercepts DMA
transactions
and interrupts

3. Interrupt remapping and virtualization

4. IO can share CPU page tables

Memory

IOMMU Driver Sets up IOMMU hardware

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016175

AGENDA: WHAT IS COMING UP?

 DMA Address Translation

‒ Address translation and memory protection in un-virtualized System

‒ Making address translation faster through caching

‒ Enabling shared address space in heterogeneous system

‒ Enabling pre-translation through IOMMU

‒ Enabling demand paging from devices (dynamic page fault)

‒ Nested address translation in virtualized system

‒ Invalidating IOMMU mappings

Address
translation,
memory
protection,
HSA

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016176

AGENDA: WHAT IS COMING UP?

 DMA Address Translation

‒ Address translation and memory protection in un-virtualized System

‒ Making address translation faster through caching

‒ Enabling shared address space in heterogeneous system

‒ Enabling pre-translation through IOMMU

‒ Enabling demand paging from devices (dynamic page fault)

‒ Nested address translation in virtualized system

‒ Invalidating IOMMU mappings

 Interrupt Handling

‒ Interrupt filtering and remapping

‒ Interrupt virtualization

Address
translation,
memory
protection,
HSA

Interrupts

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016177

AGENDA: WHAT IS COMING UP?

 DMA Address Translation

‒ Address translation and memory protection in un-virtualized System

‒ Making address translation faster through caching

‒ Enabling shared address space in heterogeneous system

‒ Enabling pre-translation through IOMMU

‒ Enabling demand paging from devices (dynamic page fault)

‒ Nested address translation in virtualized system

‒ Invalidating IOMMU mappings

 Interrupt Handling

‒ Interrupt filtering and remapping

‒ Interrupt virtualization

 Summary

‒ A peek inside a typical IOMMU implementation

‒ Data structures and their Interactions

Address
translation,
memory
protection,
HSA

Interrupts

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016178

IOMMU Internals:
Address Translation and Memory Protection

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016179

ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Virtual

Addresses

IOMMU

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016180

ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain

Virtual

Addresses

IOMMU

(Defined by OS)

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016181

ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain

DMA
Request DeviceIDVirtual

Address

Virtual

Addresses

IOMMU

Device Table

DevID
DomID

(Defined by OS)

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016182

ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain

DMA
Request DeviceIDVirtual

Address

Virtual

Addresses

IOMMU

Device Table

DevID
DomID

Page Table

(Defined by OS)

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016183

ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain

DMA
Request DeviceIDVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID
DomID

Page Table

(Defined by OS)

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016184

ADDRESS TRANSLATION AND MEMORY PROTECTION
NON-VIRTUALIZED SYSTEM

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain

DMA
Request DeviceIDVirtual

Address

Virtual

Addresses

IOMMU

Device Table

DevID

Page Table

Abort request if not sufficient permission

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016185

MAKING TRANSLATION FAST
CACHING TRANSLATION IN IOMMU

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Virtual

Addresses

Device Table

DevID

Page Table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016186

IOMMU Internals:
Enabling “Pointer-is-a-Pointer” in Heterogeneous

Systems

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016187

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Domain

DMA
RequestVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID

Page Table

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016188

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical
Addresses

IO DeviceCore Core

Memory

Domain

DMA
RequestVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID

GPU

Page Table

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016189

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical
Addresses

IO DeviceCore

Memory

Domain

DMA
RequestVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID

GPU

Process

Page Table

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016190

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical
Addresses

IO DeviceCore

Memory

Domain

DMA
RequestVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID

x86-64 Page Table

GPU

Process

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016191

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical
Addresses

IO Device

Memory

Domain

DMA
RequestVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID

x86-64 Page Table

GPU

ProcessProcess 0 1

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016192

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical
Addresses

IO Device

Memory

Domain

DMA
RequestVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID

x86-64 Page Table

GPU

Process

Needs ability to identify more than one address space

Process 0 1

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016193

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical
Addresses

IO Device

Memory

Domain

DMA
RequestVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID

GPU

ProcessProcess 0 1

DeviceID

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016194

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical
Addresses

IO Device

Memory

Domain

DMA
RequestVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID

GPU

ProcessProcess 0 1

+ PASID

PASID 0 PASID 1

DeviceID

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016195

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical
Addresses

IO Device

Memory

Domain

DMA
RequestVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID

GPU

ProcessProcess 0 1

+ PASID

PASID 0 PASID 1

DeviceID

PASID

gCR3 table

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016196

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical
Addresses

IO Device

Memory

Domain

DMA
RequestVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID

GPU

ProcessProcess 0 1

+ PASID

PASID 0 PASID 1

DeviceID

PASID

gCR3 table

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016197

SHARING ADDRESS SPACE WITH CPU
ENABLING POINTER AS POINTER IN HETEROGENEOUS SYSTEMS

MMU MMU

Physical
Addresses

IO Device

Memory

Domain

DMA
RequestVirtual

Address

Virtual

Addresses

IOMMU

Physical
Addresses

Device Table

DevID

GPU

ProcessProcess 0 1

+ PASID

PASID 0 PASID 1

DeviceID

PASID

gCR3 table

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016198

IOMMU Internals:
Enabling Translation Caching in Devices

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016199

CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

GPU
CoreCore

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016200

CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walkerLocally caching address translation in device reduces

trips to IOMMU

GPUTLBCoreCore

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016201

CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walkerIOMMU driver assigns per-translation capability to devices

1

Pre-translation capable?

GPUTLBCoreCore

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016202

CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

Pre-translation capable?

Introduce new message ype:

Address Translation Service (ATS)

GPUTLBCoreCore

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016203

CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

Pre-translation capable?

ATS Req

(DevID,
PASID, VA,
R/W)

GPUTLBCoreCore

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016204

CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

Pre-translation capable?

ATS Resp
(PASID, VA,
PA, Attr.)

GPUTLBCoreCore

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016205

CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

DMA Req

(Physical
Address)

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

Pre-translation capable?

Pre-translated Req

GPUTLBCoreCore

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016206

CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

DMA Req

(Physical
Address)

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

Pre-translation capable?

Pre-translated Req

GPUTLBCoreCore

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016207

CACHING ADDRESS TRANSLATION IN DEVICES
ENABLING MORE CAPABLE DEVICE/ACCELERATORS

MMU MMU

IO Device

Memory

DMA Req

(Physical
Address)

IOMMU

Device Table

DevID

PASID

gCR3 table

ATC/ IOTLB

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

Pre-translation capable?

Pre-translated Req

Abort if not pre-translation capable

GPUTLBCoreCore

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016208

IOMMU Internals:
Enabling Demand Paging from IO

 No Need to Pin Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016209

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCoreCore

Device(s) access local TLB (ATC/IOTLB) first

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016210

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCoreCore

On a (IO)TLB hit no access to IOMMU

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016211

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCoreCore

(IO)TLB miss

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016212

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

ATS Req

(DevID,
PASID, VA,
R/W)

GPUTLBCoreCore

(IO)TLB miss

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016213

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

ATS Req

(DevID,
PASID, VA,
R/W)

GPUTLBCoreCore

Page fault-
No valid PTE

(IO)TLB miss

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016214

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCoreCore

ATS Resp
(NACK)

Page fault-
No valid PTE

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016215

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCoreCore

PPR* request

(DevID, PASID,
VA,R/W)

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016216

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCoreCore

PPR* request

(DevID, PASID,
VA,R/W)

PPR Log
(circular buffer)

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016217

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCoreCore

PPR Log
(circular buffer)

PASID dID Addr Flag

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016218

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

Fault batching
possible

GPUTLBCoreCore

PPR Log
(circular buffer)

PASID dID Addr Flag

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016219

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLB
Core

PPR Log
(circular buffer)

PASID dID Addr Flag

Interrupt

Interrupt handler

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016220

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLB
Core

PPR Log
(circular buffer)

PASID dID Addr Flag

Interrupt handler

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016221

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLB
Core

PPR Log
(circular buffer)

Work Queue

PASID dID Addr Flag

Interrupt handler

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016222

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCore

PPR Log
(circular buffer)

Work Queue

PASID dID Addr Flag

OS worker thread

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016223

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCore

PPR Log
(circular buffer)

Work Queue

PASID dID Addr Flag

OS worker thread

Service
page fault

Fix the
page table

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016224

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCore

PPR Log
(circular buffer)

Work Queue

Command Buffer

PASID dID Addr Flag

OS worker thread

Service
page fault

Fix the
page table

Write PPR completion
command

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016225

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCore

PPR Log
(circular buffer)

Work Queue

Command Buffer

PASID dID Addr Flag

OS worker thread

Service
page fault

Fix the
page table

Write PPR completion
command

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016226

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCore

PPR Log
(circular buffer)

Work Queue

Command Buffer

PASID dID Addr Flag

OS worker thread

Service
page fault

PPR response

(DevID, PASID,
VA,..)

Fix the
page table

Write PPR completion
command

*PPR= Page Peripheral Request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016227

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCoreCore

PPR Log
(circular buffer)

Work Queue

Command Buffer

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016228

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

ATS Req

(DevID,
PASID, VA,
R/W)

GPUTLBCoreCore

PPR Log
(circular buffer)

Work Queue

Command Buffer

Retry original request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016229

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

ATS Req

(DevID,
PASID, VA,
R/W)

GPUTLBCoreCore

PPR Log
(circular buffer)

Work Queue

Command Buffer

Retry original request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016230

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCoreCore

PPR Log
(circular buffer)

Work Queue

Command Buffer

ATS Resp
(PASID, VA,
PA, Attr.)

Retry original request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016231

ENABLING DEMAND PAGING FROM DEVICE
SERVICING DEVICE PAGE FAULT

MMU MMU

IO Device

IOMMU

Device Table

DevID

PASID

gCR3 table

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

1

GPUTLBCoreCore

PPR Log
(circular buffer)

Work Queue

Command Buffer

DMA Req

(Physical
Address)

Retry original request

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016232

IOMMU Internals:
Nested (Two-Level) Address Translation

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016233

RECAP: ADDRESS TRANSLATION IN VIRTUALIZED SYSTEMS

Guest OS 0 Guest OS 1

Hypervisor (a.k.a. VMM)

Guest Virtual Address
(GVA)

Guest Physical Address

(GPA)

Guest Applications Guest Applications

System Physical Address

(SPA)
Hardware – CPU, Memory, IO

Guest OS does not have access to (system) physical address

Guest Page
Table (GPT)

Host Page
Table (HPT)

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016234

Guest OS 1Guest OS 0

VMM

NESTED ADDRESS TRANSLATION BY IOMMU

MMU MMU
SPA

IO Device

Memory

Domain

GVA

IOMMU

Device Table

DevID

GPU

Guest Process

Core 0

Guest Process

Core 0GPA

GPT

HPT

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016235

Guest OS 1Guest OS 0

VMM

NESTED ADDRESS TRANSLATION BY IOMMU

MMU MMU
SPA

IO Device

Memory

Domain

DMA
Request

Guest
Virtual
Address

GVA

IOMMU

Device Table

DevID

GPU

Guest Process

Core 0

+ PASIDDevice ID

Guest Process

Core 0GPA

GPT

HPT

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016236

Guest OS 1Guest OS 0

VMM

NESTED ADDRESS TRANSLATION BY IOMMU

MMU MMU
SPA

IO Device

Memory

Domain

DMA
Request

Guest
Virtual
Address

GVA

IOMMU

Physical
Addresses

Device Table

DevID

GPU

Guest Process

Core 0

+ PASID

Identified by PASID

Device ID

PASID

gCR3 table

Guest Process

Core 0GPA

Host Page Table

Guest Page
Table(s)

GPT

HPT

Identified by DevID/DomID

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016237

NESTED ADDRESS TRANSLATION BY IOMMU

nL4

1
nL3

2
nL2

3
nL1

4
GL4

5

nL4

6
nL3

7
nL2

8
nL1

9
GL3

10

nL4

11
nL3

12
nL2

13
nL1

14
GL2

15

nL4

16
nL3

17
nL2

18
nL1

19
GL1

20

nL4

21
nL4

22
nL4

23
nL4

24

GVA GCR3 table entry

SPA

Device Table EntryPASID

Device Table Entry
HPT

GPT

GVA
[47:39]

GVA
[38:30]

GVA
[29:21]

GVA
[20:12]

GVA
[11:0]

Nested/Host page table

G
u

est p
age

tab
le

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016238

IOMMU Internals:
Sending Commands to IOMMU

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016239

COMMANDS TO IOMMU

 IOMMU Driver (running on CPU) issues commands to IOMMU

‒ e.g., Invalidate IOMMU TLB Entry, Invalidate IOTLB Entry

‒ e.g., Invalidate Device Table Entry

‒ e.g., Complete PPR, Completion Wait , etc.

 Issued via Command Buffer

‒ Memory resident circular buffer

‒ MMIO registers: Base, Head, and Tail register

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016240

COMMANDS TO IOMMU

 IOMMU Driver (running on CPU) issues commands to IOMMU

‒ e.g., Invalidate IOMMU TLB Entry, Invalidate IOTLB Entry

‒ e.g., Invalidate Device Table Entry

‒ e.g., Complete PPR, Completion Wait , etc.

 Issued via Command Buffer

‒ Memory resident circular buffer

‒ MMIO registers: Base, Head, and Tail register

IOMMU Driver IOMMU Hardware

Tail

Base

Head
Tail

Base

Head

Write

Registers

Variable holding

content of registers

Fetch

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016241

EXAMPLE: IOMMU TLB SHOOTDOWN

 IOMMU TLB Shootdown

‒ Update page table information

‒ Flush TLB Entry(s) containing stale information

 Three steps in IOMMU TLB shootdown

‒ Invalidating IOMMU TLB entry

‒ Invalidating IO TLB (Device TLB) entry

‒ Wait for completion

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016242

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

GPUTLBCoreCore

Command Buffer

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016243

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

GPUTLBCoreCore

Command Buffer

128 bits

DomIDPASID Addr Misc.OpCode

invalidate iommu tlb entry

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016244

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

GPUTLBCoreCore

Command Buffer

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016245

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

GPUTLBCoreCore

Command Buffer

128 bits

DevIDPASID Addr Misc.OpCode

invalidate IO tlb entry

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016246

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

GPUTLBCoreCore

Command Buffer

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016247

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

GPUTLBCoreCore

Command Buffer

128 bits

Store
Address

OpCode
Store
Data

completion wait

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016248

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

GPUTLBCoreCore

Command Buffer

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016249

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
walker

GPUTLBCoreCore

Command Buffer

Update Tail pointer

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016250

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016251

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer

128 bits

DomIDPASID Addr Misc.OpCode

invalidate IOMMU tlb entry

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016252

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer

128 bits

DomIDPASID Addr Misc.OpCode

invalidate IOMMU tlb entry

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016253

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer

Update Head pointer

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016254

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer

128 bits

DevIDPASID Addr Misc.OpCode

invalidate IO tlb entry

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016255

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer

128 bits

DevIDPASID Addr Misc.OpCode

invalidate IO tlb entry

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016256

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer

Update Head pointer

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016257

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer

128 bits

Store
Address

OpCode
Store
Data

completion wait

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016258

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer Wait for previous commands to finish

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016259

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer Wait for previous commands to finish

ACK

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016260

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer

IOMMU Stores
Data to
“Store Address”
Or Raise Interrupt

Wait for previous commands to finish

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016261

IOMMU Driver

EXAMPLE: IOMMU TLB SHOOTDOWN

MMU MMU

IO Device

IOMMU

Device Table
Entry Cache

Translation
Lookaside Buffer

Page Table
Walker

GPUTLBCoreCore

Command Buffer

Update Head pointer

Wait for previous commands to finish

IOMMU INTERNALS: INTERRUPT REMAPPING AND
VIRTUALIZATION

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016263

INTERRUPT REMAPPING

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Device Table
Entry Cache

Interrupt
Remapping
Lookaside Buffer

Table
walker

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016264

INTERRUPT REMAPPING

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Fixed/

Arbitrated
Interrupt

Device Table
Entry Cache

Interrupt
Remapping
Lookaside Buffer

Table
walker

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016265

INTERRUPT REMAPPING

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Device Table

Did
DevID

Fixed/

Arbitrated
Interrupt

Device Table
Entry Cache

Interrupt
Remapping
Lookaside Buffer

Table
walker

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016266

INTERRUPT REMAPPING

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Device Table

Did
DevID

Interrupt
Remapping Table

Fixed/

Arbitrated
Interrupt

Device Table
Entry Cache

Interrupt
Remapping
Lookaside Buffer

Table
walker

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016267

INTERRUPT REMAPPING

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Fixed/

Arbitrated
Interrupt

Device Table
Entry Cache

Interrupt
Remapping
Lookaside Buffer

Table
walkerAbort request if not sufficient permission

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016268

INTERRUPT REMAPPING

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Fixed/

Arbitrated
Interrupt

Device Table
Entry Cache

Interrupt
Remapping
Lookaside Buffer

Table
walker

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016269

VMM

Guest OS 0

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

vAPIC

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016270

VMM

Guest OS 0

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

vAPIC

Guest
Virtualized
Interrupt

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016271

VMM

Guest OS 0

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

vAPIC

Guest
Virtualized
Interrupt

Device Table

Did
DevID

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016272

VMM

Guest OS 0

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

vAPIC

Guest
Virtualized
Interrupt

Device Table

Did
DevID

Interrupt
Remapping Table

Guest
Mode

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016273

VMM

Guest OS 0

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

vAPIC

Guest
Virtualized
Interrupt

Abort request if not sufficient permission

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016274

VMM

Guest OS 0

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

vAPIC

Guest
Virtualized
Interrupt

Guest vAPIC backing page

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016275

Guest OS 0

VMM

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Guest
Virtualized
Interrupt

Device Table

Did
DevID

vAPIC

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016276

Guest OS 0

VMM

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Guest
Virtualized
Interrupt

Device Table

Did
DevID

Interrupt
Remapping Table

Guest
Running

vAPIC

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016277

Guest OS 0

VMM

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Guest
Virtualized
Interrupt

vAPIC

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016278

Guest OS 0
vAPIC

VMM

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Guest
Virtualized
Interrupt

Inactive
Guest

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016279

Guest OS 0
vAPIC

VMM

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Guest
Virtualized
Interrupt

Device Table

Did
DevID

Interrupt
Remapping Table

Guest NOT
Running

Inactive
Guest

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016280

Guest OS 0
vAPIC

VMM

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Guest
Virtualized
Interrupt

Guest vAPIC Log

Inactive
Guest

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016281

Guest OS 0
vAPIC

VMM

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Guest
Virtualized
Interrupt

Guest vAPIC Log

Inactive
Guest

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016282

Guest OS 0
vAPIC

VMM

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Guest
Virtualized
Interrupt

Inactive
Guest

Activate
Target
Guest

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016283

Guest OS 0
vAPIC

VMM

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Guest
Virtualized
Interrupt

Activate
Target
Guest

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016284

Guest OS 0
vAPIC

VMM

INTERRUPT VIRTUALIZATION

MMU MMU

IO DeviceIO Device
Core Core

Memory

IOMMU

APIC APIC

Guest
Virtualized
Interrupt

Interrupt
Guest
vAPIC

IOMMU INTERNALS: A TYPICAL IOMMU HARDWARE
DESIGN

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016286

EXAMPLE OF IOMMU HARDWARE DESIGN

CPUDRAM

IOMMU

IOHUB

Memory Controller

Device Device Device

L1
TLB

L1
TLB

L1
TLB

Table
Walker

L2
gPDC

L2
gPTC

L2
ITC

L2
DTC

L2
nPDC

L2
nPTC

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016287

CACHE SIZING VS PRODUCT TYPE

 Typical Client Product

‒ Non-Virtualized

‒ I/O Isolation

‒ Small Working Set

L2
gPDC

L2
gPTC

L2
ITC

L2
DTC L2

nPDC
L2

nPTC
L1

TLB

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016288

CACHE SIZING VS PRODUCT TYPE

 Typical Server Product

‒ Virtualized

‒ Large Working Set

L2
gPDC

L2
gPTC

L2
ITC

L2
DTC

L2
nPDC

L2
nPTC

L1
TLB

IOMMU INTERNALS: SUMMARY OF KEY DATA STRUCTURES

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016290

IOMMU’S KEY DATA STRUCTURES

DRAMIOMMU

Command Buffer
Base Register Command Buffer

Event Log
Base Register Event Log

Page Request
Log Base Register Peripheral Page Request Log

Guest vAPIC Log
Base Register Guest Virtual APIC Log

Device Table
Base Register

Device Table

GCR3 Table
Guest Page Tables

Host Page Tables

Guest Virtual APIC Backing Page

Interrupt
Remap
Table

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016291

DEVICE TABLE ENTRY

Each entry is 32B

valid entry

domainID

host translation Info

- Page Mode

- Host Page Table Root Pointer

guest translation Info
- GCR3 Table Root Pointer

- Guest Levels translated

Interrupt info
- Interrupt Table Root Pointer

- Legacy Interrupt Permission

IOTLB Enable

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016292

INTERRUPT REMAPPING TABLE ENTRY

Each entry is 128b. Two modes:

Interrupt Remapping (guest mode=0)

Interrupt Virtualization (guest mode=1)

remap enabled

destination

1

vector

guest mode

Guest vAPIC info
- Guest vAPIC Root Pointer

- Guest vAPIC Tag

- Guest Running

guest mode=1:
remap enabled

destination

0

vector

guest mode

guest mode=0:

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016293

AGENDA

USE CASES &
DEMOSTRATION

Where can IOMMU help?

Research Opportunities and Tools

INTERNALS How does IOMMU work?

RESEARCH

MOTIVATION &
INTRODUCTION What is IOMMU?

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016294

RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016295

RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?

 Specializing IOMMU for performance and power

‒ Can IOMMU hardware exploit predictable access pattern of some accelerators?

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016296

RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?

 Specializing IOMMU for performance and power

‒ Can IOMMU hardware exploit predictable access pattern of some accelerators?

 Trading memory protection for performance

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016297

RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?

 Specializing IOMMU for performance and power

‒ Can IOMMU hardware exploit predictable access pattern of some accelerators?

 Trading memory protection for performance

‒ Can selectively lowering protection enable better performance?

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016298

RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?

 Specializing IOMMU for performance and power

‒ Can IOMMU hardware exploit predictable access pattern of some accelerators?

 Trading memory protection for performance

‒ Can selectively lowering protection enable better performance?

 Extending (limited) virtual memory to embedded accelerators

‒ Can we design for IOMMULITE embedded low-power accelerators?

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016299

RESEARCH DIRECTIONS

 Isolation from malicious or buggy third party accelerators

‒ Can IOMMU ensure protection in-presence of untrusted accelerators?

 Specializing IOMMU for performance and power

‒ Can IOMMU hardware exploit predictable access pattern of some accelerators?

 Trading memory protection for performance

‒ Can selectively lowering protection enable better performance?

 Extending (limited) virtual memory to embedded accelerators

‒ Can we design for IOMMULITE embedded low-power accelerators?

 Avoiding interference in the IOMMU

‒ How to reduce interference among multiple devices accessing IOMMU?

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016300

ISOLATION FROM THIRD PARTY ACCELERATORS
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore Core

Memory

IOMMU

1st Party
(Trusted)

Accelerator

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016301

ISOLATION FROM THIRD PARTY ACCELERATORS
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore Core

Memory

IOMMU

Accelerator

3rd Party
(Un-trusted)

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016302

ISOLATION FROM THIRD PARTY ACCELERATORS
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore Core

Memory

IOMMU

Accelerator

3rd Party
(Un-trusted)

Q: How to integrate third party accelerators efficiently and
securely?

 How to determine if a device is trustworthy and remains
trustworthy?

 May not be possible verify if 3rd party accelerator is not buggy.

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016303

ISOLATION FROM THIRD PARTY ACCELERATORS (CNTD.)
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore

Memory

IOMMU

Accelerator

3rd Party
(Un-trusted)

Core

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016304

ISOLATION FROM THIRD PARTY ACCELERATORS (CNTD.)
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore

Memory

IOMMU

3rd Party
(Un-trusted)

TLB

Performance consideration:

1. TLBs in accelerator 
Possible to bypass IOMMU

Core Physical
address

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016305

ISOLATION FROM THIRD PARTY ACCELERATORS (CNTD.)
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore

Memory

IOMMU

3rd Party
(Un-trusted)

TLB

Performance consideration:

1. TLBs in accelerator 
Possible to bypass IOMMU

2. Coherent caches in accelerator 

Coherence traffic bypass IOMMU

CachesCaches

Core

Coherence
traffic

P
h

ys
ic

al

ad
d

re
ss

Physical
address

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016306

ISOLATION FROM THIRD PARTY ACCELERATORS (CNTD.)
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore

Memory

IOMMU

3rd Party
(Un-trusted)

TLB

Related work:

Olson et al. “Border Control” in
MICRO’15 [OLSON’15]

CachesCaches

Core

Coherence
traffic

Physical
address

P
h

ys
ic

al

ad
d

re
ss

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016307

ISOLATION FROM THIRD PARTY ACCELERATORS (CNTD.)
EMERGENCE OF 3RD PARTY ACCELERATORS

MMU MMU

AcceleratorCore

Memory

IOMMU

3rd Party
(Un-trusted)

TLB

Related work:

Olson et al. “Border Control” in
MICRO’15 [OLSON’15]

Idea: Check every access with physical
address if valid.

CachesCaches

Core

Coherence
traffic

Physical
address

P
h

ys
ic

al

ad
d

re
ss

BC

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016308

SPECIALIZING IOMMU FOR DEVICE/ ACCELERATOR

 IOMMU design(s) resembles CPU MMU design

‒ But device/accelerator access patterns differs from CPU’s

 IOMMU caters to disparate devices

‒ Single design point may not be optimal for all

‒ e.g., access pattern from GPU likely different from NIC’s

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016309

SPECIALIZING IOMMU FOR DEVICE/ ACCELERATOR

 IOMMU design(s) resembles CPU MMU design

‒ But device/accelerator access patterns differs from CPU’s

 IOMMU caters to disparate devices

‒ Single design point may not be optimal for all

‒ e.g., access pattern from GPU likely different from NIC’s

 Related work: Malka et al. ’s “rIOMMU” in ASPLOS’15.

‒ Idea: Exploit predictable IOMMU accesses from devices using circular ring buffers

Study traffic pattern to IOMMU and specialize for common patterns

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016310

SPECIALIZING IOMMU FOR DEVICE/ ACCELERATOR

 IOMMU design(s) resembles CPU MMU design

‒ But device/accelerator access patterns differs from CPU’s

 IOMMU caters to disparate devices

‒ Single design point may not be optimal for all

‒ e.g., access pattern from GPU likely different from NIC’s

 Related work: Malka et al. ’s “rIOMMU” in ASPLOS’15.

‒ Idea: Exploit predictable IOMMU accesses from devices using circular ring buffers

‒ Replace page table with circular, flat table  Easy page walk

‒ Predictable access  single entry IOTLB with no TLB miss and less invalidation

Study traffic pattern to IOMMU and specialize for common patterns

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016311

SPECIALIZING IOMMU FOR DEVICE/ ACCELERATOR

 IOMMU design(s) resembles CPU MMU design

‒ But device/accelerator access patterns differs from CPU’s

 IOMMU caters to disparate devices

‒ Single design point may not be optimal for all

‒ e.g., access pattern from GPU likely different from NIC’s

 Related work: Malka et al. ’s “rIOMMU” in ASPLOS’15.

‒ Idea: Exploit predictable IOMMU accesses from devices using circular ring buffers

‒ Replace page table with circular, flat table  Easy page walk

‒ Predictable access  single entry IOTLB with no TLB miss and less invalidation

 Possible to use device-specific knowledge to optimize performance

‒ IOMMU prefetching and TLB caching hints can be useful

‒ Replacement policy coordination between IOTLB (Device TLB) and IOMMU TLB

‒ Energy/power optimization in IOMMU

Study traffic pattern to IOMMU and specialize for common patterns

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016312

TRADING PROTECTION FOR PERFORMANCE

 IOMMU hardware allows lowering protection for performance

‒ For example: pre-translated DMA transactions pass-through IOMMU

‒ A trusted IO device can manipulate any address, including interrupt storms

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016313

TRADING PROTECTION FOR PERFORMANCE

 IOMMU hardware allows lowering protection for performance

‒ For example: pre-translated DMA transactions pass-through IOMMU

‒ A trusted IO device can manipulate any address, including interrupt storms

 OS policies for trading off protection for security

‒ Should the sysadmin decide how much to trust a device/driver?

‒ Exposing software knobs for dialing performance vs. protection

‒ Related work: OS policies for Strict vs Deferred protection strategy
[WILMANN’08, BEN-YEHUDA’07, AMIT’11]

‒ ASPLOS’16: Strict, sub-page grain protection through Shadow DMA-buffer
[MARKUZE’16]

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016314

IOMMULITE FOR EMBEDDED LOW-POWER ACCELERATORS

 Virtual memory eases programming (e.g., “pointer-is-pointer”)

‒ But comes at performance and energy cost

 Stripped-down IOMMU for ultra low-power accelerators

‒ Lower hardware, performance, power cost by stripping non-essential features

‒ Example “non-essential” features: IO virtualization support, Interrupt remapping,
Page fault handling, Nested page table walker, etc.

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016315

IOMMULITE FOR EMBEDDED LOW-POWER ACCELERATORS

 Virtual memory eases programming (e.g., “pointer-is-pointer”)

‒ But comes at performance and energy cost

 Stripped-down IOMMU for ultra low-power accelerators

‒ Lower hardware, performance, power cost by stripping non-essential features

‒ Example “non-essential” features: IO virtualization support, Interrupt remapping,
Page fault handling, Nested page table walker, etc.

 Related work:

‒ Vogel et al.’s “Lightweight Virtual Memory” in CODES’15 [VOGEL’15]

‒ Idea: Software managed IOMMU for FPGA  No translation miss handling in hardware

‒ Simple design, high performance with effective software management

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016316

AVOIDING (DESTRUCTIVE-) INTERFERENCE IN IOMMU

MMU MMU

Physical
Addresses

IO DeviceIO DeviceCore Core

Memory

Virtual

Addresses

IOMMU

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016317

AVOIDING (DESTRUCTIVE-) INTERFERENCE IN IOMMU

MMU MMU

Physical
Addresses

Core Core

Memory

Virtual

Addresses

IOMMU

GPU NIC

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016318

AVOIDING (DESTRUCTIVE-) INTERFERENCE IN IOMMU

MMU MMU

Physical
Addresses

Core Core

Memory

DMA
Requests

Virtual
Address

Virtual

Addresses

IOMMU
Physical
Addresses

GPU NIC

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016319

AVOIDING (DESTRUCTIVE-) INTERFERENCE IN IOMMU

MMU MMU

Physical
Addresses

Core Core

Memory

DMA
Requests

Virtual
Address

Virtual

Addresses

IOMMU
Physical
Addresses

GPU NIC

IOMMU is a shared resource

How to model contention in IOMMU?

How to guarantee Quality-of-Service
in IOMMU?

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016320

RESEARCH: TOOLS AND MODELING

 Software research: IOMMU driver/OS policies

‒ Easy! Open source IOMMU Driver in Linux

 Hardware research: Modifying IOMMU hardware behavior

‒ Option 1: Hardware performance counter + Analytical models

‒ Option 2: Simulator with IOMMU model

‒ Work in progress to add IOMMU model in gem5

‒ Write down in attendance sheet your email if interested

http://gem5.org/Main_Page

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016321

SUMMARY

MMU MMU

IO DeviceIO Device
Core Core

IOMMU

Important roles:

1. Memory protection from rogue devices

2. Shared virtual memory to devices

Hardware that
intercepts DMA
transactions

IOMMU (kernel-mode) Driver:

Configuration/Setup IOMMU hardware

and interrupts

3. I/O virtualization – direct I/O

4. Supporting legacy I/O, Secure boot

Memory

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016322

REFERENCES

 IOMMU specification: http://support.amd.com/TechDocs/48882_IOMMU.pdf

 OLSON’15: Lean Olson et. al. “Border Control: Sandboxing Accelerators” , MICRO
2015

 AMIT’11: Nadav Amit et al. “vIOMMU: Efficient IOMMU Emulation”, USENIX, ATC ,
2011

 BEN-YEHUDA’07: Muli Ben-Yehuda et al. “The Price of Safety: Evaluating IOMMU
Performance”, OLS 2007

 MALKA’15: Moshe Malka et al. “rIOMMU: Efficient IOMMU for I/O Devices That
Employ Ring Buffers”, ASPLOS 2015.

 WILLMANN’08: Paul Willmann et al. “Protection Strategies for Direct Access to
Virtualized I/O Devices”, USENIX, ATC 2008.

 VOGEl’15: Pirmin Vogel et. al. “Lightweight virtual memory support for many-core
accelerators in heterogeneous embedded SoCs”, CODES’15

 MARKUZE’16: Markuze et al. “True IOMMU Protection from DMA Attacks”,
ASPLOS’16.

http://support.amd.com/TechDocs/48882_IOMMU.pdf

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016323

QUESTIONS AND FEEDBACK

 Reachable @

‒ Arka Basu: Arkaprava “dot” Basu “at” amd.com

‒ Andy Kegel: Andrew “dot” Kegel “at” amd.com

‒ Paul Blinzer: Paul “dot” Blinzer “at” amd.com

‒ Maggie Chan: Maggie “dot” Chan “at” amd.com

IOMMU TUTORIAL @ ASPLOS | 3RD APRIL 2016324

DISCLAIMER & ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap
changes, component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD
reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of
such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES,
ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE
LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION
CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2016 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices,
Inc. in the United States and/or other jurisdictions. SPEC is a registered trademark of the Standard Performance Evaluation Corporation (SPEC). OpenCL is a
trademark of Apple Inc. used by permission by Khronos. ARM ® is/are the registered trademark(s) of ARM Limited in the EU and other countries. PCIe® is
registered trademark of PCI-SIG corporation. Other name are for informational purposes only and may be trademarks of their respective owners.

