Image Model




  在說明各式各樣的影像處理技術前,必須先瞭解電腦中的影像模型 (Image Model),如此才能夠進行各樣的影像處理。一般來說,一張數位影像 就是許許多多的色點 (pixel) 所構成的圖片,而每一個色點都是由紅、綠、 藍(RGB)光的三元色調配出來的,如此便構成了二維的一張影像;我們通常 稱這樣的影像是空間中的影像(Spatial domain)。另外,我們有時可以用 一些轉換函數(transformation),來抓住影像的特徵,而這些經過轉換後 的影像,通常就稱為頻率上的影像(Frequency domain)。(因為這類的轉換 函數通常是週期函數)

What is a digital image?

A digital image is composed of a set of pixels (picture elements) Each pixel represents a portion of the image in a particular color, or shade of gray.

Resolution: The number of pixels in a given area defines the resolution of a digital image.

Dynamic range: The number of possible colors each pixel can represent is determined by the dynamic range of the image.
RGB colors: 3 colors to represent one pixel.

Dynamic range (bit-depth):

  • 8 bits: 256 colors from an palette
  • 16 bits: 5 bits for Red, 5 bits for Green, 5 bits for Blue
  • 24 bits: 8 bits for Red, 8 bits for Green, 8 bits for Blue

Mathematical model (spatial domain)

A digital image = f(x,y)
,where 0
xwidth, 0yheight,and x, y are discrete.

For a color image f(x,y) is a vector, composed by RGB three components.

Transformations (Frequency domain)

Why transformation is necessary?

  • Capture perceptual features using less bits
    • High frequency signals are not sensitive to Humans eyes. (compression)
    • We can represent some features using low frequency signals without losing much information.(feature retrieval, similarity query)
  • Accelerate convolution operation (only for FFT)
      f(x)*g(x) <=> F(u)G(u)
      Uppercase letters represent Fourier domain functions.


Some Transforms:

  • Fourier Transform:
      
      
  • Discrete Cosine Transform (DCT):
      
      
      


  By 陳必衷 Bee-Chung Chen, CSIE NTU Taiwan [To Homepage] [Back]