Online Components:

Online Models, Intelligent Initialization,
Explore / Exploit



Why Online Components?

« Cold start
— New items or new users come to the system
— How to obtain data for new items/users (explore/exploit)
— Once data becomes available, how to quickly update the model
 Periodic rebuild (e.g., daily): Expensive
« Continuous online update (e.g., every minute): Cheap

« Concept drift

— Item popularity, user interest, mood, and user-to-item affinity may
change over time

— How to track the most recent behavior
« Down-weight old data
— How to model temporal patterns for better prediction
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Big Picture

Most Popular
Recommendation

Personalized
Recommendation

Offline Models

Collaborative filtering
(cold-start problem)

Online Models

Real systems are dynamic

Time-series models

Incremental CF,
online regression

Do not start cold

Intelligent Initialization

Prior estimation

Prior estimation,
dimension reduction

Explore/Exploit

Actively acquire data

Multi-armed bandits

Bandits with covariates

Extension:

Segmented Most

Popular Recommendation
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Online Components for

Most Popular Recommendation

Online models, intelligent initialization & explore/exploit



Most popular recommendation: Outline

« Most popular recommendation (no personalization, all
users see the same thing)
— Time-series models (online models)
— Prior estimation (initialization)
— Multi-armed bandits (explore/exploit)

« Segmented most popular recommendation
— Create user segments/clusters based on user features
— Provide most popular recommendation for each segment
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Most Popular Recommendation

* Problem definition: Pick k items (articles) from a pool of n
to maximize the total number of clicks on the picked items

« Easy! Pick the items having the highest click-through
rates (CTRs)

 But...
— The system is highly dynamic:
* Items come and go with short lifetimes
« CTR of each item changes over time

— How much traffic should be allocated to explore new items to
achieve optimal performance

« Too little — Unreliable CTR estimates
« Too much — Little traffic to exploit the high CTR items
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CTR Curves for Two Days on Yahoo! Front Page

Each curve is the CTR of an item in the Today Module on www.yahoo.com over time
1.0 =

0.8

0.6 -

04

Scaled CTR

0.2 -

0.0 -

00:00 —

Time

Traffic obtained from a controlled randomized experiment (no confounding)
Things to note:
(a) Short lifetimes, (b) temporal effects, (c) often breaking news stories
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For Simplicity, Assume ...

* Pick only one item for each user visit
— Multi-slot optimization later

* No user segmentation, no personalization (discussion later)

« The pool of candidate items is predetermined and is
relatively small (< 1000)
— E.g., selected by human editors or by a first-phase filtering method
— ldeally, there should be a feedback loop
— Large item pool problem later

« Effects like user-fatigue, diversity in recommendations,
multi-objective optimization not considered (discussion later)
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Online Models

How to track the changing CTR of an item

For a given item, at time f, we
— Show the item n, times (i.e., n, views)
— Receive ¢, clicks

Problem Definition: Given ¢, n,, ..., ¢, n,, predict the CTR
(click-through rate) p;, at time t+1

Potential solutions:
— Instant CTR: ¢,/ n, — highly unstable (n,is usually small)

— Cumulative CTR: (X,,;¢) /(2 ; n) — react to changes very slowly

all 7 * 7

— Moving window CTR: (X .t x C) /(2 n) — reasonable

ielast K ''j

 But, no estimation of Varip,,,] (useful for explore/exploit)
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Online Models: Dynamic Gamma-Poisson

« Model-based approach * Show the item n, times
. * Receive ¢, clicks
- (¢ n, p) ~ Poisson(n;p) . p,=CTR at time ¢

— P;= P4 & Where g ~ Gamma(mean=1, var=7)

— Model parameters:
« p, ~ Gamma(mean=y,, var=g,°) is the offline CTR estimate
71 specifies how dynamic/smooth the CTR is over time

— Posterior distribution (p,,, [ ¢, ny, ..., ¢;, n) ~ Gamma(?,?)
« Solve this recursively (online update rule)
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Online Models: Derivation

. 2
Estimated CTR (p, | ¢;,ny,....,c,_;,n,_) ~ Gamma(mean = l,,var = O, )
distribution

at time ¢ Lety, =u,/ O't2 (effective sample size)

2
(p, l ¢ ny,....c, n,) ~ Gamma(mean = [, var = O,,)

Let y,, =7, +n, (etfective sample size)

My =W -V, + ) Yy
O-tzlt = Uy ! Vo

. 2
Estimated CTR (pt+1 l Cl,l’ll,...,Ct,l’lt) ~ Gamma(mean - ,uH_l,VClI" — O-t+1)
distribution _
at time t+1 Hrer = My

2 2

O, =0, + 77(,ut2|t + O',zn) High CTR items more adaptive
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Tracking behavior of Gamma-Poisson model

* Low click rate articles — More temporal smoothing
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Intelligent Initialization: Prior Estimation

 Prior CTR distribution: Gamma(mean=x,, var=c,?)

— N historical items:

* n;= #views of item /in its first time interval

* ¢ = #clicks on item jin its first time interval
— Model

¢~ Poisson(n;p) and p; ~ Gamma(y,, c,?)

= ¢, ~ NegBinomial(z,, 6,2, n)

— Maximum likelihood estimate (MLE) of (1, 6,?)

argmax N 0 Jog L4 Nlogr(ﬂo) +Z logr( goj (C,- +ﬂ—§)10g(ni "‘ﬂ—g)

or
Mo 0'0 0 0

 Better prior: Cluster items and find MLE for each cluster
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Explore/Exploit: Problem Definition

v

| clicks in the future
t—=2 | t-1 t | |

v

time

ltem 1  x,% page views
ltem2  x,% page views

ltem K x,% page views

Determine (x;, X, ..., X,) based on clicks and views observed before ¢
in order to maximize the expected total number of clicks in the future
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Modeling the Uncertainty, NOT just the Mean

Simplified setting: Two items

»
»

Item B

Probability density

Item A

v

CTR

If we only make a single decision,
give 100% page views to ltem A

If we make multiple decisions in the future
explore ltem B since its CTR can
potentially be higher

Potential = L>q (p—q):- f(p)dp

CTR of item A 1s g
CTR of item B is p
Probability density function of item B’s CTR is f(p)

We know the CTR of ltem A (say, shown 1 million times)
We are uncertain about the CTR of /fem B (only 100 times)
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Multi-Armed Bandits: Introduction (1)

For now, we are attacking the problem of choosing best article/arm for all users

Bandit "arms”

(unknown payoff
probabilities)

e "Pulling” arm i yields a reward:
e reward = 1 with probability p;, (success)

e reward = 0 otherwise (failure)
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Multi-Armed Bandits: Introduction (2)

Bandit "arms”

(unknown payoff
probabilities)

» Goal: Pull arms sequentially to maximize the total reward
« Bandit scheme/policy: Sequential algorithm to play arms (items)

» Regret of a scheme = Expected loss relative to the “oracle” optimal
scheme that always plays the best arm

— “Best” means highest success probability

— But, the best arm is not known ... unless you have an oracle
— Hence, the regret is the price of exploration

— Low regret implies quick convergence to the best
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Multi-Armed Bandits: Introduction (3)

« Bayesian approach

— Seeks to find the Bayes optimal solution to a Markov decision
process (MDP) with assumptions about probability distributions

— Representative work: Gittins’ index, Whittle’s index
— Very computationally intensive

« Minimax approach

— Seeks to find a scheme that incurs bounded regret (with no or
mild assumptions about probability distributions)

— Representative work: UCB by Lai, Auer
— Usually, computationally easy

— But, they tend to explore too much in practice (probably because
the bounds are based on worse-case analysis)
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Multi-Armed Bandits: Markov Decision Process (1)

« Select an arm now at time =0, to maximize expected total number
of clicks in =0,..., T

- State attime t.®,=(6,, ..., )
— 6, = State of arm / at time ¢ (that captures all we know about arm i at )

- Reward function R{(®, ©,,)
— Reward of pulling arm /that brings the state from @, to @,

 Transition probability Pr[®,,, | ®,, pulling arm /]
« Policy &: A function that maps a state to an arm (action)
— n(®,) returns an arm (to pull)
« Value of policy = starting from the current state ®, with horizon T

Immediate reward  Value of the remaining T-1 time slots
7> a if we start from state @,

(

V,(7,0,) = E[R, o (0,,0)+V, ,(7,0))]
= [Pi]®, 10,.7(©,)]- R, 0,,(©,.0) +V,_,(7.0))]d®,
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Multi-Armed Bandits: MDP (2)

Immediate reward  Value of the remaining 7-1 time slots
> - if we start from state 0,

V,(7,0,) = ER, o ,(©,,0)+V, (7,0)]

= [Pil®, 10,70, R, 0,,(©,.0,) +V,_,(7.0,)]d®,

« Optimal policy: argmax V,(7,0,)

« Things to notice:
— Value is defined recursively (actually T high-dim integrals)
— Dynamic programming can be used to find the optimal policy
— But, just evaluating the value of a fixed policy can be very expensive

« Bandit Problem: The pull of one arm does not change the state of
other arms and the set of arms do not change over time
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Multi-Armed Bandits: MDP (3)

« Which arm should be pulled next?

— Not necessarily what looks best right now, since it might have had a few
lucky successes

— Looks like it will be a function of successes and failures of all arms
« Consider a slightly different problem setting
— Infinite time horizon, but
— Future rewards are geometrically discounted
Rt = R(0) + y.R(1) + y2.R(2) + ... (O<y<1)

« Theorem [Gittins 1979]: The optimal policy decouples and solves a
bandit problem for each arm independently

K Policy n(®,) is a function of (6, ..., 6) one K-dimensional problem

Y

J Policy n(®,) = argmax; { 9(&,) } K one-dimensional problems

. Still computationally expensive!!
Gittins’ Index P yexp

é’ Deepak Agarwal & Bee-Chung Chen @ KDD’10 21



Multi-Armed Bandits: MDP (4)

Priority Priority Priority

1 2

1

éi Deepak Agarwal & Bee-Chung Chen @ KDD’10

3

Bandit Policy

1. Compute the priority
(Gittins’ index) of each
arm based on its state

2. Pull arm with max
priority, and observe
reward

3. Update the state of the
pulled arm
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Multi-Armed Bandits: MDP (5)

« Theorem [Gittins 1979]: The optimal policy decouples and
solves a bandit problem for each arm independently

— Many proofs and different interpretations of Gittins’ index exist

« The index of an arm is the fixed charge per pull for a game with two
options, pull the arm or not, so that the charge makes the optimal
play of the game have zero net reward

— Significantly reduces the dimension of the problem space
— But, Gittins’ index g(8,) is still hard to compute
» For the Gamma-Poisson or Beta-Binomial models

8, = (#successes, #pulls) for arm jup to time ¢
» g maps each possible (#successes, #pulls) pair to a number

— Approximate methods are used in practice
— Lai et al. have derived these for exponential family distributions
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Multi-Armed Bandits: Minimax Approach (1)

« Compute the priority of each arm /in a way that the regret
IS bounded
— Best regret in the worst case

« One common policy is UCB1 [Auer 2002]

Number of successes of Total number of pulls

arm i \ / of all arms

. . 2-1
Priority, =5y \/ L

/ \_'l_’ \ Yl /
Number of pulls Observed Factor representing
of arm i success rate uncertainty
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Multi-Armed Bandits: Minimax Approach (2)

. C, 2-logn
Priority, = —+ 5
n, n,
\ Y ) . ~ J

Observed Factor
payoff  representing
uncertainty
» As total observations n becomes large:

— Observed payoff tends asymptotically towards the true payoff
probability

— The system never completely “converges” to one best arm; only
the rate of exploration tends to zero
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Multi-Armed Bandits: Minimax Approach (3)

. C, 2-logn
Priority, = —+ 5
n, n,
\ Y ) . ~ J/

Observed Factor

payoff  representing
uncertainty

« Sub-optimal arms are pulled O(log n)

« Hence, UCB1 has O(log n) regret

« This is the lowest possible regret (but the constants matter ©)
« E.g. Regret after n plays is bounded by

Inn 7’ X
[8 > —j+(l+?j-(ZAJ} where A, =u,  — 1L
J

U <Upeg i =1
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Classical Multi-Armed Bandits: Summary

« Bayesian approach (Markov decision process)
— Representative work: Gittins’ index
 Gittins’ index is optimal for a fixed reward distribution
 |dea: Pull the arm currently having the highest index value
— Representative work: Whittle’s index [Whittle 1988]
« Extend Gittins’ index to a changing reward distribution
» Only near optimal; approximate by Lagrange relaxation
— Computationally intensive
« Minimax approach (providing guaranteed regret bounds)
— Representative work: UCB1 [Auer 2002]
 Index = Upper confidence bound (model agnostic)
« Heuristics
— &Greedy: Random exploration using fraction ¢ of traffic
— Softmax: exp{fL/7}
D exp{i, 7}
— P% upper confidence bound (model-based)
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Characteristics of Real Recommender Systems

« Dynamic set of items (arms)
— Items come and go with short lifetimes (e.g., a day)

— Asymptotically optimal policies may fail to achieve good performance
when item lifetimes are short

* Non-stationary CTR
— CTR of an item can change dramatically over time
 Different user populations at different times

« Same user behaves differently at different times (e.g., morning, lunch
time, at work, in the evening, etc.)

« Attention to breaking news stories decay over time

« Batch serving for scalability

— Making a decision and updating the model for each user visit in real time
IS expensive

— Batch serving is more feasible: Create time slots (e.g., 5 min); for each
slot, decide what fraction x; of the visits in the slot should give item i
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Explore/Exploit iIn Recommender Systems

v

| clicks in the future
t—=2 | t-1 t | |

v

time

ltem 1  x,% page views
ltem2  x,% page views

ltem K x,% page views

Determine (x;, X, ..., X,) based on clicks and views observed before ¢
in order to maximize the expected total number of clicks in the future

Let’s solve this from first principle
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Bayesian Solution: Two Items, Two Time Slots (1)

« Twotimeslots:t=0and t=1
— Item P. We are uncertain about its CTR, p, at f=0and p, at =1
— Item Q: We know its CTR exactly, g,att=0and g, at t=1

« To determine x, we need to estimate what would happen in the future

Now , . End
| N, views | N, views
| l | » time
Question: t=0 . t=1
What fraction x of N, views to item P i < Assume we observe ¢, we can update p,
(1-x) toitemQ : «If xand c are given, optimal solution:
| Give all views to /fem P iff
> Item Q i F[ pi(x0) 1 X, C/] > 9
| p,(x.c)
S Ith P \ : 1 > Item Q
"CTR : 'z | [flte
QD . =
1 —8 p](x7c)
Obtain c clicks after serving x — CIR
(not yet observed; random variable) p,(x,c) [

/
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Bayesian Solution: Two Iltems, Two Time Slots (2)

« Expected total number of clicks in the two time slots

E[#clicks] att=0 E[#clicks] att=1
A
N 0 XD, +N (1- x)q0 +NE [max{pl(x ), ql}]
\_Y_/
Item P Item Q  Show the item W/th higher E[ICTR]: max{p,(x,c), q,}

=N,q,+N,q, + Nyx(p, —q,)+ N,E.[max{ p,(x,c)—gq,, 0}]
_/

\ ) \—
Y

YT
E[#clicks] if we Gain(x, gy, q,)
always show Gain of exploring the uncertain item P using x
item Q

Gain(x, q,, q,) = Expected number of additional clicks if we explore
the uncertain item P with fraction x of views in slot 0, compared to
a scheme that only shows the certain item Q in both slots

Solution: argmax, Gain(x, q,, g,)
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Bayesian Solution: Two Iltems, Two Time Slots (3)

 Approximate p,(x,c) by the normal distribution
— Reasonable approximation because of the central limit theorem

Gain(x,qy,q,) = Nox(p, —q0>+N{al<x>-¢[ql ‘p1j+[1—<1>(‘11 — P B(fal —qo}

0, (x) 0, (x)

Prior of p, ~ Beta(a,b)

]51 = Ec[ﬁ1(xac)] =al(a+b)
xN, ab

o’ (x)=Var[p,(x,c)] = o _ e T T T~
Y O Ny @rbrararh) 2 -
* Proposition: Using the approximation, % - F\\
the Bayes optimal solution x can be ° T -~ py=ooes
found in time O(log N,) o | T Ro=0.086"
< =~ Pp=0.084
| | | | I |
0.0 0.4 0.8

@7 x: Fraction of views for uncertain item
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Bayesian Solution: Two Items, Two Time Slots (4)

 Quiz: Is it correct that the more we are uncertain about the
CTR of an item, the more we should explore the item?

0.4 0.6
l ]

0.2
I

Optimal solution to x
|

0.0
]

I | I — I I
0 200 400 600 800

Y. prior size
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Bayesian Solution: General Case (1)

« From two items to Kitems
— Very difficult problem: max ( N, 2; x;p,, + N, E.[max { p,,(x;,¢,)}])
x=0 — _/

%% s
c;is a random variable representing 2>0
the # clicks on item /we may get 2. z;(¢) =1, for all possible ¢

— Apply Whittle's Lagrange relaxation (1988) to this problem setting
* Relax 2.;z(c) =1, forall c,to E_[>;z(c)] =1
» Apply Lagrange multipliers (g, and g,) to enforce the constraints

min (N,q,+ N,q, + Zi max Gain(x;,q,,q,) )

do-491

— We essentially reduce the K-item case to Kindependent two-item
sub-problems (which we have solved)
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Bayesian Solution: General Case (2)

* From two intervals to multiple time slots
— Approximate multiple time slots by two stages

* Non-stationary CTR

— Use the Dynamic Gamma-Poisson model to estimate the CTR
distribution for each item
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Simulation Experiment: Different Traffic Volume

« Simulation with ground truth estimated based on Yahoo! Front Page data
* Setting:16 live items per interval
« Scenarios: Web sites with different traffic volume (x-axis)

20% — o —o— BayesGeneral
Gemo o N -4 - Bayes2x2
3 o TN gigl g +  B-UCBf1
E 15% I N 4 n \\\.X. y -x- WTA-UCB1
o ﬂ\ N *x .. \O "‘--____X - B—POKER
> AN g C N6 —7- WTA-POKER
-+ O, ¥—-m2 ?'@*-.__ =29 d
& 0% AN o TR —%— ( €=2%)-—greedy
O ° ﬂ,\ I g * - (€=5%)—greedy
o 8 S & (e=10%)—greedy
\‘g\e ) + -&- Exp3
5% — TN, -¥- SoftMax
| T 1 1
o o o o o o
o o o o o o
N 8 8 g3 8 8
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Simulation Experiment: Different Sizes of the ltem Pool

« Simulation with ground truth estimated based on Yahoo! Front Page data
 Setting: 1000 views per interval; average item lifetime = 20 intervals
» Scenarios: Different sizes of the item pool (x-axis)

' N
40% - i g/ & ¥

W
S
&

Percentage Regret

1000 —

Avg #items per interval
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BayesGeneral
Bayes2x2

B-UCBH1
WTA-UCB1
B-POKER
WTA-POKER

( €=2%)—-greedy
( €=5%)—greedy
( €=10%)—greedy
Exp3

SoftMax
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Characteristics of Different Explore/Exploit Schemes (1)

« Why the Bayesian solution has better performance

« Characterize each scheme by three dimensions:

— Exploitation regret: The regret of a scheme when it is showing the item
which it thinks is the best (may not actually be the best)

« 0 means the scheme always picks the actual best

« |t quantifies the scheme’s ability of finding good items

— Exploration regret: The regret of a scheme when it is exploring the items
which it feels uncertain about

« It quantifies the price of exploration (lower — better)
— Fraction of exploitation (higher — better)
 Fraction of exploration = 1 — fraction of exploitation
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Characteristics of Different Explore/Exploit Schemes (2)

 Exploitation regret: Ability of finding good items (lower — better)
 Exploration regret: Price of exploration (lower — better)
* Fraction of Exploitation (higher — better)

X X A - Bayes2x2

0.8 — - 0.8 + B-UCBH1
© © % WTA-UCB1
o \V/ o v -&- B-POKER
O 0.6 D 0.6 — --7- WTA-POKER
oc o —=— (&=2%)-greedy
c c - % - (e=5%)-greedy
.8 0.4 f:’ 04 — @ (e=10%)-greedy
8 S S [ = e | 8 SoftMax
O [ Good, % O ,Good
§<>- 0.2 _IX}( : §<3- 0.2 IX}Z
L I | g L [ *

00 LMD L 0.0 — @ ',@ |

04 05 06 0.7

0.00 —
0.40
0.60
0.80
0.85
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1.00

I
¥
. o
Exploration Regret E

xploitation fraction
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Discussion: Large Content Pool

« The Bayesian solution looks promising

— ~10% from true optimal for a content pool of 1000 live items
« 1000 views per interval; item lifetime ~20 intervals

* Intelligent initialization (offline modeling)
— Obtain a better item-specific prior (based on features)
— Linear models that estimate CTR distributions

— Hierarchical smoothing: Estimate the CTR distribution of a
random article of a item category for a user segment

« Use existing hierarchies of items and users
« Create supervised clusters via extended version of LDA

» Feature-based explore/exploit

— Estimate model parameters, instead of per-item CTR
— More later

@’ Deepak Agarwal & Bee-Chung Chen @ KDD’10
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Discussion: Multiple Positions, Ranking

« Feature-based approach
— reward(page) = model(g(item 1 at position 1, ... item k at position k))
— Apply feature-based explore/exploit

* Online optimization for ranked list
— Ranked bandits [Radlinski et al., 2008]: Run an independent bandit
algorithm for each position
— Dueling bandit [Yue & Joachims, 2009]: Actions are pairwise
comparisons

* Online optimization of submodular functions
-V S,S and g, (S, @ S,) <1(S))
« where f(S) = (S ®(a)) — ,(S)
— Streeter & Golovin (2008)
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Discussion: Segmented Most Popular

 Partition users into segments, and then for each segment,
provide most popular recommendation

 How to segment users
— Hand-created segments: AgeGroup x Gender
— Clustering based on user features
« Users in the same cluster like similar items

« Segments can be organized by taxonomies/hierarchies
— Better CTR models can be built by hierarchical smoothing
« Shrink the CTR of a segment toward its parent
* Introduce bias to reduce uncertainty/variance
— Bandits for taxonomies (Pandey et al., 2008)

« Explore/exploit categories/segments first; then, switch to
individuals
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Most Popular Recommendation: Summary

 Online model:
— Estimate the mean and variance of the CTR of each item over time
— Dynamic Gamma-Poisson model

« Intelligent initialization:

— Estimate the prior mean and variance of the CTR of each item
cluster using historical data

— Cluster items — Maximum likelihood estimates of the priors

« Explore/exploit:

— Bayesian: Solve a Markov decision process problem
 QGittins’ index, Whittle’s index, approximations
 Better performance, computation intensive

— Minimax: Bound the regret
« UCB1: Easy to compute
« Explore more than necessary in practice

— &QGreedy: Empirically competitive for tuned &
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Online Components for

Personalized Recommendation

Online models, intelligent initialization & explore/exploit



Personalized recommendation: Qutline

* Online model
— Methods for online/incremental update (cold-start problem)
« User-user, item-item, PLSI, linear model
— Methods for modeling temporal dynamics (concept drift problem)

« State-space model, timeSVD++ [Koren 2009] for Netflix,
tensor factorization

 Intelligent initialization (cold-start problem)
— Feature-based prior + reduced rank regression (for linear model)

« Explore/exploit
— Bandits with covariates
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Online Update for Similarity-based Methods

» User-user methods
— Key quantities: Similarity(user /i, user ))
— Incremental update (e.g., [Papagelis 2005])

By = 2 (1 — )i — 1)) Incrementally maintain three
N _Fi)\/Dj =, (ry —7,) setsof counters: B, C, D

corr(i, j)=

— Clustering (e.g., [Das 2007])
» MinHash (for Jaccard similarity)
 Clusters(user i) = (hy(r), ..., hr)) <« fixed online (rebuilt periodically)
» AvgRating(cluster c, item j) <« updated online

score(user i,1tem j) o< Zk AvgRating(h, (x;), j)

 ltem-item methods (similar ideas)
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Online Update for PLSI

* Online update for probabilistic latent semantic indexing
(PLSI) [Das 2007]

p(tem jluseri)= Zk p(cluster k 1) p(j | cluster k)

e T

Fixed online Updated online
(rebuilt Periodically) .
Z I(u clicks j)p(klu)
USCer u

Zlle:I'I/t p(k | u)
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Online Update for Linear/Factorization Model

* Linear model: The regression weight of item j on the
Z d , kth user feature
Vi = L X P = xiﬂj
r \
Rating from user itoitemj  The kth feature of user i

— X;can be user factor vector (estimated periodically, fixed online)
— p;is a item factor vector (updated online)
— Straightforward to fix item factors and update user factors

« Gaussian model (use vector notation)

vi ~ N(xB;,0%) i ELB; | yl=Var[ B; | yI(V; 1t; + X, yyx,/ 07)
,Bj ~ N;;up‘(j) Update Var[,b’j | y] = (Vj_1 +2 xix;/O'z)_1
E[p] and Varf]

(current estimates)
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Temporal Dynamics: State-Space Model

» ltem factors S, change over time t
— The change is smooth: 5, should be close to £,

Dynamic model Static model
’ 2 ’ 2
Yijt ~N(xi,tﬁj,t’o- ) Yij ~N(xB;,07)
:Bj,t ~N(18j,z—1’v) 'BJ' ~N(’UJ"VJ')
f —
Random variable Constants

IBj,l ~ N(;uj,O’ Vo) Vi1 Yio

Xi 1 )Qz/,

— Use standard Kalman filter update rule

Subscript:
— It can be extended to Logistic (for binary data), user
Poisson (for count data), etc. :fnrgg
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Temporal Dynamics: timeSVD++

« Explicitly model temporal patterns
« Part of the winning method of Netflix contest [Koren 2009]

item popularity
I_H

Vi~ M+b(t)+b (1) +u, (t)v j
—— ——

user bias user factors (preference) middle
b,(t)=b, + &, dev,(t) + b, ' k
. R A P PN
distance to the middle rating time of i " :
.
time bin
u; (1), =uy + 0o dev, (t) +uy, Subscript:
user J,
Model parameters: u, b, &, by, by, by, Uy, Qo Uy item

for all user i, item j, factor k, time f, time bin d time t
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Temporal Dynamics: Tensor Factorization

« Decompose ratings into three components [Xiong 2010]
— User factors u,: User i’'s membership to type k
— ltem factors v, Item j’s affinity to type k
— Time factors z,: Importance/weight of type k at time ¢

Regular matrix factorization
Tensor factorization

Yije ™ Lo WiV jelde = UiV j1Zn T UipV jpZp T oo T UiV i L

N

Time-varying weights on different types/factors

Subscript:
user J,
item
time t

2\ .
Zix ~ N(z,_14»0") Time factors are smooth over time
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Online Models: Summary

« Why online model? Real systems are dynamic!!
— Cold-start problem: New users/items come to the system

* New data should be used a.s.a.p., but rebuilding the entire
model is expensive

« How to efficiently, incrementally update the model
— Similarity-based methods, PLSI, linear and factorization models
— Concept-drift problem: User/item behavior changes over time
« Decay the importance of old data
— State-space model
« Explicitly model temporal patterns

— timeSVD++ for Netflix, tensor factorization < Not really
online models!!

 Next

— Initialization methods for factorization models (for cold start)
« Start from linear regression models
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Intelligent Initialization for Linear Model (1)

« Dynamic linear model

Yijg ~ N(x;,t :Bj,t’ 0-2)
[ZLt‘” DJ(/Q}J—I"/)
,Bj,l ~N(U; o, V)

— How to estimate the prior parameters x,, and V,
 Important for cold start: Predictions are made using prior
« Leverage available features

— How to learn the weights/factors quickly
» High dimensional 5, — slow convergence

 Reduce the dimensionality Subscript:
user i,

item
time t
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Intelligent Initialization for Linear Model (2)

Original model Revised model

Yij.t ~N(x;,zﬂj,t962) Yija ~N(X Ax +xlt16]t’ 9 )

:B jir = N (IB jit—1° V) Feature-based regression  Correction to regression
Can be 0 mean
IBj,l - N(/uj,O’VO) ZM Tkz i kX0 Smaller scale
Subscript: Matrix of regression weights
user | _
item j 'BJ'J B TBHJ'J B projects the high dim
time t pxrwhere r<< p space to a low dim one
Features: 2
. e't ~N(9't—1’ O-GI)
X;+ Feature vector of Low rank approx
user jat time t . N(O oF I) of var-cov matrix
X+ Ilzeatu.re vector of T f_H
item jat time ¢ QKII OK!! IB ,~N(Q, o BB)

(because of A)
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Intelligent Initialization for Linear Model (3)

 Model fitting Vi, ~ N, Ax, , +x,B,,, 0°)
— Offline trainin
. g ﬁjt — Bej,t
* Determine n= (A, B, o, o, o) ,
— Regression weights: A, B 0., ~N@,,_, o,1)
— Prior variances: o, o, g, 6. ~ N, 62I)
jl > o

» Latent factors &= { 6,,}
« Given data D, find maximum likelihood estimate (MLE) of

argmax p(D17) = | p(D,O177) dO
n

« Use the EM algorithm
— Online update
* FixA, B, o, 0, o
* Update g, (low dimensional, use Kalman filter)
* 6, for each item j can be updated independently in parallel
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Intelligent Initialization for Linear Model (4)

15 . .
- <«— Intelligent init
é e X xxxxX—x-xX~xxxxxxx‘><’xxX"X'X“ x X
é 10 fis ,xxx‘x'x_xx )
g K
2 X - - No-init
s 5 ¥ —&—  Offline
= ! -4 - PCR
< " —— PCR-B
0 4 du —— RR Reg
- | | | |
0 100 200 300 400 Time slots
- Data: My Yahoo! data * Methods
. s _ — No-init: Regular online logistic with
ummary-. ~1000 parameters for each item
— Reduced rank regression — Offline: Feature-based model
significantly improves performance without online update
compared to other baseline — PCR, PCR-B: Principal component
methods methods to estimate B

— RR Reg: Reduced rank procedure
(intelligent initialization)
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Intelligent Initialization for Factorization Model (1)

* Online update for item cold start (no temporal dynamics)

Offline model
’ 2
Factorization
\_Y_}
Feature-based init
Dim reduction
v, = Ax it BHJ-

\_Y_l
Feature-based init

6, ~ N0, ;1)

Online model

(periodic) Offset Feature vector
offline training — ,_,A_\ ,
output: Viig ~ N(u; Ax; +u, BQJ ., o2D)
. A, B, 2
N i 0.,=06., Updated online
> ]’t ],t 1

2
ej’l ~ N(O, 601)
Scalability:
49- IS low dimensional

* ¢, for each item j can be updated
mdependently in parallel
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Intelligent Initialization for Factorization Model (2)

Offline Online

iy~ NWv;, o°I) Vi ~ N Ax, +u] B8, ,, o°I)
u, ~ N(Gx,, 62I) 0:=0;:

vj=Ax;+ B0, 8;. ~ N, o1

6, ~ N0, o 1)

e Qur observation so far

— Dimension reduction (u;”B) does not improve much if factor
regressions are based on good covariates (o, is small)

- Small o/ — strong shrinkage — small effective dimensionality
(soft dimension reduction)

— Online updates help significantly: In MovieLens (time-based split),
reduced RMSE from .93 to .86
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Intelligent Initialization f

 Include temporal dynamics

Offline computation O
(rebuilt periodically)

YViis ~ N (u;, Vi o’l)
u;, =Gx,, +Ho,,,
S, ~N(,,y» 051
8,1 ~ N, s3I

Vi, = ij,t + Bﬁj’t
6., ~N@©,,_, o]
6, ~N(, s;I)

@’ Deepak Agarwal & Bee-Chung Chen @ KDD’10

or Factorization Model (3)

nline computation

Fix u;; and update 6,
’ ’ 2
ylj,t -~ N(l/tl’t ij,f + Ml-’t BH (02 I)

.]’t ?
6, ~N@©,,_, o]

Fix v;, and update ¢,
’ ’ 2
ylj,t ~ N(V]’t Gxi’t + vj,t H5 O I)

it
é;,t - N(é;,t—l’ O-gl)

Repeat the above two steps a few times
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Intelligent Initialization: Summary

Online models are useful for cold start and concept drift

Whenever historical data is available, do not start cold

For linear / factorization models
— Use available features to setup the starting point
— Reduce dimensionality to facilitate fast learning

Next

— Explore/exploit for personalization

— Users are represented by covariates
« Features, factors, clusters, etc

— Bandits with covariates
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Explore/Exploit with Covariates/Features

|t provides solution to
— Large content pool (correlated arms)
— Personalized recommendation (hint before pulling an arm)
« Covariate bandits, contextual bandits, bandits with side observations

 Models: Reward (CTR) is a (stochastic) function of covariates
— Hierarchical model: CTR of a child is centered around its parent
— Linear model: {CTR) = weighted sum of covariate values
— Similarity model: Similar items have similar CTRs
— More general models or model agnostic

« Approaches:
— Hierarchical explore/exploit
— Variants of upper confidence bound methods
« Model-based (Bayesian) vs. model-agnostic (minimax)
— Variants of &-greedy (& depends on observed data)
— Variants of softmax  exp{a,/7}

> explf, /7]
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Are Covariate Bandits Difficult?

« When features are predictive and different users/items have
different features, the myopic scheme is near optimal

— Myopic scheme: Pick the item having the highest predicted CTR (without
considering the explore/exploit problem at all)

— Sarkar (1991) and Wang et al. (2005) studied this for the two-armed
bandit case

« Simple predictive upper confidence bound gave good empirical
results
— Pick the item having highest E[CTR | data] + k Sta[CTR | data]
— Pavlidis et al. (2008) studied this for Gaussian linear models
— Preliminary experiments (Gamma linear model)
« Bayesian scheme is better when features are not very predictive
« Simple predictive UCB is better when features are predictive
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Covariate Bandits

» Related work ... just a small sample of papers
— Hierarchical explore/exploit (Pandey et al., 2008)
« Explore/exploit categories/segments first; then, switch to individuals
— Variants of &-greedy

« Epoch-greedy (Langford & Zhang, 2007): ¢is determined based on
the generalization bound of the current model

« Banditron (Kakade et al., 2008): Linear model with binary response

* Non-parametric bandit (Yang & Zhu, 2002): £ decreases over time;
example model: histogram, nearest neighbor

— Variants of UCB methods

 Linearly parameterized bandits (Rusmevichientong et al., 2008):
minimax, based on uncertainty ellipsoid

« Bandits in metric spaces (Kleinberg et al., 2008; Slivkins et al., 2009):
— Similar arms have similar rewards: | reward(i) — reward()) | < distance(i,j)
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Online Components: Summary

* Real systems are dynamic

« Cold-start problem
— Incremental online update (online linear regression)
— Intelligent initialization (use features to predict initial factor values)
— Explore/exploit (pick posterior mean + k posterior standard dev)

« Concept-drift problem
— Tracking the current behavior (state-space models, Kalman filter)
— Modeling temporal patterns
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