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Why Online Components?

• Cold start
– New items or new users come to the system

– How to obtain data for new items/users (explore/exploit)

– Once data becomes available, how to quickly update the model

• Periodic rebuild (e.g., daily): Expensive

• Continuous online update (e.g., every minute): Cheap

• Concept drift
– Item popularity, user interest, mood, and user-to-item affinity may 

change over time

– How to track the most recent behavior

• Down-weight old data

– How to model temporal patterns for better prediction
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Big Picture

Prior estimation, 
dimension reduction

Prior estimationIntelligent Initialization
Do not start cold

Bandits with covariatesMulti-armed banditsExplore/Exploit
Actively acquire data

Incremental CF, 

online regression

Time-series modelsOnline Models
Real systems are dynamic

Collaborative filtering 
(cold-start problem)

Offline Models

Personalized 
Recommendation

Most Popular
Recommendation

Segmented Most 

Popular Recommendation

Extension:



Online Components for 

Most Popular Recommendation

Online models, intelligent initialization & explore/exploit
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Most popular recommendation: Outline

• Most popular recommendation (no personalization, all 
users see the same thing)
– Time-series models (online models)

– Prior estimation (initialization)

– Multi-armed bandits (explore/exploit)

• Segmented most popular recommendation
– Create user segments/clusters based on user features

– Provide most popular recommendation for each segment
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Most Popular Recommendation

• Problem definition: Pick k items (articles) from a pool of n
to maximize the total number of clicks on the picked items

• Easy!  Pick the items having the highest click-through 

rates (CTRs)

• But …
– The system is highly dynamic:

• Items come and go with short lifetimes

• CTR of each item changes over time

– How much traffic should be allocated to explore new items to 
achieve optimal performance

• Too little    → Unreliable CTR estimates

• Too much  → Little traffic to exploit the high CTR items
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CTR Curves for Two Days on Yahoo! Front Page

Traffic obtained from a controlled randomized experiment (no confounding)

Things to note:

(a) Short lifetimes, (b) temporal effects, (c) often breaking news stories

Each curve is the CTR of an item in the Today Module on www.yahoo.com over time
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For Simplicity, Assume …

• Pick only one item for each user visit
– Multi-slot optimization later

• No user segmentation, no personalization (discussion later)

• The pool of candidate items is predetermined and is 

relatively small (≤ 1000)
– E.g., selected by human editors or by a first-phase filtering method

– Ideally, there should be a feedback loop

– Large item pool problem later

• Effects like user-fatigue, diversity in recommendations, 

multi-objective optimization not considered (discussion later)
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Online Models

• How to track the changing CTR of an item

• For a given item, at time t, we
– Show the item nt times (i.e., nt views)

– Receive ct clicks

• Problem Definition: Given c1, n1, …, ct, nt, predict the CTR 

(click-through rate) pt+1 at time t+1

• Potential solutions:

– Instant CTR: ct / nt → highly unstable (nt is usually small)

– Cumulative CTR: (∑all i ci) / (∑all i ni)  → react to changes very slowly

– Moving window CTR: (∑i∈last K ci) / (∑i∈last K ni)  → reasonable

• But, no estimation of Var[pt+1] (useful for explore/exploit)



10Deepak Agarwal & Bee-Chung Chen @ KDD’10

Online Models: Dynamic Gamma-Poisson

• Model-based approach
– (ct | nt, pt) ~ Poisson(nt pt)

– pt = pt-1 εt, where εt ~ Gamma(mean=1, var=η)

– Model parameters:

• p1 ~ Gamma(mean=µµµµ0, var=σσσσ0
2) is the offline CTR estimate

• ηηηη specifies how dynamic/smooth the CTR is over time

– Posterior distribution (pt+1 | c1, n1, …, ct, nt) ~ Gamma(?,?)

• Solve this recursively (online update rule)

• Show the item nt times

• Receive ct clicks

• pt = CTR at time t
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Online Models: Derivation
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Tracking behavior of Gamma-Poisson model

• Low click rate articles – More temporal smoothing
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Intelligent Initialization: Prior Estimation

• Prior CTR distribution: Gamma(mean=µµµµ0, var=σσσσ0
2)

– N historical items:

• ni = #views of item i in its first time interval

• ci = #clicks on item i in its first time interval

– Model

• ci ~ Poisson(ni pi)  and pi ~ Gamma(µµµµ0, σσσσ0
2)

⇒ ci ~ NegBinomial(µµµµ0, σσσσ0
2, ni)

– Maximum likelihood estimate (MLE) of (µµµµ0, σσσσ0
2)

• Better prior: Cluster items and find MLE for each cluster
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Explore/Exploit: Problem Definition

time

Item 1
Item 2

…
Item K

x1% page views
x2% page views

…
xK% page views

Determine (x1, x2, …, xK) based on clicks and views observed before t
in order to maximize the expected total number of clicks in the future

t –1t –2 t

now

clicks in the future
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Modeling the Uncertainty, NOT just the Mean

Simplified setting: Two items

CTR

P
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ty Item A

Item B

We know the CTR of Item A (say, shown 1 million times) 
We are uncertain about the CTR of Item B (only 100 times)

If we only make a single decision,
give 100% page views to Item A

If we make multiple decisions in the future
explore Item B since its CTR can 
potentially be higher

∫ >
⋅−=

qp
dppfqp  )()(Potential

CTR of item A is q

CTR of item B is p

Probability density function of item B’s CTR is f(p)
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Multi-Armed Bandits: Introduction (1)

Bandit “arms”

p1 p2 p3
(unknown payoff 

probabilities)

• “Pulling” arm i yields a reward:

• reward = 1 with probability pi (success)

• reward = 0 otherwise             (failure)

For now, we are attacking the problem of choosing best article/arm for all users
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Multi-Armed Bandits: Introduction (2)

Bandit “arms”

p1 p2 p3
(unknown payoff 

probabilities)

• Goal: Pull arms sequentially to maximize the total reward

• Bandit scheme/policy: Sequential algorithm to play arms (items)

• Regret of a scheme = Expected loss relative to the “oracle” optimal 

scheme that always plays the best arm

– “Best” means highest success probability

– But, the best arm is not known … unless you have an oracle

– Hence, the regret is the price of exploration

– Low regret implies quick convergence to the best
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Multi-Armed Bandits: Introduction (3)

• Bayesian approach
– Seeks to find the Bayes optimal solution to a Markov decision 

process (MDP) with assumptions about probability distributions

– Representative work: Gittins’ index, Whittle’s index

– Very computationally intensive

• Minimax approach
– Seeks to find a scheme that incurs bounded regret (with no or 

mild assumptions about probability distributions)

– Representative work: UCB by Lai, Auer

– Usually, computationally easy

– But, they tend to explore too much in practice (probably because
the bounds are based on worse-case analysis)
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Multi-Armed Bandits: Markov Decision Process (1)

• Select an arm now at time t=0, to maximize expected total number 
of clicks in t=0,…,T

• State at time t: ΘΘΘΘt = (θ1t, …, θKt)

– θit = State of arm i at time t (that captures all we know about arm i at t)

• Reward function Ri(ΘΘΘΘt, ΘΘΘΘt+1)

– Reward of pulling arm i that brings the state from ΘΘΘΘt to ΘΘΘΘt+1

• Transition probability Pr[ΘΘΘΘt+1 | ΘΘΘΘt, pulling arm i ] 

• Policy π: A function that maps a state to an arm (action) 

– π(ΘΘΘΘt) returns an arm (to pull)

• Value of policy π starting from the current state ΘΘΘΘ0 with horizon T

[ ]),(),(),( 1110)(0 0
ΘΘΘΘ

Θ
ππ π −+= TT VREV

[ ] [ ]∫ −+⋅= 11110)(001  ),(),()(,|Pr
0

ΘΘΘΘΘΘΘ
Θ

dVR T ππ π

Immediate reward Value of the remaining T-1 time slots

if we start from state ΘΘΘΘ1
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Multi-Armed Bandits: MDP (2)

• Optimal policy:

• Things to notice:
– Value is defined recursively (actually T high-dim integrals)

– Dynamic programming can be used to find the optimal policy

– But, just evaluating the value of a fixed policy can be very expensive

• Bandit Problem: The pull of one arm does not change the state of
other arms and the set of arms do not change over time
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Multi-Armed Bandits: MDP (3)

• Which arm should be pulled next?

– Not necessarily what looks best right now, since it might have had a few 

lucky successes

– Looks like it will be a function of successes and failures of all arms

• Consider a slightly different problem setting

– Infinite time horizon, but

– Future rewards are geometrically discounted
Rtotal = R(0) + γ.R(1) + γ2.R(2) + … (0<γ<1)

• Theorem [Gittins 1979]: The optimal policy decouples and solves a 
bandit problem for each arm independently

Policy π(ΘΘΘΘt) is a function of (θ1t, …, θKt)

Policy π(ΘΘΘΘt) = argmaxi { g(θit) }

One K-dimensional problem

K one-dimensional problems

Still computationally expensive!!
Gittins’ Index
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Multi-Armed Bandits: MDP (4)

Bandit Policy

1. Compute the priority 
(Gittins’ index) of each 
arm based on its state

2. Pull arm with max 
priority, and observe 
reward

3. Update the state of the 
pulled arm

Priority 
1

Priority 
2

Priority 
3
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Multi-Armed Bandits: MDP (5)

• Theorem [Gittins 1979]: The optimal policy decouples and 
solves a bandit problem for each arm independently
– Many proofs and different interpretations of Gittins’ index exist

• The index of an arm is the fixed charge per pull for a game with two 

options, pull the arm or not, so that the charge makes the optimal 

play of the game have zero net reward

– Significantly reduces the dimension of the problem space

– But, Gittins’ index g(θit) is still hard to compute

• For the Gamma-Poisson or Beta-Binomial models

θit = (#successes, #pulls) for arm i up to time t

• g maps each possible (#successes, #pulls) pair to a number

– Approximate methods are used in practice

– Lai et al. have derived these for exponential family distributions
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Multi-Armed Bandits: Minimax Approach (1)

• Compute the priority of each arm i in a way that the regret 
is bounded
– Best regret in the worst case

• One common policy is UCB1 [Auer 2002]

Number of successes of 

arm i

Number of pulls 

of arm i

Total number of pulls 

of all arms

Observed 

success rate

Factor representing 

uncertainty
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Multi-Armed Bandits: Minimax Approach (2)

• As total observations n becomes large:
– Observed payoff tends asymptotically towards the true payoff 

probability

– The system never completely “converges” to one best arm; only 
the rate of exploration tends to zero

Observed 

payoff

Factor 

representing 

uncertainty
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Multi-Armed Bandits: Minimax Approach (3)

• Sub-optimal arms are pulled O(log n) 

• Hence, UCB1 has O(log n) regret

• This is the lowest possible regret (but the constants matter ☺)

• E.g. Regret after n plays is bounded by

Observed 

payoff

Factor 

representing 

uncertainty

ii

i
i

n

n

n

c log2
Priority

⋅
+=

ibesti

K

j

j

i ibesti

n
µµ

π

µµ

−=∆







∆⋅








++











∆
∑∑

=<

    where,
3

1
ln

8
1

2

:



27Deepak Agarwal & Bee-Chung Chen @ KDD’10

• Bayesian approach (Markov decision process)

– Representative work: Gittins’ index

• Gittins’ index is optimal for a fixed reward distribution

• Idea: Pull the arm currently having the highest index value

– Representative work: Whittle’s index [Whittle 1988]

• Extend Gittins’ index to a changing reward distribution

• Only near optimal; approximate by Lagrange relaxation

– Computationally intensive

• Minimax approach (providing guaranteed regret bounds)

– Representative work: UCB1 [Auer 2002]

• Index = Upper confidence bound (model agnostic)

• Heuristics

– ε-Greedy: Random exploration using fraction ε of traffic

– Softmax:

– P% upper confidence bound (model-based)

∑ j j

i

}/ˆexp{

}/ˆexp{

τµ

τµ

Classical Multi-Armed Bandits: Summary
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Characteristics of Real Recommender Systems

• Dynamic set of items (arms)

– Items come and go with short lifetimes (e.g., a day)

– Asymptotically optimal policies may fail to achieve good performance 

when item lifetimes are short

• Non-stationary CTR

– CTR of an item can change dramatically over time

• Different user populations at different times

• Same user behaves differently at different times (e.g., morning, lunch 

time, at work, in the evening, etc.)

• Attention to breaking news stories decay over time

• Batch serving for scalability

– Making a decision and updating the model for each user visit in real time 

is expensive

– Batch serving is more feasible: Create time slots (e.g., 5 min); for each 

slot, decide what fraction xi of the visits in the slot should give item i
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Explore/Exploit in Recommender Systems

time

Item 1
Item 2

…
Item K

x1% page views
x2% page views

…
xK% page views

Determine (x1, x2, …, xK) based on clicks and views observed before t
in order to maximize the expected total number of clicks in the future

t –1t –2 t

now

clicks in the future

Let’s solve this from first principle
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Bayesian Solution: Two Items, Two Time Slots (1)

• Two time slots: t = 0 and t = 1

– Item P: We are uncertain about its CTR, p0 at t = 0 and  p1 at t = 1

– Item Q: We know its CTR exactly,     q0 at t = 0 and  q1 at t = 1

• To determine xx, we need to estimate what would happen in the future

Question:

What fraction xx of N0 views to item P

(1-xx)          to item Q

t=0 t=1

NowNow

time
N0 views N1 views

EndEnd

Obtain c clicks after serving xx

(not yet observed; random variable)

• Assume we observe c; we can update p1

CTR

d
en

si
ty Item Q

Item P

q1

p1(x,c)
CTR

d
en

si
ty Item Q

Item P

q0

p0

• If x and c are given, optimal solution:

Give all views to Item P iff

E[ p1(x,c) I x, c ] > q1

),(ˆ
1 cxp

),(ˆ
1 cxp
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• Expected total number of clicks in the two time slots

}]  ),,(ˆ[max{)1(ˆ
1110000 qcxpENqxNpxN c+−+

Gain(x, q0, q1) = Expected number of additional clicks if we explore 

the uncertain item P with fraction x of views in slot 0, compared to 

a scheme that only shows the certain item Q in both slots

Solution: argmaxx Gain(x, q0, q1)

Bayesian Solution: Two Items, Two Time Slots (2)

}]0  ,),(ˆ[max{)ˆ( 1110001100 qcxpENqpxNqNqN c −+−++=

E[#clicks] at t = 0 E[#clicks] at t = 1

Item P Item Q Show the item with higher E[CTR]: }  ),,(ˆmax{ 11 qcxp

E[#clicks] if we 

always show 

item Q

Gain(x, q0, q1)
Gain of exploring the uncertain item P using x
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• Approximate by the normal distribution
– Reasonable approximation because of the central limit theorem

• Proposition: Using the approximation,                           
the Bayes optimal solution x can be                                                
found in time O(log N0)
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Bayesian Solution: Two Items, Two Time Slots (3)
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Bayesian Solution: Two Items, Two Time Slots (4)

• Quiz: Is it correct that the more we are uncertain about the 
CTR of an item, the more we should explore the item?
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– Apply Whittle’s Lagrange relaxation (1988) to this problem setting

• Relax ∑i zi(c) = 1, for all c, to Ec [∑i zi(c)] = 1

• Apply Lagrange multipliers (q1 and q2) to enforce the constraints

– We essentially reduce the K-item case to K independent two-item 
sub-problems (which we have solved)

Bayesian Solution: General Case (1)

• From two items to K items
– Very difficult problem: ) )}],(ˆ{[maxˆ ( max 1100

0
iiiiiii cxpENpxN

c
x

+∑
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)],(ˆ)([max 1
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iiiii cxpzE c
c

z
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Note: c = [c1, …, cK]

ci is a random variable representing

the # clicks on item i we may get
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Bayesian Solution: General Case (2)

• From two intervals to multiple time slots
– Approximate multiple time slots by two stages

• Non-stationary CTR
– Use the Dynamic Gamma-Poisson model to estimate the CTR 

distribution for each item
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Simulation Experiment: Different Traffic Volume

• Simulation with ground truth estimated based on Yahoo! Front Page data
• Setting:16 live items per interval
• Scenarios: Web sites with different traffic volume (x-axis)
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Simulation Experiment: Different Sizes of the Item Pool

• Simulation with ground truth estimated based on Yahoo! Front Page data
• Setting: 1000 views per interval; average item lifetime = 20 intervals
• Scenarios: Different sizes of the item pool (x-axis)
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Characteristics of Different Explore/Exploit Schemes (1)

• Why the Bayesian solution has better performance

• Characterize each scheme by three dimensions:

– Exploitation regret: The regret of a scheme when it is showing the item 

which it thinks is the best (may not actually be the best)

• 0 means the scheme always picks the actual best

• It quantifies the scheme’s ability of finding good items

– Exploration regret: The regret of a scheme when it is exploring the items 

which it feels uncertain about

• It quantifies the price of exploration (lower → better)

– Fraction of exploitation (higher → better)

• Fraction of exploration = 1 – fraction of exploitation
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Characteristics of Different Explore/Exploit Schemes (2)

• Exploitation regret: Ability of finding good items (lower → better)
• Exploration regret: Price of exploration (lower → better)
• Fraction of Exploitation (higher → better)

Exploration Regret Exploitation fraction
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Good Good
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Discussion: Large Content Pool

• The Bayesian solution looks promising
– ~10% from true optimal for a content pool of 1000 live items

• 1000 views per interval; item lifetime ~20 intervals

• Intelligent initialization (offline modeling)
– Obtain a better item-specific prior (based on features)

– Linear models that estimate CTR distributions

– Hierarchical smoothing: Estimate the CTR distribution of a 
random article of a item category for a user segment

• Use existing hierarchies of items and users

• Create supervised clusters via extended version of LDA

• Feature-based explore/exploit
– Estimate model parameters, instead of per-item CTR

– More later
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Discussion: Multiple Positions, Ranking

• Feature-based approach

– reward(page) = model(φ(item 1 at position 1, … item k at position k))

– Apply feature-based explore/exploit

• Online optimization for ranked list
– Ranked bandits [Radlinski et al., 2008]: Run an independent bandit 

algorithm for each position

– Dueling bandit [Yue & Joachims, 2009]: Actions are pairwise
comparisons

• Online optimization of submodular functions

– ∀ S1, S2 and a, fa(S1 ⊕ S2) ≤ fa(S1)

• where fa(S) = fa(S ⊕ 〈a〉) – fa(S)

– Streeter & Golovin (2008)
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Discussion: Segmented Most Popular

• Partition users into segments, and then for each segment, 
provide most popular recommendation

• How to segment users

– Hand-created segments: AgeGroup × Gender

– Clustering based on user features

• Users in the same cluster like similar items

• Segments can be organized by taxonomies/hierarchies
– Better CTR models can be built by hierarchical smoothing

• Shrink the CTR of a segment toward its parent

• Introduce bias to reduce uncertainty/variance

– Bandits for taxonomies (Pandey et al., 2008)

• Explore/exploit categories/segments first; then, switch to 
individuals
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Most Popular Recommendation: Summary

• Online model:
– Estimate the mean and variance of the CTR of each item over time

– Dynamic Gamma-Poisson model

• Intelligent initialization:
– Estimate the prior mean and variance of the CTR of each item 

cluster using historical data

– Cluster items  → Maximum likelihood estimates of the priors

• Explore/exploit:
– Bayesian: Solve a Markov decision process problem

• Gittins’ index, Whittle’s index, approximations

• Better performance, computation intensive

– Minimax: Bound the regret

• UCB1: Easy to compute

• Explore more than necessary in practice

– ε-Greedy: Empirically competitive for tuned ε



Online Components for 

Personalized Recommendation

Online models, intelligent initialization & explore/exploit
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Personalized recommendation: Outline

• Online model
– Methods for online/incremental update (cold-start problem)

• User-user, item-item, PLSI, linear model

– Methods for modeling temporal dynamics (concept drift problem)

• State-space model, timeSVD++ [Koren 2009] for Netflix,       
tensor factorization

• Intelligent initialization (cold-start problem)

– Feature-based prior + reduced rank regression (for linear model)

• Explore/exploit
– Bandits with covariates



46Deepak Agarwal & Bee-Chung Chen @ KDD’10

Online Update for Similarity-based Methods

• User-user methods
– Key quantities: Similarity(user i, user j)

– Incremental update (e.g., [Papagelis 2005])

– Clustering (e.g., [Das 2007])

• MinHash (for Jaccard similarity)

• Clusters(user i) = (h1(ri), …, hK(ri))   ← fixed online (rebuilt periodically)

• AvgRating(cluster c, item j)   ← updated online

• Item-item methods (similar ideas)
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Online Update for PLSI

• Online update for probabilistic latent semantic indexing 
(PLSI) [Das 2007]
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• Linear model:

– xi can be user factor vector (estimated periodically, fixed online)

– βj is a item factor vector (updated online)

– Straightforward to fix item factors and update user factors

• Gaussian model (use vector notation)

jijkikkij xxy ββ ′=∑~

Online Update for Linear/Factorization Model

Rating from user i to item j The kth feature of user i

The regression weight of item j on the 

kth user feature
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Temporal Dynamics: State-Space Model

• Item factors βj,t change over time t
– The change is smooth: βj,t should be close to βj,t-1

– Use standard Kalman filter update rule

– It can be extended to Logistic (for binary data),              
Poisson (for count data), etc.
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Temporal Dynamics: timeSVD++

• Explicitly model temporal patterns

• Part of the winning method of Netflix contest [Koren 2009]
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Temporal Dynamics: Tensor Factorization

• Decompose ratings into three components [Xiong 2010]

– User factors uik: User i ’s membership to type k

– Item factors vjk: Item j ’s affinity to type k

– Time factors ztk: Importance/weight of type k at time t

tKjKiKtjitjik tkjkiktij zvuzvuzvuzvuy +++=∑ ...~ 222111,

Time-varying weights on different types/factors

jKiKjijik jkikij vuvuvuvuy +++=∑ ...~ 2211

Regular matrix factorization

Tensor factorization
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Online Models: Summary

• Why online model?  Real systems are dynamic!!
– Cold-start problem: New users/items come to the system

• New data should be used a.s.a.p., but rebuilding the entire 
model is expensive

• How to efficiently, incrementally update the model

– Similarity-based methods, PLSI, linear and factorization models

– Concept-drift problem: User/item behavior changes over time

• Decay the importance of old data

– State-space model

• Explicitly model temporal patterns

– timeSVD++ for Netflix, tensor factorization

• Next
– Initialization methods for factorization models (for cold start)

• Start from linear regression models

Not really

online models!!
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Intelligent Initialization for Linear Model (1)

• Dynamic linear model

– How to estimate the prior parameters µj,0 and V0

• Important for cold start: Predictions are made using prior

• Leverage available features

– How to learn the weights/factors quickly

• High dimensional βj → slow convergence

• Reduce the dimensionality
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Intelligent Initialization for Linear Model (2)
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Intelligent Initialization for Linear Model (3)

• Model fitting
– Offline training

• Determine η = (A, B, σ, σθ, σ0)

– Regression weights: A, B

– Prior variances: σ, σθ, σ0

• Latent factors Θ = { θj,t }

• Given data D, find maximum likelihood estimate (MLE) of η

• Use the EM algorithm

– Online update

• Fix A, B, σ, σθ, σ0

• Update θj,t (low dimensional, use Kalman filter)

• θj,t for each item j can be updated independently in parallel
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Intelligent Initialization for Linear Model (4)

• Data: My Yahoo! data

• Summary:

– Reduced rank regression 

significantly improves performance 

compared to other baseline 

methods

• Methods
– No-init: Regular online logistic with 

~1000 parameters for each item

– Offline: Feature-based model 
without online update

– PCR, PCR-B: Principal component 
methods to estimate B

– RR Reg: Reduced rank procedure 
(intelligent initialization)

RR Reg

Time slots

Intelligent init
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Intelligent Initialization for Factorization Model (1)

• Online update for item cold start (no temporal dynamics)
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Intelligent Initialization for Factorization Model (2)

• Our observation so far

– Dimension reduction (ui′ B) does not improve much if factor 
regressions are based on good covariates (σθ

2 is small)

• Small σθ
2 → strong shrinkage → small effective dimensionality

– Online updates help significantly: In MovieLens (time-based split), 
reduced RMSE from .93 to .86
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Intelligent Initialization for Factorization Model (3)

• Include temporal dynamics
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Intelligent Initialization: Summary

• Online models are useful for cold start and concept drift

• Whenever historical data is available, do not start cold

• For linear / factorization models
– Use available features to setup the starting point

– Reduce dimensionality to facilitate fast learning

• Next
– Explore/exploit for personalization

– Users are represented by covariates

• Features, factors, clusters, etc

– Bandits with covariates
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Explore/Exploit with Covariates/Features

• It provides solution to

– Large content pool (correlated arms)

– Personalized recommendation (hint before pulling an arm)

• Covariate bandits, contextual bandits, bandits with side observations

• Models: Reward (CTR) is a (stochastic) function of covariates

– Hierarchical model: CTR of a child is centered around its parent

– Linear model: f(CTR) = weighted sum of covariate values

– Similarity model: Similar items have similar CTRs

– More general models or model agnostic

• Approaches:
– Hierarchical explore/exploit

– Variants of upper confidence bound methods

• Model-based (Bayesian) vs. model-agnostic (minimax)

– Variants of ε-greedy (ε depends on observed data)

– Variants of softmax

∑ j j

i

}/ˆexp{

}/ˆexp{

τµ

τµ



62Deepak Agarwal & Bee-Chung Chen @ KDD’10

Are Covariate Bandits Difficult?

• When features are predictive and different users/items have 

different features, the myopic scheme is near optimal
– Myopic scheme: Pick the item having the highest predicted CTR (without 

considering the explore/exploit problem at all)

– Sarkar (1991) and Wang et al. (2005) studied this for the two-armed 

bandit case

• Simple predictive upper confidence bound gave good empirical 
results
– Pick the item having highest E[CTR | data] + k Std[CTR | data]

– Pavlidis et al. (2008) studied this for Gaussian linear models

– Preliminary experiments (Gamma linear model)

• Bayesian scheme is better when features are not very predictive

• Simple predictive UCB is better when features are predictive
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Covariate Bandits

• Related work … just a small sample of papers

– Hierarchical explore/exploit (Pandey et al., 2008)

• Explore/exploit categories/segments first; then, switch to individuals

– Variants of ε-greedy

• Epoch-greedy (Langford & Zhang, 2007): ε is determined based on 
the generalization bound of the current model

• Banditron (Kakade et al., 2008): Linear model with binary response

• Non-parametric bandit (Yang & Zhu, 2002): ε decreases over time; 
example model: histogram, nearest neighbor

– Variants of UCB methods

• Linearly parameterized bandits (Rusmevichientong et al., 2008): 

minimax, based on uncertainty ellipsoid

• Bandits in metric spaces (Kleinberg et al., 2008; Slivkins et al., 2009):

– Similar arms have similar rewards: | reward(i) – reward(j) | ≤ distance(i,j)
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Online Components: Summary

• Real systems are dynamic

• Cold-start problem
– Incremental online update (online linear regression)

– Intelligent initialization (use features to predict initial factor values)

– Explore/exploit (pick posterior mean + k posterior standard dev)

• Concept-drift problem
– Tracking the current behavior (state-space models, Kalman filter)

– Modeling temporal patterns


