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Abstract

In this paper, we introduce a new family of tools
for exploratory data analysis, called prediction
cubes. As in standard OLAP data cubes, each
cell in a prediction cube contains a value that
summarizes the data belonging to that cell, and
the granularity of cells can be changed via
operations such as roll-up and drill-down. In
contrast to data cubes, in which each cell value is
computed by an aggregate function, e.g., SUM or
AVG, each cell value in a prediction cube
summarizes a predictive model trained on the
data corresponding to that cell, and characterizes
its decision behavior or predictiveness. In this
paper, we propose and motivate prediction cubes,
and show that they can be efficiently computed
by exploiting the idea of model decomposition.

1. Introduction

It is widely recognized that exploratory data analysis is an
iterative process, and that the bulk of the time is spent on
understanding the structure and patterns suggested by
applying one or more data mining algorithms on different
subsets or differently conditioned versions of the data.
Yet, almost all research has concentrated on either
improving the quality or efficiency of mining algorithms,
and has ignored the bottleneck of the human in the loop.

In this paper, we directly address the question of how
we can assist the analyst in identifying subsets of data that
are “interesting” in light of a given predictive model; the
underlying idea can be generalized to support other kinds
of exploratory analysis settings as well.

Our basic proposal is simple yet powerful—OLAP is
now a well-understood, powerful tool for systematically
exploring trends in aggregation queries across subsets of
data. We adapt it naturally to support exploration of
trends in the decision behavior of a given predictive
model across the same family of data subsets, allowing
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for ready integration into existing OLAP interfaces.
Repeated similar analysis of different subsets of data is
avoided by a single high-level cube construction query,
followed by OLAP-style exploration of hierarchically
organized results.

1.1 Contributions and Future Directions
In this paper, we: (1) introduce prediction cubes, (2)
develop a general computational technique, called scoring
function decomposition, to improve the efficiency of
prediction cube materialization, (3) show how to apply
the proposed technique to build prediction cubes for
several commonly used machine learning algorithms, and
finally (4) present a series of experiments that empirically
evaluate the accuracy and efficiency of cube construction.
This paper is a first step, and opens a number of
interesting directions for future research.  Beyond
possible improvements to the algorithms we propose,
constructing prediction cubes for other predictive models
is an important challenge. If we view parameters of
learning algorithms as dimensions of the cube, this opens
the door to a significantly more general use of prediction
cubes; beyond exploring data subsets, the paradigm can
be used to explore alternatives in conditioning the data
(e.g., choices for scaling different data axes) or tuning the
learning algorithm (e.g., choices for various “magic
thresholds™). Efficient cube computation for these
generalizations is wide open.

1.2 Motivating Example

Consider a nationwide bank whose managers want to
analyze the bank’s loan approval process with respect to
two dimensions, Location and Time (illustrated in Figure
1, 3 pages after). They are interested in questions like:

1. Given a set of sensitive attributes (e.g., race and sex),
are there locations and times during which approvals
depended highly on those attributes?

2. Are there locations and times when the decision
making was similar to that in 1950s Alabama?

When predictive models built by training a machine
learning algorithm are used to assist in such approval
decisions, the questions essentially have to do with
predictiveness of certain attributes and similarity of
models trained on different subsets of data. Social
scientists have raised concerns that the use of data mining
introduces the risk of discrimination that is hard to
identify, because it is latent in sophisticated models [6].



These questions are also complicated by the fact that
the candidate answers are subsets of data, partitioned by
location and time values; clearly, there are a large number
of candidates. Although the Location and Time
hierarchies are known, the right level (granularity) for the
analysis is unclear; e.g., is performing analysis using
State-Month better than using City-Year? Thus, it is
desirable to have a tool that allows the bank’s analysts to
navigate through different levels by rolling-up and/or
drilling-down along the hierarchies. We propose a new
kind of data mining tool, called prediction cubes, to
support such analysis.

Figure 3 (2 pages after) shows an example of a 2-
dimensional prediction cube for answering the first
question. In Figure 3 (c), each cell is indexed by a [State,
Year] pair. Each cell value is the predictiveness of the
sensitive attributes, calculated by evaluating two models
trained on the subset of data in that cell. (In Section 2, we
discuss how to measure predictiveness.) We call this kind
of prediction cube a predictiveness cube. Prediction cubes
support navigation via roll-up (e.g., from [State, Year] to
[State, All]) and drill-down (e.g., from [State, Year] to
[State, Month]). By navigating through this cube, we can
quickly check whether the models trained on different
subsets of data reflect, e.g., racial discrimination.

A naive approach, called the exhaustive method, to
roll-up or drill-down in a prediction cube is to
exhaustively build a model from scratch and evaluate it
for each cell. Given that building a model is generally
costly, this is likely to be prohibitively expensive. Instead
of exhaustively building a model from scratch each time,
we propose to generate the model of a higher-level
(coarse-grained) cell by combining the models of those
lower-level (finer-grained) cells that fall in the higher-
level cell, e.g., to build the model for [WI, 1986] by
combining the models of [WI, Jan 86], ..., [WI, Dec 86].

2. Predictive Models

Predictive models are the central objects in prediction
cubes. We first present the basic concepts and notation,
and then describe standard machine learning techniques
for measuring the mode accuracy, the similarity between
models, and attribute predictiveness.

2.1 Basics

Let D denote a table of data of schema [X, Y], where X =
{X;, ..., X,,} is a set of predictor attributes and Y is the
class label (i.e., the dependent attribute). Each row in D is
called an example. A predictive model /(X; D) is a model
trained on D using learning algorithm /4 that can predict
the class label y of a new example x. For ease of
expression, if the training dataset is not important or can
be inferred from the context, we just use 4#(X) to denote a
predictive model. Also, we use A(x; D) to denote the
function that outputs the prediction of 4(X; D) on input x.
For example, D is a table of loan application data, with
schema [Age, Gender, Race, Approval], where X={Age,
Gender, Race} denotes the predictor attributes and

Y=Approval is the class label. The predictive model
decision_tree(X; D) is the decision tree trained on D, to
predict whether a person’s loan application would be
approved based on his/her age, gender and race.

In Machine Learning and Statistics, D is usually
assumed to be a random sample drawn independently
from an underlying probability distribution p’(X, Y).
Since different datasets come from different distributions,
we use p (X, Y| D) to denote the distribution for dataset
D. Given this distribution, the “best” class label for input
x is the class label that maximizes the conditional class-
probability p’(Y=y | X=x, D), for all class labels y; i.c.,

best_class(x | D) = argmax ,, P (Y=y| X=x, D).

From this probabilistic point of view, a predictive model
h(X; D) is optimal if for any input x, h(x; D) always
outputs the “best” class label of x; i.e.,

h(x; D) = argmax ,, p (Y=y| X=x, D).
Thus, 4(X; D) can be thought of as an approximation of
p (Y| X, D). Further, it is intuitive to imagine that, during
training, A(X; D) constructs an internal probability
distribution p,(Y | X, D) that approximates p'(Y | X, D).
Thus, the prediction that 4(X; D) makes on x is the class
label that maximizes p,(Y=y | X=x, D), for all y; i.e.,

h(x; D) = argmax , py(Y=y | X=x, D).
In fact, many machine learning algorithms either do have
such internal probability distributions, or have some
scoring components that have a similar probabilistic
meaning, though the scores are not actually probabilities.

2.2 Model Accuracy

How well a predictive model performs is generally
measured by its accuracy. Theoretically, the accuracy of
h(X; D) is defined by how often we expect it to be correct:

Ex,[ I(h(x; D) =y)],
where (x, y) is drawn from p’(X, Y | D), and [ is the
indicator function. If statement W is true, /(W) = 1, else
I(W) = 0. Since p'(X, Y| D) is an unknown distribution, in
practice, the accuracy of 4(X; D) is measured empirically
by using additional test set A that is not used to train (X
D), and is assumed to be drawn from p (X, Y| D).

Definition 1: Test-set accuracy. Given a set-aside test
set A of schema [ X, Y], the test-set accuracy of h(X; D) is
1 _
m (x.)0A I(h(x;D) = y),
where |Q is the size of A. We use accuracy(h(x; D) | A) to
denote the test-set accuracy of (X; D) based on test set A.

Note that if we do not have a set-aside test set, a
commonly used method is n-fold cross validation. We
first randomly divide D into n non-overlapping partitions
D,, ..., D,. Then, for i = 1 to n, we use U D; as the
training data to build a model, and then use D; as the test
data to measure the model’s test-set accuracy. Then, the
cross-validation accuracy is the average of the above n
accuracies. A common choice of n is 10.



2.3 Model Similarity

The notion of similarity (or difference) between models is
important in prediction behavior analysis. Let /;(X) and
hy(X) be two predictive models. One simple method of
measuring the similarity between /;(X) and /,(X) is to test
whether these two models predict same class labels for
most examples in a test-set.

Definition 2: Prediction similarity and distance. 7he
(test-set-based) prediction similarity between two models,
h(X) and hy(X), on test set A is

T e () = o ()

We use similarity(h;(X), ho(X)) to denote model similarity
between hy(X) and hy(X). The prediction distance between
hi(X) and hy(X) is 1 — similarity(h;(X), hy(X)).

Note that the test set A used here need not have class
labels. It is used to provide the desired distribution of X.
Usually, A is generated according to the true underlying
distribution p’(X). However, we can also control the test
data; i.e., by using different test sets, we can compare
models based on different regions of the feature space.
For example, by using a test set of information about rich
people, we can focus the comparison on how similarly
two models treat rich people. Since A does not need to
have class labels, generating it is much easier than
generating the test set for accuracy measurement.

From the probabilistic point of view, if the models
h;(X) and /(X)) can also estimate the conditional class-
probabilities, i.e., p; (Y | X) and p, (Y | X), then we can
measure the similarity between #4;(X) and /4,(X) more
precisely by using the Kullback-Leibler (KL) divergence
between p;, (Y| X) and p;, (Y | X).

Definition 3: KL-distance [14]. The (test-set-based) KL-
distance between models, h(X) and hy(X), on test set A is

1 o (v 1x)
—_ log————,
T 2sca 2, P10 RN

We use KL distance(h;(X), hyX)) to denote the KL-
distance between h;(X) and hy(X).

Note that KL distance(h;, h;) # KL distance(h,, h;),
in general. A commonly used trick to make the distance
symmetric is to use the sum of the two as the distance.

2.4 Attribute Predictiveness
Predictive models can be used to measure whether a set of
attributes V' 0 X is predictive with respect to ¥ on a
dataset D. The intuition is that V is not predictive if and
only if ¥ is independent of Y given the other attributes X —
Viie,p (Y| X—V,D)=p" (Y| X, D). Thus, the similarity
between these two probabilities is a good measure of the
predictiveness of V. Since p" is unknown in practice, we
use the difference (prediction- or KL-distance) between
h(X; D) and i(X — V;, D) as the measure of predictiveness.
Note that there is another way to measure the
predictiveness of V, based on the intuition that V is
predictive if and only if the model using V is more

accurate than the model not using V; i.e., #(X; D) is more
accurate than 4#(X — V; D). Cross validation can be used to
estimate the accuracies of 4(X; D) and /(X — V; D). In the
interest of space, we do not discuss this alternative further.

3. Prediction Cubes

In this section, we define prediction cubes formally. We
first introduce the kinds of analysis for which prediction
cubes are designed, and then formally define prediction
cubes and consider their materialization.

3.1 Model-based Subset Analysis

We are interested in model-based data analysis. More
specifically, given a data table D of schema [X, Y], we
want to understand the relationship between X and Y (i.e.,
2 (Y | X, D)) by building a model (i.e., h(X; D)) that
captures this relationship. Subsets (D) are defined by
relational selections, and we use models A(X; a(D)) to
approximate true distributions p'(¥ | X, a(D)). The model
characteristics we are interested in are:

* Test-set behavior: Given a test set A of schema [X, Y],
we want to know whether the models built on different
subsets of D behave like the underlying distribution
that generates A. For example, A can be a list of loan
applications that have been unfairly treated. We want
to understand which branch or region at what time
would treat those applications similarly unfairly. This
can be estimated by using test-set accuracy.

* Model-based data similarity: Given a dataset D,
which can itself be a subset of D, we want to know
how similar D, is to different subsets of D. This
comparison can be done by measuring the model
similarity or distance between the model built on D,
and the models built on different subsets of D.

* Attribute predictiveness: Given a set V [ X of
attributes, e.g., sensitive attributes like race and sex,
we want to know whether V is predictive with respect
to Y on different subsets of D. This is the
predictiveness notion defined in Section 2.4.

Note that, for the above discussion to be valid, we
have made the following fundamental assumption:

Predictive models built on datasets o(D) and D

are good approximations to the true distribution,

ie,p (Y| X, aD))andp (Y| X, D).
As long as the accuracies of the predictive models are
reasonably high, this assumption is generally accepted in
Machine Learning and Statistics. In practice, we can try
several different learning algorithms, and get a good sense
about the prediction or decision characteristics. However,
the number of all possible subsets of D is too large and
not every subset of D is of interest. Thus, we borrow the
idea of multidimensional and hierarchical data grouping
from OLAP, and constrain the subsets that we consider to
the ones defined by valid multidimensional hierarchical
groupings.
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Figure 3. An example of a cube at different levels

3.2 From Data Cubes to Prediction Cubes

OLAP is an environment that supports multidimensional
and hierarchical data analysis. Data is stored in a fact
table D withaset Z= {Z,, ..., Z;} of dimension attributes
and a measure attribute Y, where each dimension Z; has a
hierarchical domain, e.g., Figure 1. A data cube is a d-
dimensional array where the value in each cell is an
aggregate value, e.g., sum or average, which summarizes
the subset of data falling into that cell. Figure 3 (c) is an
example. Formally, the value in the cell indexed by [z, ...,
z4] is defined by a query of the following form.

SELECT agg(Y) FROVMD WHERE Z,=z; AND ... AND Z/~z,;

where z;’s are values in domain hierarchies and agg([)l is
an aggregate function, e.g., sum or average. For example,
in Figure 3(c), the cell indexed by [WI, 86] is 0.9.

While data cubes are useful tools for understanding
characteristics about data subsets, they provide little
knowledge about prediction or decision characteristics.
Thus, we extend the concept of a data cube as follows:

* Use the same OLAP mechanism to partition data into
subsets and the same OLAP user interface to choose
which subsets to see, e.g., roll-up and drill-down.

* Introduce new kinds of aggregate functions that
capture prediction or decision behavior of data.
Instead of simple aggregation, e.g. sum and average,
the value in each cell is computed by evaluating a
model built on the data subset defined by the cell.

We call these new kinds of cubes prediction cubes.
The computational complexity of operating prediction
cubes is much higher than that of data cubes. The main
contributions of this paper are introducing the concept of
prediction cubes, and developing efficient methods to
compute them.

3.3 Dimensions and Hierarchies

We first redefine the schema of D to be [Z, X, Y], where
Z={Z,, ..., Z;} is a set of dimension attributes, d is the
number of dimensions, X is a set of predictor attributes

and Y is the class label. In the motivating example, Z =
{Location, Time}. Along each dimension Z;, there is a
hierarchy. For simplicity of exposition, we assume the
hierarchy of Z; is “linear™: <z, e Z,-(k)>, for some k£,
where Z” is a more “general” domain than ZY. Thus,
7Y is called the least general domain, and Z,-(k) is called
the most general domain. We say that Z'“ is more
“general” than 7 if each value in domain Z? is a child
of exactly one value in domain Z“ in the hierarchy. We
call Z” the domain at level t. For example, as shown in
Figure 1, the domain hierarchy of Location is <City, State,
All>, where City is at level 1 and is the least general
domain; A4// is at level 3 and is the most general domain.
In this hierarchy, every city is a child of exactly one state,
and every state is a child of “All” in the location hierarchy.

We use v 0 Z® to denote that a value v is from
domain Z”. Without loss of generality, we assume that
for any dimension Z;, the domains zW ..., Z® have
different sets of values; i.e., there is no value v such that v
0 Z“ and v O Z, for any i, a and b. E.g., there are
different values in domain Month for the same month of
different years.

Similar to the fact table in OLAP, we assume that the
values in the dimension attributes of the data table D
come from the least general domains, i.e., the zWs. A
valid multidimensional hierarchical subset at level [/, ...,
l4], denoted by ¢y, ., (D) where v; O Z" is defined by
the following query:

SELECT * FROMD
WHERE Z; | Ndesc(v;) AND ... AND Z; | Ndesc(viq);

where desc(v;) denotes the set of values that are the
descendants of v; in the hierarchy of Z; and v;. For
example, Ojyy, sq(D) is the subset of data with location in
WI and time in 86. Note that the level of this subset is
[2,2]. We can visualize a multidimensional hierarchical
subset by plotting each example of D as a point in a d
dimensional space based on their values on dimension
attributes. Then, a multidimensional hierarchical subset



Op,...»,(D) is the set of examples (data points) falling in
the box defined by v, ..., va. E.g., Gy 56(D) is the set of
examples falling in the shaded rectangle in Figure 2.

A cube at level [I;, ..., l;] is a d-dimensional array,
where each cell is indexed by [v;, ..., vg], vi O Z*, and
the value in the cell is a number that summarizes the data
subsets @y, ., (D). We say that g, ., (D) is the subset
defined by cell [v, ..., v4]. Figure 3 shows an example of
a cube at different levels. For example, in the cube of
level [2, 2] each cell of the array is indexed by a state
name and a year name. The value in cell [WI, 86] is a
number that summarize Oy, sq(D) (we will define the
meaning of the values in prediction cubes later). Roll-up
is the operator that changes a prediction cube from level
[y oo by oo L] to level [1, ..., 1, ..., 1], where I > I,
for some dimension i. Drill-down is the operator that
changes a prediction cube from level [/}, ..., [, ..., Ij] to

level [1;, ..., A 14], where 1" < I, for some dimension i.
3.4 Prediction Cubes

We now formally define three types of test-set based (TS)
prediction cubes, and then explain how to use them to
perform model-based subset analysis. For all of the TS-
prediction cubes, the user specifies: (1) a data table D, of
schema [Z, X, Y], together with the hierarchies associated
with Z, (2) a learning algorithm /4, and (3) a test dataset A
of schema [X, Y] (for TS-accuracy cubes; but [X] for the
other two types of cubes).

Note that the test set A is a user-specified parameter.
That means the user can choose the test set based on
his/her desired data distribution.

Definition 4: TS-accuracy cube. The TS-accuracy cube
at level [1,, ..., 4] is a d-dimensional array, in which the
value in each cell is the test-set accuracy of WX, (D))
based on test set A, where d(D) is the subset defined by
that cell.

Definition 5: Model-similarity (or distance) cube.
Given another user-specified model hy(X), the prediction-
similarity cube (or KL-distance cube) at level [1,, ..., l,] is
a d-dimensional array, in which the value in each cell is
the prediction similarity (or KL-distance) between hy(X)
and h(X; a(D)) based on unlabeled test set A, where o(D)
is the subset defined by that cell.

Definition 6: Predictiveness cube. Given a set V [ X of
attributes, the PD- (or KL-) predictiveness cube at level
s, ..., 1] is a d-dimensional array, in which the value in
each cell is the prediction (or KL-) distance between h(X—
V; aD)) and h(X; o(D)) measured by unlabeled test set A,
where 0(D) is the subset defined by that cell.

Note that the operators on prediction cubes are the
same as for data cube, e.g., roll-up and drill-down. In the
following, we explain how to use prediction cubes to
perform model-based subset analysis.

* Test-set behavior: We can use the TS-accuracy cube to
analyze the test-set (A) behavior on different subsets.

* Model-based data similarity: Given a dataset D,
which can itself be a subset of D, we can first build a
model 4, on Dy, and then measure the model-based
similarity of Dy to different subsets of D using the
model-similarity (or distance) cubes by providing 4,
as one of the input parameters.

* Attribute predictiveness: Given a set V [ X of
attributes, we can check the predictiveness of V w.r.t.
Y on different subsets using the predictiveness cubes.

Generalizing from the above cubes, if the user provides
an evaluation function Eval(h, a(D) | A, ©) that evaluates
the model behavior of (D) using learning algorithm 4
based on test set A and some optional parameters ©, then
the general TS-prediction cube (general test-set-based
prediction cube) can be defined as follows.

Definition 7: General TS-prediction cube. Given an
evaluation function Eval and an optional parameter set ©,
the general TS-prediction cube at level [1,, ..., l;] is a d-
dimensional array, where the value in each cell is Eval(h,
aD) | A, ©), and A(D) is the subset defined by that cell.

Note that for TS-accuracy cubes, Eval(h, D) | A, ©)
is the test-set accuracy of A(X; (D)) using A with ©
being empty. For model-similarity (or distance) cubes, ©
is hy and Eval(h, oD) | A, ©) is the similarity (or distance)
between A(X; o(D)) and hyX) based on A. For
predictiveness cubes, Eval(h, (D) | A, ©) is the similarity
(or distance) between 4(X; o(D)) and h(X-V; a(D)) based
on A with © being V. Also note that we can define
prediction cubes based on cross validation. However, in
the interest of space, we do not discuss this variation.

3.5 Prediction Cube Materialization

Although the concept of prediction cubes is intuitive,
supporting  prediction cube navigation is very
computationally costly. Thus, to achieve acceptable
interactive responses, materializing the cell values at
different levels is generally necessary. For simplicity, in
this paper, we only consider full materialization, i.e.,
materializing all the cell values for all possible levels.
Partial materialization with budget constraints can be
done by extending the full materialization techniques
developed in this paper using the partial materialization
techniques developed for data cubes, e.g., [11].

Definition 8: Full materialization table. The full
materialization table of a prediction cube is a table of
schema [Z;, ..., Z4, M] that contains all the cell values of
the cube at all possible levels. That is, the table contains a

tuple [vy, ..., vg, m(vy, ..., vy)], where m(vy, ..., v,) is the
value in the cube cell vy, ..., v4], for each v; O z0, for
eachiand l.

Note that values of Z; in the given data table D are
from domain Z", the least general domain. However, the
values of attribute Z; in the full materialization table are
from the union of all the domains on that dimension, i.e.,
0 i Z,'(l).



A brute-force way to generate the full materialization
table for a prediction cube is to exhaustively build a
model and evaluate it for each cell, for each level. That
means we need to build (¥, |Z,”))xI¥ (2, |Z,”]) models.
We call this method the exhaustive method. Note that the
sizes of the training data for those models are
dramatically different. To one extreme, consider the cells
in the cube at the lowest level [1, ..., 1]. The size of the
data falling into each of such cells is small. That means
building a model for such a cell is relatively less
expensive. To another extreme, consider the cell in the
cube at the most general level. In this case, the training
data for that cell is the whole dataset D. That means
building a model for that cell requires extremely large
resources. Further, it is very likely that building the single
model of the most general cell is much more expensive
than building the models for all the cells at the lowest
level. This observation points out a great computational
challenge in prediction cube materialization. If we do not
adapt machine learning algorithms for data cubes,
repeated model construction for (X |Z,“))x Mx(X; |1Z/")
times seems to be unavoidable, and the large resource
requirements for cells at high levels make the situation
even worse. Thus, we propose to compose models, rather
than building models from scratch repeatedly.

4. General Computational Techniques

The key idea of our model composition technique is
scoring function decomposition. In this section, we define
two kinds of decomposable scoring functions and show
that decomposable scoring functions allow data cube
computation techniques to be applied to prediction cube
computation. Then, in the next section, we develop
decomposable scoring functions for several commonly
used machine learning models.

4.1 Base Subsets

Intuitively, we only build predictive models for the
subsets at the lowest level, i.e., at level [1, ..., 1]. Then, to
compute the cube cell values of higher levels, we combine
the results generated by the models of the lowest-level
subsets. We call these lowest-level subsets the base
subsets, denoted by b;(D), ..., bg(D). Note that the
number B of base subsets is the product of the size of the
least general domains, i.e., |Z,""|x% |Z,").

It can be easily seen that every multidimensional
hierarchical subset ¢, .., ;(D) can be represented as the
union of some base subsets of D. Thus, for ease of
expression, we use ds(D) = U;ns b(D), where S O {1, ...,
B}, to denote a multidimensional hierarchical subset. Note
that not every S O {1, ..., B} gives a valid hierarchical
subset. However, every hierarchical subset can be
represented as dg(D), for some S.

For simplicity, we assume that each base subset
contains a significant amount of data such that learning
from that subset is reasonable. In reality, this may not be

the case. One can generalize prediction cubes to provide
confidence intervals as a significance judgement.

4.2 Decomposable Scoring Functions
Our model composition technique is based on the
following two observations.

1. Suppose we compute the cell values of a prediction
cube from the lowest level to the highest level. At
the time we are building a model for subset gg(D),
we have already built a model for each base subset
b(D), for i O §. If we can save some useful
intermediate results when building the models for
b{(D)’s, we might be able to build the model for
0y(D) based only on the saved intermediate results
without actually accessing the data.

2. Although prediction cubes are much more complex
than data cubes, the cell values in prediction cubes
can still be thought of as the results of a kind of
aggregation. That means we have the opportunity to
apply fast data cube computation techniques to
prediction cube computation.

To leverage the above two observations, we introduce
the concept of decomposable scoring functions (scoring
fn for short). For many machine learning algorithms, the
prediction of a model can be modelled as finding a class
label that maximizes a scoring function. Formally,
consider a predictive model A(X; gg(D)). The prediction
of A(X; gg(D)) on input tuple x can be modelled as
maximizing a scoring function Score(y | x; gg(D)); i.e.,

h(x; gg(D)) = argmax, Score(y | x; ds(D)).
Usually, Score(y | x; ds(D)) has probabilistic meaning; i.e.,
we expect that, fixing x, Score(y | x; 0x(D)) has the same
maximum as p(Y=y | X=x, dgs(D)).

Definition 9: Distributive decomposability. 4 scoring fn
Score(y | x; 0g(D)) is distributively decomposable if
Score(y | x; 05(D)) = F( {Score(y | x; b(D)) : i 0 8} ),
where F is a distributive aggregate function as defined in
[10], e.g. SUM. A predictive model based on a

distributively decomposable scoring function is called a
distributively decomposable model.

Definition 10: Algebraic decomposability. 4 scoring fn
Score(y | x; 05(D)) is algebraically decomposable if
Score(y | x; 05(D)) = F({G(y, x, b(D)) : i 1 S}),

where F is an algebraic aggregate function as defined in
[10], e.g. AVERAGE, and G is a function that returns a
fixed-length tuple. A predictive model based on an
algebraically decomposable scoring function is called an
algebraically decomposable model.

In the next section, we show that several commonly
used machine learning models are decomposable, or can
be approximately decomposed. Here, we focus on how to
apply data cube computation techniques to prediction
cube computation.



Theorem 1. If Score(y | x; 0sx(D)) is distributively (or
algebraically) decomposable, then fixing y, x and D,
Score(y | x; 0s(D)) is a distributive (or algebraic)
aggregate function of S. Further, fixing A and hy,
accuracy(h(X;gs(D)) | D), similarity(ho(X), h(X;0s(D)) | A)
and KL distance(hy(X), h(X; og(D)) | D) are algebraic
aggregate functions of S, where A is the test dataset, hy is
a user-specified model.

Proof Sketch: The argument that Score(y | x; ds(D)) is a
distributive (or algebraic) aggregate function of .S directly
follows the definition of distributive (or algebraic)
aggregate functions. To see accuracy(h(X; dg(D)) | B)
similarity(hy(X), h(X; os(D)) | A) and KL _distance(hy(X),
h(X; og(D)) | A) are algebraic aggregate functions, note
that both of them are computed from a fixed-length score
array of length |Dom(Y)[x|A|, in which each element
represents a score Score(y | x;; ds(D)), for class y and x; [J
A. Since the scoring function itself is at least algebraic,
computing Score(y | x;;05(D)) from lower-level intermediate
results requires only fixed-length arrays. Thus, computing
accuracy(h(X;s(D)) | D), similarity(ho(X), h(X;0s(D)) | A)
and KL _distance(hy(X), h(X; gg(D)) | A) from lower-level
intermediate results also requires only fixed-length arrays.
So, they are algebraic aggregate functions. o

Based on Theorem 1, if the scoring function of a
learning algorithm /% is decomposable, then, given a
dataset D and a labelled test set A, the full materialization
table of a TS-accuracy cube for / can be computed by: (1)
for each base subset b(D) and for each x [J A, generating
the scores (in the distributive case) or the results of the G
function (in the algebraic case), (2) saving them into a
DBMS that supports data cube computation and user-
defined aggregate functions, and (3) using the DBMS to
generate the full materialization table.

To materialize model-similarity (distance) cubes,
given 4y, D and A, we first use %, to predict the class label
for each x J A, and form a labelled test set A’. Then, we
can use the same computation technique as described
above. The materialization of predictiveness cubes can be
computed similarly. In the interest of space, we omit it.

Note that, to let this mechanism work, given a test
example x, we assume that a decomposable model A(X;
0s(D)) not only predicts the class label for x, but also
have the ability to output Score(y | x; gg(D)) for every
class label y. Further, if A(X; og(D)) is algebraically
decomposable, it can also output G(y, x, dg(D)).

4.3 Implementation in a DBMS

We now discuss how prediction cube materialization can
be implemented in a DBMS. Although the accuracy
function, prediction similarity function and KL-distance
function can be implemented directly as user-defined
algebraic aggregate functions, we do not do so because of
their complexity. The following description uses extended
SQL GROUP BY clauses that support a CUBE operator

similar to [10]. However, in contrast to [10], instead of
using ROLL UP, we assume the CUBE operator will take
care of hierarchical roll-up for each dimension.

In the following, we show the algorithm to compute
the full materialization table for a TS-accuracy cube given
a dataset D of schema [Z, X, Y], a test set A and a
decomposable machine learning algorithm 4. The
algorithm for distributive decomposable models is:

1. Generate the intermediate results for each base
subset: We first create a score table with schema [Z,
TID, Y, Score], where TID is the test example ID.
Then, for each base subset b,(D), we train a model
h(X; b(D)), and, for each test example x;, (] A and
for each class label y, we use 4(X; b(D)) to compute
Score(y | x4, b(D)) and save the score in ScoreTable.

2. Materialize the score cube: Given ScoreTable, we
materialize the score cube using the following SQL
query, where F is the distributive aggregate function,
e.g., SUM, for the scoring function.

I NSERT | NTO ScoreCube

SELECT Z,, ..., Zy, TID, Y, F(Score)
FROM ScoreTable

GROUP BY TID,Y CUBE Z,, ..., Zgz;

3. Materialize the TS-accuracy cube: We materialize
the prediction cube as follows; accuracy(:) is a
function that computes the accuracy from the scores:

I NSERT | NTO PredictionCube

SELECT Z,, ..., Zg, accuracy(TID, Y, Score)
FROM ScoreCube
GROUP BY ZI; ---,Z\Z\;

The algorithm for algebraic decomposable models is
similar, and we omit it for lack of space.

Proposition 1. The algorithms for distributive and
algebraic decomposable models correctly generate the
Sfull materialization table of a TS-accuracy cube that uses
a distributively or algebraically decomposable machine
learning algorithm by building only |Z,"|xI¥|Z,"| models.

4.4 Computational Complexity

We now compare the time complexity of the proposed
method with that of the exhaustive method. Since the
complexity depends on the chosen base learning
algorithm and the sizes of the subsets corresponding to
the cube cells, we first introduce some notation:

* fian(n) and fi,(n) denotes the training time and testing
time of a model on a dataset of size n using the chosen
learning algorithm.

* Levels denotes the set of all possible levels.

* ny,,..1, denotes the (average) size of the subset of data

corresponding to a cube cell at level [/, ..., [;] O
Levels, where [; is the level of the ith dimension.

The training complexity of the exhaustive method is:

,,,,,

The training complexity of our decomposable method is:



,,,,,

It can be easily seen that our method is much more
efficient than the exhaustive method. Further, our method
only builds models for base subsets, which usually can fit
in memory individually. However, for the exhaustive
method, we cannot avoid building models for very large
subsets, including the entire (disk-resident) dataset.

The testing complexity of the exhaustive method is:

) W 1 xf
2ty s (‘ 2y X 2 % et (”[l,,m,m))'

The testing complexity of our decomposable method is:

where ¢ is the cost depending on the data cube
computation technique used and the hierarchy structure.
Note that ¢ does not depend on the size of any cell subset.
Usually, c¢ is similar to f, if it is not smaller than f,.
Thus, the testing complexity of our method is usually at
least as good as the exhaustive method.

5. Scoring Function Decomposition

Having presented our general prediction cube
computation technique, we now apply the technique to
obtain model composition methods for several machine
learning algorithms by deriving the decomposable scoring
functions for them. The first method is a probability-
based ensemble suitable for any machine-learning model
that has the ability to output class probabilities. Then,
exact model composition methods for Naive Bayes
classifiers and density-estimation-based classifiers are
presented. “Exact” means the composed model is exactly
the same as the model built directly from the data.

5.1 Probability Based Ensembles

Suppose the machine-learning algorithm % can output
class-probabilities. Let A(y | x; ds(D)) denote model A(X;
os(D))’s estimate of the conditional class-probability, i.e.,
p(Y=y | X=x, gg(D)). Suppose we have another predictive
model g(X) that, given an input x, predicts from which
base subset b(D) that x comes. We also assume that g(X)
can output probabilities. Let g(b; | x) denote g(X)’s
estimate of the probability that x comes from b,(D), i.e.,
p(Xh(D) | X=x), where X[h(D) denotes the event that
the test data comes from bi(D). Then, we propose to
compose A(X; gs(D)) using A(X; b(D)) and g(X).

Given a selection g and a base learning algorithm h
(e.g., decision tree), the model of the probability-based
ensemble /ppp(X; Og(D)) is constructed by combining A(X
b(D)) for all i O §, with weights given by g(X). Formally,
the output of Zpp(X; ds(D)) on input x is defined as:

hpgi (x; 05 (D)) = argmax , Scorepp; (v | x;05(D)) , Where
Scorepgy (] x:05 (D) = D (h(y] x:5,(D)) (b, | X))

Note that since Scoreppr(Dl can also be applied to base
subsets b,(D), the scoring function can be written as

Scorepps (v] %05 (D)= Y Scoreps (] x;5;(D)) -

Theorem 2. If the probability estimates of h(X; b(D)) and
2(X) are correct, i.e., h(y | x; b{(D)) = p(Y=y | X=x, b(D))
and g(b; | x) = p(XUh(D) | X=x), then the combined model
hppe(X; Og(D)) is optimal, i.e., argmax , Scorepge(y | X;
0y(D)) = argmax , p(Y=y | X=x, o(D)).
Proof: Note that gg(D) in p(Y=y | X=x, Jds(D)) can be
interpreted as the fact that the test example x comes from
g(D). Thus, we rewrite p(Y=y | X=x, ds(D)) as p(Y=y |
X=x, XUos(D)), where XUdg(D) denotes the event that the
test example comes from Jg(D). By the definition of
conditional probability, we have the following.
P¥=y.X~0sD)X=x)

(X ~0s(D)| X =x)
Since we are only interested in the y with the highest class
probability, the denominator p(XUog(D) | X = x) is a
constant and does not affect the choice of y. Let Z =
1p(XTo(D) | X = x).

Because b;(D), by(D), ..., bp(D) are disjoint,

pY =y| X=x,XUdgg(D))

=z} pY=p.XOBD)| X=x)
=70 (V=] X D{(D).X =) (H(X (D) X =)

If h(y | x; b(D)) = p(Y=y | X=x, X(h(D)) and g(b, | x) =
P(XTh(D) | X=x), then Z/8corepss(y | x; O5(D)) =
p(Y=y | X=x, XOog(D)). So, argmax , Scoreppp(y | x; ds(D)) =
argmax ,, p(Y=y | X=x, XUoy(D)). O
Note that, although A(y | x; b{(D)) and g(b; | x) may not
be good probability estimators, it is still likely that
argmax , Scorepe(y | x; 0y(D)) Oargmax , p(Y=y | X=x, dy(D)).
Thus, in practice, Scorepe(y | x; 0g(D)) can be thought of
as a good heuristic method to determine the class label of
a given input x.

pY=y[X=x,X~04(D)=

Proposition 2. Scorepgp()is distributively decomposable
with aggregate function: SUM.

5.2 Naive Bayes Classifiers
Naive Bayes classifiers are a type of predictive model that
is simple but sometimes performs surprisingly well. The
key assumption behind Naive Bayes classifiers is that,
given the class label Y, each predictor attribute X; U X is
independent of the others. The prediction of a Naive
Bayes model on input x=[x;, ..., x,] is based on the
following formula.
- _ o= & - -
p(Y—yIX—x)—II:(T:i)) PG =X 1Y =)
The output is the class y that maximizes the above
conditional probability. Note that for any given input x,
Pp(X=x) is the same for each class y. Thus, for prediction
purposes, we do not need p(X=x).

Let c(y; gy(D)) = |Tsoy-«(D)| denote the number of
examples in dg(D) whose class label is y, and ¢(x;, y;
0s(D)) = | s ny=y 0x~(D)| denote the number of examples



in Og(D) whose class label is y and the j-th predictor
attribute has value x;. Then, the terms on the right hand
side of the Naive Bayes formula can be estimated as
follows.

* p(Y=y) Oc(y; os(D)) / |os(D)|.

* X | Y=y) Uef;, y; 0s(D)) / c(y; as(D)).

To handle the case in which some counts are zero, a
commonly used trick is to initialize each count to one
instead of zero [17]. Note that, continuous attributes can
be handled by kernel density estimator, which will be
discussed in Section 5.3.

Given a selection s, the Naive Bayes model /y3(X;
g(D)) is constructed by combining the counts. Formally,
the output of Ayp(X; Os(D)) on input x=[x;, ..., x,] is
defined as follows.

hyg (x;0¢(D)) =argmax , Score g (v | x;04(D)) where
Score g (y | x;05(D)) =
s c(y;b; (D)) m 2o Cj (xjsy;bi (D))
Zins |b:(D)] El_lle Xis c(vibi (D)

Proposition 3. The model hyp(X; 0s(D)) using the above
scoring function is the same Naive Bayes model of dg(D).

Proposition 4. Scoreyz()is algebraically decomposable.

5.3 Kernel-density Based Classifiers
By the definition of conditional probability, we have
PX=x|Y=plpd=y)
P(X =x)

For prediction purposes, given input x, p(X=x) is a
constant C for each class y. Thus, estimating p(Y=y | X=x)
is equivalent to estimating p(X=x | Y=y) and p(¥=y). Note
that p(Y=y) can be easily estimated by the fraction of
training data belonging to class y. However, p(X=x | Y=y)
cannot generally be estimated by simple counting because
the feature space can be much larger than the number of
examples. Further, if X contains continuous attributes,
p(X=x| Y=y) becomes a probability density function (we
still use p to denote probability densities). In many
applications, X is usually a mixture of categorical and
continuous attributes.

One commonly used method to estimate p(X=x | Y=y)
is the kernel density estimation, in which, given a training
dataset gg(D),

p¥=y|X=x)=

1
I USDY:_V (D) ‘ Zxk Yk ]Da'su)':y(D)
where K(LI)}is the kernel function, and Igqy-,(D) is the set
of examples in gg(D) whose class labels are y. Note that,
if we use the counts to estimate p(Y=y | gg(D)), i.e.,

pY =y|los(D))=Ogry=,(D)|/|0s(D)],
then, for our prediction purpose, we do not even need to
estimate p(Y=y | gs(D)) because

11
Y=y| X=x,0¢(D)=—
pI=y| s(D) C | 0g(D)| x5 5oy, (D)

p(X=x|Y=y,05(D)) = K(x, %) >

K(x,xk) s

where |gg(D)| is a constant for any class y. Thus, given
input x, the kernel-density-based classifier gpc(x;gx(D)) is:

hype (x;05(D)) =argmax , Scoregpc (v | x;05(D)) 5 where
Scoregpc (y|x;05(D)) = Z

If X only contains continuous attributes, the following
Gaussian kernel is the most commonly used kernel.
_(x_xk)z

K(x,x;)=——e 2" ,

N
where s is the standard deviation. If X is a mixture of
categorical and continuous attributes, the following
product kernel is a commonly used one (cf. [3, 15]). Let
x[X;] denote the projection of x on X; O X.

K(x,x) =[], op W GLX 120X D)

where W/(LD) is the kernel function for the j-th attribute.
Usually, if X; is categorical, W(LDlis a smoothed indicator
function; i.e. Wix[X], x,[X]]) = 1-4; if x[X]] = x[X];
otherwise, W(x[X}], x,[X;]) = A;, where A;is the smoothing
parameter. If X ; is continuous, WyLI)] is usually a
Gaussian kernel. One can also group a set of k continuous
attributes and use a k-dimensional kernel. Note that, when
using the product kernel, we have made the Jlocal
independence assumption; i.e., in a small region around a
training example xy, Xj,...,X,, are mutually independent
given Y.

K(x,x;)-

[x4.yx 10050y =, (D)

Proposition 5. Scoregpc(Dl is distributively decomposable
with aggregate function SUM.

Note that for Naive Bayes classifiers, if X; is a
continuous attribute, we can use the kernel density to
estimate p(X; | Y). The kernel-based Naive Bayes model is
also algebraically decomposable.

If the size of Ox(D) is too large, making predictions
using a kernel-density-based classifier can be very costly.
In this case, we can perform clustering first, and use the
clusters to estimate the density, where the number of
clusters is significantly smaller than the size of og(D).
Clustering-based density estimation techniques include
[20, 15, 3]. Note that we can easily define a distributively
decomposable scoring function for such clustering-based
classifiers. In the interest of space, we omit this.

6. Experimental Results

In this section, we evaluate the proposed methods. We
show that (1) materializing prediction cubes based on
decomposable scoring functions is, as expected, much
faster than the exhaustive method, (2) our method scales
almost linearly in the number of base subsets, and (3) the
accuracy of probability-based ensembles is good. We also
apply prediction cubes to a real-world dataset to illustrate
its use in exploratory analysis. Note that, since the Naive
Bayes and kernel-density-based classifiers produced by
our decomposition techniques are exactly the same as the
original ones, it is not necessary to evaluate their accuracy.



For brevity, we denote probability-based ensembles as
PBE, Naive Bayes classifier as NB, and the kernel-
density-based classifier as KDC. We consider the
following base learning algorithms for PBE:

e J48: Weka’s [19] C4.5 decision trees [18].

* K2: A Bayesian Network structure learner with the K2
[5] search algorithm (each node has < 6 parents).

* RF: Random Forest [4] with 20 random trees. For
each split, log(M+1) random attributes are examined,
where M is the number of predictor attributes.

For the following experiments, we used in-memory
implementations of cubes and all learning algorithms.
Clearly, this does not affect our accuracy results. As for
performance, the improvement relative to the exhaustive
approach is easily seen from our results, and as we
discuss, the improvement will increase significantly with
disk-resident data. Although our current implementation
is in-memory, in Section 4.3 we showed how cube
computation can be scaled for disk-resident data using a
DBMS that supports cubes and user-defined aggregate
functions. Finally, disk-based learning algorithms (many
of which are described in the literature) can be used as
base learners, thereby scaling our current implementation.

6.1 Efficiency and Scalability

We use synthetic datasets with schema [Z}, Z,, Z;, X, ...,
Xs, Y], where Z;, Z,, Z; are the dimensions. The domains
of Z; and Z, contain 10 values in a 3-level hierarchy as
shown in Figure 4 (a). Z; has a 2-level hierarchy with a
variable number 7 of leaf nodes, as shown in Figure 4 (b).
By varying n, we can generate datasets with different
numbers of base subsets. X, ..., X5 are the predictor
attributes. X;, ..., X, are numeric attributes drawn
uniformly from the range [0,1]. X5 and Xj are categorical
attributes taking values from 0 to 9. ¥, the class label, is a
binary attribute generated by the following rules:

Condition Generation function

When Z,>1 Y = I(4AX+3X12 X5+ X, +0.4X5 > 7)
else when Z;mod 2 =0 Y =1Q2X+2X+3X5+3X,40.4X, > 7)
else Y=1(0.1X;tX;>1)

First, we compared our prediction cube computation
technique with the exhaustive method. We varied n from
1 to 5 and generated 400 records for each base subset,
leading to five datasets with 40K to 200K records. We
computed a TS-accuracy cube on a test set of 1000
records for each dataset and for each of the following
methods: J48-PBE (J48-based PBE), RF-PBE (RF-based
PBE), and the decomposable versions of KDC and NB.
Then, the corresponding exhaustive methods, which are
denoted by an “ex” suffix, were computed. The result in
Figure 5 (a), with y-axis representing elapsed time in
seconds, shows that our technique dramatically improves
the efficiency of prediction cube computation.

Second, we generated a larger dataset to study
scalability. Varying n from 1 to 5 and using 2000 records
for each base subset, we obtain five datasets with 200K to
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Figure 4. The dimension hierarchies of synthetic datasets

IM records. Figure 5 (b) shows the results, which
demonstrate that our methods scale linearly in the number
of base datasets. The linear scalability comes from the
fact that we do not build or test any model beyond the
base subsets. That means no matter what kind of base
learning algorithm we use, we still scale linearly in the
number of base subsets. In contrast, if we do not use the
model composition technique and want to build a model
on the union of & base subsets, we depend critically on the
scalability properties of the learning algorithm. Of course,
our approach also relies on the scalability of the learning
algorithm, but to a lesser extent; i.e., the algorithm needs
only to scale to the much smaller base subsets.

To understand where the time is spent, we show
Figure 6. J48-PBE and RF-PBE spend most of their time
on training, while KDC and NB spend most of their time
on testing. Because KDC and NB both use kernel density
estimators, training can be very fast. However, making a
prediction (i.e., testing) requires going through every
training example. Also note that NB performs worse than
one would expect. This is because the scoring function for
NB is algebraically decomposable, which requires more
resources to compute than a distributive scoring function.

Figure 6 also suggests that if we want to build several
prediction cubes on the same data table but using different
test sets and/or different measurements, storing the
models built on the base subsets can reduce execution
time by 60% for J48-PBE and 90% for RF-PBE.

6.2 Evaluation of PBE on UCI Datasets

Although PBE has better computational efficiency, unlike
NB and KDC, a PBE of base models trained on base
subsets is not identical to the model built using the same
base learning algorithm on the union of those base subsets.
Thus, we use 8 UCI datasets to evaluate the accuracy of
PBE. The results are shown in Table 1. Each row of Table
1 is the result of an experiment of a UCI dataset with K
partitions. We first partition the dataset into K disjoint
partitions of examples. Each “PBE” column shows the
accuracy of PBE using the base learning algorithm
indicated by the header. The PBE is an ensemble of K
base models, each of which is trained on a single
partition. The “Orig.—PBE” columns show the difference
in accuracy between “the model using the base learning
algorithm trained on the full dataset” and “the PBE of
base models trained on partitions.” The results are
generated by 10-fold cross validation, and the error ranges
are 95% confidence intervals using a two-sided ¢
distribution. A difference is statistically significant if the
interval does not include 0.
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Figure 5. Efficiency and scalability

As expected, when the number of partitions increases,
the accuracy of PBE decreases. However, in most cases,
the amount of decrease is within 5 percent point.

6.3 Evaluation of PBE in the Prediction Cube Setting
Although accuracy decrease of PBE is small, it is still a
concern. Therefore we investigated whether the decrease
is bounded and at what level, using synthetic datasets
similar to those described in Section 6.1.

We created two datasets with different characteristics,
called deep and flat, containing attributes Z;, Z,, Z;,
X, ..., Xs, Y. Z; and Z, are dimensions with 2-level
hierarchies with three leaves each. For the deep dataset,
the Z; dimension is a binary tree with 7 levels and 64 leaf
nodes. For the flat dataset, Z; is a 2-level hierarchy with
126 leaf nodes. The remaining attributes are as described
in Section 6.1, and we produced these datasets by
generating 1000 records for each base subset using the
decision rule from Section 6.1. We built TS-accuracy
cubes using J48-PBE and RF-PBE and compared them
with the TS-accuracy cubes built using the decision rule
that generates the data.

Figure 7 shows the results. Each point (x, y) in a chart
indicates the average absolute error from a cell value
generated by a PBE of x base models w.r.t. the same cell
value generated by the true decision rule. The x-axes are
log-scaled. The main observation is that the error
converges to around 0.08 (i.e., 8%) for RF-PBE. Note that
the error caused by the base learning algorithm (RF or J48)
is the y-value at x=1 for each curve (x=1 means there is
only one base model). Thus, the error cased by PBE is
reasonably small: less then 0.03 (or 3%) for RF-PBE.
However, more research is still needed to reduce the error
further and understand the characteristics of PBE better.

6.4 Data Analysis Using Prediction Cubes

We now illustrate the use of prediction cubes to perform
real-world analysis using a dataset of population estimates
from the American Community Survey [1]. The
prediction characteristic we consider is how a person's
profile affects his or her income. We chose Location and
Age as dimension attributes. Location contains
hierarchical levels State and Region, and Age 1is
discretized into 5 groups representing 10-year periods,
each of which is further divided into two 5-year periods.
Each cell in the cube represents the accuracy of the model

testing or other computation

(using a person’s profile to predict his/her income) trained
on the data in that cell when tested against a test set.

In the first experiment, we selected a test set of 1000
random samples of personal profiles from California with
Age 30 to 40. The goal is to identify subsets in the data
that are similar to the chosen test set. Table 2 shows (part
of) the prediction cube. The A/l value for Location or Age
means the attribute has been rolled-up to the coarsest
level. As we drill down to the Region level, we see that
(the model trained using) [Pacific, All] has the highest
accuracy. We can drill down further to the [State, 10-
year-group] level, which is shown in the third block of
the table; [Pacific, [30,40]] is the top cell. As we drill
deeper and finally reach the [State, 5-year-subgroup]
level, the top two cells are exactly those cells included in
our sampling. These observations are consistent with the
fact that the test set is drawn from California, and
illustrate the natural behaviour of prediction cubes.

A more interesting observation arises at the lowest
level, where we observe that all subsets containing
individuals with Age 20 to 25 have significantly low test-
accuracy. This is explained by the fact that many people
in this age group are still in college, and the correlation of
their income with age and location will differ
considerably from the test set (a non-college age
population). So they will exhibit a dramatically different
pattern. We were able to confirm this observation using a
cube on predictiveness of income level from education
(omitted for lack of space). Note that this analysis focuses
on the correlation of income with age and location, and
goes well beyond simply looking at average income levels
by age and location!

7. Conclusions and Related Work

Prediction cubes and their associated computational
challenges are new problems in data mining. In this paper,
we motivated these problems and presented some initial
results. Our future directions include: (1) developing a
mechanism to handle the case where some subsets do not
have sufficient data to build a good model, (2) deriving
decomposable scoring functions for other predictive
models, (3) investigating the problem of how to make the
models in prediction cubes interpretable, and (4)
extending the definition of dimensions to include
parameters of learning algorithms.



Table 1. Evaluation of PBE on UCI datasets

148 K2 RF
PBE | Orig.—PBE | PBE | Orig.—PBE | PBE | Orig.—PBE
2 [85.89 | 0.34 *0.02 [ 86.27 | 0.11_*0.08 | 85.24 [-0.73 +0.00
5 [85.98 | 0.25 +0.07 | 86.02 | 0.35_*0.08 | 85.57 [-1.06 +0.05
adult  [T0[85.70 [ 0.53 *0.15 | 85.56 | 0.81 _*0.02 | 85.41 |-0.90 *0.15
15]85.32 | 0.91 *0.10 | 85.50 | 0.87 *0.06 | 85.19 |-0.68 *0.15
20 85.19 | 1.04 £0.05 | 8542 | 0.96 +0.01 | 85.15 [-0.64 +0.15
2 [99.25 [ 0.19 *0.04 | 95.68 | 0.00 *0.00 | 98.72 | 0.38_#0.21
5 [97.84 | 1.60 *0.31 [ 95.34 | 0.34 #0.22 | 98.22 [ 0.88_+0.02
kr-vs-kp [10]97.06 | 2.38 +0.04 [ 95.62 | 0.06_*0.09 | 97.56 | 1.53 +0.08
15 96.34 [ 3.10 £0.22 | 9534 | 0.34 *0.08 | 97.06 | 2.03 *0.04
20 95.06 | 4.38 £0.45 | 95.15 | 0.53_#0.20 | 96.62 | 2.47 *0.14
2 [95.87 | 118 #0.21 [ 91.76 | 1.06 *0.01 | 98.19 [ 0.53 *0.11
5 [94.20 | 2.85 0.26 | 91.27 | 1.54 #0.13 | 96.59 [2.13 *0.12
nursery [10] 91.94 [ 5.11 #0.10 | 90.93 | 1.89 #0.25 | 94.65 | 4.07 £0.23
15 91.28 | 5.77 £0.05 | 90.93 | 1.88 *0.25 | 93.60 | 5.12 *0.03
20 91.19 | 5.86 £0.11]90.79 | 2.03_#0.26 | 93.02 [ 5.70 +0.15
2 [94.53 [ 1.10 +0.12 | 95.84 [ 0.59 *0.25 | 98.69 | 0.12 +0.03
5 (9539 | 0.24 #0.27 | 95.24 | 1.19_#0.18 | 97.94 [ 0.87 *0.04
pendigits [10] 94.05 | 0.68 £0.23 | 94.53 | 1.89 +0.13 | 97.21 | 1.61 #0.01
15]93.93 [ 1.70 £0.33 | 94.28 | 2.15 *0.12 | 96.87 | 1.94 *0.14
20 94.00 | 1.62 *0.17 | 93.78 | 2.64_#0.20 | 9633 | 2.48 +0.13
2 [ 84.83 [ 1.22 #0.61 [ 88.75 [-0.72 *0.01 | 90.21 [ 0.68 +0.05
5 [85.710.34 046 [ 87.91 | 0.11_*0.03 | 88.97 | 1.92 +0.08
satimage [10] 84.49 | 1.55 +0.96 | 87.08 | 0.95 0.64 | 88.12 [2.77 *0.18
15[ 84.60 | 1.44 £1.37 | 86.81 | 1.22 *0.30 | 87.55 | 3.34 *0.10
20 83.74 | 2.30 *1.41 [ 86.00 | 1.94 +0.29 | 87.06 | 3.83 +0.38
2 | 9141 [ 1.56 +0.30 | 93.54 [-0.28 £0.33 | 94.63 | 0.72 *0.09
5 [89.78 | 3.19 *0.04 | 92.63 | 0.63 #0.16 | 93.91 [ 1.43 #0.12
spambase [10 | 87.83 [ 5.15 #0.59 | 92.50 | 0.76 +0.23 | 92.70 | 2.65 0.06
15 87.72 | 5.26 £0.66 | 90.91 | 2.35 *0.27 | 91.70 | 3.65 #0.01
20 [ 86.89 | 6.09 £0.57 | 91.46 | 1.80_*0.61 | 92.13 [3.22 #0.27
2 [75.76 |-0.68 011 | 82.42 | -0.70 *0.45 | 84.66 [-1.10 +0.02
5 [78.90 [-3.82 0.09 [ 83.50 |-1.78 *0.72 | 84.96 [-1.40 +0.05
waveform [ 10 | 81.42 [-6.34 +0.22 | 84.04 | -2.32 +1.02 | 85.04 |-1.48 £0.02
15 81.06 |-5.98 £0.43 | 83.52 |-1.80 £0.67 | 85.12 |-1.56 *0.04
20 [ 81.34 |-6.26 £0.01 | 83.28 |-1.56 *0.87 | 85.08 [-1.52 +0.40
2 [ 86.11 | 1.87 +0.23 | 85.00 | 1.47 *0.20 | 95.23 | 0.42 +0.03
5 [86.18 | 1.80 +0.14 [ 81.19 | 5.29 #0.08 | 93.66 | 1.99 +0.09
letter [10]85.10 | 2.88 £0.17 | 7631 [10.17 £0.08 | 91.75 | 3.90 *0.24
15 83.64 [ 4.34 £0.00 | 73.79 [12.69 £0.39 | 89.96 | 5.69 *0.20
20 82.63 | 5.36 £0.19 | 70.96 | 15.52 ¥0.23 | 88.87 | 6.77 +0.03

Dataset | K

Location Age Accuracy
All All 0.782
Pacific All 0.789
East North Central All 0.779
Table 2. Mountain All 0.772
Test-set Pacific (30.40 0.835
accuracy of East North Central (30,40 0.785
selected cells in East North Central (40,50 0.782
the cube CA [ 3540] [ 0322
CA [ (3035] | 0.817
CA [ (20,25) [ 0367

In related work, data cubes have been extended using
association rules in [13], but association rules are quite
different from the predictive models described in this
paper and the particular pruning methods proposed in [13]
cannot be applied to prediction cubes. Finding pairs of
neighboring cells having characteristics associated with
big changes in measure in a data cube was studied in [8].
However, the similarity defined in [8] is very different
from the similarity between predictive model behavior.
Building models in the OLAP setting was also studied in
[2, 16]. [2] considered using statistical log-linear models
to approximate dense regions in a data cube, while [16]
considered building Bayesian Networks (BN) on data
cubes to approximately answer count queries. However,
their goal was to use models to compress data cubes,
rather than the model-based data analysis proposed in this
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Figure 7. Evaluation of PBE on synthetic datasets

paper. Note that the BN learning algorithm proposed in
[16] can be adapted so that it can be an instance of our
decomposable method. In Machine Learning, ensembling
[7] is a widely used technique to boost the accuracy of
unstable learning algorithms. However, an ensemble
typically consists of a set of base classifiers, each trained
on a significantly large portion of the full dataset; our use
of ensembles does not have this property and has not been
carefully studied.
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