Non-Uniform ACC circuit lower bounds

Introduction

We know what non-uniform circuit is. So we wonder are there interesting uniform computations such that can't be simulated by non-uniform circuit families?

ACC: constant-depth circuit families over the basis AND, OR, NOT and MOD n gates.

Theorem 1.1 \(\text{NTIME}[2^n] \) doesn't have non-uniform ACC circuits of polynomial size.

Theorem 2.2 (Exponential Size-Depth Tradeoff) For every \(d \), there is a \(s > 0 \) and a language in \(\text{EM}^p \) that fails to have non-uniform ACC circuits of depth \(d \) and size \(2^{n^{s \cdot 2^n}} \).

An overview of proof

[Will11] For many circuit classes \(C \), sufficiently faster satisfiability algorithms for \(C \)-circuits would entail non-uniform lower bounds for \(C \)-circuit.

Claim: Satisfiability satisfiability algorithms for sub-exponential size \(n \)-input ACC circuits with running time \(O(2^{n^{o(1)}}) \) imply exponential size ACC lower bounds for \(\text{EM}^p \) (THM 3.3), where \(k \) is sufficiently large.

If there is a faster algorithm for ACC circuit satisfiability, and there are sub-exponential \((2^{n^{o(1)}}) \) size ACC circuits for \(\text{EM}^p \), then every \(L \in \text{NTIME}[2^n] \) can be accepted by nondeterministic algorithm in \(O(2^{n^{o(1)}}) \) time. For large enough \(k \), \(\text{NTIME}^m[2^n] \) & \(\text{NTIME}^{\text{RAM}}[2^{o(n^k)}] \).

[FACT 3.1] & [FACT 3.2]

Remark: THM 4.1 For every \(d > 1 \) there is an \(\epsilon > 0 \) such that satisfiability of depth-\(d \) ACC circuits with \(n \) inputs and \(2^{n^\epsilon} \) size can be determined in \(2^{n \epsilon \log(n)} \) time for some \(s > 0 \) that depends only on \(d \).
THM 1.3 There is a \(k > 0 \) such that, if satisfiability of \(C \)-circuits with \(n \) variables and \(n^c \) size can be solved in \(O(2^n/n^k) \) time for every \(C \), then \(\text{NTIME}[2^n] \) doesn't have non-uniform poly size \(C \)-circuit.

2 Preliminaries

THM 2.1 \(U_{c > 0} \text{ NTIME}[n \log^c n] = U_{c > 0} \text{ NTIME}[n \log \log n] \)
\[\Rightarrow \text{ NTIME}[2^n] \subseteq \text{ NTIME}[2^n/n^k] \] for sufficiently large \(k \) \(\Rightarrow \) Contradiction

An unrestricted circuit has gate types AND/OR/NOT and each gate has fan-in two.

Circuit class \(C \) is a collection of circuit families that
(\(\omega \) contains \(AC^0 \) (for every circuit family in \(AC^0 \), there is an equivalent circuit family in \(C \))
(\(\omega \) is closed under composition.

3 A strengthened Connection Between SAT Algorithms and Lower Bounds

Define the ACC Circuit SAT problem to be:

given an ACC circuit \(C \), is there an assignment of its inputs that makes \(C \) evaluate to 1?

THM 3.1 (Fool [10]) Let \(s(n) = \omega(n^k) \) for every \(k \), IF ACC CIRCUIT SAT instances with \(n \) variables and \(n^c \) size can be solved in \(O(2^{n^{1/3}}/s(n)) \) time for every \(c \), then \(\text{E}^{\text{NP}} \) doesn't have non-uniform ACC circuits of poly size.
(Circuit problem: \(G \) can be \(\text{ACC}, \text{TC}^0, \text{NC}^1, \text{P/poly}, \ldots \).)

\(S : \text{N} \to \text{N} \) monotone non-decreasing function, \(s(n) \geq n \)

THM 3.2 Let \(s(n) \leq 2^{n^4} \). There is a \(c > 0 \) such that, if \(G \)-CIRCUIT SAT instances with at most \(n^t \log n \) variables, depth \(2d \) OCB, and \(O(n(s(2n) + s(3n))) \) size can be solved in \(O(n^c/n^c) \) time, then \(\text{E}^\text{NP} \) does not have non-uniform \(G \) circuits of depth \(d \) and \(S(n) \) size.

Succinct 3SAT: given a circuit \(C \) on \(n \) inputs, let \(F_C \) be the \(2^n \)-bit instance of 3-SAT obtained by evaluating \(C \) on all of its possible \(2^c \) bit input order. Is \(F_C \) satisfiable?

Call \(F_C \) the decompression of \(C \), and call \(C \) the compression of \(F_C \).

Fact 3.1 There is a constant \(c > 0 \) such that for every \(\text{LEN} \text{TIME}[2^n] \), there is a reduction from \(L \) to succinct 3SAT which on input \(x \) of length \(n \) runs in \(\text{poly}(n) \) time and produces a circuit \(C_x \) with at most \(n + \log n \) inputs, such that \(x \in L \) iff decompressed formula \(F_{C_x} \) of \(2^n \)-bit \(\text{poly}(n) \) size is satisfiable.

[Proof by THM 3.3]

Fact 3.2 If \(\text{E}^\text{NP} \) has \(\text{ACC} \) circuits of size \(S(n) \), then there is a fixed constant \(c \) such that for every language \(\text{LEN} \text{TIME}[2^n] \) and every \(x \in L \) of length \(n \), there is a circuit \(W_x \) of size at most \(S(3n) \) with \(3n + \log n \) inputs such that the variable assignment \(z_i = W(i) \) for all \(i = 1, \ldots, 2^c \) is a satisfying assignment for the formula \(F_{C_x} \), where \(C_x \) is the circuit obtained by the reduction in Fact 3.1.
Based on two facts above, one can recognize any \(\text{LEN}_{\text{TIME}}[2^n] \) with a \(o(2^n) \) non-det. algo. (contradiction!)

Lemma 3.1 There is a fixed \(d > 0 \) with the following property. Assume \(P \) has ACC circuits of depth \(d' \) and size at most \(S(n) \). Further assume ACC CIRCUIT SAT on circuits with \(n \) \(\log n \) inputs, depth \(2d' + 8d \), and at most \(O(\log^3 n) + \log(n)n \) size can be solved in \(O(2^{n/\mu}) \) time for sufficiently large \(\mu > 2d \).

Then for every \(\text{LEN}_{\text{TIME}}[2^n] \), there is a nondeterministic algorithm \(A \) such that:

- \(A \) runs in \(O(\frac{2^n}{\mu} + S(3n) \cdot \text{poly}(n)) \) time
- for every \(x \) of length \(n \), \(A(x) \) either prints reject or it prints an ACC circuit \(c_x \) with \(n \) \(\log n \) inputs, depth \(d' \), and \(S(n) \cdot \text{poly}(n) \) size, such that \(x \in L \) iff \(c_x \) is the compression of a satisfiable 3-CNF formula of \(2^n \cdot \text{poly}(n) \) size.
- there is always at least one computation path of \(A(x) \) that prints the circuit \(c_x \).

With Lemma 3.1, we can prove Thm 3.2.

Proof: Suppose \(O \) ACC Circuit SAT instances with \(n \) \(\log n \) variables, depth \(2d + 10d \) and \(O(\log n) + \log(n)n \) size can be solved in \(O(2^{n/\mu}) \) time for a sufficiently large \(\mu > 2d \). \(\text{E}^\text{NP} \) has non-uniform ACC circuits of depth \(d \) and \(S(n) \) size.

Let \(\text{LEN}_{\text{TIME}}[2^n] \), by Lemma 2.1, \(L \) has a multitape TM in \(O(2^n) \) time \(B \) a non-det. algo. for \(L \).

Then by combining all the things we discussed in this section, we arrived a contradiction.

Lemma 4.1. There is an algorithm and function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that given an ACC circuit of depth d and size s, the algorithm outputs an equivalent SYM circuit of $s^{O(d \log s)}$ size. The algorithm takes at most $s^{O(d \log s)}$ time.

Furthermore, given the number of ANDs in the circuit that evaluate to 1, the symmetric function itself can be evaluated in $s^{O(d \log s)}$ time.

Lemma 4.2. There is an algorithm that, given a SYM circuit of size $s \leq 2^n$ and n inputs with a symmetric function that can be evaluated in $\text{poly}(s)$ time, runs in $O(2^n \text{poly}(s) \cdot \text{poly}(n))$ time and prints a 2^n-bit vector V which is the truth table of the function represented by the given circuit. That is, $V[i]=1$ iff the SYM circuit outputs 1 on the ith variable assignment.

THM 4.1. For every $d > 1$ there is an $E \in \mathbb{C}(0,1)$ such that satisfiability of depth-d ACC circuits with n inputs and 2^n size can be determined in $2^{n - O(n^s)}$ time for some $s > E$ that depends only on d.
ACC Lower Bounds

THM 1.1 Proof:

THM 5.1 Suppose \(\text{NEXP} \) has polynomial size circuits. Then \(\text{SUCCINCT 3SAT} \) has succinct satisfying assignments.

THM 5.2 If \(\text{NEXP} \subset P/\text{poly} \) then every language in \(\text{NEXP} \) has universal witness circuits of polynomial size.

Lemma 5.1 Let \(C \) be any circuit class. If \(P \) has non-uniform \(C \) circuits of \(\mathcal{S}(cn)O(c^2) \) size, then there is a \(c > 0 \) such that every \(\mathcal{T}(n) \) size circuit family has an equivalent \(\mathcal{S}(cn + O(T(n)(\log T(n)))) \) size circuit family \(C \).

Proof of THM 1.1:

1. **Claim:** \(\text{UTIME}[2^n] \) has poly size ACC circuits, then every \(\text{LE} \subseteq \text{NEXP} \) has poly size ACC.
2. By Lemma 5.1 & THM 5.1 \(\Rightarrow \text{SUCCINCT 3SAT} \) has succinct satisfying assignments which are ACC circuits.