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Abstract

We propose a novel computer vision system for recon-
structing 3D body shapes from 2D images with the goal of
producing highly accurate anthropomorphic measurements
from a pair of images. We adopt a supervised learning ap-
proach that maps silhouette images to 3D body shapes via
a convolutional neural network (CNN). We propose three
key improvements over previous approaches: (1) Large-
scale realistic synthetic data generation, including more re-
alistic variations in segmentation noise and camera view-
points. (2) A multi-task learning (MTL) approach to pre-
dicting multiple outputs such as shape, 3D joint locations,
pose angles, and body volume. (3) A new network architec-
ture that additionally takes known body measurements (e.g.,
height) and per-pixel segmentation confidence as input. Ab-
lation studies show the improvement in accuracy due to the
various components of our system. Results demonstrate that
our system produces state-of-the-art results on body circum-
ference errors. We also analyze the repeatability of our sys-
tem in the presence of realistic camera, background, and
pose variations. Our system achieves a vertex standard de-
viation of ∼ 3mm on the CAESAR [36] dataset.

1. Introduction
Inferring properties of human bodies from images is a

fundamental, ill-posed problem in computer vision. His-
torically, the primary focus has been on estimating key-
points, which define the joints of the human figure in 2D
and 3D, including the task of tracking keypoints over time.
There is now growing interest in moving beyond the stick-
figure view of the human body toward recovering richer
representations of shape. For example, recent approaches
estimate body segments [18], dense correspondences [20],
or 3D volumetric descriptions of bodies from images via,
e.g., voxels [17, 41], Gaussian density functions [35], and
deformable pre-defined meshes [15]. Interest in the lat-
ter representation has coincided with the availability of
standardized body shape models, such as SCAPE [3] and
SMPL [29], and 3D body datasets, such as CAESAR [36],
from which these models were constructed.

Recent deep learning approaches have demonstrated
compelling results for estimating 3D body shape informa-

tion from RGB images “in the wild,” meaning from real-
world images containing unconstrained poses [25, 26, 32,
33, 42, 41]. In contrast, our goal is recovering accurate
and repeatable anthropomorphic measurements, such as the
body dimensions illustrated in Table 1. In order to ensure
that detailed shape reconstruction is feasible, we consider
images of people in an ‘A’ pose with legs separated slightly
and arms to the side away from the torso. Even with a
canonical pose, there are substantial challenges, including
appearance variations, poor illumination, camera perspec-
tive, and sensor noise in real-world images that make accu-
rate estimation difficult.

Similar to [14, 15, 16], we utilize body segmentation
masks as our primary input source and present a novel
deep learning architecture called BfSNet (Body from Sil-
houette Network) for recovering 3D parametric model fits
that lead to more accurate anthropomorphic measurements
compared to state-of-the-art approaches, such as Dibra et
al. [14] and Kanazawa et al. [25]. In real-world applica-
tions, the repeatability (test–retest reliability) of the system
is also important, but is not sufficiently analyzed in previ-
ous works. We analyze our system’s repeatability for the
same body shape across realistic variations in camera posi-
tion and orientation, backgrounds, and segmentation errors.
Under these challenging conditions, our system achieves a
mean vertex standard deviation of 3.09mm.

Contributions The key contributions of our approach are:
1. Large-scale realistic synthetic data generation to aug-

ment the limited 3D data available for training;
2. Multi-task learning [31] for predict additional outputs

to further constrain the estimation process; and
3. Using additional network inputs such as height and

segmentation confidence maps to improve robustness
to missing body parts and segmentation errors.

2. Related Work
In this section we review related work and provide con-

text for our contributions.
Anthropomorphic Measurements: Prior to Boisvert et

al. [5] in 2013, few papers evaluated 3D reconstruction ac-
curacy using a variety of anthropomorphic measurements.
There were a few exceptions, e.g., [6, 19, 38], but even

1



Input
Images

Semantic
Segmentation

Segmentation
Confidence

Known Body Traits

Resnet-18

Resnet-18

Concatenate

Resnet-4

Flatten

Concatenate

Dense
Layer

3D Joints
Mesh Volume
Shape Params
Pose Angles SMPL

3D Model
Output

Two-Channel
CNN Inputs

Figure 1. Our proposed system, called BfSNet, for 3D body shape reconstruction from noisy silhouettes. We train gender-specific CNNs,
which are constructed to use multi-modal inputs (binary silhouettes, segmentation confidence masks, known body attributes such as height),
and predict multi-task outputs (3D joint locations, mesh volume, shape parameters, and pose angles). The combination of multi-modal
inputs, multi-task outputs, and a deeper network with modern features (e.g., batch normalization, residual blocks) results in more accurate
and repeatable 3D reconstructions, which we demonstrate in Section 4. Please see Figure 5 for the source of the input images, and the
supplementary material for architecture details.

in those cases, measurements were limited to two or three
types (e.g., height, chest and waist circumference) and an-
thropomorphic measurements were not the focus. In 2016,
Dibra et al. [14] demonstrated, for the first time, the effec-
tiveness of using CNNs to map silhouette images directly to
3D body shapes, and subsequently introduced Heat Kernel
Signature (HKS) descriptors [39] as an intermediate shape
representation [15]. Our approach builds on these ideas and
we show several improvements using synthetic data genera-
tion and multi-task learning. In Section 4, we quantitatively
compare with Dibra et al. [14] and others [5, 10, 15, 43]. On
an existing benchmark, which assumes noise- and error-free
silhouettes and a fixed calibrated camera, we demonstrate
favorable accuracy. On a more realistic test dataset with a
range of camera heights (0 to 2 meters) and tilts (-30 to +30
degrees), partial occlusions, segmentation boundary noise,
and large segmentation errors, we show that BfSNet pro-
duces a mean measurement error of 7.7mm compared to
11.7mm for Dibra et al. [14].

Learning from Synthetic Data: CNNs perform best
when they can learn from large, diverse datasets. Unfor-
tunately, databases suitable for learning a mapping between
3D bodies and 2D images are relatively small, and scan-
ning equipment is expensive. For example, SizeUSA [1]
and CAESAR [36] were introduced more than 15 years ago
and include only a few thousand scans, but remain popular
‘large’ databases.

Learning from synthetic data is a popular strategy for
overcoming the lack of 3D data. For example, the SUR-
REAL (Synthetic hUmans for REAL tasks) database [42]
consists of 1k body textures, 70k background images, and
4k body shapes created using the SMPL body model [29].
It combines different textures, body shapes, backgrounds,
lighting, and virtual camera locations to generate a corpus
of 6 million synthetic images. Several approaches such as

[26, 40, 41] use SURREAL for learning to estimate body
shape, pose, camera location and orientation from images.

Direct Recovery from Images in Unconstrained
Poses: Several previous approaches have used a render-
and-compare strategy to leverage existing, large-scale 2D
image datasets by adding additional loss terms during train-
ing. Bogo et al. [4] showed that even 2D keypoints provide
enough constraints in many cases to fit 3D models to im-
ages. Given a collection of high-quality fits, it’s possible to
train discriminative models for 2D and 3D landmark estima-
tion and body part segmentation [27]. Kanazawa et al. [25]
extended this idea by training an end-to-end system that
maps image pixels directly to model parameters. Kundu et
al. [26], Pavlakos et al. [33], and Omran et al. [32] pro-
posed CNN-based approaches with differentiable render-
and-compare training losses, allowing 3D shape and pose
to be learned from extensive 2D datasets. Popa et al. [34]
proposed a deep multi-task architecture for estimating both
pixel-level body part labels and 2D and 3D keypoints. Zan-
fir et al. [45] extended this work, focusing on visually plau-
sible 3D reconstructions of multiple people in a scene. The
training data used by these approaches depict people in un-
constrained poses, and are therefore better suited for tasks
like pose estimation, body part segmentation, and depth es-
timation,rather than accurate anthropomorphic reconstruc-
tion, which is our goal.

3D Body Reconstruction from Videos: Alldieck et
al. [2] proposed a method for reconstructing 3D bodies
from videos (e.g., 120 frames) within an iterative optimiza-
tion framework, similar in spirit to classical shape-from-
silhouette approaches. In contrast, our system relies on an
efficient deep learning approach, uses only two silhouette
images per example, and computes results in seconds rather
than minutes or hours. For fair comparison, we include
only one- or two-view approaches in our experimental re-



sults section.
Segmentation Robustness: In real-world scenarios,

segmentation can be noisy, which can affect the accuracy
of 3D modeling from silhouettes. Typically, the network is
trained with noise augmentations (e.g., silhouette boundary
noise, occlusions) [14, 16] so that it learns features and a
mapping that are more robust to noise. Previous methods
relied on foreground/background segmentation labels, with
no consideration of pixel-level confidence. We train a CNN
with an additional segmentation confidence input and show
that it improves the estimates.

Body Models: Several deformable parametric 3D body
models have been proposed over the years. One of the most
popular has been the SCAPE (Shape Completion and Ani-
mation of People) method of building a 3D body model [3].
The SCAPE model was data-driven, and learned pose and
shape (a.k.a. phenotype [11]) variation separately. SCAPE
has been used for reconstructing 3D shapes from images
(mostly silhouettes) [6, 7, 9, 19, 38]. More recently, Loper
et al. [29] proposed the SMPL model, which is now a
dominant representation among state-of-the-art methods,
e.g., [25, 26, 27, 32, 33]. We used SMPL for our body mod-
eling

3. Proposed Method
In this section we begin with a high-level overview of

our approach, and then describe the technical details.

3.1. Overview

Figure 1 illustrates our overall system. We train a deep
neural network that takes as inputs binary segmentation,
along with segmentation confidence and a person’s known
traits (e.g., gender, height, weight), and outputs SMPL
shape and pose parameters. The first two blocks are Resnet-
18 [21] networks, and the third block after concatenation is
a Resnet-4 network, followed by a densely-connected layer.
Please see the supplementary material for details.

3.2. Background: SMPL Model

The SMPL (Skinned Multi-Person Linear) model [29]
is a realistic data-driven model of 3D human shape and
pose. SMPL was trained using the CAESAR (Civilian
American and European Surface Anthropometry Resource)
dataset [36], which is composed of approximately 2k scans
per gender. SMPL decomposes innate 3D body shape and
pose. Innate 3D body shape variation is modeled linearly,
and all body meshes share the same pre-defined topology
on V = 6890 vertexes. Specifically, the vertices v ∈ R3V

are parameterized by β via a simple linear equation:

v = Mβ + µ, (1)

where M is computed via principle component analysis
(PCA) and µ is the mean shape. SMPL provides either

a gender-neutral model or a gender-specific model. We
adopt a gender-specific model while assuming known gen-
der. Pose is parameterized by local 3D rotation angles θ on
24 skeleton joints. The final articulated mesh is a function
of shape and pose, and is achieved by blend shapes, which
are learned from data and correct for the limitations of stan-
dard linear blend skinning.

3.3. Training Loss

We train our CNN with the following loss terms:

1. Lvertex: Mean vertex-to-vertex error in a fixed pose,

2. Lvol: Mesh volume error,

3. Ljoints: Error on articulated 3D skeleton joint locations,

4. Lpose: Error on articulated 3D joint angles.

Lvertex is computed as:

Lvertex =
1

V

V∑
j

wj‖vpred
j − vtrue

j ‖2, (2)

where vpred
j and vtrue

j are the j-th predicted and true 3D ver-
tex locations, respectively. Lvertex is weighted in a way that
compensates for the non-uniform distribution of vertices in
the SMPL model. Specifically, the weight wj for vertex j is
proportional to the average area of the mesh triangles con-
nected to vertex j. Intuitively, this prevents body regions
like the hands and face, which have many tightly-space ver-
tices, from dominating Lvertex. For pose error, the model
predicts global rotation matrix entries, and then the rota-
tions are converted back to local axis angles during infer-
ence. Including volume estimation improves body shape
accuracy, as we show in Table 2. The final training loss is:

L =
1

N

N∑
i

Lvertex + αvolLvol + αjointsLjoints + αposeLpose,

(3)
where N is the training batch size, and each term penal-
izes L2 error. The units of Lvertex and Ljoints are squared
millimeters, Lvol is squared liters, and Lpose is the mean
squared error of pose rotation matrix entries. We set αvol =
0.6, αjoints = 0.01, and αpose = 1.0 empirically in order
to minimize body measurement errors. With these weights,
Lvertex is large compared to the other terms, which reflects
the fact that we care most about shape accuracy.

Improving Training Time: In the SMPL model, vertices
v are a function of pose-dependent blend shapes. How-
ever, we observe that mesh corrections due to the pose blend
shapes are negligibly different for nearby poses, e.g., poses
around the ‘A’ pose. Therefore, we construct a linear trans-
formation between β and v that takes into account the blend
shape for the average ‘A’ pose. After substituting Eq. 1 into



Eq. 2 and simplifying, we obtain

Lvertex = ∆βT(MTWM)∆β, where (4)
∆β = βpred − βtrue, (5)
W = 1

V diag([w1, w2, · · · , wV ]), (6)

where the matrix (MTWM) is pre-computed for efficiency.
We set B = 300 (the maximum available in the SMPL
model). The first few dimensions of β control most of the
shape variation in the model, but we let the network learn
the importance of each dimension of β on its own. This
approach is in contrast to previous methods that set B to
10-30, e.g., [14, 15, 42].

We investigated training with only a vertex-to-vertex
loss on articulated body shape, but found it to be dramat-
ically slower, and produce less accurate anthropomorphic
measurements than training with a vertex-to-vertex loss on
pose-normalized body shapes. On the other hand, directly
predicting articulated 3D joint locations and mesh volume
empirically improve shape accuracy, as shown in Table 2. It
is also possible to prioritize the accuracy of certain mea-
surements, e.g., waist circumference, via additional loss
terms. However, because SMPL is a global shape model,
this comes at the expense of the accuracy of other measure-
ments.

3.4. Segmentation and Silhouette Pre-Processing

We compute silhouettes via semantic image segmenta-
tion. Specifically, starting from DeepLabv3+ [8], we fine-
tuned the model on a collection of CAESAR scans [36] ren-
dered in front of random background images; Section 4.3
describes this dataset. Semantic image segmentation gen-
eralizes better to real-world scenarios like cluttered back-
grounds and camera motion than simple background sub-
traction [22], which is a popular strategy in prior work.
During training, we modified the loss as described in Sec-
tion 3.5 so that, in addition to foreground and background
labels, the network also outputs per-pixel confidence values.

The silhouette and confidence images are normalized be-
fore feeding them to the CNN. We first crop the silhouette
by computing the tightest bounding rectangle around it, and
then resize it according to s, which is a function of the sub-
ject’s known height, h: 0.8· hµh

imageh, where imageh is the
input image height and µh is the average height of a person.
The resized silhouette is then centered in the image. This
has the effect of placing subjects at approximately the same
distance from the virtual camera. We tested other strategies,
such as scaling the silhouette to a uniform pixel height, but
found that the above normalization results in the most accu-
rate shape predictions.

3.5. Confidence Estimation

DeVries and Taylor [12, 13] proposed a simple modifi-
cation to the final loss that allows a network to additionally

Synthetic silhouettes in prior work [5, 10, 14, 15, 43]

Synthetic silhouettes proposed in this work

Figure 2. Synthetic data comparison. We introduce a synthetic
training dataset that includes significantly more camera variation
and segmentation errors (bottom row) compared to prior work (top
row). These are important considerations for improving accuracy
and repeatability in the real world.

output a confidence, which we adopt. The segmentation
network outputs a softmax class prediction probability pi
for each pixel p and each label type i (foreground i = 1,
background i = 0). Each pi is adjusted by interpolating be-
tween the original prediction and the target probability dis-
tribution y, where the degree of interpolation is indicated by
the network’s confidence ci:

p′i = ci · pi + (1− ci)yi. (7)

The task loss `t is computed as usual using the updated
prediction probabilities p′i. In order to prevent the network
from always choosing ci = 0 an extra confidence loss term
`c is added to the final loss:

` = `t + λ`c, where `c = −log(ci), (8)

where λ is a hyperparameter that balances the two terms.

3.6. Generating Synthetic Training Data

In this section we describe our process for generating
millions of realistic synthetic training instances with a wide
range of body shapes, virtual camera heights and tilts, natu-
ral body poses, and realistic segmentation artifacts. Each
training instance is associated with ground truth SMPL
shape and pose parameters, and the silhouette images for
front and side views. Figure 2 shows a qualitative compar-
ison between the kinds of silhouettes used for training and
evaluation in prior work [5, 10, 14, 15, 43] and our synthetic
silhouettes.



SMPL model [29] SCAPE model [3]
BfSNet Dibra ‘16 [14] Dibra ‘16 [14] Dibra ‘17 [15] Boisvert et al. [5] Chen et al. [10] Xi et al. [43]

Measurements (Our system) Our implem. From [14] From [15]
A. Head circumference 5.1± 6.4 3.0± 3.8 2± 3 3.2± 2.6 10± 12 23± 27 50± 60
B. Neck circumference 3.0± 3.9 3.0± 3.9 2± 1 1.9± 1.5 11± 13 27± 34 59± 72
C. Shoulder to crotch 1.5± 2.2 2.9± 3.8 3± 5 4.2± 3.4 4± 5 52± 65 119± 150
D. Chest circumference 4.7± 7.7 7.2± 9.2 2± 1 5.6± 4.7 10± 12 18± 22 36± 45
E. Waist circumference 4.8± 7.5 8.1± 10.2 7± 5 7.1± 5.8 22± 23 37± 39 55± 62
F. Pelvis circumference 3.0± 5.1 6.0± 7.7 4± 4 6.9± 5.6 11± 12 15± 19 23± 28
G. Wrist circumference 2.5± 3.3 2.0± 2.7 2± 2 1.6± 1.3 9± 12 24± 30 56± 70
H. Bicep circumference 2.7± 3.8 3.3± 4.2 2± 1 2.6± 2.1 17± 22 59± 76 146± 177
I. Forearm circumference 1.9± 2.5 2.3± 2.9 1± 1 2.2± 1.9 16± 20 76± 100 182± 230
J. Arm length 1.7± 2.4 2.7± 3.5 3± 2 2.3± 1.9 15± 21 53± 73 109± 141
K. Inside leg length 1.5± 2.7 2.8± 3.5 9± 6 4.3± 3.8 6± 7 9± 12 19± 24
L. Thigh circumference 2.4± 4.0 4.9± 6.2 6± 4 5.1± 4.3 9± 12 19± 25 35± 44
M. Calf circumference 2.3± 3.6 3.3± 4.3 3± 1 2.7± 1.9 6± 7 16± 21 33± 42
N. Ankle circumference 2.1± 2.8 2.0± 2.6 2± 1 1.4± 1.1 14± 16 28± 35 61± 78
O. Overall height 2.3± 4.6 4.0± 5.0 12± 10 7.1± 5.5 9± 12 21± 27 49± 62
P. Shoulder breadth 1.9± 2.5 2.9± 3.6 2± 4 2.1± 1.8 6± 7 12± 15 24± 31
Mean measurement error 2.72 mm 3.78 mm 4.02 mm 3.77 mm 11 mm 31 mm 66 mm

Table 1. Quantitative comparison with prior work. Column 3 is our implementation of Dibra et al. in 2016 [14]. Column 4 is reproduced
from Dibra et al. 2016 [14]. Columns 5-8, and the body measurements definitions shown on the right, are reproduced from Dibra et al.
2017 [15]. BfSNet produces favorable or comparable accuracy (within 3mm) on all measurements compared to the state of the art.

Shape and Pose Sampling We use two strategies for
sampling SMPL shape and pose. First, we construct mul-
tivariate Gaussian distributions for shape and pose parame-
ters (joint axis angles), and randomly sample from the two
distributions with shape σ = 1 and, to add more pose vari-
ation, pose σ = 2. Second, for a subset of CAESAR scans,
we randomly sample the local shape and pose neighborhood
centered on each scan with σ = 0.1, to create examples with
slight perturbations around CAESAR instances. We also re-
ject shapes that include self-intersection. In general, we use
both strategies to enrich our training dataset, but for fair
comparison with prior work in Section 4.1, we set σ = 1
for both shape and pose, and use only the global multivari-
ate distribution.

Virtual Camera Sampling The camera position, orien-
tation, and focal length were fixed for each viewpoint in
prior work [5, 14, 15]. Indeed, for fair comparison with
these works in Section 4.1 we trained and tested with im-
ages from two static virtual camera viewpoints. However,
in order to match the amount of variation that we expect
in the real world (e.g., images from selfies) we generated a
second dataset with body shapes rendered from a range of
viewpoints, as describe below.

For each instance, the virtual camera is placed randomly
at a distance between 1 to 2 meters at a height of 0 (floor
plane) to 2 meters. Focal length is adjusted to ensure full
body visibility. We further add realism by allowing the pose
to change between the front and side view.

Adding Segmentation Noise to Improve Robustness
We added two types of segmentation noise for robustness
improvement: (1) segmentation boundary noise, and (2)
large segmentation errors. Segmentation boundary noise is
added by (A) dilating the silhouette a few pixels, (B) erod-
ing the silhouette a few pixels, and randomly choosing be-
tween (A) and (B) for each pixel. Large segmentation errors

are created by selecting regions of the silhouette at random
and filling them with random splotches, similar to the ex-
amples in Figure 2. Synthetic confidence is set low in noise
regions, and high everywhere else.

3.7. Implementation Details

The training and evaluation code was implemented in
Python using the Keras framework with TensorFlow as the
backend. We use 640 × 360 as the CNN input resolution,
batch normalization [23], and ReLU activation layers [30].
We found that higher resolutions did not significantly im-
prove the accuracy of the results. Images were rendered
ahead of time using OpenGL.

4. Experimental Results and Discussion
In this section, we evaluate the accuracy and repeatabil-

ity of our system. We first compare with recent methods
on an established benchmark that measures the accuracy of
16 anthropomorphic measurements. Second, we perform
an ablation study on a much larger and more challenging
and realistic synthetic dataset to highlight the impact of dif-
ferent components of our system. Third, we compare with
a state-of-the-art CNN-based end-to-end approach [25] that
maps RGB pixels directly to 3D models. Fourth, we investi-
gate the impact of segmentation errors on the accuracy and
repeatability (test–retest reliability) of three models, each
trained with (1) no large segmentation errors, (2) with large
segmentation errors, and (3) with large segmentation er-
rors and segmentation confidence masks as additional in-
put channels to the network. Finally, we show qualitative
results on images downloaded from the web.

4.1. Quantitative Results

We first present quantitative results and compare with re-
cent methods [5, 10, 14, 15, 43]. Unfortunately, the specific



BfSNet
2V-Late-HW-Conf- 2V-Late-HW- 2V-Late-HW 2V-Late 2V-Early 1V Dibra ‘16 [14]

Measurements Vol-Pose Vol-Pose Our implem.
A. Head circumference 6.7± 8.4 8.0± 10.1 8.1± 10.4 8.8± 11.2 9.3± 11.7 8.9± 11.2 9.3± 11.7
B. Neck circumference 8.0± 10.1 8.8± 11.0 9.0± 11.5 9.3± 11.9 9.8± 12.4 9.0± 11.6 10.0± 12.8
C. Shoulder to crotch 5.1± 6.5 5.6± 7.1 5.9± 7.6 5.7± 7.4 6.4± 8.1 6.7± 8.5 6.6± 8.6
D. Chest circumference 12.5± 15.9 14.4± 18.5 16.0± 20.8 16.7± 21.8 18.8± 24.5 25.0± 31.8 22.8± 29.2
E. Waist circumference 15.8± 20.0 17.4± 22.3 17.8± 22.5 19.3± 24.5 20.1± 25.5 22.1± 28.5 24.0± 30.5
F. Pelvis circumference 9.3± 11.8 11.3± 14.3 12.0± 16.6 13.8± 19.9 15.9± 21.9 18.1± 24.2 20.0± 27.5
G. Wrist circumference 9.3± 13.4 9.6± 13.7 9.7± 13.6 9.8± 13.8 9.7± 13.7 9.7± 13.6 9.9± 13.8
H. Bicep circumference 8.1± 10.6 9.7± 12.2 9.7± 12.4 10.9± 14.0 10.6± 13.6 9.1± 12.0 12.0± 15.6
I. Forearm circumference 5.7± 7.1 6.2± 7.8 6.2± 7.9 7.2± 9.1 7.1± 8.9 6.6± 8.2 7.9± 9.9
J. Arm length 5.1± 6.4 5.7± 7.1 6.0± 7.4 5.5± 7.0 6.2± 7.7 5.9± 7.5 6.4± 8.0
K. Inside leg length 6.8± 8.6 7.5± 9.4 8.0± 10.1 7.2± 9.3 8.2± 10.5 8.4± 10.9 8.9± 11.5
L. Thigh circumference 8.8± 11.0 9.6± 12.3 10.3± 13.7 11.5± 15.7 12.5± 16.7 13.3± 17.6 15.5± 20.4
M. Calf circumference 7.2± 9.1 7.9± 10.0 8.1± 10.4 9.6± 12.4 9.9± 12.6 9.2± 11.8 13.2± 16.6
N. Ankle circumference 5.0± 6.4 5.6± 7.1 5.6± 7.2 6.2± 8.0 6.5± 8.2 5.9± 7.6 7.6± 9.5
O. Overall height 5.8± 7.5 6.4± 8.2 6.8± 9.1 6.9± 9.2 7.3± 9.6 7.5± 9.9 7.8± 10.2
P. Shoulder breadth 4.5± 5.7 5.1± 6.5 5.2± 6.7 5.4± 6.8 5.7± 7.3 5.6± 7.1 6.0± 7.6
Mean measurement error 7.7 mm 8.7 mm 9.0 mm 9.6 mm 10.2 mm 10.7 mm 11.7 mm

Table 2. Ablation study. 1V: Single view input. 2V-Early: Two input views with early fusion. 2V-Late: Two input views with late fusion.
2V-Late-HW: Two input views with late fusion and known height and weight as input. 2V-Late-HW-Vol-Pose: Two input views with
late fusion, known height as input, and additional multi-task outputs. 2V-Late-HW-Conf-Vol-Pose: (full BfSNet system) using confidence
masks as additional input. For reference, accuracy of our implementation of Dibra et al.’s 2016 system [14] is also shown.

dataset used by these methods for training and testing is not
available, and so we recreated it according to the specifi-
cations in [15]. First, we randomly sampled 500k meshes
from the CAESAR [36] pose and shape multivariate distri-
butions. Dibra et al. [15] used the SCAPE model for this
purpose, and they limited their shape space to the first 20
PCA bases. We instead use the SMPL model fit to CAE-
SAR to sample its distribution, but we also limit the num-
ber of shape bases to 20. For a fair comparison, we re-
implemented the CNN-based approached proposed by Di-
bra et al. [14] and trained it to predict SMPL model param-
eters instead. Second, we rendered each mesh instance to
front and side silhouettes using stationary, calibrated virtual
cameras. Like Dibra et al. [14, 15], we set 1k instances
aside for testing, and the remaining instances for training
(249.5k per gender). Evaluating on the CAESAR dataset is
not ideal. However, a significant challenge in this research
area is a lack of good, publicly available benchmarks, e.g.,
3D body scans with accompanying RGB images.

Table 1 shows that BfSNet produces circumference and
length estimates with errors of 5mm or less on average,
with favorable or comparable accuracy with respect to re-
cent work. Note that this benchmark uses perfect silhouettes
with no camera height or tilt variation and no self-occlusion
in the front view (e.g., hands are never in front of hips). This
lack of realism motivates our more challenging dataset.

4.2. Ablation Study on a More Challenging Dataset

We trained and evaluated different versions of our sys-
tem on the challenging synthetic dataset described in Sec-
tion 3.6. Specifically, we generated 1.5 million {front,
right}-view pairs for training, 2k for validation, and 10k
for testing per gender. Table 2 shows the accuracy of re-
sults from ablated versions of our pipeline, which highlights
the contribution of each component to the overall accuracy.

We also trained and tested our implementation of Dibra et
al. [14] on the same dataset for fair comparison. Our pro-
posed system produces significantly more accurate results
(7.4mm vs. 11.7mm measurement error) compared to Di-
bra et al. [14].

In Table 2, 1V is a Resnet-50 network [21] that uses a
single front input view, and predicts only shape parame-
ters. 2V-Early is the same architecture as 1V, except the
side-view image is added as a second channel two the in-
put image. Importantly, the two views are preprocessed to
bring them into approximate correspondence before feeding
them to the CNN, i.e., the silhouettes are height-normalized
and centered in the image. 2V-Late is the network ar-
chitecture illustrated in Figure 1, which extracts features
from each viewpoint separately via a sequence of 5 Resnet
blocks; the features are then concatenated and fed to an ad-
ditional Resnet block and two dense layers. 2V-Late-HW
adds known body traits (height, weight) as inputs. 2V-Late-
HW-Vol-Pose adds multi-task outputs (mesh volume, 3D
joint locations, and pose angles). 2V-Late-HW-Conf-Vol-
Pose (full BfSNet system) adds confidence masks as addi-
tional input channels to each input image.

Figure 3 shows the impact of segmentation noise and
confidence on average vertex-to-vertex accuracy. We ob-
serve that the model trained without noise does not general-
ize well to noisy inputs, training with noise offers a signif-
icant improvement, and training with noise and segmenta-
tion confidence produces the most accurate reconstruction
on noisy segmentation masks.

4.3. Comparison with a Direct-from-RGB Ap-
proach

Kanazawa et al. [25] proposed an impressive method
for estimating 3D body models directly from RGB im-
ages, which represents the state of the art among similar



Figure 3. Cumulative error distribution of average vertex-to-vertex
reconstruction error for different versions of the pipeline tested on
10k examples with corrupted segmentation masks. Corruptions
are similar to the example shown in Figure 2.

approaches [25, 26, 32, 33]. For fair comparisons with [25],
we generated a test dataset of color renderings with known
body shapes. Specifically, we selected 1000 participants
from the CAESAR database [36] and rendered front and
side views of each scan in front of random backgrounds
from the LSUN dataset [44], which is the same dataset
used for background images in the SURREAL dataset [42].
Please see our supplementary material for example images,
segmentation results, and estimated body models.

Kanazawa et al. and similar methods are trained in a
weakly supervised manner from images with the ambitious
goal of handling unconstrained poses scenarios. For this
reason, their system is well-suited for semantic segmenta-
tion and pose estimation, but not on estimating accurate an-
thropomorphic measurements. Figure 4 highlights the fact
that the estimates from Kanazawa et al. tend to have average
body shape, regardless of the input image. In contrast, BfS-
Net produces significantly more accurate measurements, as
shown in Table 3.

4.4. Repeatability Analysis

We now analyze the repeatability of our system in order
to understand how segmentation errors give rise to varia-
tions in body shape estimates. Figure 6 shows repeatability
analysis on 1000 test examples from the ablation study, us-
ing the 2V-Late-HW-Vol-Pose (no confidence input) and 2V-
Late-HW-Conf-Vol-Pose (full system with confidence input)
models. The average vertex standard deviation with and
without confidence is 1.96mm and 2.38mm, respectively,
highlighting the robustness of our system.

We also investigated the repeatability of our system on
more realistic CAESAR renderings. We rendered each
color scan in front of ten different backgrounds, and vir-
tual camera viewpoints. This produced a dataset of 10k in-
stances from which 9k were used for fine-tuning. On the re-
maining 1k instances, the average standard deviation across

Input A Input B Input A Input B

Our results

Results from Kanazawa et al. [25]

Figure 4. Qualitative comparison with state-of-art approach of [25]
that estimates 3D models directly from RGB images (rendered
scans from the CAESAR database). Our proposed method esti-
mates body dimensions more accurately.

Measurements BfSNet Kanazawaet al. [25]
A. Head circumference 14.2± 18.6 16.7± 26.5
B. Neck circumference 11.4± 18.7 35.7± 63.3
C. Shoulder to crotch 11.0± 13.8 33.8± 42.2
D. Chest circumference 16.2± 20.6 92.8± 116.5
E. Waist circumference 25.0± 32.1 118.3± 146.7
F. Pelvis circumference 15.2± 19.6 68.7± 90.0
G. Wrist circumference 5.5± 7.0 12.2± 15.1
H. Bicep circumference 10.4± 13.5 29.3± 37.6
I. Forearm circumference 7.9± 10.1 20.6± 25.8
J. Arm length 6.0± 7.7 29.9± 41.7
K. Inside leg length 8.0± 10.1 44.3± 58.9
L. Thigh circumference 11.1± 14.2 38.5± 49.7
M. Calf circumference 10.4± 13.3 25.8± 33.2
N. Ankle circumference 6.3± 8.1 14.0± 17.6
O. Overall height 7.9± 10.5 76.2± 97.9
P. Shoulder breadth 8.4± 10.7 26.5± 32.0
Mean measurement error 10.9 mm 42.7 mm

Table 3. Quantitative comparison (mean ± standard deviation)
with [25] on 1000 rendered scans from the CAESAR database.
Each test example is similar to the examples in Figure 4. Our
system is better suited for accurately estimating anthropomorphic
measurements.

all examples and vertices was 3.09mm, which indicates Bf-
SNet is robustness for camera changes and realistic segmen-
tation noise.



Figure 5. Qualitative results from our full
system on images from the web. First
column: input images. Second column:
silhouettes computed via semantic seg-
mentation. Third column: segmentation
confidence (black is low confidence).
Fourth column: body model result. Our
approach is robust to different camera view-
points, illumination conditions, and natural
body pose variation around an ‘A’ pose.
Attribution: The input images were down-
loaded from flickr.com and are free to share
via creativecommons.org/licenses/by-
nd/2.0/ (Rows 1 and 2) or cre-
ativecommons.org/licenses/by/2.0/
(Rows 3 and 4). Row 1 : flic.kr/p/
23XQEJv and flic.kr/p/2euFez3. Row 2:
flic.kr/p/efiXWW and flic.kr/p/efiWSS.
Row 3: flic.kr/p/ S6EeZA. Row 4:
flic.kr/p/6tfXfP.

Chest: 103.0 cm
Waist: 97.2 cm
Hips: 108.8 cm

Chest: 147.9 cm
Waist: 147.5 cm
Hips: 140.0 cm

Chest: 92.3 cm
Waist: 76.4 cm
Hips: 93.5 cm

Chest: 104.8 cm
Waist: 88.5 cm
Hips: 105.2 cm

Avg. standard deviation Avg. standard deviation
with confidence, 1.96 mm without confidence, 2.38 mm

Figure 6. Repeatability with and without segmentation confidence.
Ten copies of each test instance were created by randomly corrupt-
ing the segmentation masks. The heat maps show the average stan-
dard deviation for each vertex across test instances. Repeatability
is better when confidence masks are add as network inputs.

4.5. Qualitative Results

Figure 5 shows several results on web images. The visual
shape of each estimated 3D model closely reflects the visual
shape of the person in each pair of images.

5. Conclusions and Future Work

We have presented a novel method for reconstructing
3D body shape from 2D binary silhouettes. In contrast to
approaches that target people in unconstrained poses, we
focused on the task of estimating accurate and repeatable
anthropomorphic measurements. Results demonstrate that
our system is more accurate than previous approaches, with
good repeatability. Key to our improvements are (1) large-
scale synthetic data generation incorporating realistic varia-
tions in camera height and tilt, and segmentation errors; (2)
a multi-task approach to estimate body shape, 3D joint lo-
cations, 3D pose angles, and body volume simultaneously;
and (3) a novel architecture that takes multiple kinds of in-
puts, including segmentation confidence and known body
traits. An important future direction is to broaden the range
of acceptable poses and camera viewpoints while maintain-
ing the same performance. Toward this goal, it will be im-
portant to continue to improve the realism of large synthetic
datasets, e.g., by better aligning the distributions of syn-
thetic and real segmentation masks using GANs [37].
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