
Towards Accurate 3D Human Body Reconstruction from Silhouettes

Supplementary Material

Brandon M. Smith, Visesh Chari , Amit Agrawal, James Rehg, Ram Sever
Amazon.com Inc.

{smithugh,viseshc,aaagrawa,jamerehg,severram}@amazon.com

1. Synthetic Data Generation Details
Large segmentation errors are created by selecting regions of the silhouette at random and filling them with random

splotches. The process is illustrated in Figure 1. This mimics the behavior of the segmentation network in uncertain image
regions, and is generated as follows: (1) select a random silhouette boundary pixel, (2) construct a randomly sized region of
interest (ROI) around the selected pixel (from 10 to 200 pixels on a side), (3) select all boundary pixels withing the ROI, (4)
dilate these pixels using either a square or round kernel with random diameter between 10 and 30 pixels, (5) fill the dilated
region with white noise, (4) smooth the dilated region with a random-bandwidth Gaussian filter, and (5) threshold, which
creates splotches of various sizes. These splotchy regions closely mimic the kinds of segmentation errors observed in low
confidence regions in real images, where foreground and background labels are predicted randomly. Once created, noise
patches are added to, subtracted from, or replace the corresponding region of the silhouette image at random. Empirically
we modeled low confidence with a score of 0.2, and high confidence with a score of 0.9. We use these synthetic images
for pre-training our network, and then subsequently fine-tune using real segmentation results on photorealistic CAESAR [1]
scans rendered in front of random background images from the LSUN dataset [2].

2. Repeatability Examples
We investigated the repeatability of our system on more realistic CAESAR[1] renderings. We rendered 1k color scan in

front of ten different backgrounds, each from a different virtual camera viewpoint. This produced a dataset of 10k instances.
To better handle the subtleties of real segmentation noise and confidence, we fine-tuned our full network on 9k instances.
On the remaining 1k instances (100 unique scans outside the training set) we measured the standard deviation of each vertex
across the 10 different renderings of each scan. The average vertex standard deviation was 3.09mm. For reference, 3mm
corresponds to approximately 1 pixel for an average height person occupying 600 vertical pixels of a VGA (640 × 480)
image.

Three example repeated sessions are shown in Figure 2. The estimated 3D model are consistent (low standard deviation)
across a wide range of inputs for the same person. The plot in Figure 2 shows that our method produces results with low
intra-subject measurement variance compared to the amount of variance between different subjects.

Original Isolate boundary Select region Dilate randomly White noise Blur randomly Threshold +, −, or replace Confidence

Figure 1. An example that illustrates synthetic segmentation noise and confidence mask generation.

1



Session 1

Session 2

Session 3

Figure 2. Repeatability examples. Top: Three example repeated sessions (input RGB images, binary segmentation masks, segmentation
confidence, and estimated 3D body model). Despite significant camera variation and segmentation noise, the estimated 3D models are
consistent within each session. Bottom: For repeated captures of the same person with different camera positions and backgrounds, our
method produces results with low intra-subject measurement variance compared to the amount of variance between sessions/subjects, i.e.,
clusters are tight and well separated.

3. Qualitative Results on CAESAR Renderings
Here we present additional qualitative results from the experiment described in Section 4.4 of the main paper. Each input

example is an RGB scan from the CAESAR dataset [1] rendered in front of a random background sampled from the LSUN
image dataset [2]. Figures 3, 4, 5, and 6 highlight good results, and Figure 7 highlights several problem cases.



4. Architecture Details
Our proposed system was implemented in Keras with a TensorFlow backend. In Figure 8 we provide our network archi-

tecture. Please see Figure 1 in the main paper for a high-level overview.

References
[1] K. M. Robinette, S. Blackwell, H. Daanen, M. Boehmer, S. Fleming, T. Brill, D. Hoeferlin, and D. Burnsides. Civilian American and

European Surface Anthropometry Resource (CAESAR) final report. Tech. Rep. AFRL-HEWP-TR-2002-0169, US Air Force Research
Laboratory, 2002. 1, 2

[2] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. Lsun: Construction of a large-scale image dataset using deep learning with humans in
the loop. arXiv preprint arXiv:1506.03365, 2015. 1, 2



Figure 3. Qualitative results on male CAESAR images, part 1.



Figure 4. Qualitative results on male CAESAR images, part 2.



Figure 5. Qualitative results on female CAESAR images, part 1.



Figure 6. Qualitative results on female CAESAR images, part 2.



Figure 7. Problem cases. Large segmentation errors, although rare, can lead BaReNet to estimate 3D body shapes that don’t accurately
reflect the image.



input_image_0: InputLayer

zero_padding2d_1: ZeroPadding2D

input_image_1: InputLayer

zero_padding2d_2: ZeroPadding2D

conv1: Conv2D conv11: Conv2D

bn_conv1: BatchNormalization bn_conv11: BatchNormalization

activation_1: Activation activation_18: Activation

max_pooling2d_1: MaxPooling2D max_pooling2d_2: MaxPooling2D

res2a_branch2a: Conv2D

shortcut2a_branch1: Conv2D

res2a2_branch2a: Conv2D shortcut2a2_branch1: Conv2D

bn2a_branch2a: BatchNormalization bn2a2_branch2a: BatchNormalization

activation_2: Activation activation_19: Activation

res2a_branch2b: Conv2D res2a2_branch2b: Conv2D

bn2a_branch2b: BatchNormalization

shortcut_bn2a_branch1: BatchNormalization

bn2a2_branch2b: BatchNormalization

shortcut_bn2a2_branch1: BatchNormalization

add_1: Add add_9: Add

activation_3: Activation activation_20: Activation

res2b_branch2a: Conv2D

add_2: Add

res2b2_branch2a: Conv2D

add_10: Add

bn2b_branch2a: BatchNormalization bn2b2_branch2a: BatchNormalization

activation_4: Activation activation_21: Activation

res2b_branch2b: Conv2D res2b2_branch2b: Conv2D

bn2b_branch2b: BatchNormalization bn2b2_branch2b: BatchNormalization

activation_5: Activation activation_22: Activation

res3a_branch2a: Conv2D

shortcut3a_branch1: Conv2D

res3a2_branch2a: Conv2D shortcut3a2_branch1: Conv2D

bn3a_branch2a: BatchNormalization bn3a2_branch2a: BatchNormalization

activation_6: Activation activation_23: Activation

res3a_branch2b: Conv2D res3a2_branch2b: Conv2D

bn3a_branch2b: BatchNormalization

shortcut_bn3a_branch1: BatchNormalization

bn3a2_branch2b: BatchNormalization

shortcut_bn3a2_branch1: BatchNormalization

add_3: Add add_11: Add

activation_7: Activation activation_24: Activation

res3b_branch2a: Conv2D

add_4: Add

res3b2_branch2a: Conv2D

add_12: Add

bn3b_branch2a: BatchNormalization bn3b2_branch2a: BatchNormalization

activation_8: Activation activation_25: Activation

res3b_branch2b: Conv2D res3b2_branch2b: Conv2D

bn3b_branch2b: BatchNormalization bn3b2_branch2b: BatchNormalization

activation_9: Activation activation_26: Activation

res4a_branch2a: Conv2D

shortcut4a_branch1: Conv2D

res4a2_branch2a: Conv2D shortcut4a2_branch1: Conv2D

bn4a_branch2a: BatchNormalization bn4a2_branch2a: BatchNormalization

activation_10: Activation activation_27: Activation

res4a_branch2b: Conv2D res4a2_branch2b: Conv2D

bn4a_branch2b: BatchNormalization

shortcut_bn4a_branch1: BatchNormalization

bn4a2_branch2b: BatchNormalization

shortcut_bn4a2_branch1: BatchNormalization

add_5: Add add_13: Add

activation_11: Activation activation_28: Activation

res4b_branch2a: Conv2D

add_6: Add

res4b2_branch2a: Conv2D

add_14: Add

bn4b_branch2a: BatchNormalization bn4b2_branch2a: BatchNormalization

activation_12: Activation activation_29: Activation

res4b_branch2b: Conv2D res4b2_branch2b: Conv2D

bn4b_branch2b: BatchNormalization bn4b2_branch2b: BatchNormalization

activation_13: Activation activation_30: Activation

res5a_branch2a: Conv2D

shortcut5a_branch1: Conv2D

res5a2_branch2a: Conv2D shortcut5a2_branch1: Conv2D

bn5a_branch2a: BatchNormalization bn5a2_branch2a: BatchNormalization

activation_14: Activation activation_31: Activation

res5a_branch2b: Conv2D res5a2_branch2b: Conv2D

bn5a_branch2b: BatchNormalization

shortcut_bn5a_branch1: BatchNormalization

bn5a2_branch2b: BatchNormalization

shortcut_bn5a2_branch1: BatchNormalization

add_7: Add add_15: Add

activation_15: Activation activation_32: Activation

res5b_branch2a: Conv2D

add_8: Add

res5b2_branch2a: Conv2D

add_16: Add

bn5b_branch2a: BatchNormalization bn5b2_branch2a: BatchNormalization

activation_16: Activation activation_33: Activation

res5b_branch2b: Conv2D res5b2_branch2b: Conv2D

bn5b_branch2b: BatchNormalization bn5b2_branch2b: BatchNormalization

activation_17: Activation activation_34: Activation

concatenate_1: Concatenate

res6a_branch2a: Conv2D

shortcut6a_branch1: Conv2Dbn6a_branch2a: BatchNormalization

activation_35: Activation

res6a_branch2b: Conv2D

bn6a_branch2b: BatchNormalization

shortcut_bn6a_branch1: BatchNormalization

add_17: Add

activation_36: Activation

res6b_branch2a: Conv2D

add_18: Add

bn6b_branch2a: BatchNormalization

activation_37: Activation

res6b_branch2b: Conv2D

bn6b_branch2b: BatchNormalization

activation_38: Activation

flatten_1: Flatten

concatenate_2: Concatenate

heightM: InputLayer weightLb: InputLayer

sscape: Dense

Figure 8. SfSNet Keras architecture details, as generated by the Keras model visualization tool.


