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Abstract

Association rule mining is a valuable decision support tool that can be used to analyze
customer preferences, buying patterns, and product correlations. Current systems are however
handicapped by the long processing times required by mining algorithms that make them un-
suitable for interactive use. In this paper, we propose the use of a knowledge cache that can
reduce the response time by several orders of magnitude. Most of the performance gain comes
from the idea of guaranteed support that allows us to completely eliminate database accesses in
a large number of cases. Using this cache, the time taken to answer a query is proportional to
just the size of the result, rather than to the size of the database. Cache replacement is best done
by a benefit-metric based strategy that can easily adapt to changing query patterns. We show
that our caching scheme is quite robust, providing good performance on a wide variety of data
distributions even for small cache sizes. We also compare algorithms that use precomputation
to those that use caching and show that the best performance is obtained by combining both
these techniques. Finally, we illustrate how the idea of caching can be readily extended to a

broader class of problems such as the mining of generalized association rules.

1 Introduction

Over the last few years, many interesting algorithms have been proposed for extracting knowledge
from warehouses of corporate data. In particular, there has been a lot of research in the area of
discovering association rules to identify consumer preferences, buying patterns and correlations be-
tween product lines. The next step in the commercialization of association rule mining is improving
the usability of these systems and it is here that considerable advances still need to be made. One
major problem afflicting these systems is the large processing times required by association rule

mining algorithms. Even answering a simple query on a moderately sized data warehouse can easily



take tens of minutes. This effectively forces all mining queries to be run in batch mode rather than
interactively. As a consequence, data mining systems still suffer from limited usability.

The problem of long query turnaround times has been highlighted in a number of recent
papers[1][5]. Researchers have realized that in order to be really successful, data mining systems
need to have an interactive interface similar to the ones supported by current on-line analytical
processing (OLAP) systems. This has led to work on the integration of OLAP and mining[5] and
even to research on ways of combining mining and relational databases systems[12]. It has also
been noted[8] that to encourage real-time interaction with the user, the time taken to answer a
query should just be proportional to the size of the answer and not to the size of the database. In
this paper, we propose a system that accomplishes just that.

We envisage a business environment where a number of users are simultaneously issuing asso-
ciation rule queries on a data warehouse. The queries are interactive and exploratory in nature.
It is unrealistic to expect that a user will have prior knowledge of the exact values of support and
confidence that will retrieve just the right number of interesting rules. The user is therefore likely
to proceed using a trial-and-error approach to home in on the desired set of rules. Unfortunately,
this approach is not feasible using the current generation of association rule mining systems because
of long query turnaround times. What we really need is a system that takes advantage of the large
number of concurrent users and the sequence of queries submitted by each user by reusing the
results of prior computation to answer subsequent queries. In a sense, our work draws on principles
that are similar to those used in some OLAP systems[4]. We propose the use of a knowledge cache
to remember a subset of the results of prior queries and then using this cache to provide a quick re-
sponse to subsequent queries. The performance gains from using this approach can be tremendous.
For example, suppose that two successive queries have required support 0.4% and 0.5% respectively.
The first query (0.4%) takes 337 seconds to run on a database with one million transactions. In a
conventional system, the second query (0.5%) would have taken 322 seconds. However, by reusing
the results of the first query, we can answer the second query in just 0.05 seconds. That represents
a performance improvement of four orders of magnitude! What makes this possible is the notion of
guaranteed support. If we can guarantee that our cache contains all the required frequent itemsets,
we can answer the query without even looking at the database.

Users of OLAP systems have at their disposal a number of data analysis methods such as
slicing, dicing, roll-up, drill-down etc. and the use of a multi-dimensional cache has been shown to
be essential in answering such queries rapidly. Similarly, association rule queries are expected to
utilize item constraints[8], variations in support and confidence, incremental mining and techniques
to examine different parts of the database. Some of these problems are similar to issues involved
in chuck selection and aggregate calculation in an OLAP cache. While the complete integration of
the OLAP and mining cache is the subject of one of our future papers, it should suffice to say at

this point that many of the caching algorithms discussed in this paper will be effective in dealing



with queries involving item constraints and having differences in support and confidence.

In this paper, we present a comprehensive study of how the intelligent use of caching can produce
dramatic improvements in the performance of association rule mining algorithms. In Section 2 we
show how a general caching scheme can be integrated into the generate-and-test framework of most
association rule mining algorithms. In Section 3 we present three caching algorithms of varying
complexity. Section 4 shows the effectiveness of caching on a number of different datasets. Section 5
extends the best caching algorithm from Section 3 to take advantage of precomputation and shows
that the use of dynamic caching schemes can produce significant performance gains in addition to
those produced by precomputation. To demonstrate that caching is a very general methodology
that can be used to enhance the performance of a large class of association rule mining problems,
Section 6 presents a case study of how caching can be used to speedup algorithms for finding

generalized association rules. Finally Section 7 contains our conclusions.
2 Background and Overview

The problem of mining association rules has been well studied in the literature[2][10][13] along with
a number of variations[6][9][11][14][16]. Assume that the database contains a relation in which each
row contains a set of related items. In the most common scenario, each row might represent the
items bought by a customer at a supermarket on a particular day. The goal is to find relationships
between sets of items that are supported by the database. For example, we might be interested in
finding out whether buying one item may lead to buying another. An association rule has the form
X — Y where X and Y are sets of items. This rule might be interpreted to mean that a customer
who buys X is also likely to buy Y. The notion of likely is defined by the parameters: support and
confidence. Support refers to the percentage of the database records that contain both X and Y
while confidence is the percentage of records containing X that also contain Y.

An analyst who is trying to discover these relationships supplies values for the minimum ac-
ceptable support and confidence and gets back a list of rules that satisfy these conditions. Most
association rule mining algorithms employ a generate-and-test strategy for finding the required
itemsets. For example, the Apriori algorithm[2] in its kth pass will first generate a set of candidate
k-itemsets whose support will then be counted by scanning the database. Some of these itemsets
will be found to have support less than the required minimum support and will be rejected, while
the rest (the “frequent” itemsets) will be used to generate rules. Most of the work lies in identifying
the frequent itemsets. All our experiments use as basis the Apriori algorithm since it is the most
widely implemented association rule mining algorithm. However our notion of caching frequent
sets is not tied to any particular mining algorithm and will work equally well with most other

association rule mining algorithms.



2.1 Basic Cache Design

In order to speed up association rule mining, we propose to augment a conventional mining system
with a knowledge cache. This cache contains frequent itemsets that have been discovered while
processing other queries. We chose to cache itemsets rather than rules as it has been shown that
given the frequent sets, generating the rules is a rather simple and inexpensive affair[2]. One possible
approach would be to cache only the frequent itemsets, i.e. itemsets whose support exceeds or equals
the minimum support level of some previous query. In that case, we can answer by looking at the
cache, only those queries whose required support is greater than the least required support seen in
a query so far. Qur caching algorithms actually go a step further. If space is available, we will cache
even “infrequent” itemsets, i.e. itemsets whose support had been counted but that were removed
from the final result because their support turned out to be too low. These itemsets can be useful
in two situations: (1) If we get a subsequent query with lower minimum support threshold, some
of these itemsets might turn out to be frequent for that query. (2) If the support for an infrequent
itemset is less than the required support of a query, it might still be useful for eliminating useless
candidate counting. This is because only a small number of the candidate itemsets produced by
the generate step of Apriori (called Apriori Gen) are actually found to be frequent. The rest of the
candidates still have to be counted even though they are ultimately rejected. However in case these
“useless” candidates are found in the cache, we do not need to count their support. This leads to
smaller hash trees and faster execution.

All the caching algorithms that we will discuss store the data at a fairly fine granularity in the
form of records: <Itemset, Support>. This fine-grained caching scheme is crucial because it allows
the partial reuse of results even without strict query containment. In this respect, our method is
similar to the file chunk caching method[4] that has been used to speedup OLAP queries. If we
encounter a query with required support lower than the queries seen so far, we can still supply
some of the frequent itemsets from the cache.

All our cache implementations are hierarchical in that they store cached records in main memory
backed up by storage on disk. The caches are implemented on top of the Shore storage manager|3]
that provides facilities for file and index access and maintenance, concurrency control, recovery and
buffer management. The basic storage used by our algorithms are Shore file and index structures
and we use the Shore buffer manager to transfer disk blocks to and from memory. This is acceptable
because mining algorithms are usually so expensive that it is cheaper to even retrieve the result
from disk than to compute it ab initio from the database. This, and the opportunity to design very

large caches, are compelling reasons for using hierarchically structured caches.
3 Caching Algorithms

In this section we discuss three caching algorithms that have varying degrees of implementation

complexity and performance. The differences between the algorithms arise in two dimensions: (1)



Organization of the cache: this influences storage and retrieval. (2) Replacement strategies that

decide what itemsets to throw out of the cache in case sufficient space is not available.

3.1 No Replacement (NR)
The first (and simplest) algorithm uses no replacement strategy at all. The cache is organized in
terms of buckets where the kth bucket stores only k-itemsets. Thus during pass k of Apriori, we
need to access only the kth cache bucket which is stored as an unordered Shore file. We now describe
how the no replacement strategy can be integrated with the Apriori algorithm. First Apriori Gen
is used to generate the candidate itemsets. Then the cache is accessed to find out the support of
as many candidates as possible. If there are no remaining candidates whose support is unknown,
then we are done. Otherwise, we build a hashtree with the itemsets whose support is unknown and
scan the database to find their support. Finally the itemsets whose support is below the required
support of the query are rejected and the rest used to generate rules with the required confidence.
The No Replacement algorithm inserts into the cache all itemsets whose support was counted
during the current query (i.e. those itemsets whose support was not known before). This continues
until the cache becomes full and no more itemsets can be added. Once an itemset has been inserted
into the cache, it is never replaced. The candidate itemsets that are found in the cache do not have
to be counted. This results in smaller hash trees and substantial reductions in support counting
time. Since no replacement decisions ever have to be taken, this strategy is very simple to implement

and has the lowest cache maintenance time.

3.2 Simple Replacement (SR)

The simple replacement strategy makes use of the observation that all itemsets in the cache are not
of equal value. In fact, itemsets with larger support are more valuable than itemsets with smaller
support because they can be used to answer more queries. For example, an itemset with support
0.5% can be used to answer all queries with required support 0.5% or less while an itemset with
support 0.4% will only be present in the results of queries with minimum support 0.4% or less.
Therefore it is more beneficial to cache itemsets with higher support. To make things convenient,
the file corresponding to each cache bucket is kept sorted in ascending order of support.

The simple replacement algorithm works in much the same way as the no replacement algorithm
except that replacements can occur when the cache gets full. At each step we take the cached
itemset with the least support and replace it with the most frequent known itemset that is not in
the cache. Replacement takes place only if the itemset being inserted has greater support than the
itemset being replaced. By caching itemsets with largest values of support, the simple replacement
algorithm tries to achieve a higher cache hit ratio at the expense of larger cache maintenance times.
It should be noted that both the NR and SR algorithms will work even if the queries have item
constraints. Fewer itemsets will be discovered and inserted into the cache than in the case of

unconstrained queries, but the knowledge of support values of the cached itemsets would still be



very helpful in pruning down the set of candidates of future constrained queries.

3.3 Benefit Replacement (BR)

The benefit replacement algorithm is different from the previous two algorithms because it uses
BT -trees to store cache buckets instead of flat files. The advantage of this is that the cache buckets
are now indexed by support and in many cases this allows us to avoid scanning the whole cache.
The other major advancement introduced by this algorithm is the notion of guaranteed support.
Definition 3.1 The guaranteed support for a cache bucket k, denoted by gsup(k), is the value of
support such that all k-itemsets with support greater or equal to gsup(k) are guaranteed to be

present in the cache.

The maintenance of a gsup value per cache bucket (and the use of a BT-tree) offers us several
optimization opportunities. Firstly, if the minimum support for a query is greater or equal to
gsup(k), there is no need for any support counting or even candidate generation for pass k of
Apriori! This is because the cache is already guaranteed to hold all the frequent k itemsets. In that
case, the use of a B-tree can allow us to retrieve all the frequent itemsets without even scanning
the whole cache bucket. This is done by issuing a range query to the B-tree to retrieve all itemsets
having support greater than or equal to the minimum query support. Only in case the required
support is less than gsup(k), do we have to scan the whole B-tree.
Algorithm: Apriori with Benefit Replacement
k =1;
do {

if (requiredSupport > gsup(k))

Ly = { All itemsets with support [requiredSupport, co) retrieved by range scan on B-tree }

else
Cy = { candidate k-itemsets using Apriori Gen }; // Organized as hash tree
Retrieve all cached itemsets from kth bucket and join with Ci; // Nested index loops join
K = { itemsets in Cy, whose support is now known};
Urx = Cr — Ki; // Organized as hash tree
if (U, # 0)
Count the support for all itemsets in Ug;
Add Uy, to the cache (replace itemsets if necessary);
Cx = Ky + Uy;
L, = { itemsets in Cj with support > requiredSupport};
k++;

} while (Lg_1 # 0);
Answer = [J; Ly;



As regards cache replacement, though it is generally true that items with greater support
are more valuable, manipulating the value of gsup is actually more effective in obtaining better
performance. This is because queries can be answered very quickly if there is a complete hit, i.e. if
the query support is greater or equal to gsup. The reasons for this are many: we avoid candidate
generation, we perform a partial scan of the cache, but most importantly, we avoid counting a lot of
useless candidates. In fact most of the processing time is spent in counting these useless candidates
(that will eventually be rejected because of inadequate support), and this can be totally avoided if
we get a complete hit.

A cache bucket can contain itemsets with support both above and below gsup. We call these
the guaranteed and the non-guaranteed itemsets respectively. For the reasons mentioned above, we
prefer to cache guaranteed itemsets rather than non-guaranteed itemsets regardless of the actual
value of support. Within non-guaranteed itemsets we prefer the itemsets with the highest support
across all buckets. If we can insert a guaranteed itemset only by replacing another guaranteed

itemset, we decide which bucket to victimize by making use of the following benefit function.

Definition 3.2 The cost-benefit function B(k) for a cache bucket k is given by

100 — gsup(k)

numItemsets(k)

B(k) = x AccessFrequency(k)

We add itemsets to the buckets having the largest incremental increase in B(k) (thus lowering
gsup) while removing itemsets from buckets having the least incremental decrease in B(k) (increas-
ing gsup). In this way, we try to increase the average value of B(k) for the whole cache. The
rationale behind the use of the benefit function is the following. The probability of obtaining a
complete hit on a cache bucket is higher if gsup is lower. In fact it is proportional to 100 - gsup
(assuming gsup is expressed as a percentage). This would be sufficient if all buckets were accessed
equally frequently, but in reality, buckets containing smaller itemsets are accessed more frequently
than buckets containing larger itemsets with the first bucket being accessed always. We keep track
of the access frequency using a per bucket counter that is incremented every time a bucket is ac-
cessed. The cost, which is the space occupied by a bucket, is proportional to the number of itemsets
cached. Actually it is also proportional to the size of the itemset. However the cost of counting or
doing operations on an itemset also increases with its size and we take that into account by leaving

out the size factor from the equation. The detailed algorithm is described below.

Algorithm: Benefit Based Replacement
while (insertion possible)
// Choose insertion candidate from itemsets not in cache
if the gsup for any bucket can be reduced
Find the bucket with the largest value of AB;,s(k); // Incremental increase

else



Find the itemset with the largest support (across all buckets);
// Choose replacement victim from cached itemsets
if non-guaranteed itemset exists
Find the one with the least support;
else
Find the bucket with the greatest value of AB,., (k) // Incremental increase is negative for victim
if inserting guaranteed itemset
Replacement is possible if victim is non-guaranteed or
if —A Byepi(k) < ABips(k)
Bins(k)+ = ABins(k);
Brepi(k)+ = AByepi(k);
if inserting non-guaranteed itemset
Replacement is possible only if victim is non-guaranteed

and if victim support < insertion support.

3.4 Experimental Evaluation
We now describe the results of experiments conducted to evaluate the performance of the three
caching algorithms described in the previous section. This set of experiments all used a synthetic
dataset generated using the database generator that was used in [2] that is now publicly available.
However to be consistent with current technology, we used a much larger database than those used
in previous studies. The default values for the various parameters were as follows. The number
of transactions (D) was 1 million with average size of each transaction (T) being 10 items. The
number of items (N) was 2000 while the number of frequent itemsets (L) was 4000. The average size
of a frequent itemset (I) was 4. The total size of the database was about 50 MB. The experiments
were run on a 200 MHz Pentium Pro machine with 256 MB of main memory running Solaris 2.6.
The database and cache were kept on two separate disks and the size of the Shore buffer pool was
20 MB. The cache was empty to start with. For each of these experiments we generated a random
stream of 100 queries with different values of desired support and confidence. The value of support
was chosen from a uniformly distributed sequence of random numbers between 0.1% and 1%.
Fig.1 shows the fundamental performance gains that can be obtained by using a knowledge
cache. We find that compared to the No Cache case, the best caching strategy (Benefit Replace-
ment) can produce a factor of 4 or more performance improvement. Note however, that since we
start with a cold cache, this includes the time taken to populate the cache: something that is
constant across all algorithms and cache sizes. In fact, this accounts for most of the execution time
of the BR algorithm. The next best result is produced by the Simple Replacement strategy but
No Replacement does not perform very well. However, once the cache gets big enough (about 30

MB) all the algorithms converge to the same level. In this figure we have plotted the total cache
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size (including the cached itemsets and indexing structures, if any). This should enable us to make
a fair comparison across the different caching strategies that use different storage organizations on
disk and consequently have different overhead. Finally we would like to point out the insensitivity
of Benefit Replacement to the size of the cache. This is because for all cache sizes the algorithm
converges to the point where it caches all the frequent sets. When that happens the gsup levels
are so low that all hits are complete hits and it does not matter whether any other itemsets are
cached or not because they are never accessed. The positive consequence of this is the rather small
amount of space needed to construct an effective cache.

The average execution times measured in Fig. 1 have many components and the different caching
algorithms strike different tradeoffs in the magnitudes of these components (Fig.2). In this figure,
the three bars in each cluster represent the No Replacement, Simple Replacement and Benefit
Replacement algorithms respectively. It is seen that the dominant cost in evaluating a query is the
counting of support for candidate itemsets and the algorithm that minimizes this component wins.
The NR algorithm has a smaller cache maintenance cost than the SR algorithm which in turn has
a lower maintenance cost than the BR algorithm. But this is more than offset by a lower support
counting time for BR. In fact BR also has a lower candidate generation time (if query support >
gsup candidate generation is not required) and lower cache retrieval time (B-tree supports partial
cache scans). But most importantly, it makes the right decision about which itemsets to cache.
This shows that the notion of guaranteed support can indeed cut down on the cost of support
counting and the space required to cache unnecessary itemsets.

Recall that a complete hit occurs when all frequent itemsets are found in the cache and there is
no need to go to the database for counting support. Fig. 3 shows what percentage of cache accesses
are complete hits for the different caching algorithms. In fact this figure demonstrates the main
reason why the benefit replacement algorithm performs so well. While all algorithms improve their

complete hit ratio (CHR) with larger cache sizes, the benefit replacement algorithm maintains the
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best possible value of CHR for all cache sizes except the smallest (100K). This is because for other
algorithms to have a complete hit, all candidates must be present in the cache. Since the benefit
replacement algorithm uses the notion of gsup, it needs to have only the frequent itemsets in the
cache. Since the set of candidates is much larger than the set of frequent itemsets, the benefit
algorithm does well even for small cache sizes.

Fig. 4 shows the time needed to service a complete hit. This is roughly 2 orders of magnitude
smaller than the time taken if we did not use a cache. For BR, it is actually smaller by 4 orders of
magnitude! This means that once the cache is warmed up, we can easily get 100 to 10,000 times the
performance of conventional systems. Another thing to note is that for the Benefit Replacement
algorithm, the complete hit time is independent of the cache size while for the other algorithms
the hit time increases with cache size. This is because BR seldom scans the whole cache but rather
performs a partial scan on the cache using a range query on the B-tree. The time taken for this
partial scan is proportional to the size of the result rather than to the size of the database or even
to the size of the cache.

A partial hit occurs when the knowledge cache cannot supply all the itemsets in the result and
we need to scan the database to count the support of the remaining itemsets. The success of a
partial hit is defined as the fraction of candidates that are found in the cache. To quantify how
the size of a cache influences the success of partial hits, we counted over all the 100 queries the
total number of candidates whose support had to be counted by scanning the database. Fig.5
illustrates the result. The success of a partial hit increases dramatically for smaller cache sizes but
the improvement is more gradual for larger caches. This is because at this stage most of the hits
are complete hits and all support counting is due to compulsory misses that must be incurred so
that the cache can be populated. Fig. 6 shows how much time is spent during partial hits and this
is seen to mirror the total execution time, confirming that this is indeed the dominant cost in query

execution.
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4 Dependence on Data Characteristics

The experiments in the previous section all focussed on a single dataset. In this section we inves-
tigate how the BR algorithm behaves when we change the nature and size of the data by varying
different parameters of the data generation program. The goal is to show that no matter what
the characteristics of the data are, using a knowledge cache always provides a major performance
advantage. The available parameters for the dataset and their default values have been mentioned
in Section 3.4. We study the effect of these parameters by varying each one in turn while holding
the others constant at their default values. Once again we measure the average execution time of a
stream of 100 uniformly distributed queries on a system that can have one of 3 different cache sizes
(IMB, 100KB, and no cache). The cache sizes were chosen so that we could model two different
situations: one is when all the guaranteed itemsets can be cached (1 MB) and the other is when
all the guaranteed itemsets cannot be cached (100 KB). This is because, as we saw in Fig. 1, once
all the guaranteed itemsets are cached, further increasing the cache size is of little use.

The performance of the Benefit Replacement algorithm is decided by two main questions: (1)
Can all the required frequent itemsets be cached? (2) What is the cost of initially calculating these
itemsets? In case of a miss, the query response time is determined by the time taken to count the
support of itemsets not found in the cache. In that case, (as is true for the 100 KB cache), the
overall query response time closely tracks the time taken in the no cache case. However if the cache
has enough space for all the frequent itemsets, (as is the case for the 1 MB cache), the average
response time is determined by the cost of populating the cache (question 2) since we start our
experiment with an empty cache. However once the cache is warm, the response time is almost
instantaneous (Fig.4) and is independent of the characteristics of the underlying data.

Fig. 7 shows that the execution time increases linearly with the number of transactions. This is

expected since the amount of work is directly proportional the the number of transactions and the
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size of the database. The execution time for the cached versions also increases linearly but much
more slowly. For the 1 MB cache, this cost is just the cost of populating the cache initially. The
dependence on the size of the transaction (keeping the database size constant) is more interesting
(Fig.8). In pass k, the Apriori algorithm probes the hash tree once for each k-subset of the
transaction (of length n). Since the total number of possible subsets (3 (Z)) is exponential in n,
this graph shows exponential behavior. The performance of the 100 KB cache is not very different
from the no cache case, but the 1 MB cache behaves much better as it does not have to do the
subset operation once all the frequent itemsets are cached. The variation in execution time with
the number of items is not very pronounced, but it does show an interesting dip (Fig.9). There
are two factors at play here. As noted in [2], the average support for an item decreases if there
are more items and hence there are fewer frequent sets and candidates to count. However in the
case of pass 2 of Apriori, candidate pruning is not very effective and the number of candidates is
almost the square of the number of items. So the time for pass 2 increases with number of items.
It so happens that at 2000 itemsets, these two effects balance out and we obtain a minimum in the
curve. The cached versions show similar variation, more so for the 100 KB cache.

The number of frequent itemsets is one of the more important determinants of caching efficiency
(Fig. 10). The average support of each frequent set is inversely proportional to the number of such
frequent sets and so a decrease in the number of frequent sets causes a large increase in the number
of candidates for a given value of support. The cached versions are much more stable than the
no cache case because they try to cache all the frequent itemsets in any case (specially for the 1
MB cache) and then do not have to rely on the database for counting support. Fig.11 shows the
variation in execution time as the average length of the frequent itemsets is increased. This graph is
also exponential in nature because of the following. Given a fixed number of candidate k-itemsets,
the time taken to process a transaction of length n is proportional to (Z) that is exponential in k

if k < n/2. Also the time taken to process an itemset increases with its size and more database
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passes are required to find the greater number of large frequent sets. Even with caching, there still
remains the cost of finding these frequent sets to populate the cache and in this case, the cost of
the cache based algorithms also increases fairly quickly.

The key thing to note from the results of these experiments is that the cost of the basic Apriori
algorithm varies widely with the characteristics of the dataset. However in a system using a
knowledge cache, this variation is much less pronounced. Thus using a cache gives much needed
uniformity and stability to the performance of an association rule mining system and isolates the

user from having to worry about the nature of the underlying data when issuing queries.
5 Precomputation and Caching

We now investigate another technique that has been successfully used to speed up the processing
of OLAP queries|7]: precomputation. Precomputation and caching are really orthogonal in nature,
since the use of one does not preclude use of the other. However each has its own set of strengths
and weaknesses. Precomputation, for example, can be used to do a major portion of the work even
before the first query is run, so that subsequent queries can be run faster. Caching, on the other

hand, has the capability to adapt to changes in the query access pattern.

5.1 The Algorithms
In this section, we compare the performance of four algorithms, two of which use precomputation,
one that uses caching and one that uses both.

(1) Benefit Replacement (BR): This algorithm is the same as the one described in Section 3.
Its performance is shown here mainly for reference so that we can compare the performance of
schemes that use precomputation with one that uses only caching.

(2) Precompute Benefit (PB): This algorithm uses the same principles as the benefit re-
placement algorithm except that all buckets are assumed to have identical access frequencies. Each
bucket is favored according to the value of its benefit function and guaranteed itemsets are pre-
ferred over non-guaranteed ones. The main difference is that the cache is populated during a prior
precomputation step and no replacements are done while queries are being run.

(3) Precompute Uniform Threshold (PUT): This is a recently proposed algorithm[1] that
assumes that a fixed amount of memory is available and builds a lattice structured directed graph
of itemsets. The amount of memory available determines what the value of the threshold support
level is. For example, if the threshold is ¢, then it is known that all itemsets with support ¢ and
above have been precomputed. Then if a query arrives with support greater or equal to t, we just
need to do a restricted traversal of the graph to find all frequent itemsets. Since the value of the
threshold is the same for all cache buckets, we call this algorithm precompute uniform threshold.

We performed a couple of modifications on this basic algorithm to adapt it to our situation.

First of all, the algorithm as given in [1] is really tailored to a main-memory implementation as
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it does a lot of pointer chasing. Since we are proposing a hierarchical (i.e. both memory and
disk based) cache, each pointer traversal could result in a disk seek and that would certainly be
expensive. Also, the pointer traversals are only needed for mining rules with selections but for just
finding all association rules, a single sequential scan over each cache bucket would suffice.

(4) Precompute Benefit Replacement (PBR): This algorithm is a combination of the
precompute benefit and benefit replacement algorithms as it utilizes both precomputation and
dynamic caching. The cache is first populated in a precomputation step similar to the PB algorithm.
Then as queries are run, the contents of the cache are dynamically adjusted using the same benefit
function to reflect the relative access frequencies of the different cache buckets. This allows the

PBR algorithm to start with a warm cache and also to easily adapt to the current query pattern.

5.2 A Model of Access Patterns

Previously, we explored the differences in performance of various caching algorithms using a query
stream with support uniformly distributed between 0.1% and 1%. In reality however, the query
pattern is not likely to be so evenly distributed. In particular, each database might have a “sweet-
spot”: a range of support levels that most users find interesting. However, this region is unlikely
to be known a priori and must be found through exploration. In this section we investigate the
behavior of different caching and precomputation algorithms in the presence of these hot spots. As
mentioned before, we model a system with a large number of users who are concurrently exploring
the database to mine rules of association. Each user has an optimal set of rules in mind, but
usually it is not known beforehand what value of support and confidence must be used in a query
to produce this set of rules. Even though the exact number of rules in this set will probably vary
from user to user, it is likely to obey some bell-shaped distribution law. The users proceed towards
their target support and confidence using trial-and-error such that the aggregate stream of queries
also has a bell-shaped distribution of support.

With even a little experience with data mining systems, users will realize that there is a high
penalty associated with issuing queries with too low a support because they take a disproportion-
ately longer time to be answered than queries with high required support. It is probably better
to be conservative and issue queries that have higher support than the final target. This leads us
to believe that the density function of the query support distribution should be asymmetric and
positively skewed. One distribution that can be used to model these characteristics is the gamma
distribution. It has two positive parameters: r and 6 such that the probability density function is
given by : fy(y) = % where I'(r) is the gamma function. The mean of this distribution is
r/6 while the variance is r/6%.

In the query stream that we are trying to model, differences in the underlying database and the
user population might lead to different values of the mean support and also different distributions

of the query support values about the mean. This can be modelled by changing the values of r
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and 6 to obtain different values of mean and variance. A change in the mean support (keeping the
variance constant) indicates a shift in the region of interest while a change in the variance (keeping

the mean constant) indicates a change in the locality or the spread of the region of interest.

5.3 Experimental Evaluation

The goal of this section is to show how a system that uses dynamic caching can adapt easily to
changing query patterns. We change the query pattern using two different mechanisms: (1) By
changing the mean support requirement of a query (2) By changing the variance of the support
requirements of different queries. These experiments use the same dataset as was used in Section 3.4.
We generate a stream of 100 queries where the support of each query is chosen using the gamma
distribution. The queries are then fed into a system running each of the four algorithms described
in Section 5.1. If the algorithm uses precomputation, the first query has required support of 0.1%.
This allows the system to look at all possible frequent itemsets and choose which ones to cache
depending on the cache capacity. The precomputation time is excluded from the average query
execution time as we have found it to be quite similar for all the algorithms.

Fig. 12 shows how the behavior of the four strategies changes when we change the average sup-
port of a query keeping the variance constant at 0.031. It is seen that PBR does best followed
by the PB algorithm. The BR algorithm finishes last because it has to amortize the precomputa-
tion cost over the actual execution of the queries. The difference between the PB and the PUT
algorithms arise from the fact that PB makes better use of space than PUT because it can have
different thresholds for different cache buckets. The following example will clarify this.

Suppose that given a certain amount of cache space, the PUT algorithm decides on a threshold
of 0.5% for each of buckets 1, 2 and 3 (the only non-empty buckets). Now let us assume that there

is exactly one 1-itemset with support 0.4%, one 2-itemset with support 0.4% and two 3-itemsets
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with support 0.5%. The PB algorithm might readjust the buckets by inserting one itemset each in
buckets 1 and 2 and removing two itemsets from bucket 3. This might produce gsup levels of 0.4%,
0.4% and 0.6% for buckets 1, 2 and 3 respectively. So now for a query with support 0.45%, PB
will require only one pass of the database while PUT will require three. On the other hand, if the
query has support 0.55%, PB will require one pass of the database while PUT will require none.
This indicates that on the average PB needs to access the database less frequently.

The PBR algorithm goes one step further. It uses a reference count to quantify which buckets
are accessed more frequently. The only idea PB has about the query access pattern is from the
initial precomputation query (with support 0.1%), since it does not modify the cache at runtime.
However the actual query pattern is usually somewhat different. In this case for example, the
mean support of a query varies from 0.42% to 0.55%. At the upper end of this range, most of
the algorithms can answer almost all queries from the cache but the differences in performance are
more pronounced for lower values of support.

Fig. 13 shows what happens when we keep the mean support constant at 0.5 and change the
variance in the support of the queries. When the variance is small, most queries are centered around
0.5 and so the execution times are much smaller, but when there is a wider spread of queries, they
take more time to execute on the average. The reason why the average execution time changes at
all is because the execution time varies non-linearly with support. It is disproportionately more
expensive to answer queries that have low support compared to queries that have high support.
Once again, the PBR algorithm shows better ability to adapt to the change in variance compared
to the algorithms that use only precomputation.

Both these experiments show that approaches using precomputation and caching are comple-
mentary to each other and the systems that utilize both these techniques show the best performance
and the greatest flexibility in adapting to changing query patterns. In this section we explored tem-
poral variations in the required support of queries. There is also the issue of change in the region
of interest of queries if we are interested in exploring different parts of the database or in mining
rules with selection constraints. This is similar to the problem of exploiting locality in a multi-

dimensional space for OLAP queries[4] and we expect to investigate this in a future paper.
6 Generalized Association Rule Mining

Association rules become much more interesting when combined with the notion of generalization
hierarchies. For example, the products in a store might be grouped into a number of categories
that might then be grouped into super-categories and so on. Not only might we be interested in
finding associations between the products themselves, but we might also want to detect relationships
between the various product classes. This is the problem of generalized or hierarchical association
rule mining|[6][14][15]. We use this problem as a case-study to show that caching can be used to

speedup a broad class of association rule mining problems.
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For this study, we implemented the most efficient algorithm given in [15], called EstMerge.The
EstMerge algorithm augments each transaction with a list of all ancestors of the items present in
the transaction and then proceeds to generate and count the support of candidate itemsets in a
manner similar to Apriori. The main contribution of the EstMerge algorithm is the use of sampling
and stratification to further prune the number of candidates. The idea here is that an itemset
cannot have a desired level of support unless all itemsets formed by replacing an item by one of
its ancestors have at least the same level of support. The support for these ancestor itemsets is
estimated by sampling the database and then the support for the candidates that are left after

pruning is counted by scanning the database.

6.1 Making Use of the Knowledge Cache
To see how caching helps in the problem of finding generalized association rules, we implemented

the EstMerge algorithm as described in [15] and then modified it to take advantage of caching.

Algorithm : EstMerge with Caching
k =1;
do {
if (requiredSupport > gsup(k))
Ly = { All itemsets with support [requiredSupport, oo) retrieved by range scan on B-tree }
else
Cy = { candidate k-itemsets generated from Ly_1 UC}_; };
Retrieve all cached itemsets from kth bucket and join with Cj;
K}, = { itemsets in Cj, whose support is now known};
U, = Cy — Kg; // Cache based Elimination
// Perform Cache based Stratification
From Uy remove itemsets whose ancestors (in K}) do not have requiredSupport;
i (U #0)
Estimate the support of itemsets in Ug;
C), = { candidates in Uy, that are expected to have requiredSupport
and those whose parents are expected to have requiredSupport};
Count the support for all itemsets in C}, U C}_;
Add Cj, U C}_; to the cache (replace itemsets if necessary);
// Perform Sampling based Stratification
Delete all candidates in U, whose ancestors (in C},) do not have requiredSupport;
C} = Rest of Uy that are not in C};
Delete all candidates in K}, C}, and C}/_; that do not have requiredSupport;

Ly =K+ C;c;
Ly 1+ = Cllc'—1
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kt-+;
} while (L1 # 0 or C_, # 0);
Answer = |J;, Lg;

There are a number of ways in which caching can improve the performance of the EstMerge
algorithm. In general, there are three ways in which the number of candidates can be pruned in
case the guaranteed support is less than the required support.

1. Sampling based Stratification: This is part of the standard EstMerge algorithm.

2. Cache based Elimination: This is the removal of candidates that are found in the cache.

3. Cache based Stratification: This is a powerful method of pruning that recognizes that we

need not count any descendents of itemsets that are found (from the cache) to have insufficient

support.
As an example of how cache based stratification can reduce the number of candidates in Cj,, consider
two itemsets A and B such that A is the parent of B. Assume the required support level is 5%.
Using sampling, the support of A might be estimated to be 6% and this would require us to count
both A and B in C}. However, if we find from the cache the exact support of A to be 4%, then
we do not need to count either. Note that using stratification allows us to discard B from the
candidate set even though the support of B itself may not be cached.

Cache based stratification also reduces the number of useless candidates in C}/. In the previous
example, let the estimated support for A be 4%. Also let B have a child itemset C. A might have
to be counted because it is the root and cannot be eliminated by stratification. However B and C
will not be counted initially because the ancestor A is not expected to have minimum support. In
case the actual support of A happens to be 6%, we would have to count both B and C in Cj. It
may so turn out that both B and C are actually infrequent. If however we know from the cache

that B is infrequent, say having support 4%, we can remove C from the candidate set altogether.

6.2 Experimental Evaluation
Fig. 14 shows the performance of the EstMerge algorithm with and without a cache. (Note the
logarithmic y-axis.) The EstMerge algorithm is inherently more expensive than Apriori because of
the larger amount of processing involved. Therefore using a cache results in an even bigger gain
because the value of each cached itemset is greater. The other factor favoring caching is that it can
be used to dramatically prune the number of candidate itemsets (Fig. 15). Reducing the number of
candidates lowers the execution cost in several ways. Not only do we have to count fewer itemsets,
but the average size of each database transaction is also reduced (Fig.16). This is because each
transaction is augmented only with the ancestors of viable candidates and reducing the number of
candidates reduces the number of ancestors we have to consider.

Fig. 17 shows that cache based stratification is a major factor in the successful pruning of

candidates. The reason why it is more effective than sampling based stratification is because we do
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not have to rely on estimates. Estimates are often inaccurate and can require us to count the support
of a substantial number of useless candidates and even to make additional passes over the database.
Thus the use of caching in generalized association rule mining can eliminate a lot of unnecessary
work. This set of experiments shows that a careful integration of caching strategies with different

types of association rule mining algorithms can indeed lead to big gains in performance.
7 Conclusion

Current association rule mining systems suffer from limited usability because of long query response
times. In this paper, we show how using a knowledge cache can bring the response time down to
levels that are acceptable for interactive use. Of particular importance is the notion of guaranteed
support that allows us to completely eliminate database accesses in many cases because the cache
can guarantee that it contains all the required frequent itemsets. The best replacement algorithm

uses a benefit metric that quantifies which itemsets are more useful to cache given a fixed amount of
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available space. This caching scheme has been shown to be effective on a wide variety of distributions

of the underlying data and can provide good performance even for very small cache sizes.

We have also studied precomputation based algorithms and have found that the best perfor-

mance is achieved when precomputation is combined with the Benefit Replacement algorithm. We

view the caching of frequent itemsets as a very general technique that has widespread applicability.

We illustrate this point with a case-study showing the major performance gains that can be ob-

tained by augmenting an algorithm for mining generalized association rules to take advantage of a

knowledge cache. It is our belief that the use of intelligent caching techniques will be indispensable

in systems that are targeted towards the interactive discovery of association rules.
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