
Convex Optimization Theory

Athena Scientific, 2009

by

Dimitri P. Bertsekas

Massachusetts Institute of Technology

Supplementary Chapter 6 on

Convex Optimization Algorithms

This chapter aims to supplement the book Convex Optimization Theory,
Athena Scientific, 2009 with material on convex optimization algorithms.
The chapter will be periodically updated. This version is dated

October 8, 2010

Your comments and suggestions to the author at dimitrib@mit.edu are welcome.

6

Convex Optimization

Algorithms

Contents

6.1. Special Problem Structures p. 250
6.1.1. Lagrange Dual Problems p. 250
6.1.2. Second Order Cone and Semidefinite Programming p. 255

6.2. Algorithmic Descent - Steepest Descent p. 266
6.3. Subgradient Methods p. 269
6.4. Polyhedral Approximation Methods p. 281

6.4.1. Outer Linearization - Cutting Plane Methods . . . p. 281
6.4.2. Inner Linearization - Simplicial Decomposition . . p. 288
6.4.3. Duality of Outer and Inner Linearization p. 291
6.4.4. Generalized Simplicial Decomposition p. 293
6.4.5. Generalized Polyhedral Approximation p. 298

6.5. Proximal and Bundle Methods p. 311
6.5.1. Proximal Point Algorithm p. 313
6.5.2. Proximal Cutting Plane Method p. 322
6.5.3. Bundle Methods p. 324

6.6. Dual Proximal Point Algorithms p. 329
6.6.1. Augmented Lagrangian Methods p. 332
6.6.2. Proximal Inner Linearization Methods p. 335

6.7. Interior Point Methods p. 337
6.7.1. Primal-Dual Methods for Linear Programming . . p. 340
6.7.2. Interior Point Methods for Conic Programming . . p. 346

6.8. Approximate Subgradient Methods p. 347
6.8.1. ǫ-Subgradient Methods p. 347
6.8.2. Incremental Subgradient Methods p. 350
6.8.3. Subgradient Methods with Randomization p. 358
6.8.4. Incremental Proximal Methods p. 364

6.9. Optimal Algorithms and Complexity p. 369
6.10. Notes, Sources, and Exercises p. 380

249

250 Convex Optimization Algorithms Chap. 6

In this supplementary chapter, we discuss several types of algorithms for
minimizing convex functions. A major type of problem that we aim to
solve is dual problems, which by their nature involve convex nondifferen-
tiable minimization. The fundamental reason is that the negative of the
dual function in the MC/MC framework is typically a conjugate function
(cf. Section 4.2.1), which is generically closed and convex, but often non-
differentiable (it is differentiable only at points where the supremum in the
definition of conjugacy is uniquely attained; cf. Prop. 5.4.3). Accordingly
most of the minimization algorithms that we discuss do not require differ-
entiability for their application. We refer to general nonlinear programming
textbooks for methods that rely on differentiability, such as gradient and
Newton-type methods.

6.1 SPECIAL PROBLEM STRUCTURES

Convex optimization algorithms have a broad range of application, but they
are particularly useful for large/challenging problems with special struc-
ture, usually connected in some way to duality. We discussed in Chapter
5 two important duality structures. The first is Lagrange duality for con-
strained optimization, which arises by assigning dual variables to inequality
constraints. The second is Fenchel duality together with its special case,
conic duality. Both of these duality structures arise often in applications,
and in this section we discuss some examples.

6.1.1 Lagrange Dual Problems

We first focus on Lagrange duality (cf. Sections 5.3.1-5.3.4). It involves the
problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,
(6.1)

where X is a set, g(x) =
(

g1(x), . . . , gr(x)
)′

, and f : X 7→ ℜ and gj : X 7→
ℜ, j = 1, . . . , r, are given functions. The dual problem is

maximize q(µ)

subject to µ ∈ ℜr, µ ≥ 0,
(6.2)

where the dual function q is given by

q(µ) = inf
x∈X

L(x, µ), µ ≥ 0, (6.3)

and L is the Lagrangian function defined by

L(x, µ) = f(x) + µ′g(x), x ∈ X, µ ≥ 0.

Sec. 6.1 Special Problem Structures 251

While in Section 5.3 we made various convexity assumptions on X , f , and
gj in order to derive strong duality theorems, the dual problem can be
defined even in the absence of such assumptions. Then the optimal dual
value yields a lower bound on the optimal value of the primal problem (6.1)
(cf. the Weak Duality Theorem of Prop. 4.1.2). This is significant in the
context of discrete optimization as described in the following example.

Example 6.1.1: (Discrete Optimization and Lower Bounds)

Many practical optimization problems of the form (6.1) have a finite con-
straint set X. An example is integer programming , where the components
of x must be integers from a bounded range (usually 0 or 1). An important
special case is the linear 0-1 integer programming problem

minimize c′x

subject to Ax ≤ b, xi = 0 or 1, i = 1, . . . , n.

A principal approach for solving such problems is the branch-and-bound

method , which is described in many sources. This method relies on obtaining
lower bounds to the optimal cost of restricted problems of the form

minimize f(x)

subject to x ∈ X̃, g(x) ≤ 0,

where X̃ is a subset of X; for example in the 0-1 integer case where X specifies
that all xi should be 0 or 1, X̃ may be the set of all 0-1 vectors x such that
one or more components xi are restricted to satisfy xi = 0 for all x ∈ X̃ or
xi = 1 for all x ∈ X̃. These lower bounds can often be obtained by finding
a dual-feasible (possibly dual-optimal) solution µ of this problem and the
corresponding dual value

q(µ) = inf
x∈X̃

{

f(x) + µ′g(x)
}

, (6.4)

which by weak duality, is a lower bound to the optimal value of the restricted
problem minx∈X̃, g(x)≤0 f(x). Because X̃ is finite, q is a concave piecewise
linear function, and solving the dual problem amounts to minimizing the
polyhedral function −q over the nonnegative orthant.

Let us now outline some problem structures that involve convexity,
and arise frequently in applications.

Separable Problems - Decomposition

Consider the problem

minimize

n
∑

i=1

fi(xi)

subject to a′jx ≤ bj , j = 1, . . . , r,

(6.5)

252 Convex Optimization Algorithms Chap. 6

where x = (x1, . . . , xn), each fi : ℜ 7→ ℜ is a convex function of the
single scalar component xi, and aj and bj are some vectors and scalars,
respectively. Then by assigning a dual variable µj to the constraint a′jx ≤
bj , we obtain the dual problem [cf. Eq. (6.2)]

maximize

n
∑

i=1

qi(µ) −
r
∑

j=1

µjbj

subject to µ ≥ 0,

(6.6)

where

qi(µ) = inf
xi∈ℜ







fi(xi) + xi

r
∑

j=1

µjaji







,

and µ = (µ1, . . . , µr). Note that the minimization involved in the calcu-
lation of the dual function has been decomposed into n simpler minimiza-
tions. These minimizations are often conveniently done either analytically
or computationally, in which case the dual function can be easily evalu-
ated. This is the key advantageous structure of separable problems: it
facilitates computation of dual function values (as well as subgradients as
we will see in Section 6.3), and it is amenable to decomposition/distributed
computation.

There are also other separable problems that are more general than
the one of Eq. (6.5). An example is when x has m components x1, . . . , xm

of dimensions n1, . . . , nm, respectively, and the problem has the form

minimize

m
∑

i=1

fi(xi)

subject to

m
∑

i=1

gi(xi) ≤ 0, xi ∈ Xi, i = 1, . . . ,m,

(6.7)

where fi : ℜni 7→ ℜ and gi : ℜni 7→ ℜr are given functions, and Xi are
given subsets of ℜni . The advantage of convenient computation of the dual
function value using decomposition extends to such problems as well.

Partitioning

An important point regarding large-scale optimization problems is that
there are several different ways to introduce duality in their solution. For
example an alternative strategy to take advantage of separability, often
called partitioning, is to divide the variables in two subsets, and minimize
first with respect to one subset while taking advantage of whatever simpli-
fication may arise by fixing the variables in the other subset. In particular,
the problem

minimize F (x) +G(y)

subject to Ax+By = c, x ∈ X, y ∈ Y,

Sec. 6.1 Special Problem Structures 253

can be written as

minimize F (x) + inf
By=c−Ax, y∈Y

G(y)

subject to x ∈ X,

or
minimize F (x) + p(c−Ax)

subject to x ∈ X,

where p is the primal function of the minimization problem involving y
above:

p(u) = inf
By=u, y∈Y

G(y);

(cf. Section 4.2.3). This primal function and its subgradients can often be
conveniently calculated using duality.

Additive Cost Problems

We now focus on a structural characteristic of dual problems that arises
also in other contexts: a cost function that is the sum of a large number of
components,

f(x) =

m
∑

i=1

fi(x), (6.8)

where the functions fi : ℜn 7→ ℜ are convex. Such functions can be min-
imized with specialized methods, called incremental , which exploit their
additive structure (see Section 6.8.2).

An important special case is the cost function of the dual/separable
problem (6.6); after a sign change to convert to minimization it takes the
form (6.8). Additive functions also arise in other important contexts. For
example, in data analysis/machine learning problems, where each term
fi(x) corresponds to error between data and the output of a parametric
model, with x being a vector of parameters. A classical example is least
squares problems, where fi has a quadratic structure, but other types of
cost functions, including nondifferentiable ones, have become increasingly
important. An example is the so called ℓ1-regularization problem

minimize

m
∑

j=1

(a′jx− bj)2 + γ

n
∑

i=1

|xi|

subject to (x1, . . . , xn) ∈ ℜn,

(sometimes called the lasso method), which arises in statistical inference.
Here aj and bj are given vectors and scalars, respectively, and γ is a positive
scalar. The nondifferentiable penalty term affects the solution in a different

254 Convex Optimization Algorithms Chap. 6

way than a quadratic penalty (it tends to set a large number of components
of x to 0).

For a related context where additive cost functions arise, consider the
minimization of the expected value

E
{

F (x,w)
}

,

where w is a random variable taking a finite but very large number of
values wi, i = 1, . . . ,m, with corresponding probabilities πi. Then the cost
function consists of the sum of the m functions πiF (x,wi).

Finally, let us note that cost functions that are separable or additive
arise in the class of problems collectively known as stochastic program-

ming. For a classical example, consider the case where a vector x ∈ X is
selected, a random event occurs that has m possible outcomes w1, . . . , wm,
and then another vector y ∈ Y is selected with knowledge of the outcome
that occurred. Then for optimization purposes, we need to specify a dif-
ferent vector yi ∈ Y for each outcome wi. The problem is to minimize the
expected cost

F (x) +

m
∑

i=1

πiGi(yi),

where Gi(yi) is the cost associated with the occurrence of wi and πi is the
corresponding probability. This is a problem with additive cost function.
Furthermore, if there are linear constraints coupling the vectors x and yi,
the problem has a separable form.

Large Number of Constraints

Problems of the form

minimize f(x)

subject to a′jx ≤ bj , j = 1, . . . , r,
(6.9)

where the number r of constraints is very large often arise in practice, either
directly or via reformulation from other problems. They can be handled in
a variety of ways. One possibility is to adopt a penalty function approach,
and replace problem (6.9) with

minimize f(x) + c
r
∑

j=1

P (a′jx− bj)

subject to x ∈ ℜn,

(6.10)

where P (·) is a scalar penalty function satisfying P (t) = 0 if t ≤ 0, and
P (t) > 0 if t > 0, and c is a positive penalty parameter. For example, one
may use the quadratic penalty

P (t) =
(

max{0, t}
)2
.

Sec. 6.1 Special Problem Structures 255

An interesting alternative is to use

P (t) = max{0, t},

in which case it can be shown that the optimal solutions of problems (6.5)
and (6.10) coincide when c is sufficiently large (see e.g., [Ber99], Section
5.4.5, [BNO03], Section 7.3). The cost function of the penalized problem
(6.10) is of the additive form (6.8).

Another possibility, which points the way to some major classes of
algorithms, is to initially discard some of the constraints, solve the corre-
sponding less constrained problem, and later reintroduce constraints that
seem to be violated at the optimum. This is known as an outer approxima-

tion of the constraint set; see the cutting plane algorithms of Section 6.4.1.
Another possibility is to use an inner approximation of the constraint set
consisting for example of the convex hull of some of its extreme points; see
the simplicial decomposition methods of Sections 6.4.2 and 6.4.4.

6.1.2 Second Order Cone and Semidefinite Programming

Another major problem structure is the conic programming problem dis-
cussed in Section 5.3.6:

minimize f(x)

subject to x ∈ C,
(6.11)

where f : ℜn 7→ (−∞,∞] is a proper convex function and C is a convex
cone in ℜn. An important special case, called linear conic problem, arises
when dom(f) is an affine set and f is linear over dom(f), i.e.,

f(x) =

{

c′x if x ∈ b+ S,
∞ if x /∈ b+ S,

where b and c are given vectors, and S is a subspace. Then the primal
problem can be written as

minimize c′x

subject to x− b ∈ S, x ∈ C.
(6.12)

To derive the dual problem, we note that

f⋆(λ) = sup
x−b∈S

(λ− c)′x

= sup
y∈S

(λ − c)′(y + b)

=

{

(λ− c)′b if λ− c ∈ S⊥,
∞ if λ− c /∈ S.

256 Convex Optimization Algorithms Chap. 6

It can be seen that the dual problem minλ∈Ĉ f
⋆(λ) (cf. Section 5.3.6), after

discarding the superfluous term c′b from the cost, can be written as

minimize b′λ

subject to λ− c ∈ S⊥, λ ∈ Ĉ,
(6.13)

where Ĉ is the dual cone:

Ĉ = {λ | x′λ ≥ 0, ∀ x ∈ C};

cf. Fig. 6.1.1.

x∗

λ∗

b

c

b + S

c + S⊥

C = Ĉ

λ ∈ (c + S⊥) ∩ Ĉ

(Dual)

x∈(b+S)∩C

(Primal)

Figure 6.1.1. Illustration of primal and dual linear conic problems for the case of
a 3-dimensional problem, 2-dimensional subspace S, and a self-dual cone (C = Ĉ);
cf. Eqs. (6.12) and (6.13).

The following proposition translates the conditions of Prop. 5.3.9 to
the polyhedral conic duality context.

Proposition 6.1.1: (Linear-Conic Duality Theorem) Assume
that the primal problem (6.12) has finite optimal value. Assume fur-
ther that either (b+S)∩ ri(C) = Ø or C is polyhedral. Then, there is
no duality gap and the dual problem has an optimal solution.

Sec. 6.1 Special Problem Structures 257

Proof: Under the condition (b + S) ∩ ri(C) = Ø, the result follows from
Prop. 5.3.9. For the case where C is polyhedral, the result follows from
the more refined version of the Fenchel Duality Theorem (Prop. 5.3.8),
discussed at the end of Section 5.3.5. Q.E.D.

Special Forms of Linear Conic Problems

The primal and dual linear conic problems (6.12) and (6.13) have been
placed in an elegant symmetric form. There are also other useful formats
that parallel and generalize similar formats in linear programming (cf. Ex-
ample 4.2.1 and Section 5.2). For example, we have the following dual
problem pairs:

min
Ax=b, x∈C

c′x ⇐⇒ max
c−A′λ∈Ĉ

b′λ, (6.14)

min
Ax−b∈C

c′x ⇐⇒ max
A′λ=c, λ∈Ĉ

b′λ, (6.15)

where x ∈ ℜn, λ ∈ ℜm, c ∈ ℜn, b ∈ ℜm, and A is an m× n matrix.
To verify the duality relation (6.14), let x be any vector such that

Ax = b, and let us write the primal problem on the left in the primal conic
form (6.12) as

minimize c′x

subject to x− x ∈ N(A), x ∈ C,
(6.16)

where N(A) is the nullspace of A. The corresponding dual conic problem
(6.13) is to solve for µ the problem

minimize x′µ

subject to µ− c ∈ N(A)⊥, µ ∈ Ĉ.
(6.17)

Since N(A)⊥ is equal to Ra(A′), the range of A′, the constraints of problem
(6.17) can be equivalently written as c−µ ∈ −Ra(A′) = Ra(A′), µ ∈ Ĉ, or

c− µ = A′λ, µ ∈ Ĉ,

for some λ ∈ ℜm. Making the change of variables µ = c − A′λ, the dual
problem (6.17) can be written as

minimize x′(c−A′λ)

subject to c−A′λ ∈ Ĉ.

By discarding the constant x′c from the cost function, using the fact Ax =
b, and changing from minimization to maximization, we see that this dual

258 Convex Optimization Algorithms Chap. 6

problem is equivalent to the one in the right-hand side of the duality pair
(6.14). The duality relation (6.15) is proved similarly.

We next discuss two important special cases of conic programming:
second order cone programming and semidefinite programming. These pro-
blems involve some special cones, and an explicit definition of the affine
set constraint. They arise in a variety of practical settings, and their com-
putational difficulty tends to lie between that of linear and quadratic pro-
gramming on one hand, and general convex programming on the other
hand.

Second Order Cone Programming

Consider the cone

C =

{

(x1, . . . , xn) | xn ≥
√

x2
1 + · · · + x2

n−1

}

,

known as the second order cone (see Fig. 6.1.2). The dual cone is

Ĉ = {y | 0 ≤ y′x, ∀ x ∈ C} =

{

y

∣

∣

∣

∣

∣

0 ≤ inf
‖(x1,...,xn−1)‖≤xn

y′x

}

,

and it can be shown that Ĉ = C. This property is referred to as self-duality

of the second order cone, and is fairly evident from Fig. 6.1.2. For a proof,
we write

inf
‖(x1,...,xn−1)‖≤xn

y′x = inf
xn≥0

{

ynxn + inf
‖(x1,...,xn−1)‖≤xn

n−1
∑

i=1

yixi

}

= inf
xn≥0

{

ynxn − ‖(y1, . . . , yn−1)‖ xn

}

=

{

0 if ‖(y1, . . . , yn−1)‖ ≤ yn,
−∞ otherwise.

Combining the last two relations, we have

y ∈ Ĉ if and only if 0 ≤ yn − ‖(y1, . . . , yn−1)‖,

so Ĉ = C.
Note that linear inequality constraints of the form a′ix − bi ≥ 0 can

be written as
(

0
a′i

)

x−
(

0
bi

)

∈ Ci,

where Ci is the second order cone of ℜ2. As a result, linear conic problems
involving second order cones contain as special cases linear programming
problems.

Sec. 6.1 Special Problem Structures 259

x1

x2

x3

x1

1 x2

2 x3

Figure 6.1.2. The second order cone

C =

{

(x1, . . . , xn) | xn ≥
√

x2
1 + · · · + x2

n−1

}

,

in ℜ3.

The second order cone programming problem (SOCP for short) is

minimize c′x

subject to Aix− bi ∈ Ci, i = 1, . . . ,m,
(6.18)

where x ∈ ℜn, c is a vector in ℜn, and for i = 1, . . . ,m, Ai is an ni × n
matrix, bi is a vector in ℜni , and Ci is the second order cone of ℜni . It is
seen to be a special case of the primal problem in the left-hand side of the
duality relation (6.15), where

A =





A1
...
Am



 , b =





b1
...
bm



 , C = C1 × · · · × Cm.

Thus from the right-hand side of the duality relation (6.15), we see
that the corresponding dual linear conic problem has the form

maximize

m
∑

i=1

b′iλi

subject to

m
∑

i=1

A′
iλi = c, λi ∈ Ci, i = 1, . . . ,m,

(6.19)

260 Convex Optimization Algorithms Chap. 6

where λ = (λ1, . . . , λm). By applying the duality result of Prop. 6.1.1, we
have the following proposition.

Proposition 6.1.2: (Second Order Cone Duality Theorem)
Consider the primal SOCP (6.18), and its dual problem (6.19).

(a) If the optimal value of the primal problem is finite and there
exists a feasible solution x such that

Aix− bi ∈ int(Ci), i = 1, . . . ,m,

then there is no duality gap, and the dual problem has an optimal
solution.

(b) If the optimal value of the dual problem is finite and there exists
a feasible solution λ = (λ1, . . . , λm) such that

λi ∈ int(Ci), i = 1, . . . ,m,

then there is no duality gap, and the primal problem has an
optimal solution.

Note that while Prop. 6.1.1 requires a relative interior point condition,
the preceding proposition requires an interior point condition. The reason
is that the second order cone has nonempty interior, so its relative interior
coincides with its interior.

The SOCP arises in many application contexts, and significantly, it
can be solved numerically with powerful specialized algorithms that belong
to the class of interior point methods, discussed in Section 6.7. We refer to
the literature for a more detailed description and analysis (see e.g., Ben-Tal
and Nemirovski [BeT01], and Boyd and Vanderbergue [BoV04]).

Generally, SOCPs can be recognized from the presence of convex
quadratic functions in the cost or the constraint functions. The following
are illustrative examples.

Example 6.1.2: (Robust Linear Programming)

Frequently, there is uncertainty about the data of an optimization problem,
so one would like to have a solution that is adequate for a whole range of
the uncertainty. A popular formulation of this type, is to assume that the
constraints contain parameters that take values in a given set, and require
that the constraints are satisfied for all values in that set.

As an example, consider the problem

minimize c′x

subject to a′jx ≤ bj , ∀ (aj , bj) ∈ Tj , j = 1, . . . , r,
(6.20)

Sec. 6.1 Special Problem Structures 261

where c ∈ ℜn is a given vector, and Tj is a given subset of ℜn+1 to which
the constraint parameter vectors (aj , bj) must belong. The vector x must
be chosen so that the constraint a′jx ≤ bj is satisfied for all (aj , bj) ∈ Tj ,
j = 1, . . . , r.

Generally, when Tj contains an infinite number of elements, this prob-
lem involves a correspondingly infinite number of constraints. To convert the
problem to one involving a finite number of constraints, we note that

a′jx ≤ bj , ∀ (aj , bj) ∈ Tj if and only if gj(x) ≤ 0,

where

gj(x) = sup
(aj,bj)∈Tj

{a′jx− bj}. (6.21)

Thus, the robust linear programming problem (6.20) is equivalent to

minimize c′x

subject to gj(x) ≤ 0, j = 1, . . . , r.

For special choices of the set Tj , the function gj can be expressed in
closed form, and in the case where Tj is an ellipsoid, it turns out that the
constraint gj(x) ≤ 0 can be expressed in terms of a second order cone. To see
this, let

Tj =
{

(aj + Pjuj , bj + q′juj) | ‖uj‖ ≤ 1
}

, (6.22)

where Pj is a given matrix, aj and qj are given vectors, and bj is a given
scalar. Then, from Eqs. (6.21) and (6.22),

gj(x) = sup
‖uj‖≤1

{

(aj + Pjuj)
′x− (bj + q′juj)

}

= sup
‖uj‖≤1

(P ′
jx− qj)

′uj + a′jx− bj ,

and finally

gj(x) = ‖P ′
jx− qj‖ + a′jx− bj .

Thus,

gj(x) ≤ 0 if and only if (P ′
jx− qj , bj − a′jx) ∈ Cj ,

where Cj is the second order cone; i.e., the “robust” constraint gj(x) ≤ 0
is equivalent to a second order cone constraint. It follows that in the case
of ellipsoidal uncertainty, the robust linear programming problem (6.20) is a
SOCP of the form (6.18).

262 Convex Optimization Algorithms Chap. 6

Example 6.1.3: (Quadratically Constrained Quadratic
Problems)

Consider the quadratically constrained quadratic problem

minimize x′Q0x+ 2q′0x+ p0

subject to x′Qjx+ 2q′jx+ pj ≤ 0, j = 1, . . . , r,

where Q0, . . . , Qr are symmetric n × n positive definite matrices, q0, . . . , qr

are vectors in ℜn, and p0, . . . , pr are scalars. We show that the problem can
be converted to the second order cone format. A similar conversion is also
possible for the quadratic programming problem where Q0 is positive definite
and Qj = 0, j = 1, . . . , r.

Indeed, since each Qj is symmetric and positive definite, we have

x′Qjx+ 2q′jx+ pj =
(

Q
1/2
j x

)′

Q
1/2
j x+ 2

(

Q
−1/2
j qj

)′

Q
1/2
j x+ pj

= ‖Q
1/2
j x+Q

−1/2
j qj‖

2 + pj − q′jQ
−1
j qj ,

for j = 0, 1, . . . , r. Thus, the problem can be written as

minimize ‖Q
1/2
0 x+Q

−1/2
0 q0‖

2 + p0 − q′0Q
−1
0 q0

subject to ‖Q
1/2
j x+Q

−1/2
j qj‖

2 + pj − q′jQ
−1
j qj ≤ 0, j = 1, . . . , r,

or, by neglecting the constant p0 − q′0Q
−1
0 q0,

minimize ‖Q
1/2
0 x+Q

−1/2
0 q0‖

subject to ‖Q
1/2
j x+Q

−1/2
j qj‖ ≤

(

q′jQ
−1
j qj − pj

)1/2
, j = 1, . . . , r.

By introducing an auxiliary variable xn+1, the problem can be written as

minimize xn+1

subject to ‖Q
1/2
0 x+Q

−1/2
0 q0‖ ≤ xn+1

‖Q
1/2
j x+Q

−1/2
j qj‖ ≤

(

q′jQ
−1
j qj − pj

)1/2
, j = 1, . . . , r.

It can be seen that this problem has the second order cone form (6.18).
We finally note that the problem of this example is special in that it

has no duality gap, assuming its optimal value is finite, i.e., there is no need
for the interior point conditions of Prop. 6.1.2. This can be traced to the fact
that linear transformations preserve the closure of sets defined by quadratic
constraints (see e.g., BNO03], Section 1.5.2).

Sec. 6.1 Special Problem Structures 263

Semidefinite Programming

Consider the space of symmetric n× n matrices, viewed as the space ℜn2

with the inner product

< X,Y >= trace(XY) =

n
∑

i=1

n
∑

j=1

xijyij .

Let D be the cone of matrices that are positive semidefinite, called the
positive semidefinite cone.

The dual cone is

D̂ =
{

Y | trace(XY) ≥ 0, ∀ X ∈ D
}

,

and it can be shown that D̂ = D, i.e., D is self-dual. Indeed, if Y /∈ D,
there exists a vector v ∈ ℜn such that

0 > v′Y v = trace(vv′Y).

Hence the positive semidefinite matrix X = vv′ satisfies 0 > trace(XY),
so Y /∈ D̂ and it follows that D ⊃ D̂. Conversely, let Y ∈ D, and let X be
any positive semidefinite matrix. We can express X as

X =

n
∑

i=1

λieie′i,

where λi are the nonnegative eigenvalues of X , and ei are corresponding
orthonormal eigenvectors. Then,

trace(XY) = trace

(

Y

n
∑

i=1

λieie′i

)

=

n
∑

i=1

λie′iY ei ≥ 0.

It follows that Y ∈ D̂, and D ⊂ D̂.
Consider the space of symmetric n× n matrices, viewed as the space

ℜn2
with the inner product

< X,Y >= trace(XY) =

n
∑

i=1

n
∑

j=1

xijyij .

Let D be the cone of positive semidefinite matrices, and note that as shown
earlier D = D̂, and that its interior is the set of positive definite matrices.

The semidefinite programming problem (SDP for short) is to mini-
mize a linear function of a symmetric matrix over the intersection of an
affine set with the positive semidefinite cone. It has the form

minimize < C,X >

subject to < Ai, X >= bi, i = 1, . . . ,m, X ∈ D,
(6.23)

264 Convex Optimization Algorithms Chap. 6

where C, A1, . . . , Am, are given n× n symmetric matrices, and b1, . . . , bm,
are given scalars. It is seen to be a special case of the primal problem in
the left-hand side of the duality relation (6.14).

The SDP is a fairly general problem. In particular, it can also be
shown that a SOCP can be cast as a SDP (see Exercise 6.3). Thus SDP
involves a more general structure than SOCP. This is consistent with the
practical observation that the latter problem is generally more amenable
to computational solution.

We can view the SDP as a problem with linear cost, linear constraints,
and a convex set constraint (as in Section 5.3.3). Then, similar to the case
of SOCP, it can be verified that the dual problem (6.13), as given by the
right-hand side of the duality relation (6.14), takes the form

maximize b′λ

subject to C − (λ1A1 + · · · + λmAm) ∈ D,
(6.24)

where b = (b1, . . . , bm) and the maximization is over the vector λ =
(λ1, . . . , λm). By applying the duality result of Prop. 6.1.1, we have the
following proposition.

Proposition 6.1.3: (Semidefinite Duality Theorem) Consider
the primal SDP (6.23), and its dual problem (6.24).

(a) If the optimal value of the primal problem is finite and there
exists a primal-feasible solution, which is positive definite, then
there is no duality gap, and the dual problem has an optimal
solution.

(b) If the optimal value of the dual problem is finite and there exist
scalars λ1, . . . , λm such that C− (λ1A1 + · · ·+λmAm) is positive
definite, then there is no duality gap, and the primal problem
has an optimal solution.

Example 6.1.4: (Minimizing the Maximum Eigenvalue)

Given a symmetric n×n matrix M(λ), which depends on a parameter vector
λ = (λ1, . . . , λm), we want to choose λ so as to minimize the maximum
eigenvalue of M(λ). We pose this problem as

minimize z

subject to maximum eigenvalue of M(λ) ≤ z,

or equivalently

minimize z

subject to zI −M(λ) ∈ D,

Sec. 6.1 Special Problem Structures 265

where I is the n×n identity matrix, and D is the semidefinite cone. If M(λ)
is an affine function of λ,

M(λ) = C + λ1M1 + · · · + λmMm,

the problem has the form of the dual problem (6.24), with the optimization
variables being (z, λ1, . . . , λm).

Example 6.1.5: (Lower Bounds for Discrete Optimization
Problems)

Semidefinite programming has provided an effective means for deriving lower
bounds to the optimal value of several types of discrete optimization prob-
lems. As an example, consider the following quadratic problem with quadratic
equality constraints

minimize x′Q0x+ a′0x+ b0

subject to x′Qix+ a′ix+ bi = 0, i = 1, . . . ,m,
(6.25)

where Q0, . . . , Qm are symmetric n × n matrices, a0, . . . , am are vectors in
ℜn, and b0, . . . , bm are scalars.

This problem can be used to model broad classes of discrete optimiza-
tion problems. To see this, consider an integer constraint that a variable xi

must be either 0 or 1. Such a constraint can be expressed by the quadratic
equality x2

i −xi = 0. Furthermore, a linear inequality constraint a′jx ≤ bj can
be expressed as the quadratic equality constraint y2

j + a′jx− bj = 0, where yj

is an additional variable.
Introducing a multiplier vector λ = (λ1, . . . , λm), the dual function is

given by
q(λ) = inf

x∈ℜn

{

x′Q(λ)x+ a(λ)′x+ b(λ)
}

,

where

Q(λ) = Q0 +

m
∑

i=1

λiQi, a(λ) = a0 +

m
∑

i=1

λiai, b(λ) = b0 +

m
∑

i=1

λibi.

Let f∗ and q∗ be the optimal values of problem (6.25) and its dual,
and note that by weak duality, we have f∗ ≥ q∗. By introducing an auxiliary
scalar variable ξ, we see that the dual problem is to find a pair (ξ, λ) that
solves the problem

maximize ξ

subject to q(λ) ≥ ξ.

The constraint q(λ) ≥ ξ of this problem can be written as

inf
x∈ℜn

{

x′Q(λ)x+ a(λ)′x+ b(λ) − ξ
}

≥ 0,

266 Convex Optimization Algorithms Chap. 6

or equivalently, introducing a scalar variable t,

inf
x∈ℜn, t∈ℜ

{

(tx)′Q(λ)(tx) + a(λ)′(tx)t+
(

b(λ) − ξ
)

t2
}

≥ 0,

or equivalently,

inf
x∈ℜn, t∈ℜ

{

x′Q(λ)x+ a(λ)′xt+
(

b(λ) − ξ
)

t2
}

≥ 0,

or equivalently,
(

Q(λ) 1
2
a(λ)

1
2
a(λ)′ b(λ) − ξ

)

∈ D, (6.26)

whereD is the positive semidefinite cone. Thus the dual problem is equivalent
to the SDP of maximizing ξ over all (ξ, λ) satisfying the constraint (6.26), and
its optimal value q∗ is a lower bound to f∗.

6.2 ALGORITHMIC DESCENT - STEEPEST DESCENT

Most of the algorithms for minimizing a convex function f : ℜn 7→ ℜ over
a convex set X generate a sequence {xk} ⊂ X and involve one or both of
two principal ideas:

(a) Iterative descent , whereby the generated sequence {xk} satisfies

φ(xk+1) < φ(xk) if and only if xk is not optimal,

where φ is a merit function, that measures the progress of the algo-
rithm towards optimality, and is minimized only at optimal points,
i.e.,

arg min
x∈X

φ(x) = arg min
x∈X

f(x).

Examples are φ(x) = f(x) and φ(x) = minx∗∈X∗ ‖x− x∗‖, where X∗

is the set of minima of f over X , assumed nonempty and closed.

(b) Approximation, whereby the generated sequence {xk} is obtained by
solving at each k an approximation to the original optimization prob-
lem, i.e.,

xk+1 ∈ arg min
x∈Xk

Fk(x),

where Fk is a function that approximates f and Xk is a set that
approximates X . These may depend on the prior iterates x0, . . . , xk,
as well as other parameters. Key ideas here are that minimization
of Fk over Xk should be easier than minimization of f over X , and
that xk should be a good starting point for obtaining xk+1 via some
(possibly special purpose) method. Of course, the approximation of

Sec. 6.2 Algorithmic Descent - Steepest Descent 267

f by Fk and/or X by Xk should improve as k increases, and there
should be some convergence guarantees as k → ∞.

The methods to be discussed in this chapter revolve around combina-
tions of these ideas, and are often directed towards solving dual problems
of fairly complex primal optimization problems. Of course, an implicit
assumption here is that there is special structure that favors the use of
duality. We start with a discussion of the descent approach in this sec-
tion, and we continue with it in Sections 6.3, 6.8, and 6.9. We discuss the
approximation approach in Sections 6.4-6.7.

Steepest Descent

A natural iterative descent approach to minimizing f over X is based on
cost improvement: starting with a point x0 ∈ X , construct a sequence
{xk} ⊂ X such that

f(xk+1) < f(xk), k = 0, 1, . . . ,

unless xk is optimal for some k, in which case the method stops. For
example, if X = ℜn and dk is a descent direction at xk, in the sense that
the directional derivative f ′(xk; dk) is negative, we may effect descent by
moving from xk by a small amount along dk. This suggests a descent
algorithm of the form

xk+1 = xk + αkdk,

where dk is a descent direction, and αk is a positive stepsize, which is small
enough so that f(xk+1) < f(xk).

For the case where f is differentiable and X = ℜn, there are many
popular algorithms based on cost improvement. For example, in the clas-
sical gradient method, we use dk = −∇f(xk). Since for a differentiable f
we have

f ′(xk; d) = ∇f(xk)′d,

it follows that
dk

‖dk‖
= arg min

‖d‖≤1
f ′(xk; d),

[assuming that ∇f(xk) 6= 0]. Thus the gradient method uses the direction
with greatest rate of cost improvement, and for this reason it is also called
the method of steepest descent .

More generally, for minimization of a real-valued convex function f :
ℜn 7→ ℜ, let us view the steepest descent direction at x as the solution of
the problem

minimize f ′(x; d)

subject to ‖d‖ ≤ 1.
(6.27)

268 Convex Optimization Algorithms Chap. 6

We will show that this direction is −g∗, where g∗ is the vector of minimum
norm in ∂f(x).

Indeed, we recall from Prop. 5.4.8, that f ′(x; ·) is the support function
of the nonempty and compact subdifferential ∂f(x),

f ′(x; d) = max
g∈∂f(x)

d′g, ∀ x, d ∈ ℜn. (6.28)

Next we note that the sets
{

d | ‖d‖ ≤ 1
}

and ∂f(x) are compact, and the
function d′g is linear in each variable when the other variable is fixed, so
by Prop. 5.5.3, we have

min
‖d‖≤1

max
g∈∂f(x)

d′g = max
g∈∂f(x)

min
‖d‖≤1

d′g,

and a saddle point exists. Furthermore, according to Prop. 3.4.1, for any
saddle point (d∗, g∗), g∗ maximizes the function min‖d‖≤1 d′g = −‖g‖ over
∂f(x), so g∗ is the unique vector of minimum norm in ∂f(x). Moreover,
d∗ minimizes maxg∈∂f(x) d′g or equivalently f ′(x; d) [by Eq. (6.28)] subject
to ‖d‖ ≤ 1 (so it is a direction of steepest descent), and minimizes d′g∗

subject to ‖d‖ ≤ 1, so it has the form

d∗ = − g∗

‖g∗‖

[except if 0 ∈ ∂f(x), in which case d∗ = 0]. In conclusion, for each x ∈ ℜn,
the opposite of the vector of minimum norm in ∂f(x) is the unique direction

of steepest descent.

The steepest descent method has the form

xk+1 = xk − αkgk,

where gk is the vector of minimum norm in ∂f(xk), and αk is a positive
stepsize such that f(xk+1) < f(xk) (assuming that xk is not optimal, which
is true if and only if gk 6= 0).

One limitation of the steepest descent method is that it does not
easily generalize to extended real-valued functions f because ∂f(xk) may
be empty for xk at the boundary of dom(f). Another limitation is that
it requires knowledge of the set ∂f(x), as well as finding the minimum
norm vector on this set (a potentially nontrivial optimization problem). A
third serious drawback of the method is that it may get stuck far from the
optimum, depending on the stepsize rule. Somewhat surprisingly, this can
happen even if the stepsize αk is chosen to minimize f along the halfline

{xk − αgk | α ≥ 0}.

An example is given in Exercise 6.8. The difficulty in this example is that
at the limit, f is nondifferentiable and has subgradients that cannot be

Sec. 6.3 Subgradient Methods 269

approximated by subgradients at the iterates, arbitrarily close to the limit.
Thus, the steepest descent direction may undergo a large/discontinuous
change as we pass to the convergence limit. By contrast, this would not
happen if f were continuously differentiable at the limit, and in fact the
steepest descent method has sound convergence properties when used for
minimization of differentiable functions.

The limitations of steepest descent motivate alternative algorithmic
approaches that are not based on cost function descent. We focus pri-
marily on such approaches in the remainder of this chapter, as they are
far more popular than the descent approach for convex nondifferentiable
problems. This is in sharp contrast with differentiable problems, where
algorithms based on steepest descent, Newton’s method, and their variants
are dominant. We will return to steepest descent and related approaches
in Section 6.9, where we will discuss some special methods with optimal
computational complexity.

6.3 SUBGRADIENT METHODS

The simplest form of a subgradient method for minimizing a real-valued
convex function f : ℜn 7→ ℜ over a closed convex set X is given by

xk+1 = PX(xk − αkgk), (6.29)

where gk is a subgradient of f at xk, αk is a positive stepsize, and PX(·)
denotes projection on the set X . Thus a single subgradient is required at
each iteration, rather than the entire subdifferential. This is often a major
advantage.

The following example shows how to compute a subgradient of func-
tions arising in duality and minimax contexts, without computing the full
subdifferential.

Example 6.3.1: (Subgradient Calculation in Minimax
Problems)

Let
f(x) = sup

z∈Z

φ(x, z), (6.30)

where x ∈ ℜn, z ∈ ℜm, φ : ℜn × ℜm 7→ (−∞,∞] is a function, and Z is a
subset of ℜm. We assume that φ(·, z) is convex and closed for each z ∈ Z, so f
is also convex and closed. For a fixed x ∈ dom(f), let us assume that zx ∈ Z
attains the supremum in Eq. (6.30), and that gx is some subgradient of the
convex function φ(·, zx), i.e., gx ∈ ∂φ(x, zx). Then by using the subgradient
inequality, we have for all y ∈ ℜn,

f(y) = sup
z∈Z

φ(y, z) ≥ φ(y, zx) ≥ φ(x, zx) + g′x(y − x) = f(x) + g′x(y − x),

270 Convex Optimization Algorithms Chap. 6

i.e., gx is a subgradient of f at x, so

gx ∈ ∂φ(x, zx) ⇒ gx ∈ ∂f(x).

We have thus obtained a convenient method for calculating a single
subgradient of f at x at little extra cost, once a maximizer zx ∈ Z of φ(x, ·)
has been found. On the other hand, calculating the entire subdifferential
∂f(x) may be much more complicated.

Example 6.3.2: (Subgradient Calculation in Dual Problems)

Consider the problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,

and its dual
maximize q(µ)

subject to µ ≥ 0,

where f : ℜn 7→ ℜ, g : ℜn 7→ ℜr are given functions, X is a subset of ℜn, and

q(µ) = inf
x∈X

L(x,µ) = inf
x∈X

{

f(x) + µ′g(x)
}

is the dual function.
For a given µ ∈ ℜr, suppose that xµ minimizes the Lagrangian over

x ∈ X,
xµ ∈ arg min

x∈X

{

f(x) + µ′g(x)
}

.

Then we claim that −g(xµ) is a subgradient of the negative of the dual function

f = −q at µ, i.e.,

q(ν) ≤ q(µ) + (ν − µ)′g(xµ), ∀ ν ∈ ℜr .

This is a special case of the preceding example, and can also be verified
directly by writing for all ν ∈ ℜr,

q(ν) = inf
x∈X

{

f(x) + ν′g(x)
}

≤ f(xµ) + ν′g(xµ)

= f(xµ) + µ′g(xµ) + (ν − µ)′g(xµ)

= q(µ) + (ν − µ)′g(xµ).

Note that this calculation is valid for all µ ∈ ℜr for which there is a minimizing
vector xµ, and yields a subgradient of the function

− inf
x∈X

{

f(x) + µ′g(x)
}

,

Sec. 6.3 Subgradient Methods 271

regardless of whether µ ≥ 0.

An important characteristic of the subgradient method (6.29) is that
the new iterate may not improve the cost for any value of the stepsize; i.e.,
for some k, we may have

f
(

PX(xk − αgk)
)

> f(xk), ∀ α > 0,

(see Fig. 6.3.1). However, if the stepsize is small enough, the distance of
the current iterate to the optimal solution set is reduced (this is illustrated
in Fig. 6.3.2). Essential for this is the following nonexpansion property of
the projection†

‖PX(x) − PX(y)‖ ≤ ‖x− y‖, ∀ x, y ∈ ℜn. (6.31)

Part (b) of the following proposition provides a formal proof of the distance
reduction property and an estimate for the range of appropriate stepsizes.

† To show the nonexpansion property, note that from Prop. 1.1.9,

(

z − PX(x)
)′(

x− PX(x)
)

≤ 0, ∀ z ∈ X.

Since PX(y) ∈ X, we obtain

(

PX(y) − PX(x)
)′(

x− PX(x)
)

≤ 0.

Similarly,
(

PX(x) − PX(y)
)′(

y − PX(y)
)

≤ 0.

By adding these two inequalities, we see that

(

PX(y) − PX(x)
)′(

x− PX(x) − y + PX(y)
)

≤ 0.

By rearranging and by using the Schwarz inequality, we have

∥

∥PX(y) − PX(x)
∥

∥

2
≤
(

PX(y) − PX(x)
)′

(y − x) ≤
∥

∥PX(y) − PX(x)
∥

∥ · ‖y − x‖,

from which the nonexpansion property of the projection follows.

272 Convex Optimization Algorithms Chap. 6

M

mk

mk + sgk

m*

Level sets of q

mk+1 =PM
 (mk + s gk)

Level sets of f

X
xk

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

gk

∂f(xk)

Figure 6.3.1. Illustration of how the iterate PX(xk −αgk) may not improve the
cost function with a particular choice of subgradient gk, regardless of the value of
the stepsize α.

M

mk

mk + s kgk

mk+1 =PM
 (mk + s kgk)

m*

< 90
o

Level sets of qLevel sets of f X

xk

x∗

xk+1 = PX(xk − αkgk)

xk − αkgk

< 90◦

Figure 6.3.2. Illustration of how, given a nonoptimal xk, the distance to any
optimal solution x∗ is reduced using a subgradient iteration with a sufficiently
small stepsize. The crucial fact, which follows from the definition of a subgradient,
is that the angle between the subgradient gk and the vector x∗ − xk is greater
than 90 degrees. As a result, if αk is small enough, the vector xk −αkgk is closer
to x∗ than xk. Through the projection on X, PX(xk − αkgk) gets even closer to
x∗.

Sec. 6.3 Subgradient Methods 273

Proposition 6.3.1: Let {xk} be the sequence generated by the sub-
gradient method. Then, for all y ∈ X and k ≥ 0:

(a) We have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk) − f(y)
)

+ α2
k‖gk‖2.

(b) If f(y) < f(xk), we have

‖xk+1 − y‖ < ‖xk − y‖,

for all stepsizes αk such that

0 < αk <
2
(

f(xk) − f(y)
)

‖gk‖2
.

Proof: (a) Using the nonexpansion property of the projection [cf. Eq.
(6.31)], we obtain for all y ∈ X and k,

‖xk+1 − y‖2 =
∥

∥PX (xk − αkgk) − y
∥

∥

2

≤ ‖xk − αkgk − y‖2

= ‖xk − y‖2 − 2αkg′k(xk − y) + α2
k‖gk‖2

≤ ‖xk − y‖2 − 2αk

(

f(xk) − f(y)
)

+ α2
k‖gk‖2,

where the last inequality follows from the subgradient inequality.

(b) Follows from part (a). Q.E.D.

Part (b) of the preceding proposition suggests the stepsize rule

αk =
f(xk) − f∗

‖gk‖2
, (6.32)

where f∗ is the optimal value. This rule selects αk to be in the middle of
the range

(

0,
2
(

f(xk) − f(x∗)
)

‖gk‖2

)

where x∗ is an optimal solution [cf. Prop. 6.3.1(b)], and reduces the distance
of the current iterate to x∗.

Unfortunately, however, the stepsize (6.32) requires that we know f∗,
which is rare. In practice, one must use some simpler scheme for selecting

274 Convex Optimization Algorithms Chap. 6

Optimal Solution

Set

Level Set {! | q(!) ! q* - sC2/2}

!"

Level set
t

{

x | f(x) ≤ f∗ + αc2/2
}

Optimal solution set

t x0

Figure 6.3.3. Illustration of a principal convergence property of the subgradient
method with a constant stepsize α, and assuming a bound c on the subgradient
norms ‖gk‖. When the current iterate is outside the level set

{

x

∣

∣

∣
f(x) ≤ f∗ +

αc2

2

}

,

the distance to any optimal solution is reduced at the next iteration. As a result
the method gets arbitrarily close to (or inside) this level set.

a stepsize. The simplest possibility is to select αk to be the same for all
k, i.e., αk ≡ α for some α > 0. Then, if the subgradients gk are bounded
(‖gk‖ ≤ c for some constant c and all k), Prop. 6.3.1(a) shows that for all
optimal solutions x∗, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2α
(

f(xk) − f∗
)

+ α2c2,

and implies that the distance to x∗ decreases if

0 < α <
2
(

f(xk) − f∗
)

c2

or equivalently, if xk is outside the level set
{

x
∣

∣

∣ f(x) ≤ f∗ +
αc2

2

}

;

(see Fig. 6.3.3). Thus, if α is taken to be small enough, the convergence
properties of the method are satisfactory. Since a small stepsize may re-
sult in slow initial progress, it is common to use a variant of this approach
whereby we start with moderate stepsize values αk, which are progressively
reduced up to a small positive value α, using some heuristic scheme. An
example will be discussed at the end of the present section. Other possi-
bilities for stepsize choice include a diminishing stepsize, whereby αk → 0,
and schemes that replace the unknown optimal value f∗ in Eq. (6.32) with
an estimate.

Sec. 6.3 Subgradient Methods 275

Convergence Analysis

We will now discuss the convergence of the subgradient method

xk+1 = PX(xk − αkgk).

Throughout our analysis in this section, we denote by {xk} the correspond-
ing generated sequence, we write

f∗ = inf
x∈X

f(x), X∗ =
{

x ∈ X | f(x) = f∗
}

, f = lim inf
k→∞

f(xk),

and we assume the following:

Assumption 6.3.1: (Subgradient Boundedness) For some scalar
c, we have

c ≥ sup
k≥0

{

‖g‖ | g ∈ ∂f(xk)
}

.

We note that Assumption 6.3.1 is satisfied if f is polyhedral, an im-
portant special case in practice (cf. Example 6.1.1). Furthermore, if X is
compact, then Assumption 6.3.1 is satisfied [see Prop. 5.4.2(a)]. Similarly,
Assumption 6.3.1 will hold if it can be ascertained somehow that {xk} is
bounded.

We will consider three different types of stepsize rules:

(a) A constant stepsize.

(b) A diminishing stepsize.

(c) A dynamically chosen stepsize based on the value f∗ [cf. Prop. 6.3.1(b)]
or a suitable estimate.

We first consider the case of a constant stepsize rule.

Proposition 6.3.2: Assume that αk is fixed at some positive scalar α.

(a) If f∗ = −∞, then f = f∗.

(b) If f∗ > −∞, then

f ≤ f∗ +
αc2

2
.

Proof: We prove (a) and (b) simultaneously. If the result does not hold,
there must exist an ǫ > 0 such that

f > f∗ +
αc2

2
+ 2ǫ.

276 Convex Optimization Algorithms Chap. 6

Let ŷ ∈ X be such that

f ≥ f(ŷ) +
αc2

2
+ 2ǫ,

and let k0 be large enough so that for all k ≥ k0 we have

f(xk) ≥ f − ǫ.

By adding the preceding two relations, we obtain for all k ≥ k0,

f(xk) − f(ŷ) ≥ αc2

2
+ ǫ.

Using Prop. 6.3.1(a) for the case where y = ŷ together with the above
relation and Assumption 6.3.1, we obtain for all k ≥ k0,

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2αǫ.

Thus we have

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2αǫ

≤ ‖xk−1 − ŷ‖2 − 4αǫ

· · ·
≤ ‖xk0 − ŷ‖2 − 2(k + 1 − k0)αǫ,

which cannot hold for k sufficiently large – a contradiction. Q.E.D.

The next proposition gives an estimate of the number of iterations
needed to guarantee a level of optimality up to the threshold tolerance
αc2/2 given in the preceding proposition. As can be expected, the number
of necessary iterations depends on the distance

d(x0) = min
x∗∈X∗

‖x0 − x∗‖,

of the initial point x0 to the optimal solution set X∗.

Proposition 6.3.3: Assume that αk is fixed at some positive scalar α,
and that X∗ is nonempty. Then for any positive scalar ǫ, we have

min
0≤k≤K

f(xk) ≤ f∗ +
αc2 + ǫ

2
, (6.33)

where

K =

⌊

d(x0)2

αǫ

⌋

.

Sec. 6.3 Subgradient Methods 277

Proof: Assume, to arrive at a contradiction, that Eq. (6.33) does not hold,
so that for all k with 0 ≤ k ≤ K, we have

f(xk) > f∗ +
αc2 + ǫ

2
.

By using this relation in Prop. 6.3.1(a) with y ∈ X∗ and αk = α, we obtain
for all k with 0 ≤ k ≤ K,

min
x∗∈X∗

‖xk+1 − x∗‖2 ≤ min
x∗∈X∗

‖xk − x∗‖2 − 2α
(

f(xk) − f∗
)

+α2c2

≤ min
x∗∈X∗

‖xk − x∗‖2 − (α2c2 + αǫ) + α2c2

= min
x∗∈X∗

‖xk − x∗‖2 − αǫ.

Summation of the above inequalities over k for k = 0, . . . ,K, yields

min
x∗∈X∗

‖xK+1 − x∗‖2 ≤ min
x∗∈X∗

‖x0 − x∗‖2 − (K + 1)αǫ,

so that
min

x∗∈X∗
‖x0 − x∗‖2 − (K + 1)αǫ ≥ 0,

which contradicts the definition of K. Q.E.D.

By letting α = ǫ/c2, we see from the preceding proposition that we
can obtain an ǫ-optimal solution in O(1/ǫ2) iterations of the subgradient
method. Note that the number of iterations is independent of the dimension
n of the problem.

We next consider the case where the stepsize αk diminishes to zero,
but satisfies

∑∞
k=0 αk = ∞ [for example, αk = β/(k + γ), where β and γ

are some positive scalars]. This condition is needed so that the method can
“travel” infinitely far if necessary to attain convergence; otherwise, if

min
x∗∈X∗

‖x0 − x∗‖ > c
∞
∑

k=0

αk,

where c is the constant in Assumption 6.3.1, convergence to X∗ starting
from x0 is impossible.

Proposition 6.3.4: If αk satisfies

lim
k→∞

αk = 0,

∞
∑

k=0

αk = ∞,

then f = f∗.

278 Convex Optimization Algorithms Chap. 6

Proof: Assume, to arrive at a contradiction, that the above relation does
not hold, so there exists an ǫ > 0 such that

f − 2ǫ > f∗.

Then there exists a point ŷ ∈ X such that

f − 2ǫ > f(ŷ).

Let k0 be large enough so that for all k ≥ k0, we have

f(xk) ≥ f − ǫ.

By adding the preceding two relations, we obtain for all k ≥ k0,

f(xk) − f(ŷ) > ǫ.

By setting y = ŷ in Prop. 6.3.1(a), and by using the above relation and
Assumption 6.3.1, we have for all k ≥ k0,

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2αkǫ+ α2
kc

2 = ‖xk − ŷ‖2 − αk (2ǫ− αkc2) .

Since αk → 0, without loss of generality, we may assume that k0 is large
enough so that

2ǫ− αkc2 ≥ ǫ, ∀ k ≥ k0.

Therefore for all k ≥ k0 we have

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − αkǫ ≤ · · · ≤ ‖xk0 − ŷ‖2 − ǫ

k
∑

j=k0

αj ,

which cannot hold for k sufficiently large. Q.E.D.

We now discuss the stepsize rule

αk = γk
f(xk) − f∗

‖gk‖2
, 0 < γ ≤ γk ≤ γ < 2, ∀ k ≥ 0, (6.34)

where γ and γ are some scalars. We first consider the case where f∗ is
known. We later modify the stepsize, so that f∗ can be replaced by a
dynamically updated estimate.

Proposition 6.3.5: Assume that X∗ is nonempty. Then, if αk is
determined by the dynamic stepsize rule (6.34), {xk} converges to
some optimal solution.

Sec. 6.3 Subgradient Methods 279

Proof: From Prop. 6.3.1(a) with y = x∗ ∈ X∗, we have

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−2αk

(

f(xk)−f∗
)

+α2
k‖gk‖2, ∀ x∗ ∈ X∗, k ≥ 0.

By using the definition of αk [cf. Eq. (6.34)] and the fact ‖gk‖ ≤ c (cf.
Assumption 6.3.1), we obtain

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−γ(2−γ)
(

f(xk) − f∗
)2

c2
, ∀ x∗ ∈ X∗, k ≥ 0.

This implies that {xk} is bounded. Furthermore, f(xk) → f∗, since other-
wise we would have ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ − ǫ for some suitably small
ǫ > 0 and infinitely many k. Hence for any limit point x of {xk}, we have
x ∈ X∗, and since the sequence {‖xk − x∗‖} is decreasing, it converges to
‖x− x∗‖ for every x∗ ∈ X∗. If there are two distinct limit points x̃ and x
of {xk}, we must have x̃ ∈ X∗, x ∈ X∗, and ‖x̃ − x∗‖ = ‖x − x∗‖ for all
x∗ ∈ X∗, which is possible only if x̃ = x. Q.E.D.

In most practical problems the optimal value f∗ is not known. In this
case we may modify the dynamic stepsize (6.34) by replacing f∗ with an
estimate. This leads to the stepsize rule

αk = γk
f(xk) − fk

‖gk‖2
, 0 < γ ≤ γk ≤ γ < 2, ∀ k ≥ 0, (6.35)

where fk is an estimate of f∗. We consider a procedure for updating fk,
whereby fk is given by

fk = min
0≤j≤k

f(xj) − δk, (6.36)

and δk is updated according to

δk+1 =

{

ρδk if f(xk+1) ≤ fk,
max

{

βδk, δ
}

if f(xk+1) > fk,
(6.37)

where δ, β, and ρ are fixed positive constants with β < 1 and ρ ≥ 1.
Thus in this procedure, we essentially “aspire” to reach a target level

fk that is smaller by δk over the best value achieved thus far [cf. Eq. (6.36)].
Whenever the target level is achieved, we increase δk (if ρ > 1) or we keep
it at the same value (if ρ = 1). If the target level is not attained at a given
iteration, δk is reduced up to a threshold δ. This threshold guarantees that
the stepsize αk of Eq. (6.35) is bounded away from zero, since from Eq.
(6.36), we have f(xk) − fk ≥ δ and hence

αk ≥ γ
δ

c2
.

280 Convex Optimization Algorithms Chap. 6

As a result, the method behaves similar to the one with a constant stepsize
(cf. Prop. 6.3.2), as indicated by the following proposition.

Proposition 6.3.6: Assume that αk is determined by the dynamic
stepsize rule (6.35) with the adjustment procedure (6.36)–(6.37). If
f∗ = −∞, then

inf
k≥0

f(xk) = f∗,

while if f∗ > −∞, then

inf
k≥0

f(xk) ≤ f∗ + δ.

Proof: Assume, to arrive at a contradiction, that

inf
k≥0

f(xk) > f∗ + δ. (6.38)

Each time the target level is attained [i.e., f(xk) ≤ fk−1], the current best
function value min0≤j≤k f(xj) decreases by at least δ [cf. Eqs. (6.36) and
(6.37)], so in view of Eq. (6.38), the target value can be attained only a
finite number of times. From Eq. (6.37) it follows that after finitely many
iterations, δk is decreased to the threshold value and remains at that value
for all subsequent iterations, i.e., there is an index k such that

δk = δ, ∀ k ≥ k. (6.39)

In view of Eq. (6.38), there exists y ∈ X such that infk≥0 f(xk)− δ ≥
f(y). From Eqs. (6.36) and (6.39), we have

fk = min
0≤j≤k

f(xj) − δ ≥ inf
k≥0

f(xk) − δ ≥ f(y), ∀ k ≥ k,

so that

αk

(

f(xk) − f(y)
)

≥ αk

(

f(xk) − fk

)

= γk

(

f(xk) − fk

‖gk‖

)2

, ∀ k ≥ k.

By using Prop. 6.3.1(a) with y = y, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk) − f(y)
)

+ α2
k‖gk‖2, ∀ k ≥ 0.

By combining the preceding two relations and the definition of αk [cf.
Eq. (6.35)], we obtain

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2γk

(

f(xk) − fk

‖gk‖

)2

+ γ2
k

(

f(xk) − fk

‖gk‖

)2

= ‖xk − y‖2 − γk(2 − γk)

(

f(xk) − fk

‖gk‖

)2

≤ ‖xk − y‖2 − γ(2 − γ)
δ2

‖gk‖2
, ∀ k ≥ k,

Sec. 6.4 Polyhedral Approximation Methods 281

where the last inequality follows from the facts γk ∈ [γ, γ] and f(xk)−fk ≥
δ for all k. By summing the above inequalities over k and using Assumption
6.3.1, we have

‖xk − y‖2 ≤ ‖xk − y‖2 − (k − k)γ(2 − γ)
δ2

c2
, ∀ k ≥ k,

which cannot hold for sufficiently large k – a contradiction. Q.E.D.

6.4 POLYHEDRAL APPROXIMATION METHODS

In this section, we will discuss methods, which (like the subgradient method)
calculate a single subgradient at each iteration, but use all the subgradi-
ents previously calculated to construct piecewise linear approximations of
the cost function and/or the constraint set. In Sections 6.4.1 and 6.4.2,
we focus on the problem of minimizing a convex function f : ℜn 7→ ℜ
over a closed convex set X , and we assume that at each x ∈ X , a sub-
gradient of f can be computed. In Sections 6.4.3-6.4.5, we discuss various
generalizations.

6.4.1 Outer Linearization - Cutting Plane Methods

Cutting plane methods are rooted in the representation of a closed convex
set as the intersection of its supporting halfspaces. The idea is to ap-
proximate either the constraint set or the epigraph of the cost function by
the intersection of a limited number of halfspaces, and to gradually refine
the approximation by generating additional halfspaces through the use of
subgradients.

The typical iteration of the simplest cutting plane method is to solve
the problem

minimize Fk(x)

subject to x ∈ X,

where the cost function f is replaced by a polyhedral approximation Fk,
constructed using the points x0, . . . , xk generated so far and associated
subgradients g0, . . . , gk, with gi ∈ ∂f(xi) for all i. In particular, for k =
0, 1, . . .,

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x − xk)′gk

}

(6.40)

and xk+1 minimizes Fk(x) over x ∈ X ,

xk+1 ∈ arg min
x∈X

Fk(x); (6.41)

see Fig. 6.4.1. We assume that the minimum of Fk(x) above is attained for
all k. For those k for which this is not guaranteed, artificial bounds may

282 Convex Optimization Algorithms Chap. 6

x0 0 x1x2x3

f(x)

) X

X x

f(x0) + (x − x0)′g0

f(x1) + (x − x1)′g1

x x∗

Figure 6.4.1. Illustration of the cutting plane method. With each new iterate xk,
a new hyperplane f(xk) + (x − xk)′gk is added to the polyhedral approximation
of the cost function.

be placed on the components of x, so that the minimization will be carried
out over a compact set and consequently the minimum will be attained by
Weierstrass’ Theorem.

The following proposition establishes the associated convergence prop-
erties.

Proposition 6.4.1: Every limit point of a sequence {xk} generated
by the cutting plane method is an optimal solution.

Proof: Since for all i, gi is a subgradient of f at xi, we have

f(xi) + (x− xi)′gi ≤ f(x), ∀ x ∈ X,

so from the definitions (6.40) and (6.41) of Fk and xk, it follows that

f(xi) + (xk − xi)′gi ≤ Fk−1(xk) ≤ Fk−1(x) ≤ f(x), ∀ x ∈ X, i < k.
(6.42)

Suppose that a subsequence {xk}K converges to x. Then, since X is closed,
we have x ∈ X , and by using Eq. (6.42), we obtain for all k and all i < k,

f(xi) + (xk − xi)′gi ≤ Fk−1(xk) ≤ Fk−1(x) ≤ f(x).

By taking the upper limit above as i → ∞, k → ∞, i < k, i ∈ K, k ∈ K,
we obtain

lim sup
i→∞, k→∞, i<k

i∈K, k∈K

{

f(xi) + (xk − xi)′gi

}

≤ lim sup
k→∞, k∈K

Fk−1(xk) ≤ f(x).

Sec. 6.4 Polyhedral Approximation Methods 283

Since the subsequence {xk}K is bounded and the union of the subdif-
ferentials of a real-valued convex function over a bounded set is bounded (cf.
Prop. 5.4.2), it follows that the subgradient subsequence {gi}K is bounded.
Therefore we have

lim
i→∞, k→∞, i<k

i∈K, k∈K

(xk − xi)′gi = 0, (6.43)

while by the continuity of f , we have

f(x) = lim
i→∞, i∈K

f(xi). (6.44)

Combining the three preceding relations, we obtain

lim sup
k→∞, k∈K

Fk−1(xk) = f(x).

This equation together with Eq. (6.42) yields

f(x) ≤ f(x), ∀ x ∈ X,

showing that x is an optimal solution. Q.E.D.

Note that the preceding proof goes through even when f is real-
valued and lower-semicontinuous overX (rather than over ℜn), provided we
assume that {gk} is a bounded sequence [Eq. (6.43) then still holds, while
Eq. (6.44) holds as an inequality, but this does not affect the subsequent
argument]. Note also that the inequalities

Fk−1(xk) ≤ f∗ ≤ min
i≤k

f(xi), k = 0, 1, . . . ,

provide bounds to the optimal value f∗ of the problem. In practice,
the iterations are stopped when the upper and lower bound difference
mini≤k f(xi) − Fk−1(xk) comes within some small tolerance.

An important special case arises when f is polyhedral of the form

f(x) = max
i∈I

{

a′ix+ bi
}

, (6.45)

where I is a finite index set, and ai and bi are given vectors and scalars,
respectively. Then, any vector aik that maximizes a′ixk+bi over {ai | i ∈ I}
is a subgradient of f at xk (cf. Example 5.4.4). We assume that the cutting
plane method selects such a vector at iteration k, call it aik . We also assume
that the method terminates when

Fk−1(xk) = f(xk).

284 Convex Optimization Algorithms Chap. 6

Then, since Fk−1(x) ≤ f(x) for all x ∈ X and xk minimizes Fk−1 over X ,
we see that, upon termination, xk minimizes f over X and is therefore op-
timal. The following proposition shows that the method converges finitely;
see also Fig. 6.4.2.

Proposition 6.4.2: Assume that the cost function f is polyhedral of
the form (6.45). Then the cutting plane method, with the subgradi-
ent selection and termination rules just described, obtains an optimal
solution in a finite number of iterations.

Proof: If (aik , bik) is equal to some pair (aij , bij) generated at some earlier
iteration j < k, then

f(xk) = a′ikxk + bik = a′ijxk + bij ≤ Fk−1(xk) ≤ f(xk),

where the first inequality follows since a′ijxk +bij corresponds to one of the

hyperplanes defining Fk−1, and the last inequality follows from the fact
Fk−1(x) ≤ f(x) for all x ∈ X . Hence equality holds throughout in the
preceding relation, and it follows that the method terminates if the pair
(aik , bik) has been generated at some earlier iteration. Since the number of
pairs (ai, bi), i ∈ I, is finite, the method must terminate finitely. Q.E.D.

x0 0 x1x2x3

f(x)

) X

X x

f(x0) + (x − x0)′g0

f(x1) + (x − x1)′g1

x x∗

Figure 6.4.2. Illustration of the finite convergence property of the cutting plane
method in the case where f is polyhedral. What happens here is that if xk is not
optimal, a new cutting plane will be added at the corresponding iteration, and
there can be only a finite number of cutting planes.

Despite the finite convergence property shown in Prop. 6.4.2, the
cutting plane method has several drawbacks:

Sec. 6.4 Polyhedral Approximation Methods 285

(a) It can take large steps away from the optimum, resulting in large
cost increases, even when it is close to (or even at) the optimum.
For example, in Fig. 6.4.2, f(x1) is much larger than f(x0). This
phenomenon is referred to as instability, and has another undesir-
able effect, namely that xk may not be a good starting point for the
algorithm that minimizes Fk(x).

(b) The number of subgradients used in the cutting plane approximation
Fk increases without bound as k → ∞ leading to a potentially large
and difficult linear program to find xk. To remedy this, one may
occasionally discard some of the cutting planes. To guarantee con-
vergence, it is essential to do so only at times when improvement in
the cost is recorded, e.g., f(xk) ≤ mini<k f(xi)−δ for some small pos-
itive δ. Still one has to be judicious about discarding cutting planes,
as some of them may reappear later.

(c) The convergence is often slow. Indeed, for challenging problems, even
when f is polyhedral, one should base termination on the upper and
lower bounds

Fk(xk+1) ≤ min
x∈X

f(x) ≤ min
0≤i≤k+1

f(xi),

rather than wait for finite termination to occur.

To overcome some of the limitations of the cutting plane method, a
number of variants have been proposed, some of which are discussed in the
present section. In Section 6.5 we will discuss proximal methods, which are
aimed at limiting the effects of instability.

Partial Cutting Plane Methods

In some cases the cost function has the form

f(x) + c(x),

where f : X 7→ ℜ and c : X 7→ ℜ are convex functions, but one of them,
say c, is convenient for optimization, e.g., is quadratic. It may then be
preferable to use a piecewise linear approximation of f only, while leaving
c unchanged. This leads to a partial cutting plane algorithm, involving
solution of the problems

minimize Fk(x) + c(x)

subject to x ∈ X,

where as before

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x − xk)′gk

}

(6.46)

286 Convex Optimization Algorithms Chap. 6

with gi ∈ ∂f(xi) for all i, and xk+1 minimizes Fk(x) over x ∈ X ,

xk+1 ∈ arg min
x∈X

{

Fk(x) + c(x)
}

.

The convergence properties of this algorithm are similar to the ones
shown earlier. In particular, if f is polyhedral, the method terminates
finitely, cf. Prop. 6.4.2. The idea of partial piecewise approximation arises
in a few contexts to be discussed in the sequel.

Linearly Constrained Versions

Consider the case where the constraint set X is polyhedral of the form

X = {x | c′ix+ di ≤ 0, i ∈ I},

where I is a finite set, and ci and di are given vectors and scalars, respec-
tively. Let

p(x) = max
i∈I

{c′ix+ di},

so the problem is to maximize f(x) subject to p(x) ≤ 0. It is then possible
to consider a variation of the cutting plane method, where both functions
f and p are replaced by polyhedral approximations. The method is

xk+1 ∈ arg max
Pk(x)≤0

Fk(x).

As earlier,

Fk(x) = min
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x− xk)′gk

}

,

with gi being a subgradient of f at xi. The polyhedral approximation Pk

is given by
Pk(x) = max

i∈Ik

{ci′x+ di},

where Ik is a subset of I generated as follows: I0 is an arbitrary subset of
I, and Ik is obtained from Ik−1 by setting Ik = Ik−1 if p(xk) ≤ 0, and by
adding to Ik−1 one or more of the indices i /∈ Ik−1 such that ci′xk + di > 0
otherwise.

Note that this method applies even when f is a linear function. In
this case there is no cost function approximation, i.e., Fk = f , just outer
approximation of the constraint set, i.e., X ⊂

{

x | Pk(x) ≤ 0
}

.
The convergence properties of this method are very similar to the ones

of the earlier method. In fact propositions analogous to Props. 6.4.1 and
6.4.2 can be formulated and proved. There are also versions of this method
where X is a general closed convex set, which is iteratively approximated
by a polyhedral set.

Sec. 6.4 Polyhedral Approximation Methods 287

Central Cutting Plane Methods

Let us discuss a method that is based on a somewhat different approxima-
tion idea. Like the preceding methods, it maintains a polyhedral approxi-
mation

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x− xk)′gk

}

to f , but it generates the next vector xk+1 by using a different mechanism.
In particular, instead of minimizing Fk as in Eq. (6.41), the method obtains
xk+1 by finding a “central pair” (xk+1, wk+1) within the subset

Sk =
{

(x,w) | x ∈ X, Fk(x) ≤ w ≤ f̃k

}

,

where f̃k is the best upper bound to the optimal value that has been found
so far,

f̃k = min
i≤k

f(xi)

(see Fig. 6.4.3).

x0 0 x1x2

f(x)

) X

X x

f(x0) + (x − x0)′g0

f(x1) + (x − x1)′g1

x x∗

f̃2

al pa Central pair (x2, w2)

Set S1

F1(x)

Figure 6.4.3. Illustration of the set

Sk =
{

(x, w) | x ∈ X, Fk(x) ≤ w ≤ f̃k

}

in the central cutting plane method.

There is a variety of methods for finding the central pair (xk+1, wk+1).
Roughly, the idea is that the central pair should be “somewhere in the
middle” of Sk. For example, consider the case where Sk is polyhedral with
nonempty interior. Then (xk+1, wk+1) could be the analytic center of Sk,
where for any polyhedron

P = {y | a′py ≤ cp, p = 1, . . . ,m}

288 Convex Optimization Algorithms Chap. 6

with nonempty interior, its analytic center is defined as the unique maxi-
mizer of

∑m
p=1 ln(cp−a′py) over y ∈ P . Another possibility is the ball center

of S, i.e., the center of the largest inscribed sphere in Sk; for the generic
polyhedron P with nonempty interior, the ball center can be obtained by
solving the following problem with optimization variables (y, σ):

maximize σ

subject to a′p(y + d) ≤ cp, ∀ ‖d‖ ≤ σ, p = 1, . . . ,m.

It can be seen that this problem is equivalent to the linear program

maximize σ

subject to a′py + ‖ap‖σ ≤ cp, p = 1, . . . ,m.

Central cutting plane methods have satisfactory convergence proper-
ties, even though they do not terminate finitely in the case of a polyhedral
cost function f . They are closely related to the interior point methods to
be discussed in Section 6.7, and they have benefited from advances in the
practical implementation of these methods.

6.4.2 Inner Linearization - Simplicial Decomposition

We now consider an inner approximation approach, whereby we approxi-
mate X with the convex hull of an ever expanding finite set Xk ⊂ X that
consists of extreme points of X plus an arbitrary starting point x0 ∈ X .
The addition of new extreme points to Xk is done in a way that guarantees
a cost improvement each time we minimize f over conv(Xk) (unless we are
already at the optimum).

In this section, we assume a differentiable convex cost function f :
ℜn 7→ ℜ and a bounded polyhedral constraint set X . The method is then
appealing under two conditions:

(1) Minimizing a linear function over X is much simpler than minimizing
f over X . (The method makes sense only if f is nonlinear.)

(2) Minimizing f over the convex hull of a relative small number of ex-
treme points is much simpler than minimizing f overX . (The method
makes sense only if X has a large number of extreme points.)

Several classes of important large-scale problems, arising for example in
communication and transportation networks, have structure that satisfies
these conditions (see the end-of-chapter references).

At the typical iteration we have the current iterate xk, and the finite
set Xk that consists of the starting point x0 together with a finite collection
of extreme points of X (initially X0 = {x0}). We first generate x̃k+1 as an
extreme point of X that solves the linear program

minimize ∇f(xk)′(x− xk)

subject to x ∈ X.
(6.47)

Sec. 6.4 Polyhedral Approximation Methods 289

We then add x̃k+1 to Xk,

Xk+1 = {x̃k+1} ∪Xk,

and we generate xk+1 as an optimal solution of the problem

minimize f(x)

subject to x ∈ conv(Xk+1).
(6.48)

The process is illustrated in Fig. 6.4.4.

Level sets of f

2 ∇f(x0)

) ∇f(x1)

) ∇f(x2)

) ∇f(x3)

X

x0

0 x1

1 x2

2 x3

3 x4 = x∗

x̃1

1 x̃2

2 x̃3

3 x̃4

Figure 6.4.4. Successive iterates of the simplicial decomposition method. For
example, the figure shows how given the initial point x0, and the calculated
extreme points x̃1, x̃2, we determine the next iterate x2 as a minimizing point of
f over the convex hull of {x0, x̃1, x̃2}. At each iteration, a new extreme point of
X is added, and after four iterations, the optimal solution is obtained.

For a convergence proof, note that there are two possibilities for the
extreme point x̃k+1 that solves problem (6.47):

(a) We have

0 ≤ ∇f(xk)′(x̃k+1 − xk) = min
x∈X

∇f(xk)′(x− xk),

in which case xk minimizes f over X , since it satisfies the necessary
and sufficient optimality condition of Prop. 1.1.8.

290 Convex Optimization Algorithms Chap. 6

(b) We have
0 > ∇f(xk)′(x̃k+1 − xk), (6.49)

in which case x̃k+1 /∈ conv(Xk), since xk minimizes f over x ∈
conv(Xk), so that ∇f(xk)′(x− xk) ≥ 0 for all x ∈ conv(Xk).

Since case (b) cannot occur an infinite number of times (x̃k+1 /∈ Xk and X
has finitely many extreme points), case (a) must eventually occur, so the
method will find a minimizer of f over X in a finite number of iterations.

Note that the essence of the preceding convergence proof is that x̃k+1

does not belong to Xk, unless the optimal solution has been reached. Thus
it is not necessary that x̃k+1 solves exactly the linearized problem (6.47).
Instead it is sufficient that x̃k+1 is an extreme point and that the condition
(6.49) is satisfied. In fact an even more general procedure will work: it is
not necessary that x̃k+1 be an extreme point of X . Instead it is sufficient
that x̃k+1 be selected from a finite subset X̃ ⊂ X such that conv(X̃) = X ,
and that the condition (6.49) is satisfied. These ideas may be used in
variants of the simplicial decomposition method whereby problem (6.47) is
solved inexactly.

There are a few other variants of the method. For example to address
the case where X is an unbounded polyhedral set, one may augment X
with additional constraints to make it bounded. There are extensions that
allow for a nonpolyhedral constraint set, which is approximated by the
convex hull of some of its extreme points in the course of the algorithm;
see the literature cited at the end of the chapter. Finally, one may use
variants, known as restricted simplicial decomposition methods, which allow
discarding some of the extreme points generated so far. In particular, given
the solution xk+1 of problem (6.48), we may discard from Xk+1 all points
x̃ such that

∇f(xk+1)′(x̃− xk+1) > 0,

while possibly adding to the constraint set the additional constraint

∇f(xk+1)′(x− xk+1) ≤ 0. (6.50)

The idea is that the costs of the subsequent points xk+j , j > 1, generated by
the method will all be no greater than the cost of xk+1, so they will satisfy
the constraint (6.50). In fact a stronger result can be shown: any number of
extreme points may be discarded, as long as conv(Xk+1) contains xk+1 and
x̃k+1 [the proof is based on the theory of feasible direction methods (see
e.g., [Ber99]) and the fact that x̃k+1 − xk+1 is a descent direction for f , so
a point with improved cost can be found along the line segment connecting
xk+1 and x̃k+1].

The simplicial decomposition method has been applied to several
types of problems that have a suitable structure (large-scale multicommod-
ity flow problems arising in communication and transportation network ap-
plications is an example; see the end-of-chapter references). Experience has

Sec. 6.4 Polyhedral Approximation Methods 291

generally been favorable and suggests that the method requires a lot fewer
iterations than the cutting plane method that uses an outer approximation
of the constraint set. As an indication of this, we note that if f is linear, the
simplicial decomposition method terminates in a single iteration, whereas
the cutting plane method may require a very large number of iterations to
attain the required solution accuracy.

6.4.3 Duality of Outer and Inner Linearization

We will now aim to explore the relation between outer and inner lin-
earization, as a first step towards a richer class of approximation meth-
ods. In particular, we will show that given a closed proper convex function
f : ℜn 7→ (−∞,∞], an outer linearization of f corresponds to an inner
linearization of the conjugate f⋆ and reversely.

Consider an outer linearization of the epigraph of f defined by vectors
y0, . . . , yk and corresponding hyperplanes that support the epigraph of f
at points x0, . . . , xk:

F (x) = max
i=0,...,k

{

f(xi) + (x− xi)′yi

}

; (6.51)

cf. Fig. 6.4.5. We will show that the conjugate F ⋆ of the outer linearization

F can be described as an inner linearization of the conjugate f⋆ of f .
Indeed, we have

F ⋆(y) = sup
x∈ℜn

{

y′x− F (x)
}

= sup
x∈ℜn

{

y′x− max
i=0,...,k

{

f(xi) + (x− xi)′yi

}

}

= sup
x∈ℜn, ξ∈ℜ

f(xi)+(x−xi)
′yi≤ξ, i=0,...,k

{y′x− ξ}.

By linear programming duality (cf. Prop. 5.2.1), the optimal value of the
linear program in (x, ξ) of the preceding equation can be replaced by the
dual optimal value, and we have with a straightforward calculation

F ⋆(y) = inf
∑k

i=0
αiyi=y,

∑k

i=0
αi=1

αi≥0, i=0,...,k

k
∑

i=0

αi

(

f(xi) − x′iyi

)

,

where αi is the dual variable of the constraint f(xi)+(x−xi)′yi ≤ ξ. Since
the hyperplanes defining F are supporting epi(f), we have

x′iyi − f(xi) = f⋆(yi), i = 0, . . . , k,

292 Convex Optimization Algorithms Chap. 6

f(x)

X xx0 0 x1 1 x2

F (x)

y) y

Outer Linearization of f

Slope = y0 Sl

Outer Linearization
y0 Slope = y1

nearization of 1 Slope = y2

of

= y2= y1

nearization of

= y0 Sl

Linearization

Outer Linearization of f

Inner Linearization of Conjugate f⋆

) f⋆(y)
) F ⋆(y)

Figure 6.4.5. Illustration of the conjugate F ⋆ of an outer linearization F of a
convex function f (here k = 2). It is a piecewise linear, inner linearization of the
conjugate f⋆ of f . Its break points are the “slopes” y0, . . . , yk of the supporting
planes.

so we obtain

F ⋆(y) =







inf∑k

i=0
αiyi=y,

∑k

i=0
αi=1

αi≥0, i=0,...,k

∑k

i=0
αif

⋆(yi) if y ∈ conv{y0, . . . , yk},

∞ otherwise.
(6.52)

Thus, F ⋆ is a piecewise linear (inner) linearization of f⋆ with domain

dom(F ⋆) = conv{y0, . . . , yk},
and “break points” at yi, i = 0, . . . , k, with values equal to the correspond-
ing values of f⋆. In particular, the epigraph of F ⋆ is the convex hull of
k + 1 vertical halflines corresponding to y0, . . . , yk:

epi(F ⋆) = conv
(

{{

(yi, wi) | f⋆(yi) ≤ wi

}

| i = 0, . . . , k
}

)

(see Fig. 6.4.5).
Note that the inner linearization F ⋆ is determined by y0, . . . , yk, and

is independent of x0, . . . , xk. This indicates that the same is true of its
conjugate F , and indeed, since

f(xi) − y′ixi = −f⋆(yi),

from Eq. (6.51) we obtain

F (x) = max
i=0,...,k

{

y′ix− f⋆(yi)
}

.

Sec. 6.4 Polyhedral Approximation Methods 293

However, not every function of the above form qualifies as an outer lin-
earization within our framework: it is necessary that for every yi there
exists xi such that yi ∈ ∂f(xi), or equivalently that ∂f⋆(yi) 6= Ø for all
i = 0, . . . , k. Similarly, not every function of the form (6.52) qualifies as an
inner linearization within our framework: it is necessary that ∂f⋆(yi) 6= Ø

for all i = 0, . . . , k.

6.4.4 Generalized Simplicial Decomposition

We will now describe a generalization of the simplicial decomposition method,
which applies to the problem

minimize f(x) + c(x)

subject to x ∈ ℜn,
(6.53)

where f : ℜn 7→ (−∞,∞] and c : ℜn 7→ (−∞,∞] are closed proper con-
vex functions. This is the problem of the Fenchel duality context, and it
contains as a special case the problem to which the ordinary simplicial de-
composition method of Section 6.4.2 applies (where f is differentiable, and
c is the indicator function of a closed convex set).

Here we start with some finite set X0 ⊂ dom(c). At the typical
iteration, given a finite set Xk ⊂ dom(c), we use the following three steps
to compute vectors xk, x̃k+1, and a new set Xk+1 = Xk ∪ {x̃k+1} to start
the next iteration:

(1) We obtain

xk ∈ arg min
x∈ℜn

{

f(x) + Ck(x)
}

, (6.54)

where Ck is the polyhedral/inner linearization function whose epi-
graph is the convex hull of the finite collection of rays

{

(x̃, w) | c(x̃) ≤
w
}

, x̃ ∈ Xk.

(2) We obtain a subgradient gk ∈ ∂f(xk) such that

−gk ∈ ∂Ck(xk); (6.55)

the existence of such a subgradient is guaranteed by the optimality
condition of Prop. 5.4.7, applied to the minimization in Eq. (6.54),
under suitable conditions.

(3) We obtain x̃k+1 such that

−gk ∈ ∂c(x̃k+1),

and form Xk+1 = Xk ∪ {x̃k+1}.

294 Convex Optimization Algorithms Chap. 6

We assume that f and c are such that the steps (1)-(3) above can
be carried out, and we will provide conditions guaranteeing that this is so.
Note that step (3) is equivalent to finding

x̃k+1 ∈ arg min
x∈ℜn

{

g′k(x− xk) + c(x)
}

, (6.56)

and that this is a linear programming problem in the important special
case where c is polyhedral. Note also that problem (6.54) is a linearized
version of the original problem (6.53), where c is replaced by Ck(x), which
is an inner linearization of c. To see this, note that if Xk = {x̃i | i ∈ Ik},
where Ik is a finite index set, Ck is given by

Ck(x) =











inf ∑

i∈Ik
αix̃i=x

αi≥0,
∑

i∈Ik
αi=1

∑

i∈Ik
αic(x̃i) if x ∈ conv(Xk),

∞ if x /∈ conv(Xk),

so the minimization (6.54) involves in effect the variables αi, i ∈ Ik, and is
equivalent to

minimize f





∑

i∈Ik

αix̃i



+
∑

i∈Ik

αic(x̃i)

subject to
∑

i∈Ik

αi = 1, αi ≥ 0, i ∈ Ik.

(6.57)

Let us note a few special cases where f is differentiable:

(a) When c is the indicator function of a bounded polyhedral set X , and
X0 = {x0}, the method reduces to the earlier simplicial decomposi-
tion method (6.47)-(6.48). Indeed, step (1) corresponds to the min-
imization (6.48), step (2) simply yields gk = ∇f(xk), and step (3),
as implemented in Eq. (6.56), corresponds to solution of the linear
program (6.47) that generates a new extreme point.

(b) When c is polyhedral, the method can be viewed as essentially the spe-
cial case of the earlier simplicial decomposition method (6.47)-(6.48)
applied to the problem of minimizing f(x) +w subject to x ∈ X and
(x,w) ∈ epi(c) [the only difference is that epi(c) is not bounded, but
this is inconsequential if we assume that dom(c) is bounded, or more
generally that the problem (6.54) has a solution]. In this case, the
method terminates finitely, assuming that the vectors

(

x̃k+1, c(x̃k+1)
)

obtained by solving the linear program (6.56) are extreme points of
epi(c).

(c) When c is a general convex function, the method is illustrated in Fig.
6.4.6. The existence of a solution xk to problem (6.54) is guaranteed

Sec. 6.4 Polyhedral Approximation Methods 295

) xk x+1 xk+1

x) Slope: −∇f(xk)

) c(x) Const.

) Const.−f(x)

x Ck+1(x)

) Ck(x)

4 x̃k+1

Figure 6.4.6. Illustration of successive iterates of the generalized simplicial de-
composition method in the case where f is differentiable. Given the inner lin-
earization Ck of c, we minimize f + Ck to obtain xk (graphically, we move the
graph of −f vertically until it touches the graph of Ck). We then compute x̃k+1

as a point at which −∇f(xk) is a subgradient of c, and we use it to form the
improved inner linearization Ck+1 of c. Finally, we minimize f + Ck+1 to obtain
xk+1 (graphically, we move the graph of −f vertically until it touches the graph
of Ck+1).

by the compactness of conv(Xk) and Weierstrass’ Theorem, while
step (2) yields gk = ∇f(xk). The existence of a solution to problem
(6.56) must be guaranteed by some assumption such as coercivity of
c.

Let us now consider the case where f is extended real-valued and
nondifferentiable. Then, assuming that

ri
(

dom(f)
)

∩ conv(X0) 6= Ø,

the existence of the subgradient gk is guaranteed by the optimality condi-
tion of Prop. 5.4.7, and the existence of a solution xk to problem (6.54) is
guaranteed by Weierstrass’ Theorem. When c is the indicator function of
a polyhedral set X , the condition of step (2) becomes

g′k(x̃− xk) ≥ 0, ∀ x̃ ∈ conv(Xk), (6.58)

i.e., −gk is in the normal cone of conv(Xk) at xk. The method is illustrated
for this case in Fig. 6.4.7. It terminates finitely, assuming that the vector
x̃k+1 obtained by solving the linear program (6.56) is an extreme point
of X . The reason is that in view of Eq. (6.58), the vector x̃k+1 does not
belong to Xk (unless xk is optimal), so Xk+1 is a strict enlargement of Xk.
In the more general case where c is a general closed proper convex function,

296 Convex Optimization Algorithms Chap. 6

gk

Level sets of f

x0

conv(Xk)

x
∗

e: x̃k+1

1 x̂k+1

∗
x̂k

C

Primal

gk+1

gk ∈ ∂f(x̂k)

Figure 6.4.7. Illustration of the generalized simplicial decomposition method for
the case where f is nondifferentiable and c is the indicator function of a polyhedral
set X. For each k, we compute a subgradient gk ∈ ∂f(xk) such that −gk lies in
the normal cone of conv(Xk) at xk, and we use it to generate a new extreme point
of X. Note that in contrast to the differentiable case, there may be multiple such
subgradients.

the convergence of the method will be discussed later, in the context of a
more general method.

Let us now address the calculation of a subgradient gk ∈ ∂f(xk) such
that −gk ∈ ∂Ck(xk) [cf. Eq. (6.55)]. This may be a difficult problem as it
may require knowledge of ∂f(xk) as well as ∂Ck(xk). However, in special
cases, gk may be obtained simply as a byproduct of the minimization

xk ∈ arg min
x∈ℜn

{

f(x) + Ck(x)
}

, (6.59)

[cf. Eq. (6.54)]. In particular, consider the case where c is the indicator of
a closed convex set X , and

f(x) = max{f1(x), . . . , fr(x)
}

,

where f1, . . . , fr are differentiable functions. Then the minimization (6.59)
takes the form

minimize z

subject to fj (x) ≤ z, j = 1, . . . , r, x ∈ conv(Xk),
(6.60)

where Xk is a polyhedral inner linearization to X . According to the op-
timality conditions of Prop. 5.3.2, the optimal solution (xk, z∗) together

Sec. 6.4 Polyhedral Approximation Methods 297

with dual optimal variables µ∗
j ≥ 0, satisfies

(xk, z∗) ∈ arg min
x∈conv(Xk), z∈ℜ









1 −
r
∑

j=1

µ∗
j



 z +

r
∑

j=1

µ∗
jfj(x)







.

It follows that
r
∑

j=1

µ∗
j = 1, µ∗

j ≥ 0, j = 1, . . . , r, (6.61)

and




r
∑

j=1

µ∗
j∇fj(xk)





′

(x− xk) ≥ 0, ∀ x ∈ conv(Xk). (6.62)

From Eq. (6.61) and the analysis of Example 5.4.5, the vector

gk =
r
∑

j=1

µ∗
j∇fj(xk) (6.63)

is a subgradient of f at xk. Furthermore, from Eq. (6.62), it follows that
−gk is in the normal cone of conv(Xk) at xk.

In conclusion, gk, as given by Eq. (6.63), is a suitable subgradient for
determining a new extreme point via problem (6.56). Note an important
advantage of this method over potential competitors: it involves solution
of linear programs of the form (6.56) to generate new extreme points of X ,
and low-dimensional nonlinear programs of the form (6.60). When each fj

is twice differentiable, the latter programs can be solved by fast Newton-
like methods, such as sequential quadratic programming (see e.g., [Ber82],
[Ber99], [NoW06]).

Dual/Cutting Plane Implementation

We now provide a dual implementation of generalized simplicial decompo-
sition. The result is an outer linearization/cutting plane-type of method,
which is mathematically equivalent to generalized simplicial decomposition.
The idea is that the problem

minimize f(x) + c(x)

subject to x ∈ ℜn,

[cf. Eq. (6.53)] is in a form suitable for application of Fenchel duality (cf.
Section 5.3.5, with the identifications f1 = f and f2 = c). In particular,
the dual problem is

minimize f⋆
1 (λ) + f⋆

2 (−λ)
subject to λ ∈ ℜn,

298 Convex Optimization Algorithms Chap. 6

where f⋆
1 and f⋆

2 are the conjugates of f and c, respectively. The gen-
eralized simplicial decomposition algorithm (6.54)-(6.56) can alternatively
be implemented by replacing f⋆

2 by a piecewise linear/cutting plane outer
linearization, while leaving f⋆

1 unchanged, i.e., by solving at iteration k the
problem

minimize f⋆
1 (λ) + F ⋆

2,k(−λ)
subject to λ ∈ ℜn,

(6.64)

where F ⋆
2,k is an outer linearization of f⋆

2 (the conjugate of Ck). This
problem is the (Fenchel) dual of problem (6.54):

minimize f(x) + Ck(x)

subject to x ∈ ℜn,

[or equivalently, the low-dimensional problem (6.57)].
Note that solutions of problem (6.64) are the subgradients gk satisfy-

ing Eq. (6.55), while the associated subgradient of f⋆
2 at −gk is the vector

x̃k+1 generated by Eq. (6.56), as shown in Fig. 6.4.8. In fact, the function
F ⋆

2,k has the form

F ⋆
2,k(−λ) = max

i∈Ik−1

{

f⋆
2 (−gi) − x̃′i+1(λ− gi)

}

,

where gi and x̃i+1 are vectors that can be obtained either by using the
primal, the generalized simplicial decomposition method (6.54)-(6.56), or
by using its dual, the cutting plane method based on solving the outer
approximation problems (6.64). The ordinary cutting plane method, de-
scribed in the beginning of Section 6.4.1, is obtained as the special case
where f⋆

1 (λ) ≡ 0.
Whether the primal or the dual implementation is preferable depends

on the structure of the functions f and c. When f (and hence also f⋆
1) is

not polyhedral, the dual implementation may not be attractive, because it
requires the n-dimensional nonlinear optimization (6.64) at each iteration,
as opposed to the typically low-dimensional optimization (6.54). In the
alternative case where f is polyhedral, both methods require the solution
of linear programs.

6.4.5 Generalized Polyhedral Approximation

We will now consider a unified framework for polyhedral approximation,
which combines the cutting plane and simplicial decomposition methods.
We consider the problem

minimize
m
∑

i=1

fi(xi)

subject to (x1, . . . , xm) ∈ S,

(6.65)

Sec. 6.4 Polyhedral Approximation Methods 299

) − gk
e λConstant − f⋆

1
(λ)

) f⋆

2
(−λ)

) F ∗

2,k(−λ)

+1 Slope: x̃i, i ≤ k

+1 Slope: x̃i, i ≤ k

4 Slope: x̃k+1

Figure 6.4.8. Illustration of the cutting plane implementation of the generalized
simplicial decomposition method. The ordinary cutting plane method, described
in the beginning of Section 6.4.1, is obtained as the special case where f⋆

1 (x) ≡ 0.
In this case, f is the indicator function of the set consisting of the just the origin,
and the primal problem is to evaluate c(0).

where (x1, . . . , xm) is a vector in ℜn1+···+nm , with components xi ∈ ℜni ,
i = 1, . . . ,m, and

fi : ℜni 7→ (−∞,∞] is a closed proper convex function for each i,

S is a subspace of ℜn1+···+nm .

We refer to this as an extended monotropic program (EMP for short).†
A classical example of EMP is single commodity network optimization

problems where xi represents the (scalar) flow of an arc of a directed graph,
and S is the circulation subspace of the graph (see e.g., [Ber98]). Also
problems involving general linear constraints and an additive convex cost
function can be converted to EMP. In particular, the problem

minimize
m
∑

i=1

fi(xi)

subject to Ax = b, xi ∈ Xi, i = 1, . . . ,m,

(6.66)

† Monotropic programming, a class of problems introduced and extensively

analyzed by Rockafellar in his book [Roc84], is the special case of problem

(6.65) where each component xi is one-dimensional (i.e., ni = 1). The name

“monotropic” means “turning in a single direction” in Greek, and captures the

characteristic monotonicity property of convex functions of a single variable such

as fi.

300 Convex Optimization Algorithms Chap. 6

where A is a given matrix and b is a given vector, is equivalent to

minimize

m
∑

i=1

fi(xi) + δZ(z)

subject to Ax− z = 0,

where z is a vector of artificial variables, and δZ is the indicator function
of the set Z = {z | z = b}. This is an EMP where the constraint subspace
is

S =
{

(x, z) | Ax− z = 0
}

.

When the functions fi are linear, problem (6.66) reduces to a linear pro-
gramming problem. When the functions fi(xi) are positive semidefinite
quadratic, problem (6.66) reduces to a convex quadratic programming
problem.

Note also that while the vectors x1, . . . , xm appear independently in
the cost function

m
∑

i=1

fi(xi),

they may be coupled through the subspace constraint. For example, con-
sider a cost function of the form

f(x) = ℓ(x1, . . . , xm) +

m
∑

i=1

fi(xi),

where ℓ is a proper convex function of all the components xi. Then, by
introducing an auxiliary vector z ∈ ℜn1+···+nm , the problem of minimizing
f over a subspace X can be transformed to the problem

minimize ℓ(z) +

m
∑

i=1

fi(xi)

subject to (x, z) ∈ S,

where S is the subspace of ℜ2(n1+···+nm)

S =
{

(x, x) | x ∈ X
}

.

This problem is of the form (6.65).
Another problem that can be converted to the EMP format (6.65) is

minimize
m
∑

i=1

fi(x)

subject to x ∈ X,

(6.67)

Sec. 6.4 Polyhedral Approximation Methods 301

where fi : ℜn 7→ (−∞,∞] are proper convex functions, andX is a subspace
of ℜn. This can be done by introducing m copies of x, i.e., auxiliary vectors
zi ∈ ℜn that are constrained to be equal, and write the problem as

minimize
m
∑

i=1

fi(zi)

subject to (z1, . . . , zm) ∈ S,

where S is the subspace

S =
{

(x, . . . , x) | x ∈ X
}

.

It can thus be seen that convex problems with linear constraints can
generally be formulated as EMP. We will see that these problems share a
powerful and symmetric duality theory, which is similar to Fenchel duality
and forms the basis for a symmetric and general framework for polyhedral
approximation.

The Dual Problem

To derive the appropriate dual problem, we introduce auxiliary vectors
zi ∈ ℜni and we convert the EMP (6.65) to the equivalent form

minimize
m
∑

i=1

fi(zi)

subject to zi = xi, i = 1, . . . ,m, (x1, . . . , xm) ∈ S.

(6.68)

We then assign a multiplier vector λi ∈ ℜni to the constraint zi = xi,
thereby obtaining the Lagrangian function

L(x1, . . . , xm, z1, . . . , zm, λ1, . . . , λm) =
m
∑

i=1

(

fi(zi) + λ′i(xi − zi)
)

. (6.69)

The dual function is

q(λ) = inf
(x1,...,xm)∈S, zi∈ℜni

L(x1, . . . , xm, z1, . . . , zm, λ1, . . . , λm)

= inf
(x1,...,xm)∈S

m
∑

i=1

λ′ixi +
m
∑

i=1

inf
zi∈ℜni

{

fi(zi) − λ′izi

}

=

{
∑m

i=1 qi(λi) if (λ1, . . . , λm) ∈ S⊥,
−∞ otherwise,

302 Convex Optimization Algorithms Chap. 6

where
qi(λi) = inf

zi∈ℜni

{

fi(zi) − λ′izi

}

, i = 1, . . . ,m,

and S⊥ is the orthogonal subspace of S.
Note that since qi can be written as

qi(λi) = − sup
zi∈ℜ

{

λ′izi − fi(zi)
}

,

it follows that −qi is the conjugate of fi, so by Prop. 1.6.1, −qi is a closed
proper convex function. The dual problem is

maximize

m
∑

i=1

qi(λi)

subject to (λ1, . . . , λm) ∈ S⊥.

(6.70)

Thus, with a change of sign to convert maximization to minimization, the
dual problem becomes

minimize

m
∑

i=1

f⋆
i (λi)

subject to (λ1, . . . , λm) ∈ S⊥,

(6.71)

where f⋆
i is the conjugate of fi, and has the same form as the primal.

Furthermore, assuming that the functions fi are closed, when the dual
problem is dualized, it yields the primal problem, and the duality is fully
symmetric.

Throughout our duality analysis of this section, we denote by fopt and
qopt the optimal primal and dual values, and in addition to the convexity
assumption on fi made earlier, we will assume that appropriate conditions
hold that guarantee the strong duality relation fopt = qopt.

Since the EMP problem can be viewed as a special case of the convex
programming problem of Section 5.3, it is possible to obtain optimality
conditions as special cases of the corresponding conditions (cf. Prop. 5.3.3).
In particular, it can be seen that a pair (x, λ) satisfies the Lagrangian
optimality condition of Prop. 5.3.3, applied to the Lagrangian (6.69), if
and only if xi attains the infimum in the equation

qi(λi) = inf
zi∈ℜni

{

fi(zi) − λ′izi

}

, i = 1, . . . ,m,

or equivalently,
λi ∈ ∂fi(xi), i = 1, . . . ,m. (6.72)

Thus, by applying Prop. 5.3.3, we obtain the following.

Sec. 6.4 Polyhedral Approximation Methods 303

Proposition 6.4.3: (EMP Optimality Conditions) There holds
−∞ < qopt = fopt < ∞ and (xopt

1 , . . . , xopt
m , λopt

1 , . . . , λopt
m) are an op-

timal primal and dual solution pair of the EMP problem if and only
if

(xopt
1 , . . . , xopt

m) ∈ S, (λopt
1 , . . . , λopt

m) ∈ S⊥,

and

xopt
i ∈ arg min

xi∈ℜn

{

fi(xi) − x′iλ
opt
i

}

, i = 1, . . . ,m. (6.73)

Note that by the Conjugate Subgradient Theorem (Prop. 5.4.3), the
condition (6.73) of the preceding proposition is equivalent to either one of
the following two subgradient conditions:

λopt
i ∈ ∂fi(x

opt
i), xopt

i ∈ ∂f⋆
i (λopt

i).

General Polyhedral Approximation Scheme

The EMP formalism allows a broad and elegant algorithmic framework
that combines elements of the cutting plane and simplicial decomposition
methods of the preceding sections. In particular, problem (6.71) will be
approximated, by using inner or outer linearization of some of the functions
fi. The optimal solution of the dual approximate problem will then be used
to construct more refined inner and outer linearizations.

We introduce an algorithm that uses a fixed partition of the index set
{1, . . . ,m}:

{1, . . . ,m} = I ∪ I ∪ Ī

that determines which of the functions fi are outer approximated (set I)
and inner approximated (set Ī).

For i ∈ I, given a finite set Λi ⊂ dom(f⋆
i) such that ∂f⋆

i (λ̃) 6= Ø for

all λ̃ ∈ Λi, we consider the outer linearization of fi corresponding to Λi:

f
i,Λi

(xi) = max
λ̃∈Λi

{

λ̃′xi − f⋆
i (λ̃)

}

,

or equivalently, as mentioned in Section 6.4.3,

f
i,Λi

(xi) = max
λ̃∈Λi

{

fi(xλ̃) + λ̃′(xi − xλ̃)
}

,

where for each λ̃ ∈ Λi, xλ̃ is such that λ̃ ∈ ∂fi(xλ̃).

304 Convex Optimization Algorithms Chap. 6

For i ∈ Ī, given a finite set Xi ⊂ dom(fi) such that ∂fi(x̃) 6= Ø for
all x̃ ∈ Xi, we consider the inner linearization of fi corresponding to Xi by

f̄i,Xi(xi) =







min ∑

x̃∈Xi
αx̃x̃=xi,

∑

x̄∈Xi
αx̃=1, αx̃≥0, x̃∈Xi

∑

x̃∈Xi
αx̃fi(x̃) if xi ∈ conv(Xi),

∞ otherwise.

As mentioned in Section 6.4.3, this is the function whose epigraph is the
convex hull of the halflines

{

(xi, w) | fi(xi) ≤ w
}

, xi ∈ Xi (cf. Fig. 6.4.5).
We assume that at least one of the sets I and Ī is nonempty. At

the start of the typical iteration, we have for each i ∈ I, a finite subset
Λi ⊂ dom(f⋆

i), and for each i ∈ Ī , a finite subset Xi ⊂ dom(fi). The
iteration is as follows:

Typical Iteration:

Find a primal-dual optimal solution pair (x̂, λ̂) = (x̂1, λ̂1, . . . , x̂m, λ̂m)
of the EMP

minimize
∑

i∈I

fi(xi) +
∑

i∈I

f
i,Λi

(xi) +
∑

i∈Ī

f̄i,Xi(xi)

subject to (x1, . . . , xm) ∈ S,

(6.74)

where f
i,Λi

and f̄i,Xi are the outer and inner linearizations of fi cor-

responding to Xi and Λi, respectively. Then enlarge the sets Xi and
Λi as follows (see Fig. 6.4.9):

(a) For i ∈ I, compute a subgradient λ̃i ∈ ∂fi(x̂i) and we add λ̃i to
the corresponding set Λi.

(b) For i ∈ Ī, compute a subgradient x̃i ∈ ∂f⋆
i (λ̂i) and we add x̃i to

the corresponding set Xi.

If there is no strict enlargement, i.e., for all i ∈ I we have λ̃i ∈ Λi, and
for all i ∈ Ī we have x̃i ∈ Xi, the algorithm terminates.

We will show in a subsequent proposition that if the algorithm termi-
nates, (x̂1, . . . , x̂m, λ̂1, . . . , λ̂m) is a primal and dual optimal solution pair.
If there is strict enlargement and the algorithm does not terminate, we
proceed to the next iteration, using the enlarged sets Λi and Xi.

Note that we implicitly assume that at each iteration, there exists a
primal and dual optimal solution pair of problem (6.74). Furthermore, we
assume that the enlargement step can be carried out, i.e., that ∂fi(x̂i) 6= Ø

for all i ∈ I and ∂f⋆
i (λ̂i) 6= Ø for all i ∈ Ī. Sufficient assumptions may

need to be imposed on the problem to guarantee that this is so.

Sec. 6.4 Polyhedral Approximation Methods 305

ŷi x̂i

fi(xi)

fi(xi)

ŷi x̂i

f i,Xi
(xi)

λ̃i Slope λ̂i

λ̃i Slope λ̂i

λ̃i Slope λ̂i

λ̂i f
i,Λi

(xi)

∈

New slope λ̃i

New break point x̃i

Figure 6.4.9. Illustration of the enlargement step in the polyhedral approx-
imation method, after we obtain a primal-dual optimal solution pair (x̂, λ̂) =
(x̂1, λ̂1, . . . , x̂m, λ̂m). Note that in the figure on the right, we use the fact

x̃i ∈ ∂f⋆
i (λ̂i) ⇐⇒ λ̂i ∈ ∂fi(x̃i)

(cf. the Conjugate Subgradient Theorem, Prop. 5.4.3). The enlargement step on
the left (finding λ̃i) is also equivalent to λ̃i satisfying x̂i ∈ ∂f⋆

i (λ̃i), or equivalently,
solving the optimization problem

maximize
{

λ′
ix̂i − f⋆

i (λi)
}

subject to λi ∈ ℜni .

The enlargement step on the right (finding x̃i) is also equivalent to solving the
optimization problem

maximize
{

λ̂′
ixi − fi(xi)

}

subject to xi ∈ ℜni .

We refer to the preceding algorithm as the generalized polyhedral ap-

proximation or GPA algorithm. Note two prerequisites for the algorithm
to be effective:

(1) The (partially) linearized problem (6.74) must be easier to solve than
the original problem (6.71). For example, problem (6.74) may be a
linear program, while the original may be nonlinear (cf. the cutting
plane method of Section 6.4.1); or it may effectively have much smaller
dimension than the original (cf. the simplicial decomposition method
of Section 6.4.2).

(2) Finding the enlargement vectors (λ̃i for i ∈ I, and x̃i for i ∈ Ī)
must not be too difficult. This can be done by the differentiation
λ̃i ∈ ∂fi(x̂i) for i ∈ I, and x̃i ∈ ∂f⋆

i (λ̂i) or i ∈ Ī. Alternatively, if this

306 Convex Optimization Algorithms Chap. 6

is not convenient for some of the functions (e.g., because some of the
fi or the f⋆

i are not available in closed form), one may calculate λi

and/or x̃i via the relations

x̂i ∈ ∂f⋆
i (λ̃i), λ̂i ∈ ∂fi(x̃i);

(cf. the Conjugate Subgradient Theorem, Prop. 5.4.3). This involves
solving optimization problems. For example, finding x̃i such that
λ̂i ∈ ∂fi(x̃i) for i ∈ Ī is equivalent to solving the problem

maximize
{

λ̂′ixi − fi(xi)
}

subject to xi ∈ ℜni ,

and may be nontrivial (cf. Fig. 6.4.9).

The facility of solving the linearized problem (6.74) and carrying out the
subsequent enlargement step may guide the choice of functions that are
inner or outer linearized. If xi is one-dimensional, which is typically true
in separable-type problems, the enlargement step is typically quite easy.

There are two potential advantages of the GPA algorithm over the
earlier cutting plane and simplicial decomposition methods, depending on
the problem’s structure:

(a) The refinement process may be faster, because at each iteration, mul-
tiple cutting planes and break points are added (as many as one per
function fi). As a result, in a single iteration, a more refined approx-
imation may result, compared with classical methods where a single
cutting plane or extreme point is added. Moreover, when the com-
ponent functions fi are scalar, adding a cutting plane/break point to
the polyhedral approximation of fi can be very simple, as it requires
a one-dimensional differentiation or minimization for each fi.

(b) The approximation process may preserve some of the special struc-
ture of the cost function and/or the constraint set. For example if
the component functions fi are scalar, or have partially overlapping
dependences, e.g.,

f(x1, . . . , xm) = f1(x1, x2) + f2(x2, x3) + · · ·
+ fm−1(xm−1, xm) + fm(xm),

the minimization of f by the classical cutting plane method leads to
general/unstructured linear programming problems. By contrast, us-
ing separate outer approximation of the components functions leads
to linear programs with special structure, which can be solved effi-
ciently by specialized methods, such as network flow algorithms, or
interior point algorithms that can exploit the sparsity structure of the
problem.

Sec. 6.4 Polyhedral Approximation Methods 307

The symmetric duality of the EMP can be exploited in the implemen-
tation of the GPA algorithm. In particular, the algorithm may be applied
to the dual problem of problem (6.71):

minimize

m
∑

i=1

f⋆
i (λi)

subject to (λ1, . . . , λm) ∈ S⊥,

(6.75)

where f⋆
i is the conjugate of fi. Then the inner (or outer) linearized index

set Ī of the primal becomes the outer (or inner, respectively) linearized in-
dex set of the dual. At each iteration, the algorithm solves the approximate
dual EMP,

minimize
∑

i∈I

f⋆
i (λi) +

∑

i∈I

f̄⋆
i,Λi

(λi) +
∑

i∈Ī

f⋆

i,Xi
(λi)

subject to (λ1, . . . , λm) ∈ S⊥,

(6.76)

which is simply the dual of the approximate primal EMP (6.74) [since the
outer (or inner) linearization of f⋆

i is the conjugate of the inner (or respec-
tively, outer) linearization of fi]. Thus the algorithm produces mathemat-
ically identical results when applied to the primal or the dual EMP. The
choice of whether to apply the algorithm in its primal or its dual form is
a simply a matter of whether calculations with fi or with their conjugates
f⋆

i are more or less convenient. In fact, when the algorithm makes use of

both the primal solution (x̂1, . . . , x̂m) and the dual solution (λ̂1, . . . , λ̂m)
in the enlargement step, the question of whether the starting point is the
primal or the dual EMP becomes moot: it is best to view the algorithm as
applied to the pair of primal and dual EMP, without designation of which
is primal and which is dual.

Termination and Convergence

Now let us show the optimality of the primal and dual solution pair ob-
tained upon termination of the algorithm. We will use two basic properties
of outer approximations. The first is that for closed proper convex functions
f and f ,

f ≤ f, f(x) = f(x) =⇒ ∂f(x) ⊂ ∂f(x). (6.77)

The second is that for an outer linearization f
Λ

of f ,

λ̃ ∈ Λ, λ̃ ∈ ∂f(x) =⇒ f
Λ
(x) = f(x). (6.78)

The first property follows from the definition of subgradients, whereas the
second property follows from the definition of f

Λ
.

308 Convex Optimization Algorithms Chap. 6

Proposition 6.4.4: (Optimality at Termination) If the GPA
algorithm terminates at some iteration, the corresponding primal and
dual solutions, (x̂1, . . . , x̂m) and (λ̂1, . . . , λ̂m), form a primal and dual
optimal solution pair of the EMP problem.

Proof: From Prop. 6.4.3 and the definition of (x̂1, . . . , x̂m) and (λ̂1, . . . , λ̂m)
as a primal and dual optimal solution pair of the approximate problem
(6.74), we have

(x̂1, . . . , x̂m) ∈ S, (λ̂1, . . . , λ̂m) ∈ S⊥.

We will show that upon termination, we have for all i

λ̂i ∈ ∂fi(x̂i), (6.79)

which by Prop. 6.4.3 implies the desired conclusion.
Since (x̂1, . . . , x̂m) and (λ̂1, . . . , λ̂m) are a primal and dual optimal

solution pair of problem (6.74), Eq. (6.79) holds for all i /∈ I ∪ Ī (cf. Prop.
6.4.3). We will complete the proof by showing that it holds for all i ∈ I
(the proof for i ∈ Ī follows by a dual argument).

Indeed, let us fix i ∈ I and let λ̃i ∈ ∂fi(x̂i) be the vector generated
by the enlargement step upon termination. We must have λ̃i ∈ Λi, since
there is no strict enlargement upon termination. Since f

i,Λi
is an outer

linearization of fi, by Eq. (6.78), the fact λ̃i ∈ Λi, λ̃i ∈ ∂fi(x̂i) implies

f
i,Λi

(x̂i) = fi(x̂i),

which in turn implies by Eq. (6.77) that

∂f
i,Λi

(x̂i) ⊂ fi(x̂i).

By Prop. 6.4.3, we also have λ̂i ∈ ∂f
i,Λi

(x̂i), so λ̂i ∈ ∂fi(x̂i). Q.E.D.

As in Sections 6.4.1, 6.4.2, convergence can be easily established in
the case where the functions fi, i ∈ Ī ∪ I, are polyhedral, assuming that
care is taken to ensure that the corresponding enlargements vectors λ̃i are
chosen from a finite set of extreme points. In particular, assume that:

(a) All outer linearized functions fi are real-valued and polyhedral, and
all inner linearized functions fi the conjugates f⋆

i are real-valued and
polyhedral.

(b) The vectors λ̃i and x̃i added to the polyhedral approximations are
elements of the finite representations of the corresponding f⋆

i and fi.

Sec. 6.4 Polyhedral Approximation Methods 309

Then at each iteration there are two possibilities: either (x̂, λ̂) is an optimal
primal-dual pair for the original problem and the algorithm terminates, or
the approximation of one of the fi, i ∈ I ∪ Ī, will be refined/improved.
Since there can be only a finite number of refinements, convergence in a
finite number of iterations follows.

Other convergence results are possible, extending some of the anal-
ysis of Sections 6.4.1, 6.4.2. In particular, if the set Ī is empty (no inner
approximation) and the sequence {λ̃k

i } is bounded for every i ∈ I, then
every limit point of {x̂k} is primal optimal. To see this, note that for all
k, ℓ ≤ k − 1, and (x1, . . . , xm) ∈ S, we have
∑

i/∈I

fi(x̂k
i) +

∑

i∈I

(

fi(x̂ℓ
i) + (x̂k

i − x̂ℓ
i)

′λ̃ℓ
i

)

≤
∑

i/∈I

fi(x̂k
i) +

∑

i∈I

f
i,Λk−1

i

(x̂k
i)

≤
m
∑

i=1

fi(xi).

Let {x̂k}K be a subsequence converging to a vector x̄. By taking the limit
as ℓ→ ∞, k ∈ K, ℓ ∈ K, ℓ < k, and using the closedness of fi, we obtain

m
∑

i=1

fi(x̄i) ≤ lim inf
k→∞, k∈K

∑

i/∈I

fi(x̂k
i) + lim inf

ℓ→∞, ℓ∈K

∑

i∈I

fi(x̂ℓ
i) ≤

m
∑

i=1

fi(xi)

for all (x1, . . . , xm) ∈ S. It follows that x̄ is primal optimal, i.e., every limit
point of {x̂k} is optimal. The preceding convergence argument also goes
through even if the sequences {λ̃k

i } are not assumed bounded, as long as the
limit points x̄i belong to the relative interior of the corresponding functions
fi (this follows from the subgradient decomposition result of Prop. 5.4.1).

Exchanging the roles of primal and dual, we similarly obtain a conver-
gence result for the case where I is empty (no outer linearization): assuming

that the sequence {x̃k
i } is bounded for every i ∈ Ī, every limit point of {λ̂k}

is dual optimal.
We finally state a more general convergence result from Bertsekas and

Yu [BeY09], which applies to the mixed case where we simultaneously use
outer and inner approximation (both Ī and I are nonempty). The proof is
more complicated than the preceding ones, and we refer to [BeY09] for a
detailed analysis.

Proposition 6.4.5: Consider the GPA algorithm. Let (x̂k, λ̂k) be
a primal and dual optimal solution pair of the approximate problem
at the kth iteration, and let λ̃k

i , i ∈ I and x̃k
i , i ∈ Ī be the vectors

generated at the corresponding enlargement step. Suppose that there
exist convergent subsequences

{

x̂k
i

}

K
, i ∈ I,

{

λ̂k
i

}

K
, i ∈ Ī, such that

the sequences
{

λ̃k
i

}

K
, i ∈ I,

{

x̃k
i

}

K
, i ∈ Ī, are bounded. Then:

310 Convex Optimization Algorithms Chap. 6

(a) Any limit point of the sequence
{

(x̂k, λ̂k)
}

K
is a primal and dual

optimal solution pair of the original problem.

(b) The sequence of optimal values of the approximate problems con-
verges to the optimal value fopt.

Application to Generalized Simplicial Decomposition

Let us now show that the general polyhedral approximation scheme con-
tains as a special case the algorithm of the preceding section for the problem

minimize f(x) + c(x)

subject to x ∈ ℜn,
(6.80)

where f : ℜn 7→ (−∞,∞] and c : ℜn 7→ (−∞,∞] are closed, proper, convex
functions; cf. Section 6.4.4. As a consequence, it also contains as special
cases the ordinary cutting plane and simplicial decomposition methods of
Sections 6.4.1 and 6.4.2, respectively.

We recast the problem into the EMP

minimize f1(x1) + f2(x2)

subject to (x1, x2) ∈ S,

where

f1(x1) = f(x1), f2(x2) = c(x2), S =
{

(x1, x2) | x1 = x2

}

.

The dual problem takes the form

minimize f⋆
1 (λ1) + f⋆

2 (λ2)

subject to (λ1, λ2) ∈ S⊥,

where f⋆
1 and f⋆

2 are the conjugates of f1 and f2, respectively. Since

S⊥ =
{

(λ1, λ2) | λ1 = −λ2

}

,

the dual problem is

minimize f⋆
1 (λ) + f⋆

2 (−λ)
subject to λ ∈ ℜn.

Let f2 be replaced by an inner linearization f̄2,X or by an outer linearization

f
2,−Λ

, and let (λ̂,−λ̂) be a dual optimal solution at the typical iteration.

At the end of the iteration, X is enlarged to include a vector x̃ such that
−λ̂ ∈ ∂f2(x̃) in the case of inner linearization, or Λ is enlarged to include

λ̂ in the case of outer linearization. A comparison with the development
of Section 6.4.4 verifies that when inner (or outer) linearization of f2 is
used, this method coincides with the generalized simplicial decomposition
algorithm (or cutting plane algorithm, respectively) given there.

Sec. 6.5 Proximal and Bundle Methods 311

Application to Network Optimization and Monotropic
Programming

Network optimization problems involve a directed graph with set of nodes
N and set of arcs A. A classical problem is to minimize a cost function

∑

a∈A

fa(xa),

where fa is a scalar closed proper convex function, and xa is the flow of
arc a ∈ A. The minimization is over all flow vectors x =

{

xa | a ∈ A
}

that
belong to the circulation subspace S of the graph (at each node, the sum
of all incoming arc flows is equal to the sum of all outgoing arc flows).

The GPA method that uses inner linearization of all the functions fa

that are nonlinear is particularly attractive for this problem, because of the
favorable structure of the corresponding approximate EMP:

minimize
∑

a∈A

f̄a,Xa(xa)

subject to x ∈ S,

where for each arc a, f̄a,Xa is the inner approximation of fa, corresponding
to a finite set of break points Xa ⊂ dom(fa). By suitably introducing
multiple arcs in place of each arc, we can recast this problem as a linear
minimum cost network flow problem that can be solved using very fast
polynomial algorithms. These algorithms, simultaneously with an optimal
primal (flow) vector, yield a dual optimal (price differential) vector (see
e.g., [Ber98], Chapters 5-7). Furthermore, because the functions fa are
scalar, the enlargement step is very simple.

Some of the preceding advantages of GPA method with inner lin-
earization carry over to monotropic programming problems (ni = 1 for all
i), the key idea being the simplicity of the enlargement step. Furthermore,
there are effective algorithms for solving the associated approximate pri-
mal and dual EMP, such as out-of-kilter methods [Roc84], [Tse01], and
ǫ-relaxation methods [Ber98], [TsB00].

6.5 PROXIMAL AND BUNDLE METHODS

As discussed in the preceding section, one of the drawbacks of the cutting
plane method is the instability phenomenon, whereby the method can take
large steps away from the current point, with significant deterioration of
the cost function value. A way to limit the effects of this is to add to the
polyhedral function approximation a quadratic term pk(x) that penalizes

312 Convex Optimization Algorithms Chap. 6

large deviations from some reference point yk. Thus in this method, xk+1

is obtained as

xk+1 ∈ arg min
x∈X

{

Fk(x) + pk(x)
}

, (6.81)

where similar to the cutting plane method,

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x− xk)′gk

}

,

and

pk(x) =
1

2ck
‖x− yk‖2,

where ck is a positive scalar parameter (cf. Fig. 6.5.1). We refer to pk(x)
as the proximal term, and to its center yk as the proximal center (the
method for choosing yk will be described later; often yk = xk). The purpose
of the proximal term is to provide a measure of stability to the cutting
plane method at the expense of solving a more difficult subproblem at each
iteration (e.g., a quadratic versus a linear program, in the case where X is
polyhedral).

f(x)

X x
xk+1 x

∗
) yk

Fk(x)

γk − pk(x)

γk

Figure 6.5.1. Using a proximal term to reduce the effect of instability in the
cutting plane method. The point xk+1 is the one at which the graph of the
negative proximal term −pk(x), raised by some amount γk, just touches the graph
of Fk. Then xk+1 tends to be closer to the proximal center yk, with the distance
‖xk+1−yk‖ depending on the size of the proximal term, i.e., the penalty parameter
ck.

We can view iteration (6.81) as an approximate version of a general
algorithm for minimizing a convex function. We first discuss this algo-
rithm in the next section, and we then focus on approximations that use
subgradients.

Sec. 6.5 Proximal and Bundle Methods 313

6.5.1 Proximal Point Algorithm

Consider the minimization of a closed proper convex function f : ℜn 7→
(−∞,∞], let f∗ denote the optimal value

f∗ = inf
x∈ℜn

f(x),

and let X∗ denote the set of minima of f (which could be empty),

X∗ = arg min
x∈ℜn

f(x).

We consider the algorithm

xk+1 ∈ arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

, (6.82)

where x0 is an arbitrary starting point and ck is a positive scalar parameter.
This is known as the proximal point algorithm. Its chief utility is regular-
ization: the quadratic term ‖x−xk‖2 makes the function that is minimized
in the iteration (6.82) strictly convex and coercive, thereby guaranteeing
that xk+1 is well-defined. Indeed, since the quadratic term of Eq. (6.82)
has no nonzero directions of recession, it follows that the minimum in Eq.
(6.82) is attained at a unique point (cf. Prop. 3.2.3 and the subsequent
discussion); see Fig. 6.5.2.

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

Figure 6.5.2. Geometric view of the proximal point algorithm (6.82). The min-
imum of f(x) + 1

2ck

‖x − xk‖
2 is attained at the unique point xk+1 at which the

graph of the quadratic function − 1
2ck

‖x − xk‖
2, raised by the amount

γk = f(xk+1) +
1

2ck
‖xk+1 − xk‖

2,

just touches the graph of f .

314 Convex Optimization Algorithms Chap. 6

The degree of regularization is controlled by the parameter ck. For
small values of ck, xk+1 tends to stay close to xk (a form of instability
reduction), albeit at the expense of slower convergence. The convergence
mechanism is illustrated in Fig. 6.5.3.

For another connection, let us consider two successive points xk and
xk+1 generated by the algorithm. The subdifferential of the function

f(x) +
1

2ck
‖x− xk‖2

at xk+1 must contain 0 and is equal to

∂f(xk+1) +
xk+1 − xk

ck
,

(cf. Prop. 5.4.6), so that

xk − xk+1

ck
∈ ∂f(xk+1). (6.83)

Using this formula, we see that the move from xk to xk+1 is “nearly” a
subgradient step. In particular, while xk − xk+1 is not a multiple of a
vector in ∂f(xk), it is “close” to being one, if ∂f(xk) ≈ ∂f(xk+1). We
will make this more precise in Section 6.8, after we introduce a notion of
“approximate subgradient.”

f(x)

X xxk+1xk x
∗

xk+2

f(x)

X x
xk+1

xk x
∗xk+2

Figure 6.5.3. Illustration of the role of the parameter ck in the convergence
process of the proximal point algorithm. In the figure on the left, ck is large,
the graph of the quadratic term is “blunt,” and the method makes fast progress
toward the optimal solution set X∗. In the figure on the right, ck is small, the
graph of the quadratic term is “pointed,” and the method makes slow progress.

Sec. 6.5 Proximal and Bundle Methods 315

Convergence

The proximal point algorithm has excellent convergence properties, the
most basic of which is the following.

Proposition 6.5.1: (Convergence) Let {xk} be a sequence gen-
erated by the proximal point algorithm (6.82). Then, assuming that
∑∞

k=0 ck = ∞, we have
f(xk) ↓ f∗,

and if X∗ is nonempty, {xk} converges to some point in X∗.

Proof: We first note that since xk+1 minimizes f(x) + 1
2ck

‖x − xk‖2, we

have by setting x = xk,

f(xk+1) +
1

2ck
‖xk+1 − xk‖2 ≤ f(xk), ∀ k. (6.84)

It follows that
{

f(xk)
}

is monotonically nondecreasing. Hence f(xk) ↓ f∞,
where f∞ is either a scalar or −∞, and satisfies f∞ ≥ f∗.

For any y ∈ ℜn, we have

‖xk − y‖2 = ‖xk+1 − y + xk − xk+1‖2

= ‖xk+1 − y‖2 + 2(xk+1 − y)′(xk − xk+1) + ‖xk+1 − xk‖2,

and from the subgradient relation (6.83),

f(xk+1) +
1

ck
(xk − xk+1)′(y − xk+1) ≤ f(y).

Combining these two relations, we obtain

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2ck
(

f(xk+1) − f(y)
)

− ‖xk+1 − xk‖2

≤ ‖xk − y‖2 − 2ck
(

f(xk+1) − f(y)
)

,
(6.85)

and for any N ≥ 0, by adding over k = 0, . . . , N , we have

‖xN+1 − y‖2 + 2
N
∑

k=0

ck
(

f(xk+1) − f(y)
)

≤ ‖x0 − y‖2, ∀ y ∈ ℜn, N ≥ 0,

so that

2

N
∑

k=0

ck
(

f(xk+1) − f(y)
)

≤ ‖x0 − y‖2, ∀ y ∈ ℜn, N ≥ 0.

316 Convex Optimization Algorithms Chap. 6

Taking the limit as N → ∞, we have

2
∞
∑

k=0

ck
(

f(xk+1) − f(y)
)

≤ ‖x0 − y‖2, ∀ y ∈ ℜn. (6.86)

Assume to arrive at a contradiction that f∞ > f∗, and let ŷ be such
that f∞ > f(ŷ) > f∗. Since

{

f(xk)
}

is monotonically nondecreasing, we
have

f(xk+1) − f(ŷ) ≥ f∞ − f(ŷ) > 0.

Then in view of the assumption
∑∞

k=0 ck = ∞, Eq. (6.86) leads to a con-
tradiction. Thus f∞ = f∗.

Consider now the case where X∗ is nonempty, and let x∗ be any point
in X∗. Applying Eq. (6.85) with y = x∗, we have

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−2ck
(

f(xk+1)−f(x∗)
)

, k = 0, 1, (6.87)

Thus ‖xk − x∗‖2 is monotonically nondecreasing, so {xk} is bounded, and
each of its limit points must belong to X∗, since

{

f(xk)
}

monotonically
decreases to f∗ and f is closed. Also, by Eq. (6.87), the distance of xk to
each limit point is monotonically nondecreasing, so {xk} must converge to
a unique limit, which must be an element of X∗. Q.E.D.

Rate of Convergence

The following proposition shows that the convergence rate of the algorithm
depends on the magnitude of ck and on the order of growth of f near the
optimal solution set (see also Fig. 6.5.4).

f(x)

X xxk+1xk x
∗

xk+2

f(x)

X xxk+1
xk x

∗

xk+2

Figure 6.5.4. Illustration of the role of the growth properties of f near X∗ in
the convergence rate of the proximal point algorithm. In the figure on the left, f

grows slowly and the convergence is slow. In the figure on the right, f grows fast
and the convergence is fast.

Sec. 6.5 Proximal and Bundle Methods 317

Proposition 6.5.2: (Rate of Convergence) Let {xk} be a se-
quence generated by the proximal point algorithm (6.82), under the
assumptions that

∑∞
k=0 ck = ∞ and X∗ is nonempty. Assume further

that for some scalars β > 0, δ > 0, and α ≥ 1, we have

f∗ + β
(

d(x)
)α ≤ f(x), ∀ x ∈ ℜn with d(x) ≤ δ, (6.88)

where
d(x) = min

x∗∈X∗
‖x− x∗‖.

(a) For all k sufficiently large, we have

d(xk+1) + βck
(

d(xk+1)
)α−1 ≤ d(xk), if xk+1 /∈ X∗. (6.89)

(b) Let 1 < α < 2 and xk /∈ X∗ for all k. Then if infk≥0 ck > 0,

lim sup
k→∞

d(xk+1)
(

d(xk)
)1/(α−1)

<∞.

(c) Let α = 2 and xk /∈ X∗ for all k. Then if limk→∞ ck = c with
c ∈ (0,∞),

lim sup
k→∞

d(xk+1)

d(xk)
≤ 1

1 + βc
,

while if limk→∞ ck = ∞,

lim
k→∞

d(xk+1)

d(xk)
= 0.

Proof: (a) Let x̂k+1 denote the projection of xk+1 on X∗, let d = x̂k+1 −
xk+1, and assume that d 6= 0. From the subgradient relation (6.83), we
have

f(xk+1) +
1

ck
(xk − xk+1)′(x̂k+1 − xk+1) ≤ f(x̂k+1) = f∗.

Using the hypothesis, {xk} converges to some point in X∗, so it follows
that

βck
(

d(xk+1)
)α ≤ (xk+1 − xk)′(x̂k+1 − xk+1),

for k sufficiently large. We add to both sides (xk+1 − x̂k)′(xk+1 − x̂k+1),
yielding

(xk+1 − x̂k)′(xk+1 − x̂k+1) + βck
(

d(xk+1)
)α ≤ (xk − x̂k)′(xk+1 − x̂k+1),

318 Convex Optimization Algorithms Chap. 6

and we use the fact

‖xk+1 − x̂k+1‖2 ≤ (xk+1 − x̂k)′(xk+1 − x̂k+1),

which follows from the Projection Theorem (cf. Prop. 1.1.9), to obtain

‖xk+1 − x̂k+1‖2 + βck
(

d(xk+1)
)α ≤ ‖xk − x̂k‖‖xk+1 − x̂k+1‖.

By dividing with ‖xk+1 − x̂k+1‖, Eq. (6.89) follows.

(b) From Eq. (6.89) and the fact α < 2, the desired relation follows.

(c) For α = 2, Eq. (6.89) becomes

(1 + βck)d(xk+1) ≤ d(xk),

from which the result follows. Q.E.D.

Proposition 6.5.2 shows that as the growth order α in Eq. (6.88)
increases, the rate of convergence becomes slower. The threshold case is
when α = 2; then the distance of the iterates to X∗ decreases at least at the
rate of a geometric progression if ck remains bounded, and decreases even
faster (superlinearly) if ck → ∞. Generally, the convergence is accelerated
if ck is increased with k, rather than kept constant; this is illustrated most
clearly when α = 2 [cf. part (c) of Prop. 6.5.2]. When 1 < α < 2, the
convergence rate is faster than that of a geometric progression (superlinear);
see Prop. 6.5.2(b). When α > 2, the convergence rate is slower than when
α = 2 (sublinear); see Exercise 6.10.

The case where α = 1 allows for a cost function f that is polyhedral.
Then the proximal point algorithm converges finitely (in fact in a single
iteration for c0 sufficiently large), as illustrated in Fig. 6.5.5 and as shown
in the following proposition.

f(x)

X x

f(x)

X xx
∗

x0x0 x1 x2 = x
∗

Figure 6.5.5. Finite convergence of the proximal point algorithm when f(x)
grows at a linear rate near the optimal solution set X∗ (e.g., f is polyhedral).
In the figure on the right, we have convergence in a single iteration for a large
enough value of c.

Sec. 6.5 Proximal and Bundle Methods 319

Proposition 6.5.3: (Finite Convergence) Assume that X∗ is
nonempty and that there exists a scalar β > 0 such that

f∗ + βd(x) ≤ f(x), ∀ x ∈ ℜn, (6.90)

where d(x) = minx∗∈X∗ ‖x−x∗‖. Then if
∑∞

k=0 ck = ∞, the proximal
point algorithm (6.82) converges to X∗ finitely [that is, there exists
k > 0 such that xk ∈ X∗ for all k ≥ k]. Furthermore, if c0 ≥ d(x0)/β,
the algorithm converges in a single iteration (i.e., x1 ∈ X∗).

Proof: The assumption (6.88) of Prop. 6.5.2 holds with α = 1 and all
δ > 0, so Eq. (6.89) becomes

d(xk+1) + βck ≤ d(xk), if xk+1 /∈ X∗,

and holds for all k. If
∑∞

k=0 ck = ∞ and xk /∈ X∗ for all k, by adding the
preceding inequality over all k, we obtain a contradiction. Hence we must
have xk ∈ X∗ for k sufficiently large. Similarly, if c0 ≥ d(x0)/β, we must
have x1 ∈ X∗. Q.E.D.

The condition (6.90) is illustrated in Fig. 6.5.6. It can be shown that
the condition holds when f is a polyhedral function and X∗ is nonempty
(see Exercise 6.9).

f(x)

X x
X∗

f∗

f∗ + βd(x)

Slope βSlope β

Figure 6.5.6. Illustration of the condition

f∗ + βd(x) ≤ f(x), ∀ x ∈ ℜn,

[cf. Eq. (6.90)].

It is also possible to prove the one-step convergence property of Prop.
6.5.3 with a simpler argument that does not rely on Prop. 6.5.2 and Eq.

320 Convex Optimization Algorithms Chap. 6

(6.89). Indeed, assume that x0 6= X∗, let x̂0 be the projection of x0 on X∗,
and consider the function

f̃(x) = f∗ + βd(x) +
1

2c0
‖x− x0‖2. (6.91)

Its subdifferential at x̂0 is given by (cf. Prop. 5.4.6)

∂f̃(x̂0) =

{

βγ
x0 − x̂0

‖x0 − x̂0‖
+

1

c0
(x̂0 − x0)

∣

∣

∣ γ ∈ [0, 1]

}

=

{(

βγ

d(x0)
− 1

c0

)

(x0 − x̂0)
∣

∣

∣ γ ∈ [0, 1]

}

.

It follows that if c0 ≥ d(x0)/β, then 0 ∈ ∂f̃(x̂0), so that x̂0 minimizes f̃(x).
Since from Eqs. (6.90) and (6.91), we have

f̃(x) ≤ f(x) +
1

2c0
‖x− x0‖2, ∀ x ∈ ℜn,

with equality when x = x̂0, it follows that x̂0 minimizes f(x)+ 1
2c0

‖x−x0‖2

over x ∈ X , and is therefore equal to the first iterate x1 of the proximal
point algorithm.

Gradient and Subgradient Interpretations

An interesting interpretation of the proximal point iteration is obtained by
considering the function

φc(z) = inf
x∈ℜn

{

f(x) +
1

2c
‖x− z‖2

}

(6.92)

for a fixed positive value of c. It is easily seen that

inf
x∈ℜn

f(x) ≤ φc(z) ≤ f(z), ∀ z ∈ ℜn,

from which it follows that the set of minima of f and φc coincide (this is also
evident from the geometric view of the proximal minimization given in Fig.
6.5.7). The following proposition shows that φc is a convex differentiable
function, and calculates its gradient.

Proposition 6.5.4: The function φc of Eq. (6.92) is convex and dif-
ferentiable, and we have

∇φc(z) =
z − xc(z)

c
∀ z ∈ ℜn, (6.93)

where xc(z) is the unique minimizer in Eq. (6.92).

Sec. 6.5 Proximal and Bundle Methods 321

f(x)

X xx
∗

f(z)

φc(z)

xc(z)
z

z

φc(z) −
1

2c

‖x − z‖2

Slope ∇φc(z)

Figure 6.5.7. Illustration of the function

φc(z) = inf
x∈ℜn

{

f(x) +
1

2c
‖x − z‖2

}

.

We have φc(z) ≤ f(z) for all z ∈ ℜn, and at the set of minima of f , φc coincides
with f . We also have

∇φc(z) =
z − xc(z)

c
.

For some geometric insight as to why this relation holds, consider the case where
f is linear and note the definition of φc in the figure.

Proof: We first note that φc is convex, since it is obtained by partial
minimization of f(x) + 1

2c‖x− z‖2, which is convex as a function of (x, z)
(cf. Prop. 3.3.1). Furthermore, φc is real-valued, since the infimum in Eq.
(6.92) is attained.

Let us fix z, and for notational simplicity, denote x = xc(z). To show
that φc is differentiable with the given form of gradient, we note that by
the optimality condition of Prop. 5.4.7, we have y ∈ ∂φc(z) if and only if z
attains the minimum over v ∈ ℜn of

φc(v) − y′v = inf
x∈ℜn

{

f(x) +
1

2c
‖x− v‖2

}

− y′v.

Equivalently, y ∈ ∂φc(z) if and only if (x, z) attains the minimum over
(x, v) ∈ ℜ2n of the function

F (x, v) = f(x) +
1

2c
‖x− v‖2 − y′v,

which is equivalent to (0, 0) ∈ ∂F (x, z), or

0 ∈ ∂f(x) +
x− z

c
, y =

z − x

c
. (6.94)

322 Convex Optimization Algorithms Chap. 6

[This last step is obtained by viewing F as the sum of the function f and
the differentiable function

1

2c
‖x− v‖2 − y′v,

and by writing

∂F (x, v) =
{

(g, 0) | g ∈ ∂f(x)
}

+

{

x− v

c
,
v − x

c
− y

}

;

cf. Prop. 5.4.6]. Since the subgradient relation on the left side of Eq. (6.94)
is satisfied by the definition of x, we see that φc has a unique subgradient
at z with the given form. Q.E.D.

Using the gradient formula (6.93), we see that the proximal point
iteration can be written as

xk+1 = xk − ck∇φck
(xk),

so it is a gradient iteration for minimizing φck
. This interpretation pro-

vides insight into the working mechanism of the algorithm and has formed
the basis for various acceleration schemes, particularly in connection with
the Augmented Lagrangian method, a popular constrained minimization
method to be discussed in Section 6.6.2 (see also the book [Ber82] and the
references quoted there).

6.5.2 Proximal Cutting Plane Method

Let us consider minimization of a real-valued convex function f : ℜn 7→ ℜ,
over a closed convex set X , by using the proximal point algorithm. Since
f may not be differentiable, it is natural to try polyhedral approximation
ideas for minimizing

f(x) +
1

2ck
‖x− xk‖2

over X (assuming of course that at each x ∈ X , a subgradient of f can be
computed). In particular, we may consider replacing the original function
f with a simpler polyhedral approximation Fk, thereby simplifying the
corresponding proximal minimization. A special advantage of this idea
is that once a cutting plane has been constructed at some iteration, it
can be used for approximation of f at all iterations of the current or the
subsequent proximal minimizations. Thus one may perform the proximal
minimizations approximately, and update xk after any number of cutting
plane iterations, while carrying over the computed cutting planes from one
proximal minimization to the next. An extreme form of implementation

Sec. 6.5 Proximal and Bundle Methods 323

of this idea is to update xk after a single cutting plane iteration, as in the
following algorithm.

At the typical iteration, we perform a proximal point iteration, aimed
at minimizing the current polyhedral approximation to f given by [cf. Eq.
(6.46)]

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x− xk)′gk

}

, (6.95)

i.e.,

xk+1 ∈ arg min
x∈X

{

Fk(x) +
1

2ck
‖x− xk‖2

}

, (6.96)

where ck is a positive scalar parameter. A subgradient gk+1 of f at xk+1 is
then computed, Fk+1 is accordingly updated, and the process is repeated.
We call this the proximal cutting plane method .

The method terminates if xk+1 = xk; in this case, Eqs. (6.95) and
(6.96) imply that

f(xk) = Fk(xk) ≤ Fk(x)+
1

2ck
‖x−xk‖2 ≤ f(x)+

1

2ck
‖x−xk‖2, ∀ x ∈ X,

so xk is a point where the proximal point algorithm terminates, and it must
therefore be optimal by Prop. 6.5.1. Note, however, that unless f and X
are polyhedral, finite termination is unlikely.

The convergence properties of the method are easy to derive, based
on what we already know. The idea is that Fk asymptotically converges
to f , at least near the generated iterates, so asymptotically, the algorithm
essentially becomes the proximal point algorithm, and inherits the corre-
sponding convergence properties. Let us derive a finite convergence result
for the polyhedral case.

Proposition 6.5.5: (Finite Termination of the Proximal Cut-
ting Plane Method) Consider the proximal cutting plane method
for the case where f and X are polyhedral, with

f(x) = max
i∈I

{

a′ix+ bi
}

,

where I is a finite index set, and ai and bi are given vectors and scalars,
respectively. Assume that the optimal solution set is nonempty and
that the subgradient added to the cutting plane approximation at each
iteration is one of the vectors ai, i ∈ I. Then the method terminates
finitely with an optimal solution.

Proof: Since there are only finitely many vectors αi to add, eventually the
polyhedral approximation Fk will not change, i.e., Fk = Fk for all k > k̄.

324 Convex Optimization Algorithms Chap. 6

Thus, for k ≥ k, the method will become the proximal point algorithm
for minimizing Fk, so by Prop. 6.5.3, it will terminate with a point x that
minimizes Fk subject to x ∈ X . But then, we will have concluded an
iteration of the cutting plane method for minimizing f over X , with no
new vector added to the approximation Fk, which implies termination of
the cutting plane method, necessarily at a minimum of f over X . Q.E.D.

The proximal cutting plane method aims at increased stability over
the ordinary cutting plane method, but it has some drawbacks:

(a) There is a potentially difficult tradeoff in the choice of the parameter
ck. In particular, stability is achieved only by choosing ck small,
since for large values of ck the changes xk+1 −xk may be substantial.
Indeed for a polyhedral function f and large enough ck, the method
finds the exact minimum of Fk over X in a single minimization (cf.
Prop. 6.5.3), so it is identical to the ordinary cutting plane method,
and fails to provide any stabilization. On the other hand, small values
of ck lead to slow rate of convergence.

(b) The number of subgradients used in the approximation Fk may grow
to be very large, in which case the quadratic program solved in Eq.
(6.96) may become very time-consuming.

These drawbacks motivate algorithmic variants, called bundle methods ,
which we will discuss next. The main difference is that the proximal center
xk is updated only after making enough progress in minimizing f to ensure
a certain measure of stability.

6.5.3 Bundle Methods

In the basic form of a bundle method, the iterate xk+1 is obtained by
minimizing over X the sum of Fk, a cutting plane approximation to f , and
a quadratic proximal term pk(x):

xk+1 ∈ arg min
x∈X

{

Fk(x) + pk(x)
}

. (6.97)

The proximal center of pk need not be xk (as in the proximal cutting plane
method), but is rather one of the past iterates xi, i ≤ k.

In one version of the method, Fk is given by

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x− xk)′gk

}

, (6.98)

while pk(x) is of the form

pk(x) =
1

2ck
‖x− yk‖2,

where yk ∈ {xi | i ≤ k}. Following the computation of xk+1, the new
proximal center yk+1 is set to xk+1, or is left unchanged (yk+1 = yk)

Sec. 6.5 Proximal and Bundle Methods 325

depending on whether, according to a certain test, “sufficient progress”
has been made or not. An example of such a test is

f(yk) − f(xk+1) ≥ βδk,

where β is a fixed scalar with β ∈ (0, 1), and

δk = f(yk) −
(

Fk(xk+1) + pk(xk+1)
)

.

Thus,

yk+1 =

{

xk+1 if f(yk) − f(xk+1) ≥ βδk,
yk if f(yk) − f(xk+1) < βδk,

(6.99)

and initially y0 = x0. In the parlance of bundle methods, iterations where
yk+1 is updated to xk+1 are called serious steps , while iterations where
yk+1 = yk are called null steps .

The method terminates if xk+1 = yk; in this case, Eqs. (6.97) and
(6.98) imply that

f(yk)+pk(yk) = Fk(yk)+pk(yk) ≤ Fk(x)+pk(x) ≤ f(x)+pk(x), ∀ x ∈ X,

so yk is a point where the proximal point algorithm terminates, and must
therefore be optimal. Of course, finite termination is unlikely, unless f and
X are polyhedral. An important point, however, is that prior to termina-
tion, we have δk > 0. Indeed, since

Fk(xk+1) + pk(xk+1) ≤ Fk(yk) + pk(yk) = Fk(yk),

and Fk(yk) = f(yk), we have

0 ≤ f(yk) −
(

Fk(xk+1) + pk(xk+1)
)

= δk,

with equality only if xk+1 = yk, i.e., when the algorithm terminates.
The scalar δk is illustrated in Fig. 6.5.8. Since f(yk) = Fk(yk) [cf.

Eq. (6.98)], δk represents the reduction in the proximal objective Fk + pk

in moving from yk to xk+1. If the reduction in the true objective,

f(yk) − f(xk+1),

does not exceed a fraction β of δk (or is even negative as in the right-hand
side of Fig. 6.5.8), this indicates a large discrepancy between proximal and
true objective, and an associated instability. As a result the algorithm fore-
goes the move from yk to xk+1 with a null step [cf. Eq. (6.99)], but improves
the cutting plane approximation by adding the new plane corresponding

326 Convex Optimization Algorithms Chap. 6

Serious Step

δk

f(yk) − f(xk+1)

X x) yk yk+1 = xk+1

f(x)
δk

Fk(x)

f(yk) − f(xk+1)

X x) yk yk+1 = xk+1

Null Step

f(x)

δk

Fk(x)

f(yk) − f(xk+1)

X xxk+1x) yk = yk+1

Figure 6.5.8. Illustration of the test (6.99) for a serious or a null step in the
bundle method. It is based on

δk = f(yk) −
(

Fk(xk+1) + pk(xk+1)
)

,

the reduction in proximal cost, which is always positive, except at termination. A
serious step is performed if and only if the reduction in true cost, f(yk)−f(xk+1),
exceeds a fraction β of the reduction δk in proximal cost.

to xk+1. Otherwise, it performs a serious step, with the guarantee of true
cost improvement afforded by the test (6.99).

The convergence analysis of the bundle method just presented fol-
lows the corresponding arguments for the cutting plane and the proximal
point method. The idea is that the method makes “substantial” progress
with every serious step. Furthermore, null steps cannot be performed in-
definitely, for in this case, the polyhedral approximation to f will become
increasingly accurate and the reduction in true cost will converge to the
reduction in proximal cost. Then, since β < 1, the test for a serious step
will be passed. In the case where f and X are polyhedral, the method
converges finitely, similar to the case of the proximal point and proximal
cutting plane algorithms (cf. Props. 6.5.3 and 6.5.5).

Proposition 6.5.6: (Finite Termination of the Bundle Method)
Consider the bundle method for the case where f and X are polyhe-
dral, with

f(x) = max
i∈I

{

a′ix+ bi
}

,

Sec. 6.5 Proximal and Bundle Methods 327

where I is a finite index set, and ai and bi are given vectors and scalars,
respectively. Assume that the optimal solution set is nonempty and
that the subgradient added to the cutting plane approximation at each
iteration is one of the vectors ai, i ∈ I. Then the method terminates
finitely with an optimal solution.

Proof: Since there are only finitely many vectors αi to add, eventually the
polyhedral approximation Fk will not change, i.e., Fk = Fk for all k > k̄.
We note that Fk(xk+1) = f(xk+1) for all k > k̄, since otherwise a new
cutting plane would be added to Fk. Thus, for k > k̄,

f(yk) − f(xk+1) = f(yk) − Fk(xk+1)

= f(yk) − (Fk(xk+1) + pk(xk+1)) + pk(xk+1)

= δk + pk(xk+1)

≥ βδk.

Therefore, according to Eq. (6.99), the method will perform serious steps
for all k > k̄, and become identical to the proximal cutting plane algorithm,
which converges finitely by Prop. 6.5.5. Q.E.D.

Discarding Old Subgradients

We mentioned earlier that one of the drawbacks of the cutting plane al-
gorithms is that the number of subgradients used in the approximation
Fk may grow to be very large. The monitoring of progress through the
test (6.99) for serious/null steps can also be used to discard some of the
accumulated cutting planes. For example, at the end of a serious step,
upon updating the proximal center yk to yk+1 = xx+1, we may discard any
subset of the cutting planes.

It may of course be useful to retain some of the cutting planes, par-
ticularly the ones that are “active” or “nearly active” at yk+1, i.e., those
i ≤ k for which the linearization error

Fk(yk+1) −
(

f(xi) + (yk+1 − xi)′gi

)

is 0 or close to 0, respectively. The essential validity of the method is
maintained, by virtue of the fact that

{

f(yk)
}

is a monotonically decreasing
sequence, with “sufficiently large” cost reductions between proximal center
updates.

An extreme possibility is to discard all past subgradients following a
serious step from yk to xk+1. Then, after a subgradient gk+1 at xk+1 is
calculated, the next iteration becomes

xk+2 = arg min
x∈X

{

f(xk+1) + g′k+1(x− xk+1) +
1

2ck+1
‖x− xk+1‖2

}

.

328 Convex Optimization Algorithms Chap. 6

It can be seen that we have

xk+2 = PX(xk+1 − ck+1gk+1),

where PX(·) denotes projection on X , so after discarding all past subgradi-
ents following a serious step, the next iteration is an ordinary subgradient
iteration with stepsize equal to ck+1.

Another possibility is (following the serious step) to replace all the
cutting planes with a single cutting plane: the one obtained from the hy-
perplane that passes through

(

xk+1, Fk(xk+1)
)

and separates the epigraphs
of the functions Fk(x) and γk − 1

2ck
(x− yk), where

γk = Fk(xk+1) +
1

2ck
(x− yk),

(see Fig. 6.5.9). This is the cutting plane

Fk(xk+1) + ĝ′k(x− xk+1), (6.100)

where ĝk is given by

ĝk =
yk − xk+1

ck
. (6.101)

The next iteration will then be performed with just two cutting planes: the
one just given in Eq. (6.100) and a new one obtained from xk+1,

f(xk+1) + g′k+1(x− xk+1),

where gk+1 ∈ ∂f(xk+1).

X x) yk yk+1 = xk+1

f(x)
Fk(x)

) yk yk+1 = xk+1

Slope ĝk =
yk−xk+1

ck

γk

Figure 6.5.9. Illustration of the cutting plane

Fk(xk+1) + ĝ′k(x − xk+1),

where

ĝk =
yk − xk+1

ck
.

The “slope” ĝk can be shown to be a convex combination of the subgradients that
are “active” at xk+1.

Sec. 6.6 Dual Proximal Point Algorithms 329

The vector ĝk is sometimes called an “aggregate subgradient,” be-
cause it can be shown to be a convex combination of the past subgradients
g0, . . . , gk. This is evident from Fig. 6.5.9, and can also be verified by using
quadratic programming duality arguments (see Exercise 6.18).

There are also many other variants of bundle methods, which aim at
increased efficiency and the exploitation of special structure. We refer to
the literature for related algorithms and their analyses.

6.6 DUAL PROXIMAL POINT ALGORITHMS

Let us recall the proximal point algorithm of Section 6.5.1:

xk+1 = arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

, (6.102)

where f : ℜn 7→ (−∞,∞], x0 is an arbitrary starting point, and {ck} is
a positive scalar parameter sequence with infk≥0 ck > 0. We will develop
a dual implementation of the algorithm and its cutting plane/bundle ver-
sions, which parallels the duality between the simplicial decomposition and
cutting plane methods, developed in Section 6.4.

We first note that the minimization above is in a form suitable for
application of Fenchel duality (cf. Section 5.3.5) with the identifications

f1(x) = f(x), f2(x) =
1

2ck
‖x− xk‖2.

We can write the Fenchel dual problem as

minimize f⋆
1 (λ) + f⋆

2 (−λ)
subject to λ ∈ ℜn,

(6.103)

where f⋆
1 and f⋆

2 are the conjugate functions of f1 and f2, respectively. We
have

f⋆
2 (λ) = sup

x∈ℜn

{

x′λ−f2(x)
}

= sup
x∈ℜn

{

x′λ− 1

2ck
‖x− xk‖2

}

= x′kλ+
ck
2
‖λ‖2,

where the last equality follows by noting that the supremum over x is
attained at x = xk + ckλ. Denoting by f⋆ the conjugate of f ,

f⋆
1 (λ) = f⋆(λ) = sup

x∈ℜn

{

x′λ− f(x)
}

,

and substituting into Eq. (6.103), we see that the dual problem (6.103) can
be written as

minimize f⋆(λ) − x′kλ+
ck
2
‖λ‖2

subject to λ ∈ ℜn.
(6.104)

330 Convex Optimization Algorithms Chap. 6

We now note that since f2 is real-valued, the relative interior condition
of the Fenchel Duality Theorem [Prop. 5.3.8(a)] is satisfied, so there is no
duality gap. Furthermore, both primal and dual problems have a unique
solution, since they involve a closed, strictly convex, and coercive cost
function.

Let λk+1 be the unique optimal solution of problem (6.104). Then
λk+1 together with xk+1 satisfy the Lagrangian optimality conditions of
Prop. 5.3.8. When applied to the primal problem, these conditions can be
written as

xk+1 ∈ arg max
x∈ℜn

{

x′λk+1 − f(x)
}

,

xk+1 ∈ arg min
x∈ℜn

{

x′λk+1 − f2(x)
}

= arg min
x∈ℜn

{

x′λk+1 +
1

2ck
‖x− xk‖2

}

,

or equivalently,

λk+1 ∈ ∂f(xk+1), xk+1 = xk − ckλk+1. (6.105)

Similarly, when applied to the dual problem, the Lagrangian optimality
condition of Prop. 5.3.8(b) can be written as

xk+1 ∈ ∂f⋆(λk+1), λk+1 =
xk − xk+1

ck
; (6.106)

(cf. Fig. 6.6.1).

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

Slope λk+1

Optimal Primal Solution Optimal dual solution

Optimal primal proximal solution
Optimal primal proximal solution

Optimal dual proximal solution

Optimal primal proximal solution

Optimal dual proximal solution

Optimal primal proximal solution

Optimal dual proximal solution

Figure 6.6.1. Visualization of the proximal iteration (6.102) and the solution
λk+1 of the corresponding dual problem (6.104) in terms of Fenchel duality [cf.
Eq. (6.105)].

Sec. 6.6 Dual Proximal Point Algorithms 331

We thus obtain a dual (and mathematically equivalent) implementa-
tion of the proximal point algorithm. It is given by the iteration

λk+1 = arg min
λ∈ℜn

{

f⋆(λ) − x′kλ+
ck
2
‖λ‖2

}

, (6.107)

followed by

xk+1 = xk − ckλk+1, (6.108)

(see Fig. 6.6.2). As xk converges to a minimum x∗ of f , λk converges to
0. Thus the dual algorithm does not aim to minimize f⋆, but rather to
find a subgradient of f⋆ at 0, which [by Prop. 5.4.4(b)] is a minimum of
f . In particular, we have λk ∈ ∂f(xk), xk ∈ ∂f⋆(λk) [cf. Eqs. (6.105) and
(6.106)], and as λk converges to 0 and xk converges to a minimum x∗ of f ,
we have 0 ∈ ∂f(x∗) and x∗ ∈ ∂f⋆(0).

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk

x
∗

x h(λ)
Slope = xk

Slope = xk+1

λk+1

Slope = x
∗

δk

δk + x
′

k
λ −

ck

2
‖λ‖2

Primal Proximal Iteration Dual Proximal Iteration

f⋆(λ)

Figure 6.6.2. Illustration of primal and dual proximal point algorithms. The
primal algorithm aims to find x∗, a minimum of f . The dual algorithm aims to
find x∗ as a subgradient of f⋆ at 0, i.e., it aims to solve the (generalized) equation
x∗ ∈ ∂f⋆(0) [cf. Prop. 5.4.4(b)].

The primal and dual implementations are mathematically equivalent
and generate identical sequences {xk}, assuming the same starting point
x0. Whether one is preferable over the other depends on which of the
minimizations (6.102) and (6.107) is easier, i.e., whether f or its conjugate
f⋆ has more convenient structure.

We will now discuss two applications of the dual proximal point algo-
rithm. The first application leads to a popular general purpose algorithm
for constrained minimization, the Augmented Lagrangian method. The
second application is a dual implementation of the proximal cutting plane
and bundle methods of Section 6.5.

332 Convex Optimization Algorithms Chap. 6

6.6.1 Augmented Lagrangian Methods

We will now discuss a special case of the dual proximal point algorithm,
where −f is the dual function q of a constrained optimization problem. In
this case, because q is typically not available in closed form, the dual prox-
imal approach is more convenient than the primal. The resulting methods
are popular because they allow the solution of constrained optimization
problems, through a sequence of easier unconstrained (or less constrained)
optimizations, which can be performed with fast and reliable algorithms,
such as Newton, Quasi-Newton, and conjugate gradient methods (see the
literature cited at the end of the chapter).

Consider the constrained minimization problem

minimize f(x)

subject to x ∈ X, Ex = d,
(6.109)

where f : ℜn 7→ ℜ is a convex function, X is a closed convex set, E is an
m× n matrix, and d ∈ ℜm.†

Consider also the corresponding primal and dual functions

p(v) = inf
x∈X, Ex−d=v

f(x), q(λ) = inf
x∈X

L(x, λ),

where L(x, λ) = f(x) + λ′(Ex− d) is the Lagrangian function. We assume
that p is closed, so that, except for sign changes, q and p are conjugates of
each other [i.e., −q(−λ) is the conjugate convex of p; cf. Section 4.2.1].

Let us apply the proximal point algorithm to the dual problem of
maximizing q. It has the form

λk+1 = arg max
µ∈ℜm

{

q(λ) − 1

2ck
‖λ− λk‖2

}

.

In view of the conjugacy relation between q and p (taking also into account
the required sign changes), it can be seen that the dual proximal point
algorithm has the form

vk+1 = arg min
v∈ℜm

{

p(v) + λk
′v +

ck
2
‖v‖2

}

; (6.110)

† We focus on linear equality constraints for convenience, but the analysis

can be extended to convex inequality constraints as well. In particular, a linear

inequality constraint of the form a′jx ≤ bj can be converted to an equality con-

straint a′jx + zj = bj by using a slack variable constraint zj ≥ 0, which can be

absorbed into the set X. For convex inequality constraints, see Section 4.2.4 and

the sources given at the end of the chapter. The book [Ber82] is a comprehensive

reference on Augmented Lagrangian methods.

Sec. 6.6 Dual Proximal Point Algorithms 333

see Fig. 6.6.3. To implement this algorithm, we use the definition of p to
write the above minimization as

min
v∈ℜm

{

inf
x∈X, Ex−d=v

{

f(x)
}

+ λk
′v +

ck
2
‖v‖2

}

= min
v∈ℜm

inf
x∈X, Ex−d=v

{

f(x) + λ′(Ex − d) +
c

2
‖Ex− d‖2

}

= inf
x∈X

{

f(x) + λ′(Ex− d) +
c

2
‖Ex− d‖2

}

= inf
x∈X

Lck
(x, λk),

(6.111)

where for any c > 0, Lc is the Augmented Lagrangian function

Lc(x, λ) = f(x) + λ′(Ex− d) +
c

2
‖Ex− d‖2.

Furthermore, the minimizing v and x in Eq. (6.111) are related, and we
have

vk+1 = Exk+1 − d,

where xk+1 is any vector that minimizes Lck
(x, λk) over X (we assume

that such a vector exists - this is not guaranteed, and must be verified
independently).

p(v) +
c

2
‖v‖2

p(v)

vvk+1

inf
x∈X

Lc(x, λk)

Slope = −λ∗

Slope = −λk+1

Slope = −λk

Figure 6.6.3. Illustration of the dual proximal minimization (6.110) and the
update

λk+1 = λk + ckvk+1

in the Augmented Lagrangian method. We have −λk+1 ∈ ∂p(vk+1) based on the
dual Lagrangian optimality conditions [cf. Eq. (6.106)].

334 Convex Optimization Algorithms Chap. 6

Thus, the iteration of the dual algorithm [cf. Eq. (6.108), with a
change of sign of λk inherited from the change of sign in Eq. (6.110)] takes
the form λk+1 = λk + ckvk+1, or

λk+1 = λk + ck(Exk+1 − d), (6.112)

where
xk+1 ∈ arg min

x∈X
Lck

(x, λk). (6.113)

The algorithm (6.112)-(6.113) is known as the Augmented Lagrangian me-

thod or the method of multipliers. As we have seen, it is the special case
of the dual proximal point algorithm applied to maximization of the dual
function q.

The convergence properties of the Augmented Lagrangian method are
derived from the corresponding properties of the proximal point algorithm
(cf. Section 6.5.1). The sequence

{

q(λk)
}

converges to the optimal dual
value, and {λk} converges to an optimal dual solution, provided such a so-
lution exists (cf. Prop. 6.5.1). Furthermore, convergence in a finite number
of iterations is obtained in the case of a linear programming problem (cf.
Prop. 6.5.3).

We also claim that every limit point of the generated sequence {xk}
is an optimal solution of the primal problem (6.109). To see this, note that
since {λk} converges to an optimal dual solution, from the update formula
(6.112) we obtain

Exk+1 − d→ 0, ck
(

Exk+1 − d
)

→ 0.

Furthermore, we have

Lck

(

xk+1, λk

)

= min
x∈X

{

f(x) + λ′k(Ex− d) +
ck
2
‖Ex− d‖2

}

.

The last two relations yield

lim sup
t→∞

f(xk+1) = lim sup
t→∞

Lck

(

xk+1, λk

)

≤ f(x), ∀ x ∈ X with Ex = d,

so if x∗ ∈ X is a limit point of {xk}, we obtain

f(x∗) ≤ f(x), ∀ x ∈ X with Ex = d,

as well as Ex∗ = d (in view of Exk+1 − d→ 0). Therefore any limit point
x∗ of the generated sequence {xk} is an optimal solution of the primal
problem (6.109).

Finally, let us consider the “penalized” dual function qc, given by

qc(λ) = max
y∈ℜm

{

q(y) − 1

2c
‖y − λ‖2

}

. (6.114)

Sec. 6.6 Dual Proximal Point Algorithms 335

Then, according to Prop. 6.5.4, qc is differentiable, and we have

∇qc(λ) =
yc(λ) − λ

c
,

where yc(λ) is the unique vector attaining the maximum in Eq. (6.114).
Furthermore, the multiplier iteration (6.112) can be written as a gradient
iteration:

λk+1 = λk + ck∇qck
(λk).

This interpretation motivates variations based on faster Newton or Quasi-
Newton methods for maximizing qc. There are many algorithms along
this line, some of which involve inexact minimization of the Augmented
Lagrangian to enhance computational efficiency. We refer to the literature
cited at the end of the chapter for analysis of such methods.

6.6.2 Proximal Inner Linearization Methods

Let us recall the proximal cutting plane method (cf. Section 6.4.2) applied
to minimizing a real-valued convex function f : ℜn 7→ ℜ, over a closed
convex set X . The typical iteration involves a proximal minimization of
the current cutting plane approximation to f given by

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x− xk)′gk

}

+ δX(x),

where gi ∈ ∂f(xi) for all i and δX is the indicator function of X . Thus,

xk+1 ∈ arg min
x∈ℜn

{

Fk(x) +
1

2ck
‖x− xk‖2

}

, (6.115)

where ck is a positive scalar parameter. A subgradient gk+1 of f at xk+1 is
then computed, Fk+1 is accordingly updated, and the process is repeated.

Similar to the earlier discussion, we may use Fenchel duality to im-
plement the proximal minimization (6.115) in terms of conjugate functions
[cf. Eq. (6.107)]. The dual to the proximal iteration (6.115) can be written
as

minimize F ⋆
k (λ) − x′kλ+

ck
2
‖λ‖2

subject to λ ∈ ℜn,
(6.116)

where F ⋆
k is the conjugate of Fk. Once λk+1, the unique minimizer in the

dual proximal iteration (6.116), is computed, xk is updated via

xk+1 = xk − ckλk+1

[cf. Eq. (6.108)]. Then, a subgradient gk+1 of f at xk+1 is obtained either
directly, or as a vector attaining the supremum in the conjugacy relation

f(xk+1) = sup
λ∈ℜn

{

x′k+1λ− f⋆(λ)
}

,

336 Convex Optimization Algorithms Chap. 6

where f⋆ is the conjugate function of f :

gk+1 ∈ arg max
λ∈ℜn

{

x′k+1λ− f⋆(λ)
}

.

Let us now discuss the details of the preceding computations, assum-
ing for simplicity that there are no constraints, i.e., X = ℜn. According to
Section 6.4.3, F ⋆

k is a piecewise linear, inner approximation of f⋆ (see Fig.
6.4.5). In particular, F ⋆

k is a piecewise linear (inner) approximation of f⋆

with domain
dom(F ⋆

k) = conv
(

{g0, . . . , gk}
)

,

and “break points” at gi, i = 0, . . . , k, with values equal to the correspond-
ing values of f⋆.

Let us now consider the dual proximal optimization of Eq. (6.107).
It takes the form

minimize

k
∑

i=0

αi

(

f⋆(gi) − x′kgi

)

+
ck
2

∥

∥

∥

∥

∥

k
∑

i=0

αigi

∥

∥

∥

∥

∥

2

subject to

k
∑

i=0

αi = 1, αi ≥ 0, i = 0, . . . , k.

(6.117)

If (αk
0 , . . . , α

k
k) attains the minimum, we have

λk+1 =

k
∑

i=0

αk
i gi, xk+1 = xk − ck

k
∑

i=0

αk
i gi. (6.118)

The next subgradient gk+1 may be obtained from the maximization

gk+1 ∈ arg max
λ∈ℜn

{

x′k+1λ− f⋆(λ)
}

. (6.119)

As Fig. 6.6.4 indicates, gk+1 provides a new break point and an improved
inner approximation to f⋆ [equivalently,

(

gk+1, f⋆(gk+1)
)

is a new extreme
point added to the Minkowski-Weyl representation of epi(F ⋆

k)].
We refer to the algorithm defined by Eqs. (6.117), (6.118), (6.119), as

the proximal inner linearization algorithm. Note that all the computations
of the algorithm involve the conjugate f⋆ and not f . Thus, if f⋆ is more
convenient to work with than f , the proximal inner linearization algorithm
is preferable to the proximal cutting plane algorithm. The maximization
(6.119) is often the most challenging part of the algorithm, and the key to
its successful application.

Let us finally note that bundle versions of the algorithm are easily
obtained by introducing a proximity control mechanism, and a correspond-
ing test to distinguish between serious steps, where we update xk via Eq.
(6.118), and null steps, where we leave xk unchanged, but simply add the
extreme point

(

gk+1, f⋆(gk+1)
)

to the current inner approximation of f⋆.

Sec. 6.7 Interior Point Methods 337

x h(λ)
Slope = xk

Slope = xk+1

) gk+1

f⋆(λ)λ)F ∗

k
(λ)

Figure 6.6.4. Illustration of an iteration of the proximal inner linearization al-
gorithm. The proximal minimization determines the “slope” xk+1 of F ⋆

k
, which

then determines the next subgradient/break point gk+1 via the maximization

gk+1 ∈ arg max
λ∈ℜn

{

x′
k+1λ − f⋆(λ)

}

,

i.e., gk+1 is a point at which xk+1 is a subgradient of f⋆.

6.7 INTERIOR POINT METHODS

Let us consider inequality constrained problems of the form

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,
(6.120)

where f and gj are real-valued convex functions, and X is a closed con-
vex set. The interior (relative to X) of the set defined by the inequality
constraints is

S =
{

x ∈ X | gj(x) < 0, j = 1, . . . , r
}

,

and is assumed to be nonempty.
In interior point methods, we add to the cost a function B(x) that is

defined in the interior set S. This function, called the barrier function, is
continuous and goes to ∞ as any one of the constraints gj(x) approaches 0
from negative values. The two most common examples of barrier functions
are:

B(x) = −
r
∑

j=1

ln
{

−gj(x)
}

, logarithmic,

338 Convex Optimization Algorithms Chap. 6

B(x) = −
r
∑

j=1

1

gj(x)
, inverse.

Note that both of these barrier functions are convex since the constraint
functions gj are convex. Figure 6.7.1 illustrates the form of B(x).

S

Boundary of S Boundary of S

e B(x)

e' B(x)

e' < e

Boundary of SBoundary of S

S ǫ
′ < ǫ

ǫB(x)

) ǫ
′B(x)

) S

Figure 6.7.1 Form of a barrier function. The barrier term ǫB(x) goes to zero
for all interior points x ∈ S as ǫ → 0.

The barrier method is defined by introducing a parameter sequence
{ǫk} with

0 < ǫk+1 < ǫk, k = 0, 1, . . . , ǫk → 0.

It consists of finding

xk ∈ arg min
x∈S

{

f(x) + ǫkB(x)
}

, k = 0, 1, . . . (6.121)

Since the barrier function is defined only on the interior set S, the successive
iterates of any method used for this minimization must be interior points.

If X = ℜn, one may use unconstrained methods such as Newton’s
method with the stepsize properly selected to ensure that all iterates lie in
S. Indeed, Newton’s method is often recommended for reasons that have
to do with ill-conditioning, a phenomenon that relates to the difficulty of
carrying out the minimization (6.121) (see Fig. 6.7.2 and sources such as
[Ber99] for a discussion). Note that the barrier term ǫkB(x) goes to zero
for all interior points x ∈ S as ǫk → 0. Thus the barrier term becomes
increasingly inconsequential as far as interior points are concerned, while
progressively allowing xk to get closer to the boundary of S (as it should
if the solutions of the original constrained problem lie on the boundary

Sec. 6.7 Interior Point Methods 339

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

1

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

1

Figure 6.7.2. The convergence process of the barrier method for the two-dimensional
problem

minimize f(x) = 1
2

(

(x1)2 + (x2)2
)

subject to 2 ≤ x1,

with optimal solution x∗ = (2, 0). For the case of the logarithmic barrier function
B(x) = − ln (x1 − 2), we have

xk ∈ arg min
x1>2

{

1
2

(

(x1)2 + (x2)2
)

− ǫk ln (x1 − 2)
}

=

(

1 +
√

1 + ǫk , 0

)

,

so as ǫk is decreased, the unconstrained minimum xk approaches the constrained
minimum x∗ = (2, 0). The figure shows the equal cost surfaces of f(x)+ǫB(x) for
ǫ = 0.3 (left side) and ǫ = 0.03 (right side). As ǫk → 0, computing xk becomes
more difficult because of ill-conditioning (the equal cost surfaces become very
elongated near xk).

of S). Figure 6.7.2 illustrates the convergence process, and the following
proposition gives the main convergence result.

340 Convex Optimization Algorithms Chap. 6

Proposition 6.7.1: Every limit point of a sequence {xk} generated
by a barrier method is a global minimum of the original constrained
problem (6.120).

Proof: Let {x} be the limit of a subsequence {xk}k∈K . If x ∈ S, we have
limk→∞, k∈K ǫkB(xk) = 0, while if x lies on the boundary of S, we have
limk→∞, k∈K B(xk) = ∞. In either case we obtain

lim inf
k→∞

ǫkB(xk) ≥ 0,

which implies that

lim inf
k→∞, k∈K

{

f(xk) + ǫkB(xk)
}

= f(x) + lim inf
k→∞, k∈K

{

ǫkB(xk)
}

≥ f(x).

(6.122)
The vector x is a feasible point of the original problem (6.120), since xk ∈ S
and X is a closed set. If x were not a global minimum, there would exist
a feasible vector x∗ such that f(x∗) < f(x) and therefore also [since by
the Line Segment Principle (Prop. 1.3.1) x∗ can be approached arbitrarily
closely through the interior set S] an interior point x̃ ∈ S such that f(x̃) <
f(x). We now have by the definition of xk,

f(xk) + ǫkB(xk) ≤ f(x̃) + ǫkB(x̃), k = 0, 1, . . . ,

which by taking the limit as k → ∞ and k ∈ K, implies together with Eq.
(6.122), that f(x) ≤ f(x̃). This is a contradiction, thereby proving that x
is a global minimum of the original problem. Q.E.D.

The idea of using a barrier function as an approximation to con-
straints has been used in several different ways, in methods that generate
successive iterates lying in the interior of the constraint set. These methods
are generically referred to as interior point methods , and have been exten-
sively applied to linear, quadratic, and conic programming problems. The
logarithmic barrier function has been central in many of these methods. In
the next two sections we will discuss a few methods that are designed for
problems with special structure. In particular, in Section 6.7.1 we will dis-
cuss in some detail primal-dual methods for linear programming, currently
one of the most popular methods for solving linear programs. In Section
6.7.2 we will address briefly interior point methods for conic programming
problems.

6.7.1 Primal-Dual Methods for Linear Programming

Let us consider the linear program

minimize c′x

subject to Ax = b, x ≥ 0,
(LP)

Sec. 6.7 Interior Point Methods 341

where c ∈ ℜn and b ∈ ℜm are given vectors, and A is an m × n matrix of
rank m. The dual problem, derived in Section 5.2, is given by

maximize b′λ

subject to A′λ ≤ c.
(DP)

As shown in Section 5.2, (LP) has an optimal solution if and only if (DP)
has an optimal solution. Furthermore, when optimal solutions to (LP) and
(DP) exist, the corresponding optimal values are equal.

Recall that the logarithmic barrier method involves finding for various
ǫ > 0,

x(ǫ) ∈ arg min
x∈S

Fǫ(x), (6.123)

where

Fǫ(x) = c′x− ǫ

n
∑

i=1

lnxi,

xi is the ith component of x and S is the interior set

S =
{

x | Ax = b, x > 0
}

.

We assume that S is nonempty and bounded.
Rather than directly minimizing Fǫ(x) for small values of ǫ [cf. Eq.

(6.123)], we will apply Newton’s method for solving the system of opti-
mality conditions for the problem of minimizing Fǫ(·) over S. The salient
features of this approach are:

(a) Only one Newton iteration is carried out for each value of ǫk.

(b) For every k, the pair (xk, λk) is such that xk is an interior point of
the positive orthant, that is, xk > 0, while λk is an interior point of
the dual feasible region, that is,

c−A′λk > 0.

(However, xk need not be primal-feasible, that is, it need not satisfy
the equation Ax = b.)

(c) Global convergence is enforced by ensuring that the expression

Pk = xk
′zk + ‖Axk − b‖, (6.124)

is decreased to 0, where zk is the vector of slack variables

zk = c− A′λk.

The expression (6.124) may be viewed as a merit function, and con-
sists of two nonnegative terms: the first term is xk

′zk, which is posi-
tive (since xk > 0 and zk > 0) and can be written as

xk
′zk = xk

′(c−A′λk) = c′xk − b′λk + (b −Axk)′λk.

342 Convex Optimization Algorithms Chap. 6

Thus when xk is primal-feasible (Axk = b), xk
′zk is equal to the dual-

ity gap, that is, the difference between the primal and the dual costs,
c′xk − b′λk. The second term is the norm of the primal constraint
violation ‖Axk − b‖. In the method to be described, neither of the
terms xk

′zk and ‖Axk − b‖ may increase at each iteration, so that
Pk+1 ≤ Pk (and typically Pk+1 < Pk) for all k. If we can show that
Pk → 0, then asymptotically both the duality gap and the primal
constraint violation will be driven to zero. Thus every limit point of
{(xk, λk)} will be a pair of primal and dual optimal solutions, in view
of the duality relation

min
Ax=b, x≥0

c′x = max
A′λ≤c

b′λ,

shown in Section 5.2.

Let us write the necessary and sufficient conditions for (x, λ) to be a
primal and dual optimal solution pair for the problem of minimizing the
barrier function Fǫ(x) subject to Ax = b. They are

c− ǫx−1 − A′λ = 0, Ax = b, (6.125)

where x−1 denotes the vector with components (xi)−1. Let z be the vector
of slack variables

z = c−A′λ.

Note that λ is dual feasible if and only if z ≥ 0.
Using the vector z, we can write the first condition of Eq. (6.125) as

z − ǫx−1 = 0 or, equivalently, XZ = ǫe, where X and Z are the diagonal
matrices with the components of x and z, respectively, along the diagonal,
and e is the vector with unit components,

X =







x1 0 · · · 0
0 x2 · · · 0
· · · · · · · · · · · ·
0 0 · · · xn






, Z =







z1 0 · · · 0
0 z2 · · · 0
· · · · · · · · · · · ·
0 0 · · · zn






, e =









1
1
...
1









.

Thus the optimality conditions (6.125) can be written in the equiva-
lent form

XZe = ǫe, (6.126)

Ax = b, (6.127)

z +A′λ = c. (6.128)

Given (x, λ, z) satisfying z + A′λ = c, and such that x > 0 and z > 0, a
Newton iteration for solving this system is

x(α, ǫ) = x+ α∆x, (6.129)

Sec. 6.7 Interior Point Methods 343

λ(α, ǫ) = λ+ α∆λ,

z(α, ǫ) = z + α∆z,

where α is a stepsize such that 0 < α ≤ 1 and

x(α, ǫ) > 0, z(α, ǫ) > 0,

and the Newton increment (∆x,∆λ,∆z) solves the linearized version of
the system (6.126)-(6.128)

X∆z + Z∆x = −v, (6.130)

A∆x = b−Ax, (6.131)

∆z +A′∆λ = 0, (6.132)

with v defined by
v = XZe− ǫe. (6.133)

After a straightforward calculation, the solution of the linearized sys-
tem (6.130)-(6.132) can be written as

∆λ =
(

AZ−1XA′
)−1(

AZ−1v + b−Ax
)

, (6.134)

∆z = −A′∆λ, (6.135)

∆x = −Z−1v − Z−1X∆z.

Note that λ(α, ǫ) is dual feasible, since from Eq. (6.132) and the condition
z + A′λ = c, we see that z(α, ǫ) + A′λ(α, ǫ) = c. Note also that if α = 1,
that is, a pure Newton step is used, x(α, ǫ) is primal feasible, since from
Eq. (6.131) we have A(x + ∆x) = b.

Merit Function Improvement

We will now evaluate the changes in the constraint violation and the merit
function (6.124) induced by the Newton iteration.

By using Eqs. (6.129)and (6.131), the new constraint violation is given
by

Ax(α, ǫ) − b = Ax+ αA∆x − b = Ax+ α(b −Ax) − b = (1 − α)(Ax − b).
(6.136)

Thus, since 0 < α ≤ 1, the new norm of constraint violation ‖Ax(α, ǫ)− b‖
is always no larger than the old one. Furthermore, if x is primal-feasible
(Ax = b), the new iterate x(α, ǫ) is also primal-feasible.

The inner product
g = x′z (6.137)

344 Convex Optimization Algorithms Chap. 6

after the iteration becomes

g(α, ǫ) = x(α, ǫ)′z(α, ǫ)

= (x+ α∆x)′(z + α∆z)

= x′z + α(x′∆z + z′∆x) + α2∆x′∆z.

(6.138)

From Eqs. (6.131) and (6.135) we have

∆x′∆z = (Ax − b)′∆λ,

while by premultiplying Eq. (6.130) with e′ and using the definition (6.133)
for v, we obtain

x′∆z + z′∆x = −e′v = nǫ− x′z.

By substituting the last two relations in Eq. (6.138) and by using also the
expression (6.137) for g, we see that

g(α, ǫ) = g − α(g − nǫ) + α2(Ax − b)′∆λ. (6.139)

Let us now denote by P and P (α, ǫ) the value of the merit function
(6.124) before and after the iteration, respectively. We have by using the
expressions (6.136) and (6.139),

P (α, ǫ) = g(α, ǫ) + ‖Ax(α, ǫ) − b‖
= g − α(g − nǫ) + α2(Ax − b)′∆λ+ (1 − α)‖Ax − b‖,

or
P (α, ǫ) = P − α

(

g − nǫ+ ‖Ax− b‖
)

+ α2(Ax− b)′∆λ.

Thus if ǫ is chosen to satisfy

ǫ <
g

n

and α is chosen to be small enough so that the second order term α2(Ax−
b)′∆λ is dominated by the first order term α(g − nǫ), the merit function
will be improved as a result of the iteration.

A General Class of Primal-Dual Algorithms

Let us consider now the general class of algorithms of the form

xk+1 = x(αk, ǫk), λk+1 = λ(αk, ǫk), zk+1 = z(αk, ǫk),

where αk and ǫk are positive scalars such that

xk+1 > 0, zk+1 > 0, ǫk <
gk

n
,

Sec. 6.7 Interior Point Methods 345

where gk is the inner product

gk = xk
′zk + (Axk − b)′λk,

and αk is such that the merit function Pk is reduced. Initially we must have
x0 > 0, and z0 = c−A′λ0 > 0 (such a point can often be easily found; oth-
erwise an appropriate reformulation of the problem is necessary for which
we refer to the specialized literature). These methods are generally called
primal-dual , in view of the fact that they operate simultaneously on the
primal and dual variables.

It can be shown that it is possible to choose αk and ǫk so that the
merit function is not only reduced at each iteration, but also converges
to zero. Furthermore, with suitable choices of αk and ǫk, algorithms with
good theoretical properties, such as polynomial complexity and superlinear
convergence, can be derived.

Computational experience has shown that with properly chosen se-
quences αk and ǫk, and appropriate implementation, the practical perfor-
mance of the primal-dual methods is excellent. The choice

ǫk =
gk

n2
,

leading to the relation

gk+1 = (1 − αk + αk/n)gk

for feasible xk, has been suggested as a good practical rule. Usually, when
xk has already become feasible, αk is chosen as θα̃k, where θ is a factor very
close to 1 (say 0.999), and α̃k is the maximum stepsize α that guarantees
that x(α, ǫk) ≥ 0 and z(α, ǫk) ≥ 0

α̃k = min

{

min
i=1,...,n

{

xi
k

−∆xi

∣

∣

∣ ∆xi < 0

}

, min
i=1,...,n

{

zi
k

−∆zi

∣

∣

∣ ∆zi < 0

}}

.

When xk is not feasible, the choice of αk must also be such that the merit
function is improved. In some works, a different stepsize for the x update
than for the (λ, z) update has been suggested. The stepsize for the x
update is near the maximum stepsize α that guarantees x(α, ǫk) ≥ 0, and
the stepsize for the (λ, z) update is near the maximum stepsize α that
guarantees z(α, ǫk) ≥ 0.

There are a number of additional practical issues related to implemen-
tation, for which we refer to the specialized literature. There are also more
sophisticated implementations of the Newton/primal-dual idea. We refer
to the research monographs by Wright [Wri97] and Ye [Ye97], and to other
sources for a detailed discussion, as well as extensions to nonlinear/convex
programming problems, such as quadratic programming.

346 Convex Optimization Algorithms Chap. 6

6.7.2 Interior Point Methods for Conic Programming

We now discuss briefly interior point methods for the conic programming
problems discussed in Section 6.1.2. Consider first the SOCP

minimize c′x

subject to Aix− bi ∈ Ci, i = 1, . . . ,m,
(6.140)

where x ∈ ℜn, c is a vector in ℜn, and for i = 1, . . . ,m, Ai is an ni × n
matrix, bi is a vector in ℜni , and Ci is the second order cone of ℜni [cf.
Eq. (6.18)]. We approximate this problem with

minimize c′x+ ǫk

m
∑

i=1

Bi(Aix− bi)

subject to x ∈ ℜn,

(6.141)

where Bi is a function defined in the interior of the second order cone Ci,
and given by

Bi(y) = − ln
(

y2
ni − (y2

1 + · · · + y2
ni−1)

)

, y ∈ int(Ci),

and {ǫk} is a positive sequence that converges to 0. Thus we have Bi(Aix−
bi) → ∞ as Aix− bi approaches the boundary of Ci.

Similar to Prop. 6.7.1, it can be shown that if xk is an optimal solution
of the approximating problem (6.141), then every limit point of {xk} is an
optimal solution of the original problem. For theoretical as well as practical
reasons, the approximating problem (6.141) should not be solved exactly.
In the most efficient methods, one or more Newton steps corresponding to
a given value ǫk are performed, and then the value of ǫk is appropriately
reduced. If the aim is to achieve a favorable polynomial complexity result,
a single Newton step should be performed between successive reductions
of ǫk, and the subsequent reduction of ǫk must be correspondingly small,
according to an appropriate formula, which is designed to enable a polyno-
mial complexity proof. An alternative, which is more efficient in practice, is
to allow multiple Newton steps until an appropriate termination criterion
is satisfied, and then reduce ǫk substantially. When properly implemented,
methods of this type require in practice a consistently small total number
of Newton steps [a number typically no more than 50, regardless of dimen-
sion (!) is often reported]. This empirical observation is far more favorable
than what is predicted by the theoretical complexity analysis. We refer to
the book by Boyd and Vanderbergue [BoV04], and sources quoted there
for further details.

There is a similar interior point method for the dual SDP involving
the multiplier vector λ = (λ1, . . . , λm):

maximize b′λ

subject to C − (λ1A1 + · · · + λmAm) ∈ D,
(6.142)

Sec. 6.8 Approximate Subgradient Methods 347

where D is the cone of positive semidefinite matrices [cf. Eq. (6.24)]. It
consists of solving the problem

maximize b′λ+ ǫk ln
(

det(C − λ1A1 − · · · − λmAm)
)

subject to λ ∈ ℜm, C − λ1A1 − · · · − λmAm ∈ int(D),
(6.143)

where {ǫk} is a positive sequence that converges to 0. Here, we should use
a starting point such that C − λ1A1 − · · · − λmAm is positive definite, and
Newton’s method should ensure that the iterates keep C − λ1A1 − · · · −
λmAm within the positive definite cone int(D).

The properties of this method are similar to the ones of the preceding
SOCP method. In particular, if xk is an optimal solution of the approximat-
ing problem (6.143), then every limit point of {xk} is an optimal solution
of the original problem (6.142).

We finally note that there are primal-dual interior point methods for
conic programming problems, which bear similarity with the one given in
Section 6.7.1 for linear programming. Again, we refer to the specialized
literature for further details and a complexity analysis.

6.8 APPROXIMATE SUBGRADIENT METHODS

In this section we consider various types of subgradient methods, which
use approximate subgradients. There may be several different reasons for
this approximation; for example, computational savings in the subgradient
calculation, exploitation of special problem structure, or faster convergence.

6.8.1 ǫ-Subgradient Methods

Subgradient methods require the computation of a subgradient at the cur-
rent point, but in some contexts, it may be necessary or convenient to use
an approximation to a subgradient which we now introduce.

0

f(z)

(−g, 1)

z

(

x, f(x) − ǫ

)

ǫ

Figure 6.8.1. Illustration of an ǫ-subgra-
dient of a convex function f . A vector g

is an ǫ-subgradient at x ∈ dom(f) if and
only if there is a hyperplane with normal
(−g, 1), which passes through the point
(

x, f(x) − ǫ
)

, and separates this point
from the epigraph of f .

348 Convex Optimization Algorithms Chap. 6

Given a proper convex function f : ℜn 7→ (−∞,∞] and a scalar ǫ > 0,
we say that a vector g is an ǫ-subgradient of f at a point x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′g − ǫ, ∀ z ∈ ℜn. (6.144)

The ǫ-subdifferential ∂ǫf(x) is the set of all ǫ-subgradients of f at x, and
by convention, ∂ǫf(x) = Ø for x /∈ dom(f). It can be seen that

∂ǫ1f(x) ⊂ ∂ǫ2f(x) if 0 < ǫ1 < ǫ2,

and that
∩ǫ↓0∂ǫf(x) = ∂f(x).

To interpret geometrically an ǫ-subgradient, note that the defining
relation (6.144) can be written as

f(z)− z′g ≥
(

f(x) − ǫ
)

− x′g, ∀ z ∈ ℜn.

Thus g is an ǫ-subgradient at x if and only if the epigraph of f is contained
in the positive halfspace corresponding to the hyperplane in ℜn+1 that has
normal (−g, 1) and passes through

(

x, f(x)−ǫ
)

, as illustrated in Fig. 6.8.1.
Figure 6.8.2 illustrates the definition of the ǫ-subdifferential ∂ǫf(x)

for the case of a one-dimensional function f . The figure indicates that if
f is closed, then [in contrast with ∂f(x)] ∂ǫf(x) is nonempty at all points
of dom(f). This follows by the Nonvertical Hyperplane Theorem (Prop.
1.5.8).

z

ǫ

x

Slopes: endpoints of ∂ǫf(x)
Slope: right endpoint of ∂ f

D
z

ǫ

x

D

Slope: right endpoint
of ∂ f(x)of ∂ǫf(x)

f(z)f(z)

= 0 = 0

Figure 6.8.2. Illustration of the ǫ-subdifferential ∂ǫf(x) of a one-dimensional
function f : ℜ 7→ (−∞,∞], which is closed and convex, and has as effective domain
an interval D. The ǫ-subdifferential is an interval with endpoints corresponding
to the slopes indicated in the figure. These endpoints can be −∞ (as in the figure
on the right) or ∞.

The following example motivates the use of ǫ-subgradients in the con-
text of duality and minimax problems. It shows that ǫ-subgradients may be
computed more economically than subgradients, through an approximate
minimization.

Sec. 6.8 Approximate Subgradient Methods 349

Example 6.8.1: (ǫ-Subgradient Calculation in Minimax and
Dual Problems)

As in Example 6.3.1, let us consider the minimization of

f(x) = sup
z∈Z

φ(x, z), (6.145)

where x ∈ ℜn, z ∈ ℜm, Z is a subset of ℜm, and φ : ℜn ×ℜm 7→ (−∞,∞] is a
function such that φ(·, z) is convex and closed for each z ∈ Z. We showed in
Example 6.3.1 that if we carry out the maximization over z in Eq. (6.145), we
can then obtain a subgradient at x. We will show with a similar argument,
that if we carry out the maximization over z approximately, within ǫ, we
can then obtain an ǫ-subgradient at x, which we can use in turn within an
ǫ-subgradient method.

Indeed, for a fixed x ∈ dom(f), let us assume that zx ∈ Z attains the
supremum within ǫ > 0 in Eq. (6.145), i.e.,

φ(x, zx) ≥ sup
z∈Z

φ(x, z) − ǫ = f(x) − ǫ,

and that gx is some subgradient of the convex function φ(·, zx), i.e., gx ∈
∂φ(x, zx). Then, for all y ∈ ℜn, we have using the subgradient inequality,

f(y) = sup
z∈Z

φ(y, z) ≥ φ(y, zx) ≥ φ(x, zx) + g′x(y − x) ≥ f(x) − ǫ+ g′x(y − x),

i.e., gx is an ǫ-subgradient of f at x, so

φ(x, zx) ≥ sup
z∈Z

φ(x, z) − ǫ and gx ∈ ∂φ(x, zx) ⇒ gx ∈ ∂ǫf(x).

We now consider the class of ǫ-subgradient methods for minimizing a
real-valued convex function f : ℜn 7→ ℜ over a closed convex set X , given
by

xk+1 = PX(xk − αkgk), (6.146)

where gk is an ǫk-subgradient of f at xk, αk is a positive stepsize, and PX(·)
denotes projection on X . Their convergence behavior and analysis are
similar to those of subgradient methods, except that ǫ-subgradient methods

generally aim to converge to the ǫ-optimal set , where ǫ = limk→∞ ǫk, rather
than the optimal set, as subgradient methods do.

To get a sense of the convergence mechanism, note that there is a
simple modification of the basic inequality of Prop. 6.3.1(a). In particular,
if {xk} is the sequence generated by the ǫ-subgradient method, we have for
all y ∈ X and k ≥ 0

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk) − f(y) − ǫk
)

+ α2
k‖gk‖2.

350 Convex Optimization Algorithms Chap. 6

Using this inequality, one can essentially replicate the convergence analysis
of Section 6.3. As an example, consider the case of constant αk and ǫk:
αk ≡ α for some α > 0 and ǫk ≡ ǫ for some ǫ > 0. Then, if the ǫ-
subgradients gk are bounded, with ‖gk‖ ≤ c for some constant c and all k,
we obtain for all optimal solutions x∗,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2α
(

f(xk) − f∗ − ǫ
)

+ α2c2,

where f∗ = infx∈X f(x) is the optimal value. This implies that the distance
to x∗ decreases if

0 < α <
2
(

f(xk) − f∗ − ǫ
)

c2

or equivalently, if xk is outside the level set

{

x
∣

∣

∣ f(x) ≤ f∗ + ǫ+
αc2

2

}

(cf. Fig. 6.3.3). With analysis similar to the one for the subgradient case,
we can also show that if αk → 0,

∑∞
k=0 αk = ∞, and ǫk → ǫ ≥ 0, we have

lim inf
k→∞

f(xk) ≤ f∗ + ǫ

(cf. Prop. 6.3.4).

6.8.2 Incremental Subgradient Methods

An interesting form of approximate subgradient method is an incremental

variant, which applies to minimization over a closed convex set X of an
additive cost function of the form

f(x) =

m
∑

i=1

fi(x), (6.147)

where the functions fi : ℜn 7→ ℜ are convex. We mentioned several contexts
where cost functions of this type arise in Section 6.1 [cf. Eq. (6.147)]. The
idea of the incremental approach is to sequentially take steps along the
subgradients of the component functions fi, with intermediate adjustment
of x after processing each component function.

Incremental methods are particularly interesting when the number of
cost terms m is very large, and much larger than the dimension n (think
here of n in the tens and hundreds, and m in the thousands and millions).
Then a full subgradient step is very costly, and one hopes to make progress
with approximate but much cheaper incremental steps.

Sec. 6.8 Approximate Subgradient Methods 351

In the incremental subgradient method, an iteration is viewed as a

cycle of m subiterations . If xk is the vector obtained after k cycles, the
vector xk+1 obtained after one more cycle is

xk+1 = ψm,k, (6.148)

where starting with ψ0,k = xk, we obtain ψm,k after the m steps

ψi,k = PX(ψi−1,k − αkgi,k), i = 1, . . . ,m, (6.149)

with gi,k being a subgradient of fi at ψi−1,k.
The motivation for this method is faster convergence. In particular,

we hope that far from the solution, a single cycle of the incremental sub-
gradient method will be as effective as several (as many as m) iterations of
the ordinary subgradient method (think of the case where the components
fi are similar in structure).

One way to explain the convergence mechanism of the incremental
method is to establish a connection with the ǫ-subgradient method (6.146).
An important fact here is that if two vectors x and x are “near” each other,

then subgradients at x can be viewed as ǫ-subgradients at x, with ǫ “small.”
In particular, if g ∈ ∂f(x), we have for all z ∈ ℜn,

f(z) ≥ f(x) + g′(z − x)

≥ f(x) + g′(z − x) + f(x) − f(x) + g′(x− x)

≥ f(x) + g′(z − x) − ǫ,

where
ǫ = max

{

0, f(x) − f(x)
}

+ ‖g‖ · ‖x− x‖.
Thus, we have g ∈ ∂ǫf(x), and ǫ is small when x is near x.

We now observe from Eq. (6.149) that the ith step within a cycle of
the incremental subgradient method involves the direction gi,k, which is
a subgradient of fi at the corresponding vector ψi−1,k. If the stepsize αk

is small, then ψi−1,k is close to the vector xk available at the start of the
cycle, and hence gi,k is an ǫi-subgradient of fi at xk, where ǫi is small. In
particular, if we ignore the projection operation in Eq. (6.149), we have

xk+1 = xk − αk

m
∑

i=1

gi,k,

where gi is a subgradient of fi at ψi−1,k, and hence an ǫi-subgradient of fi

at xk, where ǫi is “small” (proportional to αk). Let us also use the formula

∂ǫ1f1(x) + · · · + ∂ǫmfm(x) ⊂ ∂ǫf(x),

where ǫ = ǫ1 + · · · + ǫm, to approximate the ǫ-subdifferential of the sum
f =

∑m
i=1 fi. (This relation follows from the definition of ǫ-subgradient.)

352 Convex Optimization Algorithms Chap. 6

Then, it can be seen that the incremental subgradient iteration can be
viewed as an ǫ-subgradient iteration with ǫ = ǫ1 + · · · + ǫm. The size of ǫ
depends on the size of αk, as well as the function f , and we generally have
ǫ → 0 as αk → 0. As a result, for the case where αk → 0 and

∑∞
k=0 αk =

∞, the incremental subgradient method converges to the optimal value,
similar to the ordinary subgradient method. If the stepsize αk is kept
constant, convergence to a neighborhood of the solution can be expected.
These results will be established more precisely and in greater detail in the
analysis that follows.

Convergence Analysis

Incremental subgradient methods have a rich theory, which includes con-
vergence and rate of convergence analysis, optimization and randomization
issues of the component order selection, and distributed computation as-
pects. Our analysis in this section is selective, and focuses on the case of a
constant stepsize. We refer to the sources cited at the end of the chapter
for a fuller discussion.

We use the notation

f∗ = inf
x∈X

f(x), X∗ =
{

x ∈ X | f(x) = f∗
}

,

d(x) = inf
x∗∈X∗

‖x− x∗‖,

where ‖·‖ denotes the standard Euclidean norm. In our analysis, we assume
the following:

Assumption 6.8.1: (Subgradient Boundedness) We have

ci ≥ sup
k≥0

{

‖g‖ | g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k)
}

, i = 1, . . . ,m,

for some scalars c1, . . . , cm.

We note that Assumption 6.8.1 is satisfied if each fi is real-valued and
polyhedral. In particular, Assumption 6.8.1 holds for the dual of an integer
programming problem, where for each i and all x the set of subgradients
∂fi(x) is the convex hull of a finite number of points. More generally,
since each component fi is real-valued and convex over the entire space
ℜn, the subdifferential ∂fi(x) is nonempty and compact for all x and i
(Prop. 5.4.1). If the set X is compact or the sequences {ψi,k} are bounded,
then Assumption 6.8.1 is satisfied since the set ∪x∈B∂fi(x) is bounded for
any bounded set B (cf. Prop. 5.4.2).

Sec. 6.8 Approximate Subgradient Methods 353

The following is a key lemma, which parallels Prop. 6.3.1(a) for the
(nonincremental) subgradient method.

Lemma 6.8.1: Let {xk} be the sequence generated by the incremen-
tal method (6.148), (6.149). Then for all y ∈ X and k ≥ 0, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk) − f(y)
)

+ α2
kc

2, (6.150)

where c =
∑m

i=1 ci and ci are the scalars of Assumption 6.8.1.

Proof: Using the nonexpansion property of the projection, the subgradi-
ent boundedness (cf. Assumption 6.8.1), and the subgradient inequality for
each component function fi, we obtain for all y ∈ X ,

‖ψi,k − y‖2 =
∥

∥PX (ψi−1,k − αkgi,k) − y
∥

∥

2

≤ ‖ψi−1,k − αkgi,k − y‖2

≤ ‖ψi−1,k − y‖2 − 2αkg′i,k(ψi−1,k − y) + α2
kc

2
i

≤ ‖ψi−1,k − y‖2 − 2αk

(

fi(ψi−1,k) − fi(y)
)

+ α2
kc

2
i , ∀ i, k.

By adding the above inequalities over i = 1, . . . ,m, we have for all y ∈ X
and k,

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

m
∑

i=1

(

fi(ψi−1,k) − fi(y)
)

+ α2
k

m
∑

i=1

c2i

= ‖xk − y‖2 − 2αk

(

f(xk) − f(y) +
m
∑

i=1

(

fi(ψi−1,k) − fi(xk)
)

)

+ α2
k

m
∑

i=1

c2i .

By strengthening the above inequality, we have for all y ∈ X and k, using
also the fact ψ0,k = xk,

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk) − f(y)
)

+ 2αk

m
∑

i=1

ci||ψi−1,k − xk|| + α2
k

m
∑

i=1

c2i

≤ ‖xk − y‖2 − 2αk

(

f(xk) − f(y)
)

+ α2
k



2

m
∑

i=2

ci





i−1
∑

j=1

cj



+

m
∑

i=1

c2i





354 Convex Optimization Algorithms Chap. 6

= ‖xk − y‖2 − 2αk

(

f(xk) − f(y)
)

+ α2
k

(

m
∑

i=1

ci

)2

= ‖xk − y‖2 − 2αk

(

f(xk) − f(y)
)

+ α2
kc

2,

where in the first inequality we use the relation

fi(xk) − fi(ψi−1,k) ≤ ‖g̃i,k‖ · ‖ψi−1,k − xk‖ ≤ ci‖ψi−1,k − xk‖
with g̃i,k ∈ ∂fi(xk), and in the second inequality we use the relation

‖ψi,k − xk‖ ≤ αk

i
∑

j=1

cj , i = 1, . . . ,m, k ≥ 0,

which follows from Eqs. (6.148), (6.149), and Assumption 6.8.1. Q.E.D.

Among other things, Lemma 6.8.1 guarantees that given the current
iterate xk and some other point y ∈ X with lower cost than xk, the next
iterate xk+1 will be closer to y than xk, provided the stepsize αk is suffi-
ciently small [less than 2

(

f(xk)− f(y)
)

/c2]. In particular, for any optimal
solution x∗ ∈ X∗, any ǫ > 0, and any αk ≤ ǫ/c2, either

f(xk) ≤ f∗ + ǫ,

or else
‖xk+1 − x∗‖ < ‖xk − x∗‖.

As in the case of the (nonincremental) subgradient method, for a
constant stepsize rule, convergence can be established to a neighborhood of
the optimum, which shrinks to 0 as the stepsize approaches 0. Convergence
results for diminishing stepsize, and dynamic stepsize rules, which parallel
Props. 6.3.4-6.3.6 can also be similarly established (see the sources cited at
the end of the chapter).

Proposition 6.8.1: Let {xk} be the sequence generated by the in-
cremental method (6.148), (6.149), with the stepsize αk fixed at some
positive constant α.

(a) If f∗ = −∞, then
lim inf
k→∞

f(xk) = f∗.

(b) If f∗ > −∞, then

lim inf
k→∞

f(xk) ≤ f∗ +
αc2

2
,

where c =
∑m

i=1 ci.

Sec. 6.8 Approximate Subgradient Methods 355

Proof: We prove (a) and (b) simultaneously. If the result does not hold,
there must exist an ǫ > 0 such that

lim inf
k→∞

f(xk) − αc2

2
− 2ǫ > f∗.

Let ŷ ∈ X be such that

lim inf
k→∞

f(xk) − αc2

2
− 2ǫ ≥ f(ŷ),

and let k0 be large enough so that for all k ≥ k0, we have

f(xk) ≥ lim inf
k→∞

f(xk) − ǫ.

By adding the preceding two relations, we obtain for all k ≥ k0,

f(xk) − f(ŷ) ≥ αc2

2
+ ǫ.

Using Lemma 6.8.1 for the case where y = ŷ together with the above
relation, we obtain for all k ≥ k0,

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2αǫ.

This relation implies that for all k ≥ k0,

‖xk+1 − ŷ‖2 ≤ ‖xk−1 − ŷ‖2 − 4αǫ ≤ · · · ≤ ‖xk0 − ŷ‖2 − 2(k + 1 − k0)αǫ,

which cannot hold for k sufficiently large – a contradiction. Q.E.D.

The preceding proposition involves only the iterates at the end of
cycles. However, by shifting the starting index in each cycle and repeating
the preceding proof, we see that

lim inf
k→∞

f(ψi,k) ≤ f∗ +
αc2

2
, ∀ i = 1, . . . ,m. (6.151)

The next proposition gives an estimate of the number K of cycles
needed to guarantee a given level of optimality up to the threshold tolerance
αc2/2 given in the preceding proposition.

Proposition 6.8.2: Assume that X∗ is nonempty. Let {xk} be the
sequence generated by the incremental method (6.148), (6.149), with
the stepsize αk fixed at some positive constant α. Then for any positive
scalar ǫ we have

min
0≤k≤K

f(xk) ≤ f∗ +
αc2 + ǫ

2
, (6.152)

where K is given by

K =

⌊

d(x0)2

αǫ

⌋

.

356 Convex Optimization Algorithms Chap. 6

Proof: Assume, to arrive at a contradiction, that Eq. (6.152) does not
hold, so that for all k with 0 ≤ k ≤ K, we have

f(xk) > f∗ +
αc2 + ǫ

2
.

By using this relation in Lemma 6.8.1 with αk replaced by α, we obtain
for all k with 0 ≤ k ≤ K,

(

d(xk+1)
)2 ≤

(

d(xk)
)2

− 2α
(

f(xk) − f∗
)

+α2c2

≤
(

d(xk)
)2 − (α2c2 + αǫ) + α2c2

=
(

d(xk)
)2 − αǫ.

Summation of the above inequalities over k for k = 0, . . . ,K, yields

(

d(xK+1)
)2 ≤ d(x0)2 − (K + 1)αǫ,

so that
d(x0)2 − (K + 1)αǫ ≥ 0,

which contradicts the definition of K. Q.E.D.

Note that the estimate (6.152) involves only the iterates obtained at
the end of cycles. Since every cycle consists of m subiterations, the total
number N of component functions that must be processed in order for Eq.
(6.152) to hold is given by

N = mK = m

⌊

(d(x0)
)2

αǫ

⌋

.

The Role of the Order of Processing the Components

The error tolerance estimate αc2/2 of Prop. 6.8.1 and Eq. (6.151) is an
upper bound, and assumes the worst possible order of processing the com-
ponents fi within a cycle. One question that arises is whether this bound
is sharp, in the sense that there exists a problem and a processing order,
such that for each stepsize α, we can find a starting point for which the
sequence {ψi,k} generated by the method satisfies Eq. (6.151). Exercise
6.17 provides an example where the bound is satisfied within a constant
that is independent of the problem data, i.e., for an unfavorable processing
order and starting point, the method satisfies

lim inf
k→∞

f(ψi,k) = f∗ +
βαc2

2
, ∀ i = 1, . . . ,m, (6.153)

Sec. 6.8 Approximate Subgradient Methods 357

where β is a positive constant that is fairly close to 1. Thus, there is not
much room for improvement of the worst-order error tolerance estimate
αc2/2.

On the other hand, suppose that we are free to choose the best possible
order of processing the components fi within a cycle. Would it then be
possible to lower the tolerance estimate αc2/2, and by how much? We claim
that with such an optimal choice, it is impossible to lower the tolerance
estimate by more than a factor ofm. To see this, consider the case where all
the fi are the one-dimensional functions fi(x) = (c/m)|x|. Then, because
all functions fi are identical, the order of processing the components is
immaterial. If we start at x0 = (αc)/2m, then it can be seen that the
method oscillates between x0 and −x0, and the corresponding function
value is

f(x0) = f(−x0) =

m
∑

i=1

c

m

∣

∣

∣

αc

2m

∣

∣

∣ =
αc2

2m
.

Since f∗ = 0, this example shows that there exists a problem and a starting
point such that

lim inf
k→∞

f(ψi,k) = f∗ +
αc2

2m
, ∀ i = 1, . . . ,m. (6.154)

Thus from Eqs. (6.153) and (6.154), we see that for a given stepsize
α, the achievable range for the bound

lim inf
k→∞

f(ψi,k) − f∗

corresponding to the incremental subgradient method with a fixed process-
ing order is

[

αc2

2m
,
αc2

2

]

. (6.155)

By this we mean that there exists a choice of problem for which we can
do no better that the lower end of the above range, even with optimal
processing order choice; moreover, for all problems and processing orders,
we will do no worse than the upper end of the above range.

From the bound range (6.155), it can be seen that for a given stepsize
α, there is significant difference in the performance of the method with the
best and the worst processing orders. Unfortunately, it is difficult to find
the best processing order for a given problem. In the next section, we will
show that, remarkably, by randomizing the order, we can achieve the lower

tolerance error estimate
αc2

2m

with probability 1 .

358 Convex Optimization Algorithms Chap. 6

6.8.3 Subgradient Methods with Randomization

It can be verified that the convergence analysis of the preceding subsection
goes through assuming any order for processing the component functions
fi, as long as each component is taken into account exactly once within
a cycle. In particular, at the beginning of each cycle, we could reorder
the components fi by either shifting or reshuffling and then proceed with
the calculations until the end of the cycle. However, the order used can
significantly affect the rate of convergence of the method. Unfortunately,
determining the most favorable order may be very difficult in practice. A
popular technique for incremental methods is to reshuffle randomly the
order of the functions fi at the beginning of each cycle. A variation of this
method is to pick randomly a function fi at each iteration rather than to
pick each fi exactly once in every cycle according to a randomized order.
In this section, we analyze this type of method for the case of a constant
stepsize.

We focus on the randomized method given by

xk+1 = PX

(

xk − αg(ωk, xk)
)

, (6.156)

where ωk is a random variable taking equiprobable values from the set
{1, . . . ,m}, and g(ωk, xk) is a subgradient of the component fωk

at xk.
This simply means that if the random variable ωk takes a value j, then the
vector g(ωk, xk) is a subgradient of fj at xk. Throughout this section we
assume the following.

Assumption 6.8.2: For the randomized method (6.156):

(a) {ωk} is a sequence of independent random variables, each uni-
formly distributed over the set {1, . . . ,m}. Furthermore, the
sequence {ωk} is independent of the sequence {xk}.

(b) The set of subgradients
{

g(ωk, xk) | k = 0, 1, . . .
}

is bounded,
i.e., there is a positive constant c0 such that with probability 1

‖g(ωk, xk)‖ ≤ c0, ∀ k ≥ 0.

Note that if the setX is compact or the components fi are polyhedral,
then Assumption 6.8.2(b) is satisfied. The proofs of several propositions in
this section rely on the Supermartingale Convergence Theorem as stated
for example in Bertsekas and Tsitsiklis [BeT96], p. 148.

Sec. 6.8 Approximate Subgradient Methods 359

Proposition 6.8.3: (Supermartingale Convergence Theorem)
Let Yk, Zk, and Wk, k = 0, 1, 2, . . ., be three sequences of random
variables and let Fk, k = 0, 1, 2, . . ., be sets of random variables such
that Fk ⊂ Fk+1 for all k. Suppose that:

(1) The random variables Yk, Zk, and Wk are nonnegative, and are
functions of the random variables in Fk.

(2) For each k, we have

E
{

Yk+1 | Fk

}

≤ Yk − Zk +Wk.

(3) There holds, with probability 1,
∑∞

k=0Wk <∞.

Then, we have
∑∞

k=0 Zk < ∞, and the sequence Yk converges to a
nonnegative random variable Y , with probability 1.

The following proposition parallels Prop. 6.8.1 for the deterministic
incremental method.

Proposition 6.8.4: Let {xk} be the sequence generated by the ran-
domized incremental method (6.156).

(a) If f∗ = −∞, then with probability 1

inf
k≥0

f(xk) = f∗.

(b) If f∗ > −∞, then with probability 1

inf
k≥0

f(xk) ≤ f∗ +
αmc20

2
.

Proof: By adapting Lemma 6.8.1 to the case where f is replaced by fωk
,

we have

‖xk+1−y‖2 ≤ ‖xk−y‖2−2α
(

fωk
(xk)−fωk

(y)
)

+α2c20, ∀ y ∈ X, k ≥ 0.

By taking the conditional expectation with respect to Fk = {x0, . . . , xk},

360 Convex Optimization Algorithms Chap. 6

the method’s history up to xk, we obtain for all y ∈ X and k,

E
{

‖xk+1 − y‖2 | Fk

}

≤ ‖xk − y‖2 − 2αE
{

fωk
(xk) − fωk

(y) | Fk

}

+ α2c20

= ‖xk − y‖2 − 2α

m
∑

i=1

1

m

(

fi(xk) − fi(y)
)

+ α2c20

= ‖xk − y‖2 − 2α

m

(

f(xk) − f(y)
)

+ α2c20,

(6.157)
where the first equality follows since ωk takes the values 1, . . . ,m with equal
probability 1/m.

Now, fix a positive scalar γ, consider the level set Lγ defined by

Lγ =







{

x ∈ X | f(x) < −γ + 1 +
αmc20

2

}

if f∗ = −∞,
{

x ∈ X | f(x) < f∗ + 2
γ +

αmc20
2

}

if f∗ > −∞,

and let yγ ∈ X be such that

f(yγ) =

{−γ if f∗ = −∞,
f∗ + 1

γ if f∗ > −∞.

Note that yγ ∈ Lγ by construction. Define a new process {x̂k} as follows

x̂k+1 =

{

PX

(

x̂k − αg(ωk, x̂k)
)

if x̂k /∈ Lγ ,
yγ otherwise,

where x̂0 = x0. Thus the process {x̂k} is identical to {xk}, except that once
xk enters the level set Lγ , the process terminates with x̂k = yγ (since yγ ∈
Lγ). We will now argue that {x̂k} (and hence also {xk}) will eventually
enter each of the sets Lγ .

Using Eq. (6.157) with y = yγ , we have

E
{

‖x̂k+1 − yγ‖2 | Fk

}

≤ ‖x̂k − yγ‖2 − 2α

m

(

f(x̂k) − f(yγ)
)

+ α2c20,

or equivalently

E
{

‖x̂k+1 − yγ‖2 | Fk

}

≤ ‖x̂k − yγ‖2 − zk, (6.158)

where

zk =

{

2α
m

(

f(x̂k) − f(yγ)
)

− α2c20 if x̂k /∈ Lγ ,
0 if x̂k = yγ .

The idea of the subsequent argument is to show that as long as x̂k /∈ Lγ , the
scalar zk (which is a measure of progress) is strictly positive and bounded
away from 0.

Sec. 6.8 Approximate Subgradient Methods 361

(a) Let f∗ = −∞. Then if x̂k /∈ Lγ , we have

zk =
2α

m

(

f(x̂k) − f(yγ)
)

− α2c20

≥ 2α

m

(

−γ + 1 +
αmc20

2
+ γ

)

− α2c20

=
2α

m
.

Since zk = 0 for x̂k ∈ Lγ , we have zk ≥ 0 for all k, and by Eq. (6.158) and
the Supermartingale Convergence Theorem (cf. Prop. 6.8.3),

∑∞
k=0 zk <∞

implying that x̂k ∈ Lγ for sufficiently large k, with probability 1. Therefore,
in the original process we have

inf
k≥0

f(xk) ≤ −γ + 1 +
αmc20

2

with probability 1. Letting γ → ∞, we obtain infk≥0 f(xk) = −∞ with
probability 1.

(b) Let f∗ > −∞. Then if x̂k /∈ Lγ , we have

zk =
2α

m

(

f(x̂k) − f(yγ)
)

− α2c20

≥ 2α

m

(

f∗ +
2

γ
+
αmc20

2
− f∗ − 1

γ

)

− α2c20

=
2α

mγ
.

Hence, zk ≥ 0 for all k, and by the Supermartingale Convergence Theorem,
we have

∑∞
k=0 zk < ∞ implying that x̂k ∈ Lγ for sufficiently large k, so

that in the original process,

inf
k≥0

f(xk) ≤ f∗ +
2

γ
+
αmc20

2

with probability 1. Letting γ → ∞, we obtain infk≥0 f(xk) ≤ f∗+αmc20/2.
Q.E.D.

From Prop. 6.8.4(b), it can be seen that when f∗ > −∞, the ran-
domized method (6.156) with a fixed stepsize has a better error bound (by
a factor m, since c2 ≈ m2c20) than the one of the nonrandomized method
(6.148), (6.149), with the same stepsize (cf. Prop. 6.8.1). In effect, the
randomized method achieves in an expected sense the error tolerance of
the nonrandomized method with the best processing order [compare with
the discussion in the preceding subsection and Eqs. (6.153) and (6.154)].

362 Convex Optimization Algorithms Chap. 6

Thus when randomization is used, one can afford to use a larger stepsize
α than in the nonrandomized method. This suggests a rate of convergence
advantage in favor of the randomized method.

A related result is provided by the following proposition, which par-
allels Prop. 6.8.2 for the nonrandomized method.

Proposition 6.8.5: Assume that the optimal set X∗ is nonempty, let
Assumption 6.8.2 hold, and let {xk} be the sequence generated by the
randomized incremental method (6.156). Then, for any positive scalar
ǫ, we have with probability 1

min
0≤k≤N

f(xk) ≤ f∗ +
αmc20 + ǫ

2
, (6.159)

where N is a random variable with

E
{

N
}

≤ md(x0)2

αǫ
. (6.160)

Proof: Define a new process {x̂k} by

x̂k+1 =

{

PX

(

x̂k − αg(ωk, x̂k)
)

if x̂k /∈ Lγ ,
yγ otherwise,

where x̂0 = x0 and ŷ is some fixed vector in X∗. The process {x̂k} is
identical to {xk}, except that once xk enters the level set

L =

{

x ∈ X
∣

∣

∣ f(x) < f∗ +
αmc20 + ǫ

2

}

,

the process {x̂k} terminates at ŷ. Similar to the proof of Prop. 6.8.4 [cf.
Eq. (6.157) with y ∈ X∗], for the process {x̂k} we obtain for all k,

E
{

d(x̂k+1)2 | Fk

}

≤ d(x̂k)2 − 2α

m

(

f(x̂k) − f∗
)

+ α2c20

= d(x̂k)2 − zk,
(6.161)

where Fk = {x0, . . . , xk} and

zk =

{

2α
m

(

f(x̂k) − f∗
)

− α2c20 if x̂k 6∈ L,
0 otherwise.

In the case where x̂k 6∈ L, we have

zk ≥ 2α

m

(

f∗ +
αmc20 + ǫ

2
− f∗

)

− α2c20 =
αǫ

m
. (6.162)

Sec. 6.8 Approximate Subgradient Methods 363

By the Supermartingale Convergence Theorem (cf. Prop. 6.8.3), from Eq.
(6.161) we have

∞
∑

k=0

zk <∞

with probability 1, so that zk = 0 for all k ≥ N , where N is a random
variable. Hence x̂N ∈ L with probability 1, implying that in the original
process we have

min
0≤k≤N

f(xk) ≤ f∗ +
αmc20 + ǫ

2

with probability 1. Furthermore, by taking the total expectation in Eq.
(6.161), we obtain for all k,

E
{

d(x̂k+1)2
}

≤ E
{

d(x̂k)2
}

− E{zk}

≤ d(x0)2 − E







k
∑

j=0

zj







,

where in the last inequality we use the facts x̂0 = x0 and

E
{

d(x0)2
}

= d(x0)2.

Therefore

d(x0)2 ≥ E

{

∞
∑

k=0

zk

}

= E

{

N−1
∑

k=0

zk

}

≥ E

{

Nαǫ

m

}

=
αǫ

m
E
{

N
}

,

where the last inequality above follows from Eq. (6.162). Q.E.D.

Comparison of Deterministic and Randomized Methods

Let us now compare the estimate of the above proposition with the corre-
sponding estimate for the deterministic incremental method. We showed in
Prop. 6.8.2 that the deterministic method is guaranteed to reach the level
set

{

x
∣

∣

∣
f(x) ≤ f∗ +

αc2 + ǫ

2

}

after no more than d(x0)2/(αǫ) cycles, where c =
∑

i=1 ci. To compare this
estimate with the one for the randomized method, we note that ci ≤ c0, so
that c can be estimated as mc0, while each cycle requires the processing of
m component functions. Thus, the deterministic method, in order to reach
the level set

{

x
∣

∣

∣ f(x) ≤ f∗ +
αm2c20 + ǫ

2

}

,

364 Convex Optimization Algorithms Chap. 6

it must process a total of

N ≤ md(x0)2

αǫ

component functions (this bound is essentially sharp, as shown in Exercise
6.17).

If in the randomized method we use the same stepsize α, then ac-
cording to Prop. 6.8.5, we will reach with probability 1 the (much smaller)
level set

{

x
∣

∣

∣ f(x) ≤ f∗ +
αmc20 + ǫ

2

}

after processing N component functions, where the expected value of N
satisfies

E
{

N
}

≤ md(x0)2

αǫ
.

Thus, for the same values of α and ǫ, the bound on the number of com-
ponent functions that must be processed in the deterministic method is
the same as the bound on the expected number of component functions
that must be processed in the randomized method. However, the error
term αm2c20 in the deterministic method is m times larger than the corre-
sponding error term in the randomized method. Similarly, if we choose the
stepsize α in the randomized method to achieve the same error level (in
cost function value) as in the deterministic method, then the corresponding
expected number of iterations becomes m times smaller. Practical compu-
tational experience appears to be consistent with this finding.

6.8.4 Incremental Proximal Methods

We will now consider incremental variants of the proximal point algorithm,
which like the incremental subgradient methods of the preceding section,
apply to additive costs of the form

f(x) =

m
∑

i=1

fi(x),

where the functions fi : ℜn 7→ ℜ are convex. We wish to minimize f over
a nonempty closed convex set X .

The idea is to take proximal steps using single component functions
fi, with intermediate adjustment of the proximal center. In particular, we
view an iteration as a cycle of m subiterations. If xk is the vector obtained
after k cycles, the vector xk+1 obtained after one more cycle is

xk+1 = ψm,k, (6.163)

where starting with ψ0,k = xk, we obtain ψm,k after the m proximal steps

ψi,k = arg min
x∈X

{

fi(x) +
1

2αk
‖x− ψi−1,k‖2

}

, i = 1, . . . ,m, (6.164)

Sec. 6.8 Approximate Subgradient Methods 365

where αk is a positive parameter.
We will discuss shortly schemes to adjust αk, and we will see that it

plays a role analogous to the stepsize in incremental subgradient methods
(see the subsequent Prop. 6.8.6). In this connection, we note that for
convergence of the method, it is essential that αk → 0, as illustrated in the
following example.

Example 6.8.2:

Consider the unconstrained scalar case (X = ℜ) and the cost function

|x| + |x− 1| + |x+ 1|.

Then starting at x0 = 0 and αk ≡ α, with α ∈ (0, 1], the method takes the
form

ψ1,k = arg min
x∈ℜ

{

|x| +
1

2α
|x− xk|

2
}

,

ψ2,k = arg min
x∈ℜ

{

|x− 1| +
1

2α
|x− ψ1,k|

2
}

,

ψ3,k = xk+1 = arg min
x∈ℜ

{

|x+ 1| +
1

2α
|x− ψ2,k|

2
}

,

and generates the sequences ψ1,k = 0, ψ2,k = α, ψ3,k = xk = 0, k = 0, 1,
Thus, starting at the optimal solution x0 = 0 and using a constant parameter
αk ≡ α, the method oscillates proportionately to α.

The following proposition suggests the similarity between incremental
proximal and subgradient methods.

Proposition 6.8.6: The incremental proximal iteration (6.164) can
be written as

ψi,k = PX(ψi−1,k − αkgi,k), i = 1, . . . ,m, (6.165)

where gi,k is some subgradient of fi at ψi,k.

Proof: We use the formula for the subdifferential of the sum of the three
functions fi, (1/2αk)‖x−ψi−1,k‖2, and the indicator function of X (Prop.
5.4.6), together with the condition that 0 should belong to this subdiffer-
ential at the optimum ψi,k. We obtain that

ψi,k = arg min
x∈X

{

fi(x) +
1

2αk
‖x− ψi−1,k‖2

}

366 Convex Optimization Algorithms Chap. 6

if and only if

1

αk
(ψi−1,k − ψi,k) ∈ ∂fi(ψi,k) +NX(ψi,k),

where NX(ψi,k) is the normal cone of X at ψi,k. This is true if and only if

ψi−1,k − ψi,k − αkgi,k ∈ NX(ψi,k),

for some gi,k ∈ ∂fi(ψi,k), which in turn is true if and only if Eq. (6.165)
holds (cf. Prop. 5.4.7). Q.E.D.

Note the difference between the incremental subgradient and proxi-
mal iterations. In the former case any subgradient of fi at ψi,k−1 is used,
while in the latter case a particular subgradient at the next ψi,k is used.
It turns out that for convergence purposes this difference is relatively in-
consequential: we will show that much of the analysis of the preceding
section for incremental subgradient methods carries through with suitable
modifications to the incremental proximal case. To this end, we provide
the following analog of the crucial Lemma 6.8.1. We denote

ci = sup
k≥0

max
{

‖ĝi,k‖, ‖gi,k‖
}

, i = 1, . . . ,m, (6.166)

where ĝi,k is the subgradient of minimum norm in ∂fi(xk) and gi,k is the
subgradient of Eq. (6.165). In the following proposition the scalars ci are
assumed finite (this replaces Assumption 6.8.1).

Lemma 6.8.2: Let {xk} be the sequence generated by the incremen-
tal proximal method (6.163), (6.164). Then for all y ∈ X and k ≥ 0,
we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk+1) − f(y)
)

+ α2
kc

2, (6.167)

where c =
∑m

i=1 ci is assumed finite.

Proof: Using the nonexpansion property of the projection, and the sub-
gradient inequality for each component function fi, we obtain for all y ∈ X ,

Sec. 6.8 Approximate Subgradient Methods 367

i = 1, . . . ,m, and k ≥ 0,

‖ψi,k − y‖2 =
∥

∥PX (ψi−1,k − αkgi,k) − y
∥

∥

2

≤ ‖ψi−1,k − αkgi,k − y‖2

≤ ‖ψi−1,k − y‖2 − 2αkg′i,k(ψi−1,k − y) + α2
k‖gi,k‖2

≤ ‖ψi−1,k − y‖2 − 2αkg′i,k(ψi,k − y) + α2
kc

2
i

+ 2αkg′i,k(ψi,k − ψi−1,k)

≤ ‖ψi−1,k − y‖2 − 2αk

(

fi(ψi,k) − fi(y)
)

+ α2
kc

2
i

+ 2αkg′i,k(ψi,k − ψi−1,k).

We note that since ψi,k is the projection on X of ψi−1,k − αkgi,k, we have

g′i,k(ψi,k − ψi−1,k) ≤ 0,

which combined with the preceding inequality yields

‖ψi,k − y‖2 ≤ ‖ψi−1,k − y‖2 − 2αk

(

fi(ψi,k) − fi(y)
)

+ α2
kc

2
i , ∀ i, k.

By adding the above inequalities over i = 1, . . . ,m, we have for all
y ∈ X and k,

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

m
∑

i=1

(

fi(ψi,k) − fi(y)
)

+ α2
k

m
∑

i=1

c2i

= ‖xk − y‖2 − 2αk

(

f(xk+1) − f(y) +

m
∑

i=1

(

fi(ψi,k) − fi(xk+1)
)

)

+ α2
k

m
∑

i=1

c2i .

By strengthening the above inequality, we have for all y ∈ X and k, using
also the fact ψm,k = xk+1,

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk+1) − f(y)
)

+ 2αk

m
∑

i=1

ci||ψi,k − xk+1|| + α2
k

m
∑

i=1

c2i

≤ ‖xk − y‖2 − 2αk

(

f(xk+1) − f(y)
)

+ α2
k



2

m−1
∑

i=1

ci





m
∑

j=i+1

cj



+

m
∑

i=1

c2i





= ‖xk − y‖2 − 2αk

(

f(xk+1) − f(y)
)

+ α2
k

(

m
∑

i=1

ci

)2

= ‖xk − y‖2 − 2αk

(

f(xk+1) − f(y)
)

+ α2
kc

2,

368 Convex Optimization Algorithms Chap. 6

where in the first inequality we use the relation

fi(xk+1) − fi(ψi,k) ≤ ‖ĝi,k+1‖ · ‖ψi,k − xk+1‖ ≤ ci‖ψi,k − xk+1‖,

which follows from the subgradient inequality and the definition (6.166) of
ci, while in the second inequality we use the relation

‖ψi,k − xk+1‖ ≤ αk

m
∑

j=i+1

‖gj,k‖ ≤ αk

m
∑

j=i+1

cj , i = 1, . . . ,m, k ≥ 0,

which follows from Eqs. (6.163)-(6.165), and the definition (6.166) of ci.
Q.E.D.

Among other things, Lemma 6.8.2 guarantees that given the current
iterate xk and some other point y ∈ X having lower cost than xk, the
next iterate xk+1 will be closer to y than xk, provided the stepsize αk is
sufficiently small [less than 2

(

f(xk+1) − f(y)
)

/c2]. In particular, for any
optimal solution x∗ ∈ X∗, any ǫ > 0, and any αk ≤ ǫ/c2, either

f(xk+1) ≤ f∗ + ǫ,

or else
‖xk+1 − x∗‖ < ‖xk − x∗‖.

Using Lemma 6.8.2, we can provide convergence results for the in-
cremental proximal method, which parallel the corresponding results for
the incremental subgradient method. For a constant stepsize, αk ≡ α,
convergence can be established to a neighborhood of the optimum, which
shrinks to 0 as α → 0. In particular, Prop. 6.8.1 holds verbatim, and the
convergence rate estimate of Prop. 6.8.2 also holds. Furthermore, a con-
vergence result for a diminishing stepsize, which parallels Prop. 6.3.4 can
also be similarly established. Also, randomization in the order of selecting
the components fi in the proximal iteration can be introduced, with an
analysis that parallels the one of Section 6.8.3.

We finally note that while some cost function components may be well
suited for a proximal iteration, others may not be because the minimiza-
tion in Eq. (6.164) is inconvenient. With this in mind, we may consider
combinations of subgradient and proximal methods for problems of the
form

minimize F (x)
def
=

m
∑

i=1

Fi(x)

subject to x ∈ X,

where for all i,
Fi(x) = fi(x) + hi(x),

Sec. 6.9 Optimal Algorithms and Complexity 369

fi : ℜn 7→ ℜ and hi : ℜn 7→ ℜ are real-valued convex functions, and X is
a nonempty closed convex set. An incremental algorithm for this problem
may iterate on the components fi with a proximal iteration, and on the
components hi with a subgradient iteration. By choosing all the fi or all
the hi to be identically zero, we obtain as special cases the subgradient and
proximal iterations, respectively.

The convergence and rate of convergence properties of such combined
methods have been analyzed in Bertsekas [Ber10a] and [Ber10b], where
it is shown that the convergence behavior is similar to the one described
earlier for the incremental subgradient method. This includes convergence
within a certain error bound for a constant stepsize, exact convergence to
an optimal solution for an appropriately diminishing stepsize, and improved
convergence rate/iteration complexity when randomization is used to se-
lect the cost component for iteration. However, the combined incremental
subgradient/proximal methods offer greater flexibility, and may exploit the
special structure of problems where the functions fi are suitable for a prox-
imal iteration, while the components hi are not and thus may be preferably
treated with a subgradient iteration.

6.9 OPTIMAL ALGORITHMS AND COMPLEXITY

In this section we focus on some computational complexity issues relating
to optimization problems of the form

minimize f(x)

subject to x ∈ X,

where f : ℜn 7→ ℜ is convex and X is a closed convex set. We denote by
f∗ the optimal value, and we assume throughout that it is finite. In this
section, we will discuss algorithms that have good performance guarantees,
in the sense that they require a relatively low number of iterations to achieve
a given optimal solution tolerance.

Given some ǫ > 0, suppose we want to estimate the number of itera-
tions required by a particular algorithm to obtain a solution with cost that
is within ǫ of the optimal. If we can show that a sequence {xk} generated
by a method has the property that for any ǫ > 0, we have

inf
k≤N(ǫ)

f(xk) ≤ f∗ + ǫ,

where N(ǫ) is a function that depends on ǫ, as well as the problem data
and the starting point x0, we say that the method has iteration complexity

O
(

N(ǫ)
)

.

370 Convex Optimization Algorithms Chap. 6

It is generally thought that if N(ǫ) does not depend on the dimension
n of the problem, then the algorithm holds an advantage for problems of
large dimension. This view favors simple gradient/subgradient-like meth-
ods over sophisticated Newton-like methods whose overhead per iteration
increases fast with n. In this section, we will focus on algorithms with itera-
tion complexity that is independent of n, and all our subsequent references
to complexity estimates implicitly assume this.

As an example, we mention the subgradient method for which an
O(1/ǫ2) iteration complexity result can be shown (cf., the discussion follow-
ing Prop. 6.8.2). It turns out that when applied to differentiable problems,
the subgradient method has better performance guarantees. For uncon-
strained problems (X = ℜn) with Lipschitz continuous cost gradient, its
iteration complexity can be estimated as O(1/ǫ), as we will show shortly.
Furthermore, we will discuss a variant that employs an intricate extrap-
olation device, and has the even better iteration complexity of O

(

1/
√
ǫ
)

,
for both unconstrained and constrained problems. It can be shown that
O
(

1/
√
ǫ
)

is a sharp estimate, i.e., it is the best that we can expect across
the class of problems with convex cost functions with Lipschitz continuous
gradient (see the end-of-chapter references).

We finally note that the algorithms of this section assume just Lips-
chitz continuity of the gradient of f , and ignore any other special structure,
such as when f is the sum of a large number of components. Thus, for spe-
cial classes of problems, they may not be competitive with methods that
exploit structure, such as the incremental methods of the preceding section.

Gradient Projection Methods for Differentiable Minimization

Let f : ℜn 7→ ℜ be a differentiable convex function that we want to mini-
mize over a closed convex setX . We assume that f has Lipschitz continuous
gradient, i.e., for some constant L,

∥

∥∇f(x) −∇f(y)
∥

∥ ≤ L ‖x− y‖, ∀ x, y ∈ X. (6.168)

We will consider the gradient projection method

xk+1 = PX

(

xk − α∇f(xk)
)

, (6.169)

where α > 0 is a constant stepsize. This is the specialization of the sub-
gradient method of Section 6.3, for the case where f is differentiable. We
will show that the method has the convergence property f(xk) → f∗ for
any starting point x0, provided α is sufficiently small. Furthermore, its
iteration complexity is O(1/ǫ). To this end, we will need the following
lemma:

Sec. 6.9 Optimal Algorithms and Complexity 371

Lemma 6.9.1: Let f : ℜn 7→ ℜ be a continuously differentiable func-
tion, with gradient satisfying the Lipschitz condition (6.168). Then
for all x, y ∈ ℜn, we have

f(y) − f(x) −∇f(x)′(y − x) ≤ L

2
‖y − x‖2, (6.170)

Proof: Let t be a scalar parameter and let g(t) = f
(

x + t(y − x)
)

. The

chain rule yields (dg/dt)(t) = ∇f
(

x+ t(y − x)
)′

(y − x). Thus, we have

f(y) − f(x) = g(1) − g(0)

=

∫ 1

0

dg

dt
(t) dt

=

∫ 1

0

y′∇f
(

x+ t(y − x)
)

dt

≤
∫ 1

0

y′∇f(x) dt+

∣

∣

∣

∣

∫ 1

0

(y − x)′
(

∇f
(

x+ t(y − x)
)

−∇f(x)
)

dt

∣

∣

∣

∣

≤
∫ 1

0

y′∇f(x) dt+

∫ 1

0

‖y − x‖ · ‖∇f
(

x+ t(y − x)
)

−∇f(x)‖dt

≤ y′∇f(x) + ‖y − x‖
∫ 1

0

Lt‖y − x‖ dt

= y′∇f(x) +
L

2
‖y − x‖2

thereby proving Eq. (6.170). Q.E.D.

From the projection theorem and the definition (6.169) of xk+1, we
have

(

xk − α∇f(xk) − xk+1

)′
(xk − xk+1) ≤ 0,

so that

∇f(xk)′(xk+1 − xk) ≤ − 1

α

∥

∥xk+1 − xk

∥

∥

2
.

Using this relation together with Eq. (6.170), we have

f(xk+1) ≤ f(xk) + ∇f(xk)′(xk+1 − xk) +
L

2
‖xk+1 − xk‖2

≤ f(xk) −
(

1

α
− L

2

)

‖xk+1 − xk‖2,
(6.171)

so the gradient projection method (6.169) reduces the cost function value
at each iteration, provided the stepsize lies in the range α ∈

(

0, 2
L

)

.

372 Convex Optimization Algorithms Chap. 6

We can now prove our main convergence rate estimate for differen-
tiable functions. Let X∗ be the set of unconstrained minima of f , and
let

d(x) = inf
x∗∈X∗

‖x− x∗‖, x ∈ ℜn.

Proposition 6.9.1: Let f : ℜn 7→ ℜ be a convex differentiable func-
tion and X be a closed convex set. Assume that ∇f satisfies the Lips-
chitz condition (6.168), and that the set of minima X∗ of f over ℜn is
nonempty. Let {xk} be a sequence generated by the gradient projec-
tion method (6.169) with stepsize α = 1/L. Then limk→∞ d(xk) = 0,
and

f(xk) − f∗ ≤ Ld(x0)2

2k
, k = 1, 2,

Proof: Let us denote

ℓ(u;w) = f(w) + ∇f(w)′(u− w), ∀ u,w ∈ ℜn.

Using Eq. (6.170), we have

f(xk+1) ≤ ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖2. (6.172)

From the result of Exercise 6.19(c), we have for all x ∈ X

ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖2 ≤ ℓ(x;xk) +

L

2
‖x− xk‖2 − L

2
‖x− xk+1‖2.

Thus, letting x = x∗, where x∗ ∈ X∗ satisfies ‖x0−x∗‖ = d(x0), we obtain
using also Eq. (6.172),

f(xk+1) ≤ ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖2

≤ ℓ(x∗;xk) +
L

2
‖x∗ − xk‖2 − L

2
‖x∗ − xk+1‖2

≤ f(x∗) +
L

2
‖x∗ − xk‖2 − L

2
‖x∗ − xk+1‖2,

so denoting ek = f(xk) − f∗, we have

L

2
‖x∗ − xk+1‖2 ≤ L

2
‖x∗ − xk‖2 − ek+1

≤ L

2
‖x∗ − x0‖2 − (e1 + · · · + ek+1)

≤ L

2
d(x0)2 − (k + 1)ek+1,

Sec. 6.9 Optimal Algorithms and Complexity 373

where the last inequality uses the fact e0 ≥ e1 ≥ · · · ≥ ek+1 [cf. Eq. (6.171)].
Q.E.D.

Note that there is a procedure for selecting the stepsize α to attain the
same iteration complexity, even if the value of L is unknown. In particular,
we may use some arbitrary trial stepsize α > 0, and generate iterates
according to

xk+1 = PX

(

xk − α∇f(xk)
)

,

as long as the condition

f(xk+1) ≤ ℓ(xk+1;xk) +
1

2α
‖xk+1 − xk‖2 (6.173)

is satisfied [cf. Eq. (6.172)]. As soon as this condition is violated at some
iteration, we reduce α by a certain factor, and repeat the iteration as many
times as is necessary for Eq. (6.173) to hold. Then it can be seen that the
condition (6.173) will be satisfied if α ≤ 1/L. Thus, once α is reduced below
the level 1/L, the test (6.173) will be passed, and no further reductions will
be necessary. Furthermore, the preceding proof, with slight modification to
account for the finite number of reductions of α, shows that the algorithm
has O(1/ǫ) iteration complexity.

The following example shows that the complexity estimate O(1/ǫ)
cannot be improved.

Example 6.9.1:

Consider the unconstrained minimization of the scalar function f given by

f(x) =

{

c
2
|x|2 if |x| ≤ ǫ,

cǫ|x| − cǫ2

2
if |x| > ǫ,

where ǫ ∈ (0, 1) (cf. Fig. 6.9.1). Here the constant in the Lipschitz condition
(6.168) is L = c, and for any xk > ǫ, the gradient iteration with stepsize
α = 1/L takes the form

xk+1 = xk −
1

L
∇f(xk) = xk −

1

c
c ǫ = xk − ǫ.

Thus, the number of iterations to get within an ǫ-neighborhood of x∗ = 0 is
|x0|/ǫ. The number of iterations to get to within ǫ of the optimal cost f∗ = 0
is also proportional to 1/ǫ.

A closer examination of the preceding example suggests that while
a stepsize less that 2/c is necessary within the region where |x| ≤ ǫ to
ensure that the method converges, a larger stepsize outside this region
would accelerate convergence. An acceleration scheme, known as the heavy-

ball method or gradient method with momentum, has the form

xk+1 = xk − α∇f(xk) + β(xk − xk−1),

374 Convex Optimization Algorithms Chap. 6

f(x)

x0 ǫǫ − ǫ

Slope cǫ

Figure 6.9.1. The scalar cost function f of Example 6.9.1. It is quadratic for
|x| ≤ ǫ and linear for |x| > ǫ.

and adds the extrapolation term β(xk − xk−1) to the gradient increment,
where x−1 = x0 and β is a scalar with 0 < β < 1 (see the end-of-chapter
references). A variant of this scheme with similar properties separates the
extrapolation and the gradient steps:

yk = xk + β(xk − xk−1), (extrapolation step),

xk+1 = yk − α∇f(yk), (gradient step).
(6.174)

When applied to the function of the preceding example, the method con-
verges to the optimum, and reaches a neighborhood of the optimum more
quickly: it can be verified that for a starting point x0 >> 1 and xk > ǫ,
it has the form xk+1 = xk − ǫk, with 0 < ǫk < ǫ/(1 − β). However, the
method still has an O(1/ǫ) iteration complexity, since for x0 >> 1, the
number of iterations needed to obtain xk < ǫ is O

(

(1 − β)/ǫ
)

.
It turns out that a better iteration complexity is possible with more

vigorous extrapolation. We will show next that what is needed is to replace
the constant extrapolation factor β with a variable factor βk that converges
to 1 at a properly selected rate.

Gradient Projection Method with Extrapolation

We will consider a constrained version of the gradient/extrapolation method
(6.174) for the problem

minimize f(x)

subject to x ∈ X,
(6.175)

where f : ℜn 7→ ℜ is convex and differentiable, and X is a closed convex
set. We assume that f has Lipschitz continuous gradient [cf. Eq. (6.168)],

Sec. 6.9 Optimal Algorithms and Complexity 375

and we denote
d(x) = inf

x∗∈X∗
‖x− x∗‖, x ∈ ℜn,

where X∗ is the set of minima of f over X .
The method has the form

yk = xk + βk(xk − xk−1), (extrapolation step),

xk+1 = PX

(

yk − α∇f(yk)
)

, (gradient projection step),
(6.176)

where PX(·) denotes projection on X , x−1 = x0, and βk ∈ (0, 1). The
following proposition shows that with proper choice of βk, the method has
iteration complexity O

(

1/
√
ǫ
)

. We will assume that

βk =
θk(1 − θk−1)

θk−1
, k = 0, 1, . . . (6.177)

where the sequence {θk} satisfies θ0 = θ1 ∈ (0, 1], and

1 − θk+1

θ2k+1

≤ 1

θ2k
, θk ≤ 2

k + 2
, k = 0, 1, . . . (6.178)

One possible choice is

βk =

{

0 if k = 0,
k−1
k+2 if k = 1, 2, . . . , θk =

{

1 if k = −1,
2

k+2 if k = 0, 1, . . .

We will also assume a stepsize α = 1/L, and we will show later how the
proof can be extended for the case where the constant L is not known.

Proposition 6.9.2: Let f : ℜn 7→ ℜ be a convex differentiable func-
tion and X be a closed convex set. Assume that ∇f satisfies the
Lipschitz condition (6.168), and that the set of minima X∗ of f over
X is nonempty. Let {xk} be a sequence generated by the algorithm
(6.176), where α = 1/L and βk satisfies Eqs. (6.177)-(6.178). Then
limk→∞ d(xk) = 0, and

f(xk) − f∗ ≤ 2L

(k + 1)2
d(x0)2, k = 1, 2,

Proof: We introduce the sequence

zk = xk−1 + θ−1
k−1(xk − xk−1), k = 0, 1, . . . , (6.179)

376 Convex Optimization Algorithms Chap. 6

where x−1 = x0, so that z0 = x0. We note that by using Eqs. (6.176),
(6.177), zk can also be rewritten as

zk = xk + θ−1
k (yk − xk), k = 1, 2, . . . , (6.180)

Fix k ≥ 0 and x∗ ∈ X∗, and let

y∗ = (1 − θk)xk + θkx∗.

Using Eq. (6.170), we have

f(xk+1) ≤ ℓ(xk+1; yk) +
L

2
‖xk+1 − yk‖2, (6.181)

where we use the notation

ℓ(u;w) = f(w) + ∇f(w)′(u− w), ∀ u,w ∈ ℜn.

Since xk+1 is the projection of yk − (1/L)∇f(yk) on X , it minimizes

ℓ(y; yk) +
L

2
‖y − yk‖2

over y ∈ X , so from the result of Exercise 6.19(c), we have

ℓ(xk+1; yk) +
L

2
‖xk+1 − yk‖2 ≤ ℓ(y∗; yk) +

L

2
‖y∗ − yk‖2 − L

2
‖y∗ − xk+1‖2.

Combining this relation with Eq. (6.181), we obtain

f(xk+1) ≤ ℓ(y∗; yk) +
L

2
‖y∗ − yk‖2 − L

2
‖y∗ − xk+1‖2

= ℓ
(

(1 − θk)xk + θkx∗; yk

)

+
L

2
‖(1 − θk)xk + θkx∗ − yk‖2

− L

2
‖(1 − θk)xk + θkx∗ − xk+1‖2

= ℓ
(

(1 − θk)xk + θkx∗; yk

)

+
θ2kL

2
‖x∗ + θ−1

k (xk − yk) − xk‖2

− θ2kL

2
‖x∗ + θ−1

k (xk − xk+1) − xk‖2

= ℓ
(

(1 − θk)xk + θkx∗; yk

)

+
θ2kL

2
‖x∗ − zk‖2

− θ2kL

2
‖x∗ − zk+1‖2

≤ (1 − θk)ℓ(xk; yk) + θkℓ(x∗; yk) +
θ2kL

2
‖x∗ − zk‖2

− θ2kL

2
‖x∗ − zk+1‖2,

Sec. 6.9 Optimal Algorithms and Complexity 377

where the last equality follows from Eqs. (6.179) and (6.180), and the last
inequality follows from the convexity of ℓ(·; yk). Using the inequality

ℓ(xk; yk) ≤ f(xk),

we have

f(xk+1) ≤ (1− θk)f(xk)+ θkℓ(x∗; yk)+
θ2kL

2
‖x∗− zk‖2− θ2kL

2
‖x∗− zk+1‖2.

Finally, by rearranging terms, we obtain

1

θ2k

(

f(xk+1) − f∗
)

+
L

2
‖x∗ − zk+1‖2

≤ 1 − θk

θ2k

(

f(xk) − f∗
)

+
L

2
‖x∗ − zk‖2 − f∗ − ℓ(x∗; yk)

θk
.

By adding this inequality for k = 0, 1, . . . , while using the inequality

1 − θk+1

θ2k+1

≤ 1

θ2k
,

we obtain

1

θ2k

(

f(xk+1) − f∗
)

+

k
∑

i=0

f∗ − ℓ(x∗; yi)

θk
≤ L

2
‖x∗ − z0‖2.

Using the facts x0 = z0, f∗ − ℓ(x∗; yi) ≥ 0, and θk ≤ 2/(k+ 2), and taking
the minimum over all x∗ ∈ X∗, we obtain

f(xk+1) − f∗ ≤ 2L

(k + 2)2
d(x0)2,

from which the desired result follows. Q.E.D.

We note a variation of the algorithm that does not require knowledge
of L. Similar, to the case of the gradient projection method (without
extrapolation), this variant uses some arbitrary trial stepsize α > 0, as
long as the condition

f(xk+1) ≤ ℓ(xk+1; yk) +
1

2α
‖xk+1 − yk‖2, (6.182)

[cf. Eq. (6.181)] is satisfied. As soon as this condition is violated at some
iteration, α is reduced by a certain factor, and the iteration is repeated as
many times as necessary for Eq. (6.182) to hold. Once α is reduced below
the level 1/L, the test (6.182) will be passed, and no further reductions will
be necessary. The preceding proof can then be modified to show that the
variant has iteration complexity O

(√

L/ǫ
)

.

378 Convex Optimization Algorithms Chap. 6

Nondifferentiable Cost – Smoothing

The preceding analysis applies to differentiable cost functions. However,
it can be applied to the case where f is convex but nondifferentiable by
using a smoothing technique to convert the nondifferentiable problem to
a differentiable one. In this way an iteration complexity of O(1/ǫ) can be
attained, which is much faster than the O(1/ǫ2) complexity of the subgradi-
ent method. The idea is to replace a nondifferentiable convex cost function
by a smooth ǫ-approximation whose gradient is Lipschitz continuous with
constant L = O(1/ǫ). By applying the optimal method given earlier, we
obtain an ǫ-optimal solution with iteration complexity O(

√

L/ǫ) = O(1/ǫ).
We will consider the smoothing technique for the class of convex func-

tions f0 : ℜn 7→ ℜ of the form

f0(x) = max
u∈U

{

u′Ax− φ(u)
}

, (6.183)

where U is a convex and compact subset of ℜm, φ : U 7→ ℜ is convex and
continuous over U , and A is an m × n matrix. Note that f0 is just the
composition of the matrix A and the conjugate function of

φ̃(u) =

{

φ(u) if u ∈ U ,
∞ if u /∈ U ,

so the class of convex functions f0 of the form (6.183) is quite broad. We
introduce a function p : ℜm 7→ ℜ that is strictly convex and differentiable.
Let u0 be the unique minimum of p over U , i.e.,

u0 = arg min
u∈U

p(u)

We assume that p(u0) = 0 and that p is strongly convex over U with
modulus of strong convexity σ, i.e., that

p(u) ≥ σ

2
‖u− u0‖2

(cf. the Exercises of Chapter 1). An example is the quadratic function
p(u) = σ

2 ‖u − u0‖2, but there are also other functions of interest (see the
paper by Nesterov [Nes05] for some other examples, which also allow p to
be nondifferentiable and to be defined only on U).

For a parameter ǫ > 0, consider the function

fǫ(x) = max
u∈U

{u′Ax− φ(u) − ǫp(u)} , x ∈ ℜn, (6.184)

and note that fǫ is a uniform approximation of f0 in the sense that

fǫ(x) ≤ f0(x) ≤ fǫ(x) + p∗ǫ, ∀ x ∈ ℜn, (6.185)

Sec. 6.9 Optimal Algorithms and Complexity 379

where
p∗ = max

u∈U
p(u).

The following proposition shows that fǫ is also smooth and its gradient is
Lipschitz continuous with Lipschitz constant that is proportional to 1/ǫ.

Proposition 6.9.3: For all ǫ > 0, the function fǫ is convex and
differentiable over ℜn, with gradient given by

∇fǫ(x) = A′uǫ(x),

where uǫ(x) is the unique vector attaining the maximum in Eq. (6.184).
Furthermore, we have

∥

∥∇fǫ(x) −∇fǫ(y)
∥

∥ ≤ ‖A‖2

ǫσ
‖x− y‖, ∀ x, y ∈ ℜn.

Proof: We first note that the maximum in Eq. (6.184) is uniquely attained
in view of the strong convexity of p (which implies that p is strictly con-
vex). Furthermore, fǫ is equal to f⋆(A′x), where f⋆ is the conjugate of
the function φ(u) + ǫp(u) + δU (u), with δU being the indicator function of
U . It follows that fǫ is convex, and it is also differentiable with gradient
∇fǫ(x) = A′uǫ(x) by the Conjugate Subgradient Theorem (Prop. 5.4.3).

Consider any vectors x, y ∈ ℜn. By using the optimality condition
for the maximization (6.184), we have

(

Ax − gx − ǫ∇p
(

uǫ(x)
)

)′
(

uǫ(y) − uǫ(x)
)

≤ 0,

(

Ay − gy − ǫ∇p
(

uǫ(y)
)

)′
(

uǫ(x) − uǫ(y)
)

≤ 0,

where gx and gy are subgradients of φ at uǫ(x) and uǫ(y), respectively.
Adding the two inequalities, and using the convexity of φ and the strong
convexity of p, we obtain

(x− y)′A′
(

uǫ(x) − uǫ(y)
)

≥
(

gx − gy + ǫ
(

∇p
(

uǫ(x)
)

−∇p
(

uǫ(y)
)

)′

(

uǫ(x) − uǫ(y)
)

≥ ǫ
(

∇p
(

uǫ(x)
)

−∇p
(

uǫ(y)
)

)′
(

uǫ(x) − uǫ(y)
)

≥ ǫσ
∥

∥uǫ(x) − uǫ(y)
∥

∥

2
,

where for the second inequality we have used the fact

(gx − gy)′
(

uǫ(x) − uǫ(y)
)

≥ 0

380 Convex Optimization Algorithms Chap. 6

(cf. the Exercises of Chapter 5), and for the third inequality we used a stan-
dard property of strongly convex functions (see the Exercises for Chapter
1). Thus,

∥

∥∇fǫ(x) −∇fǫ(y)
∥

∥

2
=
∥

∥A′
(

uǫ(x) − uǫ(y)
)∥

∥

2

≤ ‖A′‖2
∥

∥uǫ(x) − uǫ(y)
∥

∥

2

≤ ‖A′‖2

ǫσ
(x− y)′A′

(

uǫ(x) − uǫ(y)
)

≤ ‖A′‖2

ǫσ
‖x− y‖

∥

∥A′
(

uǫ(x) − uǫ(y)
)∥

∥

=
‖A‖2

ǫσ
‖x− y‖

∥

∥∇fǫ(x) −∇fǫ(y)
∥

∥,

from which the result follows. Q.E.D.

We now consider the minimization over a closed convex set X of the
function

f(x) = F (x) + f0(x),

where f0 is given by Eq. (6.183), and F : ℜn 7→ ℜ is convex and differen-
tiable, with gradient satisfying the Lipschitz condition

∥

∥∇F (x) −∇F (y)
∥

∥ ≤ L ‖x− y‖, ∀ x, y ∈ X. (6.186)

We replace f with the smooth approximation

f̃(x) = F (x) + fǫ(x),

and note that f̃ uniformly differs from f by at most p∗ǫ [cf. Eq. (6.185)], and
has Lipschitz continuous gradient with Lipschitz constant L+Lǫ = O(1/ǫ).
Thus, by applying the algorithm (6.176) and by using Prop. 6.9.2, we see
that we can obtain a solution x̃ ∈ X such that f(x̃) ≤ f∗ + p∗ǫ with

O
(
√

(L+ ‖A‖2/ǫσ)/ǫ
)

= O(1/ǫ)

iterations.

6.10 NOTES, SOURCES, AND EXERCISES

Subgradient methods were first introduced in the Soviet Union in the mid-
dle 60s by Shor; the works of Ermoliev and Poljak were also particularly
influential. Description of these works can be found in many sources, in-
cluding Shor [Sho85], Ermoliev [Erm83], and Polyak [Pol87]. An extensive

Sec. 6.10 Notes, Sources, and Exercises 381

bibliography for the early period of the subject is given in the edited vol-
ume by Balinski and Wolfe [BaW75]. There are many works dealing with
analysis of subgradient methods. The convergence analysis of Section 6.3
is based on the paper by Nedić and Bertsekas [NeB01a]. There are several
variations of subgradient methods that aim to accelerate the convergence
of the basic method (see e.g., [CFM75], [Sho85], [Min86], [Str97], [LPS98],
[Sho98], [ZLW99], [GZL02]).

Cutting plane methods were introduced by Cheney and Goldstein
[ChG59], and by Kelley [Kel60]. For analysis of related methods, see
Ruszczynski [Rus89], Lemaréchal and Sagastizábal [LeS93], Mifflin [Mif96],
Burke and Qian [BuQ98], Mifflin, Sun, and Qi [MSQ98], and Bonnans et.
al. [BGL09]. Variants of cutting plane methods were introduced by Elzinga
and Moore [ElM75]. More recent proposals, some of which relate to interior
point methods, are described in the textbook by Ye [Ye97], and the survey
by Goffin and Vial [GoV02]. The simplicial decomposition method was in-
troduced by Holloway [Hol74]; see also Hohenbalken [Hoh77], Hearn, Law-
phongpanich, and Ventura [HLV87], and Ventura and Hearn [VeH93]. Some
of these references describe applications to communication and transporta-
tion networks (see also the textbook [Ber99], Examples 2.1.3 and 2.1.4). A
simplicial decomposition method for minimizing a nondifferentiable convex
function over a polyhedral set, based on concepts of ergodic sequences of
subgradients and a conditional subgradient method, is given by Larsson,
Patriksson, and Stromberg (see [Str97], [LPS98]).

Extended monotropic programming and its duality theory were de-
veloped in Bertsekas [Ber06]. The corresponding material on generalized
simplicial decomposition (Section 6.4.4) and generalized polyhedral approx-
imation (Section 6.4.5) is new, and is based on joint research of the author
with H. Yu; see [BeY09], which contains a detailed convergence analysis.

The proximal point algorithm was introduced by Martinet [Mar70],
[Mar72]. The finite termination of the method when applied to linear pro-
grams was shown independently by Polyak and Tretyakov [PoT74] and
Bertsekas [Ber75a]. The rate of convergence analysis given here is due to
Kort and Bertsekas [KoB76], and has been extensively discussed in the
book [Ber82]. A generalization of the proximal point algorithm, applying
to a broader class of problems, has been extensively developed by Rock-
afellar [Roc76a], [Roc76b], and together with its special cases, has been an-
alyzed by many authors (see e.g., Luque [Luq84], Guler [Gul91], Eckstein
and Bertsekas [EcB92], Pennanen [Pen02]). For a textbook discussion, see
Facchinei and Pang [FaP03].

Bundle methods are currently one of the principal classes of methods
for solving dual problems. Detailed presentations are given in the textbooks
by Hiriart-Urrutu and Lemarechal [HiR93], and Bonnans et. al. [BGL06],
which give many references; see also [FeK00], [MSQ98], [ZhL02]. The term
“bundle” has been used with a few different meanings in convex algorith-
mic optimization, with some confusion resulting. To our knowledge, it was

382 Convex Optimization Algorithms Chap. 6

first introduced in the 1975 paper by Wolfe [Wol75] to describe a collection
of subgradients used for calculating a descent direction in the context of a
specific algorithm of the descent type - a context with no connection to cut-
ting planes or proximal minimization. It subsequently appeared in related
descent method contexts through the 1970’s and early 1980’s. Starting
in the middle 1980’s, the context of the term “bundle method” gradually
shifted, and it is now commonly associated with the stabilized proximal
cutting plane methods that we have described in Section 6.5.2.

There are proximal point-type algorithms that use nonquadratic prox-
imal terms, and find application in specialized contexts. They were intro-
duced by several authors, starting to our knowledge with the paper by
Kort and Bertsekas [KoB72], and the thesis by Kort [Kor75], in the con-
text of broad classes of methods involving nonquadratic augmented La-
grangians (see also Kort and Bertsekas [KoB76], and Bertsekas [Ber82]).
There has been much work in this area, directed at obtaining additional
classes of methods, sharper convergence results, and an understanding
of the properties that enhance computational performance; see Censor
and Zenios [CeZ92], [CeZ97], Guler [Gul92], Chen and Teboulle [ChT93],
[ChT94], Tseng and Bertsekas [TsB93], Bertsekas and Tseng [BeT94], Eck-
stein [Eck94], Iusem, Svaiter, and Teboulle [IST94], Iusem and Teboulle
[IuT95], Auslender, Cominetti, and Haddou [AHR97], Polyak and Teboulle
[PoT97], Iusem [Ius99], Facchinei and Pang [FaP03], and Auslender and
Teboulle [AuT03]. These methods, when combined with the cutting plane
approximation approach yield corresponding bundle-type algorithms.

The Augmented Lagrangian method was independently proposed in
the papers by Hestenes [Hes69], Powell [Pow69], and Haarhoff and Buys
[HaB70] in a nonlinear programming context where convexity played no
apparent role. The papers contained little analysis, and did not suggest
any relation to duality and the proximal point algorithm. These relations
were analyzed by Rockafellar [Roc73], [Roc76a]. An extensive development
and analysis of Augmented Lagrangian and related methods is given in the
author’s research monograph [Ber82], together with many references; see
also the survey papers [Ber76], [Roc76b], [Ius99]. The textbook [BeT89]
contains several applications of Augmented Lagrangians to classes of large-
scale problems with special structure.

Interior point methods date to the work of M. R. Frisch in the middle
50’s [Fri56]. They achieved a great deal of popularity in the early 80’s when
they were systematically applied to linear programming problems. The re-
search monographs by Wright [Wri97] and Ye [Ye97] are devoted to interior
point methods for linear, quadratic, and convex programming. More re-
cently interior point methods were adapted and analyzed for conic program-
ming, starting with the research monograph by Nesterov and Nemirovskii
[NeN94]. This development had a strong influence in convex optimization
practice, as conic programming became established as a field with a strong
algorithmic methodology and extensive applications, ranging from discrete

Sec. 6.10 Notes, Sources, and Exercises 383

optimization, to control theory, communications, and machine learning.
The book by Wolkowicz, Saigal, and Vanderbergue [WSV00] contains a
collection of survey articles on semidefinite programming. The book by
Boyd and Vanderbergue [BoV04] describes many applications, and con-
tains a lot of material and references.

One may view ǫ-subgradient methods in the context of subgradient
methods that involve errors in the calculation of the subgradient. Such
methods have a long history; see e.g., Ermoliev [Erm69], [Erm83], Nurmin-
skii [Nur74], Polyak [Pol87], and for more recent treatments, Correa and
Lemarechal [CoL94], Solodov and Zavriev [SoZ98], and Nedić and Bert-
sekas [NeB07]. The first proposal of an incremental subgradient method
was in Kibardin [Kib79], a work that remained unknown in the Western
literature until about 2005. Our material on incremental subgradient meth-
ods is based on Nedić and Bertsekas [NeB01a], [NeB01b], [BNO03], which
also provided the first analysis of incremental subgradient methods with
randomization. Incremental gradient methods for differentiable cost func-
tions have a long history in the area of neural network training; see [BeT96]
and [Ber99] for textbook accounts of this methodology and references. For
related works, some of which apply to differentiable problems only, see
Davidon [Dav76], Luo [Luo91], Gaivoronski [Gai94], Grippo [Gri94], Luo
and Tseng [LuT94], Mangasarian and Solodov [MaS94], Bertsekas and Tsit-
siklis [BeT96], [BeT00], Bertsekas [Ber96], [Ber97], Kaskavelis and Cara-
manis [KaC98], Solodov [Sol98], Tseng [Tse98], Ben-Tal, Margalit, and
Nemirovski [BMN01], Zhao, Luh, and Wang [ZLW99], Rabbat and Nowak
[RaN05], Blatt, Hero, and Gauchman [BHG07]. The incremental proximal
algorithms of Section 6.8.4 are considered and analyzed here for the first
time, to our knowledge (see also [Ber10a], [Ber10b]).

A distributed asynchronous implementation of incremental subgradi-
ent methods, with and without randomization, was given by Nedić, Bert-
sekas, and Borkar [NBB01]. In the randomized distributed version, the
multiple processors, whenever they become available, select at random a
component fi, calculate the subgradient gi, and execute the correspond-
ing incremental subgradient step. The algorithm is asynchronous in that
different processors use slightly differing copies of the current iterate xk;
this contributes to the efficiency of the method, because there is no waiting
time for processors to synchronize at the end of iterations. Despite the
asynchronism, convergence can be shown thanks to the use of a diminish-
ing stepsize, similar to related distributed asynchronous gradient method
analyses for differentiable optimization problems (see Tsitsiklis, Bertsekas,
and Athans [TBA86], and Bertsekas and Tsitsiklis [BeT89]). This analysis
applies also to the incremental proximal algorithms of Section 6.8.4.

The ideas of the iteration complexity analysis and algorithms of Sec-
tion 6.9 have a long history, beginning in the late 70’s. In this connection,
we mention the works of Nemirovskii and Yudin [NeY83], and Nesterov
[Nes83]. The focus on convergence rate analysis and optimal algorithms is

384 Convex Optimization Algorithms Chap. 6

also characteristic of the work of Polyak (see e.g., the textbook [Pol87]),
who among others, proposed the heavy-ball method [Pol64]. The optimal
gradient projection/extrapolation method of this section stems from the
ideas of Nesterov [Nes83], [Nes04], [Nes05] (see also Beck and Teboulle
[BeT09], Lu, Monteiro, and Yuan [LMY08], and Tseng [Tse08]). We fol-
low the analysis of Tseng [Tse08], who proposed and analyzed more general
methods that also apply to important classes of nondifferentiable cost func-
tions.

Smoothing for nondifferentiable optimization was first suggested by
the author in [Ber75b], [Ber77], [Ber82], as an application of the Augmented
Lagrangian methodology (see Exercises 6.12-6.14). It has been discussed by
several other authors, including Polyak [Pol79], Papavassilopoulos [Pap81],
and Censor and Zenios [CeZ92]. The idea of using smoothing in conjunction
with a gradient method to construct optimal algorithms is due to Nesterov
[Nes05]. In his work he proves the Lipschitz property of Prop. 6.9.3 for the
more general case, where p is convex but not necessarily differentiable, and
analyzes several important special cases.

E X E R C I S E S

6.1 (Minimizing the Sum or the Maximum of Norms [LVB98])

Consider the problems

minimize

p
∑

i=1

‖Fix+ gi‖

subject to x ∈ ℜn,

(6.187)

and
minimize max

i=1,...,p
‖Fix+ gi‖

subject to x ∈ ℜn,

where Fi and gi are given matrices and vectors, respectively. Convert these
problems to second order cone form and derive the corresponding dual problems.

6.2 (Complex l1 and l∞ Approximation [LVB98])

Consider the complex l1 approximation problem

minimize ‖Ax− b‖1

subject to x ∈ Cn,

Sec. 6.10 Notes, Sources, and Exercises 385

where Cn is the set of n-dimensional vectors whose components are complex
numbers. Show that it is a special case of problem (6.187) and derive the corre-
sponding dual problem. Repeat for the complex l∞ approximation problem

minimize ‖Ax− b‖∞

subject to x ∈ Cn.

6.3

The purpose of this exercise is to show that the SOCP can be viewed as a special
case of SDP.

(a) Show that a vector x ∈ ℜn belongs to the second order cone if and only if
the matrix

xnI + x1v1v
′
1 + · · · + xn−1vn−1v

′
n−1

is positive semidefinite, where vi is the vector of ℜn whose components are
all equal to 0 except for the (i+ 1)st component which is equal to 1. Hint :
We have that for any positive definite n× n matrix A, vector b ∈ ℜn, and
scalar d, the matrix

(

A b
b′ c

)

is positive definite if and only if c− b′A−1b > 0.

(b) Use part (a) to show that the primal SOCP can be written in the form of
the dual SDP.

6.4 (Explicit Form of a Second Order Cone Problem)

Consider the SOCP (6.18).

(a) Partition the ni × (n+ 1) matrices (Ai bi) as

(Ai bi) =

(

Di di

p′i qi

)

, i = 1, . . . ,m,

where Di is an (ni − 1)×n matrix, di ∈ ℜni−1, pi ∈ ℜn, and qi ∈ ℜ. Show
that

Aix− bi ∈ Ci if and only if ‖Dix− di‖ ≤ p′ix− qi,

so we can write the SOCP (6.18) as

minimize c′x

subject to ‖Dix− di‖ ≤ p′ix− qi, i = 1, . . . ,m.

386 Convex Optimization Algorithms Chap. 6

(b) Similarly partition λi as

λi =

(

µi

νi

)

, i = 1, . . . ,m,

where µi ∈ ℜni−1 and νi ∈ ℜ. Show that the dual problem (6.19) can be
written in the form

maximize

m
∑

i=1

(d′iµi + qiνi)

subject to

m
∑

i=1

(D′
iµi + νipi) = c, ‖µi‖ ≤ νi, i = 1, . . . ,m.

(6.188)

(c) Show that the primal and dual interior point conditions for strong duality
(Prop. 6.1.2) hold if there exist primal and dual feasible solutions x and
(µi, νi) such that

‖Dix− di‖ < p′ix− qi, i = 1, . . . , m,

and
‖µi‖ < νi, i = 1, . . . ,m,

respectively.

6.5 (Monotropic-Conic Problems)

Consider the problem

minimize

m
∑

i=1

fi(xi)

subject to x ∈ S ∩ C,

where x = (x1, . . . , xm) with xi ∈ ℜni , i = 1, . . . ,m, and fi : ℜni 7→ (−∞,∞] is
a proper convex function for each i, and S and C are a subspace and a cone of
ℜn1+···+nm , respectively. Show that a dual problem is

maximize

m
∑

i=1

qi(λi)

subject to λ ∈ Ĉ + S⊥,

where λ = (λ1, . . . , λm), Ĉ is the dual cone of C, and

qi(λi) = inf
zi∈ℜ

{

fi(zi) − λ′
izi

}

, i = 1, . . . ,m.

Sec. 6.10 Notes, Sources, and Exercises 387

6.6

Let f : ℜn 7→ ℜ be a convex function, and let {fk} be a sequence of convex
functions fk : ℜn 7→ ℜ with the property that limk→∞ fk(xk) = f(x) for every
x ∈ ℜn and every sequence {xk} that converges to x. Then, for any x ∈ ℜn and
y ∈ ℜn, and any sequences {xk} and {yk} converging to x and y, respectively,
we have

lim sup
k→∞

f ′
k(xk; yk) ≤ f ′(x; y). (6.189)

Furthermore, if f is differentiable over ℜn, then it is continuously differentiable
over ℜn.

Solution: From the definition of directional derivative, it follows that for any
ǫ > 0, there exists an α > 0 such that

f(x+ αy) − f(x)

α
< f ′(x; y) + ǫ.

Hence, using also the equation

f ′(x; y) = inf
α>0

f(x+ αy) − f(x)

α
,

we have for all sufficiently large k,

f ′
k(xk; yk) ≤

fk(xk + αyk) − fk(xk)

α
< f ′(x; y) + ǫ,

so by taking the limit as k → ∞,

lim sup
k→∞

f ′
k(xk; yk) ≤ f ′(x; y) + ǫ.

Since this is true for all ǫ > 0, we obtain lim supk→∞ f ′
k(xk; yk) ≤ f ′(x; y).

If f is differentiable at all x ∈ ℜn, then using the continuity of f and the
part of the proposition just proved, we have for every sequence {xk} converging
to x and every y ∈ ℜn,

lim sup
k→∞

∇f(xk)′y = lim sup
k→∞

f ′(xk; y) ≤ f ′(x; y) = ∇f(x)′y.

By replacing y with −y in the preceding argument, we obtain

− lim inf
k→∞

∇f(xk)′y = lim sup
k→∞

(

−∇f(xk)′y
)

≤ −∇f(x)′y.

Therefore, we have ∇f(xk)′y → ∇f(x)′y for every y, which implies that ∇f(xk) →
∇f(x). Hence, ∇f(·) is continuous.

388 Convex Optimization Algorithms Chap. 6

6.7 (Danskin’s Theorem)

Let Z be a compact subset of ℜm, and let φ : ℜn × Z 7→ ℜ be continuous and
such that φ(·, z) : ℜn 7→ ℜ is convex for each z ∈ Z.

(a) The function f : ℜn 7→ ℜ given by

f(x) = max
z∈Z

φ(x, z) (6.190)

is convex and has directional derivative given by

f ′(x; y) = max
z∈Z(x)

φ′(x, z; y), (6.191)

where φ′(x, z; y) is the directional derivative of the function φ(·, z) at x in
the direction y, and Z(x) is the set of maximizing points in Eq. (6.190)

Z(x) =
{

z
∣

∣

∣
φ(x, z) = max

z∈Z
φ(x, z)

}

.

In particular, if Z(x) consists of a unique point z and φ(·, z) is differentiable
at x, then f is differentiable at x, and ∇f(x) = ∇xφ(x, z), where ∇xφ(x, z)
is the vector with components

∂φ(x, z)

∂xi
, i = 1, . . . , n.

(b) If φ(·, z) is differentiable for all z ∈ Z and ∇xφ(x, ·) is continuous on Z for
each x, then

∂f(x) = conv
{

∇xφ(x, z) | z ∈ Z(x)
}

, ∀ x ∈ ℜn.

Solution: (a) We note that since φ is continuous and Z is compact, the set Z(x)
is nonempty by Weierstrass’ Theorem and f is finite. For any z ∈ Z(x), y ∈ ℜn,
and α > 0, we use the definition of f to obtain

f(x+ αy) − f(x)

α
≥
φ(x+ αy, z) − φ(x, z)

α
.

Taking the limit as α decreases to zero, we obtain f ′(x; y) ≥ φ′(x, z; y). Since
this is true for every z ∈ Z(x), we conclude that

f ′(x; y) ≥ sup
z∈Z(x)

φ′(x, z; y), ∀ y ∈ ℜn. (6.192)

To prove the reverse inequality and that the supremum in the right-hand
side of the above inequality is attained, consider a sequence {αk} of positive
scalars that converges to zero and let xk = x + αky. For each k, let zk be a
vector in Z(xk). Since {zk} belongs to the compact set Z, it has a subsequence

Sec. 6.10 Notes, Sources, and Exercises 389

converging to some z ∈ Z. Without loss of generality, we assume that the entire
sequence {zk} converges to z. We have

φ(xk, zk) ≥ φ(xk, z), ∀ z ∈ Z,

so by taking the limit as k → ∞ and by using the continuity of φ, we obtain

φ(x, z) ≥ φ(x, z), ∀ z ∈ Z.

Therefore, z ∈ Z(x). We now have

f ′(x; y) ≤
f(x+ αky) − f(x)

αk

=
φ(x+ αky, zk) − φ(x, z)

αk

≤
φ(x+ αky, zk) − φ(x, zk)

αk

≤ −φ′(x+ αky, zk;−y)

≤ φ′(x+ αky, zk; y),

(6.193)

where the last inequality follows from the fact −f ′(x;−y) ≤ f ′(x; y). We apply
the result of Exercise 6.6 to the functions fk defined by fk(·) = φ(·, zk), and with
xk = x+ αky, to obtain

lim sup
k→∞

φ′(x+ αky, zk; y) ≤ φ′(x, z; y). (6.194)

We take the limit in inequality (6.193) as k → ∞, and we use inequality (6.194)
to conclude that

f ′(x; y) ≤ φ′(x, z; y).

This relation together with inequality (6.192) proves Eq. (6.191).
For the last statement of part (a), if Z(x) consists of the unique point z,

Eq. (6.191) and the differentiability assumption on φ yield

f ′(x; y) = φ′(x, z; y) = y′∇xφ(x, z), ∀ y ∈ ℜn,

which implies that ∇f(x) = ∇xφ(x, z).

(b) By part (a), we have

f ′(x; y) = max
z∈Z(x)

∇xφ(x, z)′y,

while by Prop. 5.4.8,
f ′(x; y) = max

z∈∂f(x)
d′y.

For all z ∈ Z(x) and y ∈ ℜn, we have

f(y) = max
z∈Z

φ(y, z)

≥ φ(y, z)

≥ φ(x, z) + ∇xφ(x, z)′(y − x)

= f(x) + ∇xφ(x, z)′(y − x).

390 Convex Optimization Algorithms Chap. 6

Therefore, ∇xφ(x, z) is a subgradient of f at x, implying that

conv
{

∇xφ(x, z) | z ∈ Z(x)
}

⊂ ∂f(x).

To prove the reverse inclusion, we use a hyperplane separation argument. By the
continuity of ∇xφ(x, ·) and the compactness of Z, we see that Z(x) is compact,
and therefore also the set

{

∇xφ(x, z) | z ∈ Z(x)
}

is compact. By Prop. 1.2.2,

it follows that conv
{

∇xφ(x, z) | z ∈ Z(x)
}

is compact. If d ∈ ∂f(x) while

d /∈ conv
{

∇xφ(x, z) | z ∈ Z(x)
}

, by the Strict Separation Theorem (Prop.
1.5.3), there exists y 6= 0, and γ ∈ ℜ, such that

d′y > γ > ∇xφ(x, z)′y, ∀ z ∈ Z(x).

Therefore, we have

d′y > max
z∈Z(x)

∇xφ(x, z)′y = f ′(x; y),

contradicting Prop. 5.4.8. Therefore, ∂f(x) ⊂ conv
{

∇xφ(x, z) | z ∈ Z(x)
}

and
the proof is complete.

6.8 (Failure of the Steepest Descent Method [Wol75])

Consider the minimization of the two-dimensional function

f(x1, x2) =

{

5(9x2
1 + 16x2

2)
1/2 if x1 > |x2|,

9x1 + 16|x2| if x1 ≤ |x2|,

using the steepest descent method, which moves from the current point in the
opposite direction of the minimum norm subgradient (or gradient in the case
where the function is differentiable at the point), with the stepsize determined
by cost minimization along that direction. Suppose that the algorithm starts
anywhere within the set

{

(x1, x2) | x1 > |x2| > (9/16)2|x1|
}

.

Verify computationally that it converges to the nonoptimal point (0, 0) (cf. Fig.
6.10.1). What happens if a subgradient method with a constant stepsize is used
instead? Check computationally.

6.9 (Growth Condition for Polyhedral Functions)

Let f : ℜn 7→ (−∞,∞] be a polyhedral function, and assume that X∗, the set of
minima of f , is nonempty. Show that there exists a scalar β > 0 such that

f∗ + βd(x) ≤ f(x), ∀ x /∈ X∗,

where d(x) = minx∗∈X∗ ‖x − x∗‖. Hint : Complete the details of the following
argument:

Sec. 6.10 Notes, Sources, and Exercises 391

z

x2

x1

-3

-2

-1

0

1

2

3

-3
-2

-1
0

1
2

3

60

-20

0

20

40

x1

x
2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 6.10.1. Level sets and steepest descent path for the function of Exercise
6.8. The method converges to the nonoptimal point (0, 0).

Assume first that f is linear within dom(f). Then, there exists a ∈ ℜn

such that for all x, x̂ ∈ dom(f), we have

f(x) − f(x̂) = a′(x− x̂).

For any x ∈ X∗, let Sx be the cone of vectors d that are in the normal cone
NX∗(x) of X∗ at x, and are also feasible directions in the sense that x + αd ∈
dom(f) for a small enough α > 0. Since X∗ and dom(f) are polyhedral sets,
there exist only a finite number of possible cones Sx as x ranges over X∗. Thus,
there is a finite set of nonzero vectors {cj | j ∈ J}, such that for any x ∈ X∗, Sx

is either equal to {0}, or is the cone generated by a subset {cj | j ∈ Jx}, where
J = ∪x∈X∗Jx. In addition, for all x ∈ X∗ and d ∈ Sx with ‖d‖ = 1, we have

d =
∑

j∈Jx

γjcj ,

for some scalars γj ≥ 0 with
∑

j∈Jx
γj ≥ γ, where γ = 1/maxj∈J ‖cj‖. Also we

can show that for all j ∈ J , we have a′cj > 0, by using the fact cj ∈ Sx for some
x ∈ X∗.

For x ∈ dom(f) with x /∈ X∗, let x̂ be the projection of x on X∗. Then the
vector x− x̂ belongs to Sx̂, and we have

f(x) − f(x̂) = a′(x− x̂) = ‖x− x̂‖
a′(x− x̂)

‖x− x̂‖
≥ β‖x− x̂‖,

where
β = γmin

j∈J
a′cj .

Since J is finite, we have β > 0, and this implies the desired result for the case
where f is linear within dom(f).

392 Convex Optimization Algorithms Chap. 6

Assume now that f is of the form

f(x) = max
i∈I

{a′ix+ bi}, ∀ x ∈ dom(f),

where I is a finite set, and ai and bi are some vectors and scalars, respectively.
Let

Y =
{

(x, z) | z ≥ f(x), x ∈ dom(f)
}

,

and consider the function

g(x, z) =
{

z if (x, z) ∈ Y ,
∞ otherwise.

Note that g is polyhedral and linear within dom(g), that its set of minima is

Y ∗ =
{

(x, z) | x ∈ X∗, z = f∗
}

,

and that its minimal value is f∗.
Applying the result already shown to the function g, we have for some

β > 0
f∗ + βd̂(x, z) ≤ g(x, z), ∀ (x, z) /∈ Y ∗,

where

d̂(x, z) = min
(x∗,z∗)∈Y ∗

(

‖x−x∗‖2 + |z− z∗|2
)1/2

= min
x∗∈X∗

(

‖x− x∗‖2 + |z− f∗|2
)1/2

.

Since
d̂(x, z) ≥ min

x∈X∗
‖x− x∗‖ = d(x),

we have
f∗ + βd(x) ≤ g(x, z), ∀ (x, z) /∈ Y ∗,

and by taking the infimum of the right-hand side over z for any fixed x, we obtain

f∗ + βd(x) ≤ f(x), ∀ x /∈ X∗.

6.10 (Sublinear Convergence Rate in the Proximal Minimization
Algorithm)

Consider the proximal point algorithm under the assumptions of Prop. 6.5.2.
Assume further that α > 2. Show that

lim sup
k→∞

d(xk+1)

d(xk)2/α
<∞

which is known as sublinear convergence. Hint : Show first that

f(xk+1) − f∗ ≤
d(xk)2

2ck
, ∀ k.

Sec. 6.10 Notes, Sources, and Exercises 393

6.11 (Partial Proximal Minimization Algorithm [BeT94])

For each c > 0, let φc be the real-valued convex function on ℜn defined by

φc(z) = min
x∈X

{

f(x) +
1

2c
‖x− z‖2

}

,

where f is a convex function over the closed convex set X. Let I be a subset of
the index set {1, . . . , n}. For any z ∈ ℜn, consider a vector z satisfying

z ∈ arg min
x∈X

{

f(x) +
1

2c

∑

i∈I

|xi − zi|
2

}

,

and let z̃ be the vector with components

z̃i =
{

zi ∀ i ∈ I ,
zi ∀ i /∈ I .

(a) Show that
z̃ ∈ arg min

{x|xi=zi, i∈I}
φc(x),

z ∈ arg min
x∈X

{

f(x) +
1

2c
‖x− z̃‖2

}

.

(b) Interpret z as the result of a block coordinate descent step corresponding
to the components zi, i /∈ I , followed by a proximal minimization step, and
show that φc(z) ≤ f(z) ≤ φc(z) ≤ f(z).

6.12 (Smoothing of Nondifferentiabilities [Ber75b], [Ber77],
[Ber82], [Pap81], [Pol79])

A simple and effective technique to handle nondifferentiabilities in the cost or the
constraints of optimization problems is to replace them by smooth approxima-
tions and then use gradient-based algorithms. This exercise develops a general
technique for deriving such approximations. Let f : ℜn 7→ (−∞,∞] be a closed
proper convex function with conjugate convex function denoted by f⋆. For each
x ∈ ℜn, define

fc,λ(x) = inf
u∈ℜn

{

f(x− u) + λ′u+
c

2
‖u‖2

}

, (6.195)

where c is a positive scalar, and λ is a vector in ℜn. Use the Fenchel duality
theorem to show that

fc,λ(x) = sup
y∈ℜn

{

x′y − f⋆(y) −
1

2c
‖y − λ‖2

}

. (6.196)

Show also that fc,λ approximates f in the sense that

lim
c→∞

fc,λ(x) = f(x), ∀ x, λ ∈ ℜn.

Furthermore, fc,λ is convex and differentiable as a function of x for fixed c and
λ, and ∇fc,λ(x) can be obtained in two ways:

(i) As the vector λ+ cu, where u attains the infimum in Eq. (6.195).

(ii) As the vector y that attains the supremum in Eq. (6.196).

394 Convex Optimization Algorithms Chap. 6

6.13 (Smoothing and the Augmented Lagrangian Method I)

This exercise provides an application of the smoothing technique of the preced-
ing exercise. Let f : ℜn 7→ (−∞,∞] be a closed proper convex function with
conjugate convex function denoted by f⋆. Let F : ℜn 7→ ℜ be another convex
function, and let X be a closed convex set. Consider the problem

minimize F (x) + f(x)

subject to x ∈ X,

and the equivalent problem

minimize F (x) + f(x− u)

subject to x ∈ X, u = 0.

Apply the Augmented Lagrangian method to the latter problem, and show that
it takes the form

xk+1 ∈ arg min
x∈X

{

F (x) + fck,λk
(x)
}

,

where fc,λ is the smoothed function of the preceding exercise; the multiplier
update is obtained from the equations

uk+1 ∈ arg min
u∈ℜn

{

f(xk+1 − u) + λk
′u+

ck
2
‖u‖2

}

, λk+1 = λk + ckuk+1.

Alternatively, λk+1 is given by

λk+1 = arg max
y∈ℜn

{

x′
k+1y − f⋆(y) −

1

2ck
‖y − λk‖

2
}

= ∇fck,λk
(xk+1),

where f⋆ is the conjugate convex function of f .

6.14 (Smoothing and the Augmented Lagrangian Method II)

This exercise provides an alternative smoothing technique to the one of the pre-
ceding exercise. It applies to general convex/concave minimax problems. Let Z
be a nonempty convex subset of ℜm, respectively, and φ : ℜn ×Z 7→ ℜ is a func-
tion such that φ(·, z) : ℜn 7→ ℜ is convex for each z ∈ Z, and −φ(x, ·) : Z 7→ ℜ is
convex and closed for each x ∈ ℜn. Consider the problem

minimize sup
z∈Z

φ(x, z)

subject to x ∈ X,

where X is a nonempty closed convex subset of ℜn. Consider also the equivalent
problem

minimize H(x, y)

subject to x ∈ X, y = 0,

Sec. 6.10 Notes, Sources, and Exercises 395

where H is the function

H(x, y) = sup
z∈Z

{

φ(x, z) − y′z
}

, x ∈ ℜn, y ∈ ℜm.

Apply the Augmented Lagrangian method to this problem, and show that it
takes the form

xk+1 ∈ arg min
x∈X

hck,λk
(x),

where f⋆
c,λ : ℜn 7→ ℜ is the differentiable function given by

f⋆
c,λ(x) = min

y∈ℜm

{

H(x, y) − λ′y +
c

2
‖y‖2

}

, x ∈ ℜn.

The multiplier update is obtained from the equations

yk+1 ∈ arg min
y∈ℜm

{

H(xk+1, y) − λ′
ky +

ck
2
‖y‖2

}

, λk+1 = λk − ckyk+1.

6.15

Consider the scalar function f(x) = |x|. Show that for x ∈ ℜ and ǫ > 0, we have

∂ǫf(x) =







[

−1,−1 − ǫ
x

]

for x < − ǫ
2
,

[−1, 1] for x ∈
[

− ǫ
2
, ǫ

2

]

,
[

1 − ǫ
x
, 1
]

for x > ǫ
2
.

6.16 (Subgradient Methods with Low Level Errors [NeB07])

Consider the problem of minimizing a convex function f : ℜn → ℜ over a closed
convex set X, and assume that the optimal solution set, denotedX∗, is nonempty.
Consider the iteration

xk+1 = PX

(

xk − αk(gk + ek)
)

,

where for all k, gk is a subgradient of f at xk, and ek is an error such that for all
k, we have

‖ek‖ ≤ β, k = 0, 1, . . . ,

where β is some positive scalar. Assume that for some γ > 0, we have

f(x) − f∗ ≤ γ min
x∗∈X∗

‖x− x∗‖, ∀ x ∈ X,

where f∗ = minx∈X f(x), and that for some c > 0, we have

‖g‖ ≤ c, ∀ g ∈ ∂f(xk), k = 0, 1, . . .

396 Convex Optimization Algorithms Chap. 6

(these assumptions are satisfied if f is a polyhedral function). Assuming β < γ,
show that if αk is equal to some constant α for all k, then

lim inf
k→∞

f(xk) ≤ f∗ +
αγ(c+ β)2

2(γ − β)
, (6.197)

while if

αk → 0,

∞
∑

k=0

αk = ∞,

then lim infk→∞ f(xk) = f∗. Use the example of Exercise 6.15 to show that the
estimate (6.197) is sharp.

6.17 (Sharpness of the Error Tolerance Estimate)

Consider the unconstrained optimization of the two-dimensional function

f(x1, x2) =

M
∑

i=1

c0
(

|x1 + 1| + 2|x1| + |x1 − 1| + |x2 + 1| + 2|x2| + |x2 − 1|
)

,

where c0 is a positive constant, by using the incremental subgradient method
with a constant stepsize α. Show that there exists a component processing order
such that when the method starts a cycle at the point x = (x1, x2), where x1 =
x2 = αMc0 with αMc0 ≤ 1, it returns to x at the end of the cycle. Use this
example to show that starting from x, we have

lim inf
k→∞

f(ψi,k) ≥ f∗ +
βαc2

2
, ∀ i = 1, . . . ,m,

for some constant β (independent of c0 and M), where c = mc0 and m = 8M
[cf. Eq. (6.153)].

Solution: Consider the incremental subgradient method with the stepsize α and
the starting point x = (αMC0, αMC0), and the following component processing
order:

M components of the form |x1| [endpoint is (0, αMC0)],

M components of the form |x1 + 1| [endpoint is (−αMC0, αMC0)],

M components of the form |x2| [endpoint is (−αMC0, 0)],

M components of the form |x2 + 1| [endpoint is (−αMC0,−αMC0)],

M components of the form |x1| [endpoint is (0,−αMC0)],

M components of the form |x1 − 1| [endpoint is (αMC0,−αMC0)],

M components of the form |x2| [endpoint is (αMC0, 0)], and

M components of the form |x2 − 1| [endpoint is (αMC0, αMC0)].

With this processing order, the method returns to x at the end of a cycle.
Furthermore, the smallest function value within the cycle is attained at points

Sec. 6.10 Notes, Sources, and Exercises 397

(±αMC0, 0) and (0,±αMC0), and is equal to 4MC0 + 2αM2C2
0 . The optimal

function value is f∗ = 4MC0, so that

lim inf
k→∞

f(ψi,k) ≥ f∗ + 2αM2C2
0 .

Since m = 8M and mC0 = C, we have M2C2
0 = C2/64, implying that

2αM2C2
0 =

1

16

αC2

2
,

and therefore

lim inf
k→∞

f(ψi,k) ≥ f∗ +
βαC2

2
,

with β = 1/16.

6.18 (Aggregate Subgradients)

Show that the aggregate subgradient of Eq. (6.101) in the bundle method can be
expressed as a convex combination of past subgradients gi, which are “active” in
the sense that

Fk(xk+1) = f(xi) + (xk+1 − xi)
′gi.

Hint : Use quadratic programming duality in conjunction with the proximal op-
timization problem that defines xk+1.

6.19 (Bregman Distance)

Let X be a closed convex subset of ℜn, and let f : ℜn 7→ ℜ be a convex function
that is differentiable over an open set that contains X, and is stronly convex in
the sense that

(

∇f(x) −∇f(z)
)′

(x− z) ≥ ‖x− z‖2, ∀ x, z ∈ X.

Define a corresponding “distance” function

D(x, z) = f(x) − f(z) −∇f(z)′(x− z), ∀ z ∈ X, x ∈ ℜn.

(a) For each z ∈ X, show that D(·, z) is strongly convex over X, and in fact

D(x, z) ≥
1

2
‖x− z‖2,

with equality holding in the case where

f(x) =
1

2
‖x‖2.

398 Convex Optimization Algorithms Chap. 6

(b) Let ψ : X 7→ (−∞,∞] be a closed proper convex function, and for any
z ∈ X, define

z+ = arg min
x∈X

{

ψ(x) +D(x, z)
}

.

Show that

ψ(z+) +D(z+, z) +D(x, z+) ≤ ψ(x) +D(x, z), ∀ x, z ∈ X.

Hint : Use the optimality condition of Prop. 5.4.7 to obtain

ψ(z+) ≤ ψ(x) + ∇xD(z+, z)′(x− z+).

Then by writing ∇xD(z+, z) = ∇f(z+) −∇f(z) and rearranging terms,

ψ(z+) −∇f(z)′(z+ − z) −∇f(z+)′(x− z+) ≤ ψ(x) −∇f(z)′(x− z).

Add f(x) − f(z) to both sides.

(c) Use part (b) with ψ(z) = 1
L
ℓ(z;xk) and D(x, z) = 1

2
‖x − z‖2 (cf. the

notation of the proof of Prop. 6.9.1 and the similar notation of Prop. 6.9.2),
to show that

ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖

2 ≤ ℓ(x;xk) +
L

2
‖x− xk‖

2 −
L

2
‖x− xk+1‖

2.

References

[AuT03] Auslender, A., and Teboulle, M., 2003. Asymptotic Cones and
Functions in Optimization and Variational Inequalities, Springer-Verlag,
New York, NY.

[BGL09] Bonnans, F., Gilbert, J. C., Lemaréchal, C., and Sagastizábal,
C. A., 2009. Numerical Optimization: Theoretical and Practical Aspects,
Springer, NY.

[BFG07] Blatt, D., Hero, A. O., Gauchman, H., 2007. “A Convergent In-
cremental Gradient Method with a Constant Step Size,” SIAM J. on Op-
timization, Vol. 18, pp. 29-51.

[BMN01] Ben-Tal, A., Margalit, T., and Nemirovski, A., 2001. “The Or-
dered Subsets Mirror Descent Optimization Method and its Use for the
Positron Emission Tomography Reconstruction,” in Inherently Parallel Al-
gorithms in Feasibility and Optimization and Their Applications, Eds.,
Butnariu, D., Censor, Y., and Reich, S., Elsevier Science, Amsterdam,
Netherlands.

[BNO03] Bertsekas, D. P., with Nedić, A., and Ozdaglar, A. E., 2003.
Convex Analysis and Optimization, Athena Scientific, Belmont, MA.

[BaW75] Balinski, M., and Wolfe, P., (Eds.), 1975. Nondifferentiable Opti-
mization, Math. Programming Study 3, North-Holland, Amsterdam.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Dis-
tributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs,
N. J; republished by Athena Scientific, Belmont, MA, 1997.

[BeT94] Bertsekas, D. P., and Tseng, P., 1994. “Partial Proximal Minimiza-
tion Algorithms for Convex Programming,” SIAM J. on Optimization, Vol.
4, pp. 551-572.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Pro-
gramming, Athena Scientific, Belmont, MA.

[BeT00] Bertsekas, D. P., and Tsitsiklis, J. N., 2000. “Gradient Convergence
in Gradient Methods,” SIAM J. on Optimization, Vol. 10, pp. 627-642.

399

400 References

[BeT09] Beck, A., and Teboulle, M., 2009. “A Fast Iterative Shrinkage-
Thresholding Algorithm for Linear Inverse Problems, SIAM J. on Imaging
Sciences, Vol. 2, pp. 183-202.

[BeY09] Bertsekas, D. P., and Yu, H., 2009. “A Unifying Polyhedral Ap-
proximation Framework for Convex Optimization,” Lab. for Info. and De-
cision Systems Report LIDS-P-2820, MIT, Cambridge, MA.

[Ber75a] Bertsekas, D. P., 1975. “Necessary and Sufficient Conditions for a
Penalty Method to be Exact,” Math. Programming, Vol. 9, pp. 87-99.

[Ber75b] Bertsekas, D. P., 1975. “Nondifferentiable Optimization Via Ap-
proximation,” Math. Programming Study 3, Balinski, M., and Wolfe, P.,
(Eds.), North-Holland, Amsterdam, pp. 1-25.

[Ber76] Bertsekas, D. P., 1976. “Multiplier Methods: A Survey,” Automat-
ica, Vol. 12, pp. 133-145.

[Ber77] Bertsekas, D. P., 1977. “Approximation Procedures Based on the
Method of Multipliers,” J. Opt. Th. and Appl., Vol. 23, pp. 487-510.

[Ber82] Bertsekas, D. P., 1982. Constrained Optimization and Lagrange
Multiplier Methods, Academic Press, N. Y; republished by Athena Scien-
tific, Belmont, MA, 1997.

[Ber96] Bertsekas, D. P., 1996. “Incremental Least Squares Methods and
the Extended Kalman Filter,” SIAM J. on Optimization, Vol. 6, pp. 807-
822.

[Ber97] Bertsekas, D. P., 1997. “A New Class of Incremental Gradient
Methods for Least Squares Problems,” SIAM J. on Optimization, Vol. 7,
pp. 913-926.

[Ber98] Bertsekas, D. P., 1998. Network Optimization: Continuous and
Discrete Models, Athena Scientific, Belmont, MA.

[Ber99] Bertsekas, D. P., 1999. Nonlinear Programming: 2nd Edition, Athe-
na Scientific, Belmont, MA.

[Ber06] Bertsekas, D. P., 2006. “Extended Monotropic Programming and
Duality,” Lab. for Information and Decision Systems Report 2692, MIT,
March 2006, corrected in Feb. 2010; a version appeared in JOTA, 2008,
Vol. 139, pp. 209-225.

[Ber10a] Bertsekas, D. P., 2010. “Incremental Proximal Methods for Large
Scale Convex Optimization,” Lab. for Information and Decision Systems
Report LIDS-P-2847, MIT, August 2010.

[Ber10b] Bertsekas, D. P., 2010. “Incremental Gradient, Subgradient, and
Proximal Methods for Convex Optimization: A Survey”, Lab. for Informa-
tion and Decision Systems Report LIDS-P-2848, MIT, August 2010.

[BuQ98] Burke, J. V., and Qian, M., 1998. “A Variable Metric Proximal

References 401

Point Algorithm for Monotone Operators,” SIAM J. on Control and Opti-
mization, Vol. 37, pp. 353-375.

[CFM75] Camerini, P. M., Fratta, L., and Maffioli, F., 1975. “On Improving
Relaxation Methods by Modified Gradient Techniques,” Math. Program-
ming Studies, Vol. 3, pp. 26-34.

[CeZ92] Censor, Y., and Zenios, S. A., 1992. “The Proximal Minimization
Algorithm with D-Functions,” J. Opt. Theory and Appl., Vol. 73, pp. 451-
464.

[CeZ97] Censor, Y., and Zenios, S. A., 1997. Parallel Optimization: Theory,
Algorithms, and Applications, Oxford University Press, N. Y.

[ChG59] Cheney, E. W., and Goldstein, A. A., 1959. “Newton’s Method
for Convex Programming and Tchebycheff Approximation,” Numer. Math.,
Vol. I, pp. 253-268.

[ChT93] Chen, G., and Teboulle, M., 1993. “Convergence Analysis of a
Proximal-Like Minimization Algorithm Using Bregman Functions,” SIAM
J. on Optimization, Vol. 3, pp. 538-543.

[ChT94] Chen, G., and Teboulle, M., 1994. “A Proximal-Based Decompo-
sition Method for Convex Minimization Problems,” Math. Programming,
Vol. 64, pp. 81-101.

[CoL94] Correa, R., and Lemarechal, C., 1994. “Convergence of Some Al-
gorithms for Convex Minimization,” Math. Programming, Vol. 62, pp. 261-
276.

[Dav76] Davidon, W. C., 1976. “New Least Squares Algorithms,” J. Opt.
Theory and Appl., Vol. 18, pp. 187-197.

[EcB92] Eckstein, J., and Bertsekas, D. P., 1992. “On the Douglas-Rachford
Splitting Method and the Proximal Point Algorithm for Maximal Monotone
Operators,” Math. Programming, Vol. 55, pp. 293-318.

[Eck94a] Eckstein, J., 1994. “Nonlinear Proximal Point Algorithms Using
Bregman Functions, with Applications to Convex Programming,” Math.
Operations Res., Vol. 18, pp. 202-226.

[ElM75] Elzinga, J., and Moore, T. G., 1975. “A Central Cutting Plane
Algorithm for the Convex Programming Problem,” Math. Programming,
Vol. 8, pp. 134-145.

[Erm83] Ermoliev, Yu. M., 1983. “Stochastic Quasigradient Methods and
Their Application to System Optimization,” Stochastics, Vol. 9, pp. 1-36.

[FaP03] Facchinei, F., and Pang, J. S., 2003. Finite-Dimensional Variational
Inequalities and Complementarity Problems, Vol. II, Springer-Verlag, N. Y.

[FeK00] Feltenmark, S., and Kiwiel, K. C., 2000. “Dual Applications of
Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex

402 References

Problems.” SIAM J. Optimization, Vol. 10, 697-721.

[Fri56] Frisch, M. R., 1956. “La Resolution des Problemes de Programme
Lineaire par la Methode du Potential Logarithmique,” Cahiers du Semi-
naire D’Econometrie, Vol. 4, pp. 7-20.

[GZL02] Guan, X. H., Zhai, Q. Z., and Lai, F., 2002. “New Lagrangian
Relaxation Based Algorithm for Resource Scheduling with Homogeneous
Subproblems,” J. Opt. Theory and Appl., Vol. 113, pp. 6582

[Gai94] Gaivoronski, A. A., 1994. “Convergence Analysis of Parallel Back-
propagation Algorithm for Neural Networks,” Optimization Methods and
Software, Vol. 4, pp. 117-134.

[GoV02] Goffin, J. L., and Vial, J. P., 2002. “Convex Nondifferentiable
Optimization: A Survey Focussed on the Analytic Center Cutting Plane
Method,” Optimization Methods and Software, Vol. 17, pp. 805-867.

[Gri94] Grippo, L., 1994. “A Class of Unconstrained Minimization Methods
for Neural Network Training,” Optimization Methods and Software, Vol.
4, pp. 135-150.

[Gul91] Guler, O., 1991. “On the Convergence of the Proximal Point Al-
gorithm for Convex Minimization,” SIAM J. Control Optim., Vol. 29, pp.
403-419.

[Gul92] Guler, O., 1992. “New Proximal Point Algorithms for Convex Min-
imization,” SIAM J. on Optimization, Vol. 2, pp. 649-664.

[HaB70] Haarhoff, P. C., and Buys, J. D, 1970. “A New Method for the
Optimization of a Nonlinear Function Subject to Nonlinear Constraints,”
Computer J., Vol. 13, pp. 178-184.

[HLV87] Hearn, D. W., Lawphongpanich, S., and Ventura, J. A., 1987. “Re-
stricted Simplicial Decomposition: Computation and Extensions,” Math.
Programming Studies, Vol. 31, pp. 119-136.

[Hes69] Hestenes, M. R., 1969. “Multiplier and Gradient Methods,” J. Opt.
Th. and Appl., Vol. 4, pp. 303-320.

[HiL93] Hiriart-Urruty, J.-B., and Lemarechal, C., 1993. Convex Analysis
and Minimization Algorithms, Vols. I and II, Springer-Verlag, Berlin and
N. Y.

[Hoh77] Hohenbalken, B. von, 1977. “Simplicial Decomposition in Nonlin-
ear Programming,” Math. Programming, Vol. 13, pp. 49-68.

[Hol74] Holloway, C. A., 1974. “An Extension of the Frank and Wolfe
Method of Feasible Directions,” Math. Programming, Vol. 6, pp. 14-27.

[IST94] Iusem, A. N., Svaiter, B., and Teboulle, M., 1994. “Entropy-Like
Proximal Methods in Convex Programming,” Math. Operations Res., Vol.
19, pp. 790-814.

References 403

[Ius99] Iusem, A. N., 1999. “Augmented Lagrangian Methods and Proximal
Point Methods for Convex Minimization,” Investigacion Operativa.

[KaC98] Kaskavelis, C. A., and Caramanis, M. C., 1998. “Efficient La-
grangian Relaxation Algorithms for Industry Size Job-Shop Scheduling
Problems,” IIE Transactions on Scheduling and Logistics, Vol. 30, pp.
1085–1097.

[Kel60] Kelley, J. E., 1960. “The Cutting-Plane Method for Solving Convex
Programs,” J. Soc. Indust. Appl. Math., Vol. 8, pp. 703-712.

[Kib79] Kibardin, V. M., 1979. “Decomposition into Functions in the Min-
imization Problem,” Automation and Remote Control, Vol. 40, pp. 1311-
1323.

[KoB72] Kort, B. W., and Bertsekas, D. P., 1972. “A New Penalty Function
Method for Constrained Minimization,” Proc. 1972 IEEE Confer. Decision
Control, New Orleans, LA, pp. 162-166.

[KoB76] Kort, B. W., and Bertsekas, D. P., 1976. “Combined Primal-Dual
and Penalty Methods for Convex Programming,” SIAM J. on Control and
Optimization, Vol. 14, pp. 268-294.

[Kor75] Kort, B. W., 1975. “Combined Primal-Dual and Penalty Function
Algorithms for Nonlinear Programming,” Ph.D. Thesis, Dept. of Enginee-
ring-Economic Systems, Stanford Univ., Stanford, Ca.

[LMY08] Lu, Z., Monteiro, R. D. C., and Yuan, M., 2008. “Convex Opti-
mization Methods for Dimension Reduction and Coefficient Estimation in
Multivariate Linear Regression,” Report, School of Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta.

[LPS98] Larsson, T., Patriksson, M., and Stromberg, A.-B., 1998. “Er-
godic Convergence in Subgradient Optimization,” Optimization Methods
and Software, Vol. 9, pp. 93-120.

[LVB98] Lobo, M. S., Vandenberghe, L., Boyd, S., and Lebret, H., 1998.
“Applications of Second-Order Cone Programming,” Linear Algebra and
Applications, Vol. 284, pp. 193-228.

[LeS93] Lemaréchal, C., and Sagastizábal, C., 1993. “An Approach to Vari-
able Metric Bundle Methods,” in Systems Modelling and Optimization,
Proc. of the 16th IFIP-TC7 Conference, Compiègne, Henry, J., and Yvon,
J.-P., (Eds.), Lecture Notes in Control and Information Sciences 197, pp.
144-162.

[LuT94] Luo, Z. Q., and Tseng, P., 1994. “Analysis of an Approximate
Gradient Projection Method with Applications to the Backpropagation Al-
gorithm,” Optimization Methods and Software, Vol. 4, pp. 85-101.

[Luq84] Luque, F.J., 1984. “Asymptotic Convergence Analysis of the Prox-
imal Point Algorithm,” SIAM J. on Control and Optimization, Vol. 22, pp.

404 References

277-293.

[Luo91] Luo, Z. Q., 1991. “On the Convergence of the LMS Algorithm
with Adaptive Learning Rate for Linear Feedforward Networks,” Neural
Computation, Vol. 3, pp. 226-245.

[MSQ98] Mifflin, R., Sun, D., and Qi, L., 1998. “Quasi-Newton Bundle-
Type Methods for Nondifferentiable Convex Optimization, SIAM J. on
Optimization, Vol. 8, pp. 583-603.

[MaS94] Mangasarian, O. L., and Solodov, M. V., 1994. “Serial and Paral-
lel Backpropagation Convergence Via Nonmonotone Perturbed Minimiza-
tion,” Optimization Methods and Software, Vol. 4, pp. 103-116.

[Mar70] Martinet, B., 1970. “Regularisation d′ Inequations Variationelles
par Approximations Successives,” Rev. Francaise Inf. Rech. Oper., Vol. 4,
pp. 154-159.

[Mar72] Martinet, B., 1972. “Determination Approchee d’un Point Fixe
d’une Application Pseudocontractante,” C. R. Acad. Sci. Paris, Vol. 274A,
pp. 163-165.

[Mif96] Mifflin, R., 1996. “A Quasi-Second-Order Proximal Bundle Algo-
rithm,” Math. Programming, Vol. 73, pp. 51-72.

[Min86] Minoux, M., 1986. Mathematical Programming: Theory and Al-
gorithms, Wiley, N. Y.

[NBB01] Nedić, A., Bertsekas, D. P., and Borkar, V. S., 2001. “Distributed
Asynchronous Incremental Subgradient Methods,” in Inherently Parallel
Algorithms in Feasibility and Optimization and Their Applications, But-
nariu, D., Censor, Y., and Reich, S., (Eds.), Elsevier Science, Amsterdam,
Netherlands.

[NeB01a] Nedić, A., and Bertsekas, D. P., 2001. “Incremental Subgradient
Methods for Nondifferentiable Optimization,” SIAM J. on Optim., Vol. 12,
pp. 109-138.

[NeB01b] Nedić, A., and Bertsekas, D. P., 2001. “Convergence Rate of
Incremental Subgradient Algorithms,” in Stochastic Optimization: Algo-
rithms and Applications, Uryasev, S., and Pardalos, P. M., (Eds.), Kluwer
Academic Publishers, Dordrecht, Netherlands, pp. 223-264.

[NeB07] Nedić, A., and Bertsekas, D. P., 2007. “The Effect of Deterministic
Noise in Subgradient Methods,” Lab. for Information and Decision Systems
Report, MIT, Math. Programming, to appear.

[NeN94] Nesterov, Y., and Nemirovskii, A., 1994. Interior Point Polynomial
Algorithms in Convex Programming, SIAM, Studies in Applied Mathemat-
ics 13, Phila., PA.

References 405

[NeW88] Nemhauser, G. L., and Wolsey, L. A., 1988. Integer and Combi-
natorial Optimization, Wiley, N. Y.

[NeY83] Nemirovsky, A., and Yudin, D. B., 1983. Problem Complexity and
Method Efficiency, Wiley, N. Y.

[Nes83] Nesterov, Y., 1983. “A Method for Unconstrained Convex Min-
imization Problem with the Rate of Convergence O(1/k2), Doklady AN
SSSR 269, pp. 543-547; translated as Soviet Math. Dokl.

[Nes04] Nesterov, Y., 2004. Introductory Lectures on Convex Optimization,
Kluwer Academic Publisher, Dordrecht, The Netherlands.

[Nes05] Nesterov, Y., 2005. “Smooth Minimization of Nonsmooth Func-
tions,” Math. Programming, Vol. 103 pp. 127-152.

[Nur74] Nurminskii, E. A., 1974. “Minimization of Nondifferentiable Func-
tions in Presence of Noise,” Kibernetika, Vol. 10, pp. 59-61.

[OrR70] Ortega, J. M., and Rheinboldt, W. C., 1970. Iterative Solution of
Nonlinear Equations in Several Variables, Academic Press, N. Y.

[Pap81] Papavassilopoulos, G., 1981. “Algorithms for a Class of Nondiffer-
entiable Problems,” J. Opt. Th. and Appl., Vol. 34, pp. 41-82.

[Pen02] Pennanen, T., 2002. “Local Convergence of the Proximal Point
Algorithm and Multiplier Methods without Monotonicity,” Mathematics
of Operations Research, Vol. 27, pp. 170-191.

[PoT74] Poljak, B. T., and Tretjakov, N. V., 1974. “An Iterative Method
for Linear Programming and its Economic Interpretation,” Matecon, Vol.
10, pp. 81-100.

[PoT97] Polyak, R., and Teboulle, M., 1997. “Nonlinear Rescaling and
Proximal-Like Methods in Convex Optimization,” Math. Programming,
Vol. 76, pp. 265-284.

[Pol64] Poljak, B. T., 1964. “Some Methods of Speeding up the Convergence
of Iteration Methods,” Z. VyC̆isl. Mat. i Mat. Fiz., Vol. 4, pp. 1-17.

[Pol79] Poljak, B. T., 1979. “On Bertsekas’ Method for Minimization of
Composite Functions,” Internat. Symp. Systems Opt. Analysis, Benoussan,
A., and Lions, J. L., (Eds.), pp. 179-186, Springer-Verlag, Berlin and N. Y.

[Pol87] Polyak B. T., Introduction to Optimization, Optimization Software
Inc., N.Y., 1987.

[Roc73b] Rockafellar, R. T., 1973. “The Multiplier Method of Hestenes and
Powell Applied to Convex Programming,” J. Opt. Th. and Appl., Vol. 12,
pp. 555-562.

[Pow69] Powell, M. J. D., 1969. “A Method for Nonlinear Constraints
in Minimizing Problems,” in Optimization, Fletcher, R., (Ed.), Academic

406 References

Press, N. Y, pp. 283-298.

[RaN05] Rabbat M. G. and Nowak R. D., “Quantized incremental algo-
rithms for distributed optimization,” IEEE Journal on Select Areas in
Communications, Vol. 23, No. 4, 2005, pp. 798–808.

[Roc73] Rockafellar, R. T., 1973. “A Dual Approach to Solving Nonlinear
Programming Problems by Unconstrained Optimization,” Math. Program-
ming, pp. 354-373.

[Roc76a] Rockafellar, R. T., 1976. “Monotone Operators and the Proximal
Point Algorithm,” SIAM J. on Control and Optimization, Vol. 14, pp. 877-
898.

[Roc76b] Rockafellar, R. T., 1976. “Solving a Nonlinear Programming Prob-
lem by Way of a Dual Problem,” Symp. Matematica, Vol. 27, pp. 135-160.

[Roc84] Rockafellar, R. T., 1984. Network Flows and Monotropic Opti-
mization, Wiley, N. Y.; republished by Athena Scientific, Belmont, MA,
1998.

[Rus89] Ruszczynski, A., 1989. “An Augmented Lagrangian Decomposition
Method for Block Diagonal Linear Programming Problems,” Operations
Res. Letters, Vol. 8, pp. 287-294.

[Sho85] Shor, N. Z., 1985. Minimization Methods for Nondifferentiable
Functions, Springer-Verlag, Berlin.

[Sho98] Shor, N. Z., 1998. Nondifferentiable Optimization and Polynomial
Problems, Kluwer Academic Publishers, Dordrecht, Netherlands.

[SoZ98] Solodov, M. V., and Zavriev, S. K., 1998. “Error Stability Proper-
ties of Generalized Gradient-Type Algorithms,” J. Opt. Theory and Appl.,
Vol. 98, pp. 663–680.

[Sol98] Solodov, M. V., 1998. “Incremental Gradient Algorithms with Step-
sizes Bounded Away from Zero,” Computational Optimization and Appli-
cations, Vol. 11, pp. 23-35.

[Str97] Stromberg, A-B., 1997. Conditional Subgradient Methods and Er-
godic Convergence in Nonsmooth Optimization, Ph.D. Thesis, Univ. of
Linkoping, Sweden.

[TBA86] Tsitsiklis, J. N., Bertsekas, D. P., and Athans, M., 1986. “Dis-
tributed Asynchronous Deterministic and Stochastic Gradient Optimiza-
tion Algorithms,” IEEE Trans. on Aut. Control, Vol. AC-31, pp. 803-812.

[TsB93] Tseng, P., and Bertsekas, D. P., 1993. “On the Convergence of
the Exponential Multiplier Method for Convex Programming,” Math. Pro-
gramming, Vol. 60, pp. 1-19.

[TsB00] Tseng, P., and Bertsekas, D. P., 2000. “An Epsilon-Relaxation
Method for Separable Convex Cost Generalized Network Flow Problems,”

References 407

Math. Progamming, Vol. 88, pp. 85-104.

[Tse98] Tseng, P., 1998. “Incremental Gradient(-Projection) Method with
Momentum Term and Adaptive Stepsize Rule,” SIAM J. on Optimization,
Vol. 8, pp. 506-531.

[Tse01] Tseng, P., 2001. “An Epsilon Out-of-Kilter Method for Monotropic
Programming,” Math. Oper. Res., Vol. 26, pp. 221-233.

[Tse08] Tseng, P., 2008. “On Accelerated Proximal Gradient Methods for
Convex-Concave Optimization,” Report, Math. Dept., Univ. of Washing-
ton.

[VeH93] Ventura, J. A., and Hearn, D. W., 1993. “Restricted Simplicial
Decomposition for Convex Constrained Problems,” Math. Programming,
Vol. 59, pp. 71-85.

[WSV00] Wolkowicz, H., Saigal, R., and Vanderbergue, L., (eds), 2000.
Handbook of Semidefinite Programming, Kluwer, Boston.

[Wol75] Wolfe, P., 1975. “A Method of Conjugate Subgradients for Mini-
mizing Nondifferentiable Functions,” Math. Programming Study 3, Balin-
ski, M., and Wolfe, P., (Eds.), North-Holland, Amsterdam, pp. 145-173.

[Wri97] Wright, S. J., 1997. Primal-Dual Interior Point Methods, SIAM,
Phila., PA.

[Ye97] Ye, Y., 1997. Interior Point Algorithms: Theory and Analysis, Wiley
Interscience, N. Y.

[ZLW99] Zhao, X., Luh, P. B., and Wang, J., 1999. “Surrogate Gradient
Algorithm for Lagrangian Relaxation,” J. Opt. Theory and Appl., Vol. 100,
pp. 699-712.

[ZhL02] Zhao, X., and Luh, P. B., 2002. “New Bundle Methods for Solving
Lagrangian Relaxation Dual Problems,” J. Opt. Theory and Appl., Vol.
113, pp. 373-397.

