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1 Problem Set-up
The problem set up is more the less the same as in [1] as are the derivations. We want to minimize a function
minimize, E¢[F(z,§)] + P(x) (1.1)

but we only get access to subgradients g(x, £) of F(x, &) with £ sampled at random. Examples of this set-up
include

1. Noisy gradients. We want to minimize a smooth function f(z). At every iteration, we compute or
gain access to a noisy gradient g, = V f(x}) + wi where wy, is some zero-mean noise process which
is independent of xj.

2. Incremental gradients. We want to minimize a function of the form

At every iteration, we choose a random index i, uniformly at random from {1, ..., m}, and we take
a step along the gradient of f;, rather than of the full function f. This is obviously faster to compute
when m is large. When does this approach find a minimum of f?

Throughout we assume

1. f(x) := E¢[F(x,&)] is differentiable and strongly convex. So there exists a constant £ > 0 such that

f(z) > f(x)+Vf(x)*(z—x)+§Hz—xu2. (1.2)



2. VfisLipschitz so that |V f(x) — Vf(y)| < L||z — y||.
3. P(x) is a convex extended real valued function.

Note tlhat the results apply to the case where there is only one value of £. That is, the non-stochastic setting.
In this case we would have a differentiable convex function plus an arbitrary convex function. Also note that
we can enforce the constraint z € X for some convex set X by letting P(z) = 0 for z € X and P(x) = o0
forz & X.

Let us define a stochastic projected gradient scheme to solve this problem. Let

prox, p(z) = argmin ||z — z||* + vP(x) (1.3)
xT
Letvo,...,7T,- .., be a sequence of positive numbers. Choose zg € X, and iterate
Tpt1 = proxy, p(zr — Gk, &) - (1.4)

2 Analysis of Unconstrained Stochastic Gradient

First, let’s examine the case with P = 0 and let’s make no assumptions about strong convexity. Assume
|G(x,&)|| < M for all z and €. Let z,. denote any optimal solution of (1.1). Then we have

Ell|lzrs1 — )] = Ellzx — wG(k, &) — 2.]|?) (2.1a)
= E[|lzx — z.)1*) = 29 E[(G (2, &), 2 — 2)] + R E[|G(2r, &) 7] (2.1b)
< Elllox — 2% = 2% E{G (wk, &), 2x — )] + 75 M 2.1¢)

= Elllex — w)1?) = 2 B[V f (21), 21, — 2] + 17 M> 2.1d)
< Efllag — l?) = 2 Elf (zx) — f ()] + 1M (2.1e)
(2.1d) follows because
E{G(xk, &k), vk — w4)] = gy g [Ee, (G (@, &k ), T — 34) [ G055 S 2.2)
= Eey,.us (V (k) zk — 95*> | 0,5 &) (2.3)
=E[(Vf(zk), 2k — 24)] 2.4)

by the law of iterated expectation. (2.1e) is a consequence of the inequality

(Vf(zr),zr — 24) > (x1) — f(24) (2.5

which holds because f is convex.
Arranging the bound, we have for any n

D2 + M2 an 72
E[f < k=0 Tk 2.6

where D = |lzg — x||>. This bound can be computed by summing the inequalities for k = 0,...,n and
then dividing by the sum of the ~y;. Let

T = Ek - kZ’ykxk (2.7)



Then, by convexity, we have

E[f(z)] — f(z:) < D (2.8)

[f(@)] = f () ST

This is precisely the bound rate of convergence we have seen for deterministic subgradient descent.

3 Analysis of Projected Stochastic Gradient

Let x, denote the optimal solution of (1.1). x, is unique because of strong convexity. Observe that

Elllzrs1 — 1) = B[, (25 — wG (k. &) — My (2 — mV f (24))]|] (3.1a)

< E[|lar — G (n, &) — 2 + WV f (2 ||] (3.1b)
= Bz — VS (@r) + (VI (2r) = Glaw, &) — e+ wV f(2)|] (3.10)
= Ellzx — %V f(zr) — 20 + eV F (@) (3.1d)

+ 29 E[(V f (1) — G, &), 2k — WV f (k) — 2o + %V f(24) )]
+ BV f (2x) — Glar, &)%)
= E||lz — VS (@r) — 2 + V(@) P+ REVf (2r) — Glar, &)|IP] G.le)
Here, the first equality follows by the definition of z;; and because x, is optimal. (3.1b) follows because

the proximity operator is non-expansive. (3.1c) follows because E[G(z, {)] = V f(z) for all z and G(z, &)
is independent of £;. Thus we have

E[V f(zr) — G(zk, k), o6 — eV f(2k) — 24 + 1V f(24))] (3.2a)
=Ee,...e0 1 [Ee, (Vf(2r) — G(or, &), on — WV f(2r) — 2o + V(@) |60, .- 1] (3.2b)
0 (3.2¢)

Note that the first term in (3.1e) is completely independent of &;, while the second term is a variance term
concerning the second moments of the subgradients at the current iterate and at the optimum. We can bound
each of these terms separately. First, since f is strongly convex and has a Lipschitz continuous gradient, it
follows that

Elllzr — WV f(wr) = 2+ Vf(20)1P) < max{[L — L], |1 = el P E[ax —a]?]. (3.3)
For the second term, we must make some assumption about the statistics of the random function
¢(2:8k) == G(2,&) — V(2) (3.4)
Let’s explore some possibilities.

31 =0

In the case when there is no randomness at all and we are just following the gradient, we only need upper

bound (3.3). In this case, setting 7y, = LLM for all k£, we find that

L—/¢
R N L 39
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or, letting kK = % and Dy = ||zg — x|,

k—1 k
—x. < D 3.6
|zx — 24| < </€+1> 0 (3.6)

That is, a constant step-size policy converges at a linear rate.

3.2 ¢ bounded

The simplest non-trivial assumption is that the deviations are bounded:

(2 k)l < M (3.7)

for some universal constant M. In this case, we have the upper bound

B[l 1 — 2l|?] < max{|1 — L], |1 = yl| Y Bl|Jag — 2.]|?] + 77 M (3.8a)
< (1= 29l + 7 L?) Elllag — x]|?] + 7M. (3.8b)

With such a bound, we can achieve the so-called “optimal” O(1/k) rate by choosing

1

= (3.9)

Indeed, in this case, it follows by induction that

M? + DL

Blzk — o < =1

(3.10)

where Dy again equals ||xg — x.||. To verify this inequality, note that for & = 0, the right hand is greater
than D%. Assuming that the inequality holds for £ < K, observe

5 2 L? 0 M?
Elllzgr — 7] < (1= i W)E[HCUK — @] + K22 (3.11a)
2 M? + L2 E[||lx k-1 — 2]
< (1- ) Ellexr =z + oo (3.11b)
2 M?+ D2L?> M?+ D2L?
<(1-—)=— 0 A (3.110)
K K2 K202
K?2—-1 M?+D2L?> M?+ D2L?
_ B (3.11d)

K2 (K+1)2 — (K+1)2

3.3 ¢ Lipschitz

If we add additional assumptions about the behavior of ¢, we can derive considerably faster convergence.
In particular, consider the unconstrained case and suppose ¢ is Lipschitz in expectation:

Elllp(x:O)I%] < Bllz — 2.|* Va (3.12)
In this case, we have a bound of the form

Efllzrsr — 2.l?) < (max{|1 — L], [1 — yl}* + 72 6°) Bl ek — 2] (3.13)
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Now we can always select a constant ~y that provides a linear convergence rate. Indeed,if 3 < /L, then
setting vy, = ZJ%L gives

Ak — B2/02)\*
Efllzg+1 — 13*”2] < <1 - ((K_fl)/g)> D(2) (3.14)
Otherwise, setting v, = ﬁ we achieve
—k
Ell|zgs1 — zl]?] < (1 +€2/6%) " D§. (3.15)
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