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1 Problem Set-up

The problem set up is more the less the same as in [1] as are the derivations. We want to minimize a function

minimizex Eξ[F (x, ξ)] + P (x) (1.1)

but we only get access to subgradients g(x, ξ) of F (x, ξ) with ξ sampled at random. Examples of this set-up
include

1. Noisy gradients. We want to minimize a smooth function f(x). At every iteration, we compute or
gain access to a noisy gradient gk = ∇f(xk) + ωk where ωk is some zero-mean noise process which
is independent of xk.

2. Incremental gradients. We want to minimize a function of the form

f(x) =
m∑
i=1

fi(x)

At every iteration, we choose a random index ik uniformly at random from {1, . . . ,m}, and we take
a step along the gradient of fik rather than of the full function f . This is obviously faster to compute
when m is large. When does this approach find a minimum of f?

Throughout we assume

1. f(x) := Eξ[F (x, ξ)] is differentiable and strongly convex. So there exists a constant ` > 0 such that

f(z) ≥ f(x) +∇f(x)∗(z − x) +
`

2
‖z − x‖2 . (1.2)
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2. ∇f is Lipschitz so that ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

3. P (x) is a convex extended real valued function.

Note tlhat the results apply to the case where there is only one value of ξ. That is, the non-stochastic setting.
In this case we would have a differentiable convex function plus an arbitrary convex function. Also note that
we can enforce the constraint x ∈ X for some convex set X by letting P (x) = 0 for x ∈ X and P (x) =∞
for x 6∈ X .

Let us define a stochastic projected gradient scheme to solve this problem. Let

proxνP (z) = arg min
x
‖x− z‖2 + νP (x) (1.3)

Let γ0, . . . , γT , . . . , be a sequence of positive numbers. Choose x0 ∈ X , and iterate

xk+1 = proxγkP
(xk − γkG(xk, ξk)) . (1.4)

2 Analysis of Unconstrained Stochastic Gradient

First, let’s examine the case with P = 0 and let’s make no assumptions about strong convexity. Assume
‖G(x, ξ)‖ ≤M for all x and ξ. Let x∗ denote any optimal solution of (1.1). Then we have

E[‖xk+1 − x∗‖2] = E[‖xk − γkG(xk, ξk))− x∗‖2] (2.1a)

= E[‖xk − x∗‖2]− 2γk E[〈G(xk, ξk), xk − x∗〉] + γ2
k E[‖G(xk, ξk)‖2] (2.1b)

≤ E[‖xk − x∗‖2]− 2γk E[〈G(xk, ξk), xk − x∗〉] + γ2
kM

2 (2.1c)

= E[‖xk − x∗‖2]− 2γk E[〈∇f(xk), xk − x∗〉] + γ2
kM

2 (2.1d)

≤ E[‖xk − x∗‖2]− 2γk E[f(xk)− f(x∗)] + γ2
kM

2 (2.1e)

(2.1d) follows because

E[〈G(xk, ξk), xk − x∗〉] = Eξ0,...,ξk−1
[Eξk [〈G(xk, ξk), xk − x∗〉 | ξ0, . . . , ξk−1] (2.2)

= Eξ0,...,ξk−1
[〈∇f(xk), xk − x∗〉 | ξ0, . . . , ξk−1] (2.3)

= E[〈∇f(xk), xk − x∗〉] (2.4)

by the law of iterated expectation. (2.1e) is a consequence of the inequality

〈∇f(xk), xk − x∗〉 ≥ (xk)− f(x∗) (2.5)

which holds because f is convex.
Arranging the bound, we have for any n

1∑n
k=0 γk

n∑
k=0

γk E[f(xk)]− f(x∗) ≤
D2 +M2

∑n
k=0 γ

2
k

2
∑n

k=0 γk
(2.6)

where D = ‖x0 − x∗‖2. This bound can be computed by summing the inequalities for k = 0, . . . , n and
then dividing by the sum of the γk. Let

x̄ :=
1∑n

k=0 γk

n∑
k=0

γkxk (2.7)
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Then, by convexity, we have

E[f(x̄)]− f(x∗) ≤
D2 +M2

∑n
k=0 γ

2
k

2
∑n

k=0 γk
(2.8)

This is precisely the bound rate of convergence we have seen for deterministic subgradient descent.

3 Analysis of Projected Stochastic Gradient

Let x∗ denote the optimal solution of (1.1). x∗ is unique because of strong convexity. Observe that

E[‖xk+1 − x∗‖2] = E[‖Πγk
(xk − γkG(xk, ξk))−Πγk

(x∗ − γk∇f(x∗))‖2] (3.1a)

≤ E[‖xk − γkG(xk, ξk)− x∗ + γk∇f(x∗)‖2] (3.1b)

= E[‖xk − γk∇f(xk) + γk(∇f(xk)−G(xk, ξk))− x∗ + γk∇f(x∗)‖2] (3.1c)

= E[‖xk − γk∇f(xk)− x∗ + γk∇f(x∗)‖2] (3.1d)

+ 2γk E[〈∇f(xk)−G(xk, ξk), xk − γk∇f(xk)− x∗ + γk∇f(x∗) 〉]
+ γ2

k E[‖∇f(xk)−G(xk, ξk)‖2]

= E[‖xk − γk∇f(xk)− x∗ + γk∇f(x∗)‖2] + γ2
k E[‖∇f(xk)−G(xk, ξk)‖2] (3.1e)

Here, the first equality follows by the definition of xk+1 and because x∗ is optimal. (3.1b) follows because
the proximity operator is non-expansive. (3.1c) follows because E[G(z, ξk)] = ∇f(z) for all z andG(z, ξk)
is independent of ξk. Thus we have

E[〈∇f(xk)−G(xk, ξk), xk − γk∇f(xk)− x∗ + γk∇f(x∗)〉] (3.2a)

= Eξ0,...,ξk−1
[Eξk [〈∇f(xk)−G(xk, ξk), xk − γk∇f(xk)− x∗ + γk∇f(x∗)〉|ξ0, . . . , ξk−1]] (3.2b)

=0 (3.2c)

Note that the first term in (3.1e) is completely independent of ξk while the second term is a variance term
concerning the second moments of the subgradients at the current iterate and at the optimum. We can bound
each of these terms separately. First, since f is strongly convex and has a Lipschitz continuous gradient, it
follows that

E[‖xk − γk∇f(xk)− x∗ + γk∇f(x∗)‖2] ≤ max{|1− γkL|, |1− γk`|}2 E[‖xk − x∗‖2] . (3.3)

For the second term, we must make some assumption about the statistics of the random function

ϕ(z; ξk) := G(z, ξk)−∇f(z) (3.4)

Let’s explore some possibilities.

3.1 ϕ ≡ 0

In the case when there is no randomness at all and we are just following the gradient, we only need upper
bound (3.3). In this case, setting γk = 2

L+` for all k, we find that

‖xk+1 − x∗‖ ≤
(
L− `
L+ `

)
‖xk − x∗‖ (3.5)
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or, letting κ = L
` and D0 = ‖x0 − x∗‖,

‖xk − x∗‖ ≤
(
κ− 1
κ+ 1

)k
D0 (3.6)

That is, a constant step-size policy converges at a linear rate.

3.2 ϕ bounded

The simplest non-trivial assumption is that the deviations are bounded:

‖ϕ(z; ξk)‖ ≤M (3.7)

for some universal constant M . In this case, we have the upper bound

E[‖xk+1 − x∗‖2] ≤ max{|1− γkL|, |1− γk`|}2 E[‖xk − x∗‖2] + γ2
kM

2 (3.8a)

≤ (1− 2γk`+ γ2
kL

2) E[‖xk − x∗‖2] + γ2
kM

2 . (3.8b)

With such a bound, we can achieve the so-called “optimal” O(1/k) rate by choosing

γk =
1
k`
. (3.9)

Indeed, in this case, it follows by induction that

E[‖xk − x∗‖2] ≤ M2 +D2
0L

2

k`2
(3.10)

where D0 again equals ‖x0 − x∗‖. To verify this inequality, note that for k = 0, the right hand is greater
than D2

0. Assuming that the inequality holds for k ≤ K, observe

E[‖xK+1 − x∗‖2] ≤ (1− 2
K

+
L2

K2`2
) E[‖xK − x∗‖2] +

M2

K2`2
(3.11a)

≤ (1− 2
K

) E[‖xK−1 − x∗‖2] +
M2 + L2 E[‖xK−1 − x∗‖2]

K2`2
(3.11b)

≤ (1− 2
K

)
M2 +D2

0L
2

K`2
+
M2 +D2

0L
2

K2`2
(3.11c)

=
K2 − 1
K2

· M
2 +D2

0L
2

(K + 1)`2
≤ M2 +D2

0L
2

(K + 1)`2
. (3.11d)

3.3 ϕ Lipschitz

If we add additional assumptions about the behavior of ϕ, we can derive considerably faster convergence.
In particular, consider the unconstrained case and suppose ϕ is Lipschitz in expectation:

E[‖ϕ(x; ξ)‖2] ≤ β2‖x− x∗‖2 ∀x (3.12)

In this case, we have a bound of the form

E[‖xk+1 − x∗‖2] ≤
(
max{|1− γkL|, |1− γk`|}2 + γ2

kβ
2
)

E[‖xk − x∗‖2] (3.13)
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Now we can always select a constant γ that provides a linear convergence rate. Indeed,if β <
√
`L, then

setting γk = 2
`+L gives

E[‖xk+1 − x∗‖2] ≤
(

1− 4(κ− β2/`2)
(κ+ 1)2

)k
D2

0 (3.14)

Otherwise, setting γk = `
`2+β2 , we achieve

E[‖xk+1 − x∗‖2] ≤
(
1 + `2/β2

)−k
D2

0 . (3.15)
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